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Human Microbiome | Minireview

The human gut microbiome in health and disease: time for a 
new chapter?
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ABSTRACT The gut microbiome, composed of the colonic microbiota and their host 
environment, is important for many aspects of human health. A gut microbiome 
imbalance (gut dysbiosis) is associated with major causes of human morbidity and 
mortality. Despite the central part our gut microbiome plays in health and disease, 
mechanisms that maintain homeostasis and properties that demarcate dysbiosis remain 
largely undefined. Here we discuss that sorting taxa into meaningful ecological units 
reveals that the availability of respiratory electron acceptors, such as oxygen, in the host 
environment has a dominant influence on gut microbiome health. During homeosta
sis, host functions that limit the diffusion of oxygen into the colonic lumen shelter a 
microbial community dominated by primary fermenters from atmospheric oxygen. In 
turn, primary fermenters break down unabsorbed nutrients into fermentation products 
that support host nutrition. This symbiotic relationship is disrupted when host functions 
that limit the luminal availability of host-derived electron acceptors become weakened. 
The resulting changes in the host environment drive alterations in the microbiota 
composition, which feature an elevated abundance of facultatively anaerobic microbes. 
Thus, the part of the gut microbiome that becomes imbalanced during dysbiosis is the 
host environment, whereas changes in the microbiota composition are secondary to this 
underlying cause. This shift in our understanding of dysbiosis provides a novel starting 
point for therapeutic strategies to restore microbiome health. Such strategies can either 
target the microbes through metabolism-based editing or strengthen the host functions 
that control their environment.

KEYWORDS gut microbiome, gut microbiota, dysbiosis, ecological guilds

A dvances in high-throughput sequencing in the first decade of the 21st century 
kicked off studies on host-associated microbial communities (the microbiota) using 

culture-independent approaches. By providing detailed insights into the microbiota 
composition, this methodology launched a new discipline focused on exploring the 
human microbiome during health and disease (1). Microbiome research touches many 
aspects of human health since changes in the fecal microbiota composition suggest 
that a microbiome imbalance (dysbiosis) is associated with major causes of morbidity 
and mortality (2), ranging from cardiovascular disease (3) to colorectal cancer (4, 5), 
diabetes (6), chronic kidney disease (7), chronic liver disease (8), and even neurological 
disorders(9) (Fig. 1). Changes in the fecal microbiota are relevant because they reflect 
alterations in the composition of the colonic microbiota, which is by far the largest 
community inhabiting our body (10) and an important source of microbial metabolites 
that affect human health (11). Therefore, understanding the mechanisms that maintain 
gut homeostasis and the ecological causes for its disruption during gut dysbiosis is 
essential to answer central questions in human microbiome research.

November 2024  Volume 92  Issue 11 10.1128/iai.00302-24 1

Editor Anthony R. Richardson, University of 
Pittsburgh, Pittsburgh, Pennsylvania, USA

Address correspondence to Andreas J. Bäumler, 
ajbaumler@ucdavis.edu.

The authors declare no conflict of interest.

See the funding table on p. 10.

Published 30 September 2024

Copyright © 2024 American Society for 
Microbiology. All Rights Reserved.

https://crossmark.crossref.org/dialog/?doi=10.1128/iai.00302-24&domain=pdf&date_stamp=2024-09-30
https://doi.org/10.1128/iai.00302-24
https://doi.org/10.1128/ASMCopyrightv2


INTO DARKNESS

Studies performed prior to the advent of modern microbiome research had revealed that 
host-associated microbial communities of invertebrates contain abundant core species 
that are characteristic for a homeostatic host-associated microbial community. Perhaps, 
the most striking example is the light organ of the bobtail squid, which selects for a 
single bacterial species, Vibrio fisheri (12). These observations gave rise to the idea that 
a first step in defining a “healthy” colonic microbiota is the identification of abundant 
core species that we all share (13). Dysbiosis could then be defined as a change in the 
core species content, commonly featuring a decrease in microbial diversity, an absence 
of beneficial microbes or the presence of potentially harmful microorganisms (14).

However, this vision collapsed when the analysis of fecal microbiota from volunteers 
revealed marked interpersonal differences in bacterial species content (15, 16). Unlike 
invertebrates, where the same bacterial species are associated with hosts collected from 
different geographical locations (17), the fecal microbiota of individuals from different 
households exhibits only 2%–3% overlap at the species level, which makes it impossible 
to identify abundant core species that are common to the colonic microbiota of humans 
(15, 16). A selection of abundant core species by the host no longer seemed to be 
a concept relevant for the human gut microbiota, thus upending the species-based 
definitions of gut homeostasis and gut dysbiosis. In the absence of abundant core 
species, gut homeostasis could no longer be defined by determining the microbial 
species composition of the colonic microbiota. Consequently, gut dysbiosis could no 
longer be defined as a change in the species composition either (18, 19). Since the terms 
could not be defined, it was questioned whether homeostasis and dysbiosis even existed 
(18, 20).

With a theoretical framework becoming more elusive, the microbiome field 
turned to discovery-driven research to develop concepts about gut homeostasis 
(21). The development of more advanced approaches, such as metagenomics, 

FIG 1 A gut microbiome imbalance is associated with major causes of human morbidity and mortality. Left panel: Leading causes of human mortality in the 

United States reported by the centers for disease control and prevention (2). Numbers indicate deaths recorded in 2022. Right panel: Select diseases linked to a 

change in the fecal microbiota composition.
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metatranscriptomics, and metabolomics, nourished the hope that a possible way out 
of the conceptual crisis would be to scale up discovery-driven research because by 
generating enough data, hypotheses about what constitutes gut homeostasis would 
emerge eventually (22). This approach was embraced by the human microbiome project, 
which generated 42 terabytes of multi-omics data by 2019 (23, 24). But even this 
large-scale nation-wide effort did not reveal which features in microbiota data sets 
define gut homeostasis or the disruption thereof (25).

The fact that scientists still do not agree on what constitutes a healthy microbiome 
or how to define an impaired one (25) has plunged microbiome theory into darkness. 
If the outcome of the human microbiome project is any indication, continuing down 
the path of scaling up discovery-driven research to produce ever larger data sets is not 
likely to succeed in establishing a conceptual framework for microbiome research. One 
cannot help but think that the sole reliance on discovery-driven research has steered the 
microbiome ship off course.

DISTILLING MICROBIOTA COMPLEXITY DOWN TO ITS ECOLOGICAL ESSENCE

To explore where human microbiome research strayed off course, let us first scrutinize 
the premise that discovery-driven research is necessary because a theoretical framework 
is largely still lacking in microbiome studies (21). The dominant influence the host exerts 
on the microbiota composition is obvious in invertebrate models (26), where the host 
epithelium selects for abundant core species (17, 27, 28). This concept was rejected as 
a theoretical framework relevant for human microbiome research because the human 
colonic microbiota does not contain abundant core species (15, 16). But what if the goal 
is not to select for core species in the colonic microbiota but for ecological guilds, which 
are groups of microorganisms that exploit environmental resources in a similar way (29)? 
An ecological guild groups together microbial species that significantly overlap in their 
niche requirements without regard to their taxonomic position. Therefore, a selection 
for ecological guilds is not expected to result in a selection for abundant core species 
common to the human colonic microbiota.

Microbiologists traditionally define ecological guilds based on their energy metab
olism (30). This property is relevant for understanding the composition of microbial 
consortia because microorganisms that produce the largest amount of energy have the 
shortest generation times (31) and come to dominate microbial communities. Energy 
is produced in redox reactions where the transfer of electrons from a carbon-based 
donor, such as glucose, to an electron acceptor, such as oxygen (O2), is captured 
in form of adenosine triphosphate (ATP) through either substrate level phosphoryla
tion or oxidative phosphorylation. The amount of ATP generated from an organic 
compound (i.e., from a carbon-based donor) increases with the redox potential of the 
electron acceptor, which is highest for oxygen. This thermodynamic hierarchy of electron 
acceptors dictates that microbes that use oxygen dominate microbial communities 
under oxic conditions (32, 33). These microorganisms belong to one of two ecological 
guilds: (i) the aerobic microbes, which cannot grow in the absence of oxygen, or (ii) the 
facultatively anaerobic microbes, which can also grow under anaerobic conditions (34, 
35). In contrast, nutrient-rich anoxic environments are dominated by an ecological guild 
termed the primary fermenters (36). Primary fermenters break down organic compounds 
into fermentation products using endogenous electron acceptors, such as pyruvate 
or phosphoenolpyruvate. These fermentation products are broken down further by 
secondary fermenters (37), sulfate-reducing bacteria (38), iron-reducing bacteria (39), 
and methanogens (40, 41), but representatives of these ecological guilds are minority 
species within nutrient-rich anoxic environments. The theorem that a hierarchy of 
electron acceptor utilization governs the abundance of ecological guilds in microbial 
communities is known as the microbial redox tower.

The use of ecological guilds allows for comparative studies among the fecal 
microbiota from different individuals even when there is no direct overlap in species 
composition. During homeostasis, the colonic microbiota is dominated by bacterial 
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species belonging to the class Actinomycetia in breast-fed infants (42), whereas members 
of the classes Bacteroidia and Clostridia dominate in adults (1). The class-level change 
in the colonic microbiota composition during weaning is driven by an abrupt shift in 
the dietary input. Bifidobacterium Iongum subspecies infantis (B. infantis), a member 
of the Actinomycetia, is a primary fermenter that specializes in catabolizing human 
milk oligosaccharides, a component of breast milk (43). Human milk oligosaccharides 
are poorly absorbed in the ileum and reach the colon, where they drive intestinal 
domination of B. infantis in breast-fed infants (42). After weaning, fermentable carbohy
drates in the diet select for primary fermenters that display a taxonomic affinity for the 
classes Bacteroidia and Clostridia. In a first approximation, poorly absorbed fermentable 
oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) present in 
the diet are preferentially fermented by Clostridia species (44, 45), whereas Bacteroidia 
species specialize in breaking down undigested complex carbohydrates (i.e., fiber) into 
fermentation products (46). Importantly, despite marked changes in taxonomic identity, 
the colonic microbiota of breast-fed infants and of healthy adults are both homeostatic 
communities dominated by the same ecological guild: the primary fermenters. Other 
ecological guilds that are present exhibit a low abundance, which includes secondary 
fermenters belonging to the class Clostridia (47), sulfate-reducing bacteria belonging to 
the class Deltaproteobacteria (48), methanogens belonging to the domain Archaea (49), 
as well as iron-reducing bacteria and facultatively anaerobic bacteria belonging to the 
classes Bacilli (50, 51) and Gammaproteobacteria (52).

In short, although homeostasis can feature marked shifts in abundant taxonomic 
groups within the colonic microbiota, the ecological guild composition remains 
dominated by primary fermenters that best suit the host’s dietary input (Fig. 2). Thus, 
whereas dietary input can rapidly and reproducibly change the taxonomic composition 
of the gut microbiota (53), homeostasis is maintained so long as primary fermenters 
continue to dominate.

HIDING IN PLAIN SIGHT: A THEORETICAL FRAMEWORK FOR HUMAN GUT 
MICROBIOME RESEARCH

In contrast to gut homeostasis, the dominance of primary fermenters is challenged in 
impaired colonic microbial communities by facultatively anaerobic microbes (54, 55), an 
ecological guild that represents less than 1% of the fecal microbiota during homeostasis 
(1) (Fig. 2). An elevated relative abundance of facultatively anaerobic Bacillus and/or 
Gammaproteobacteria species is seen in patients with cardiovascular disease (3), 
colorectal cancer (5), cancer-associated cachexia (56), radiation enteritis during radio
therapy (57), Alzheimer’s disease (58), type 1 diabetes (59), chronic kidney disease (7), 
chronic liver disease (60), inflammatory bowel disease (61), graft vs host disease (62), 
severe malnutrition (63), and chronic inflammation during aging (64). This increased 
abundance of facultatively anaerobic bacteria is one of the most consistent and robust 
ecological patterns observed in the fecal microbiota of patients with chronic human 
diseases (54, 65) (Fig. 1). Thus, a guild-based comparison of homeostatic and impaired 
microbial communities reveals a shift in abundant ecological guilds.

In summary, by focusing on trophic strategies, the ecological guild conceptual 
framework offers a different perspective on the composition of the colonic microbiota 
than metrics based on species richness or taxonomic identity. The concept of ecological 
guilds is attractive because it provides a way to distill taxonomically complex communi
ties, such as the gut microbiota, into more manageable ecological units. Even though the 
human colonic microbiota does not contain abundant core species (15, 16), sorting 
species into ecological guilds reveals that disruption of gut homeostasis is characterized 
by a shift from a community dominated by primary fermenters to intestinal domination 
by facultatively anaerobic bacteria. Such a change in abundant ecological guilds can be 
explained by the microbial redox tower (66, 67), a microbiological concept that rests on 
aggregated scientific knowledge accumulated since the 1960s. This raises the question 
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whether the elusive theoretical framework for gut microbiome sciences (21, 68) is an 
already well-established microbiological theorem that is hiding in plain sight.

GUT HOMEOSTASIS AND THE ECOLOGICAL CAUSES FOR ITS DISRUPTION

Let us first explore whether the concept of the microbial redox tower helps explain 
how the host maintains gut homeostasis. Sorting species into ecologically meaningful 
categories suggests that homeostasis in the colon is characterized by a dominance 
of primary fermenters, an ecological guild composition that is typical for nutrient-rich 
anoxic environments (69). This observation would suggest that the host maintains 
gut homeostasis by actively sheltering primary fermenters from atmospheric oxygen. 
Consistent with this idea, a comparison of cecal environments in conventional and 
germ-free mice reveals that both luminal environments feature anaerobic conditions, 
suggesting that anaerobiosis is maintained by the host independently of the microbiota 
(70). The underlying mechanism is high mitochondrial oxygen consumption in the 
epithelium of the large intestine that renders the mucosal surface hypoxic (<1% O2) 
(71), thereby limiting the diffusion of oxygen into the intestinal lumen (72, 73). In 
turn, the anaerobic conditions maintained in the intestinal lumen through epithelial 
hypoxia promote the growth of primary fermenters best suited for breaking down those 
components of our diet that escape digestion and absorption by host enzymes in the 
small intestine (42–46). Fermentation products produced by primary fermenters are then 
absorbed by the host for nutrition (74). Providing shelter from atmospheric oxygen, 
so that unabsorbed components of our diet can be broken down into fermentation 
products that aid host nutrition, represents an ancient agreement between us and 
primary fermenters in our colon. This mutually beneficial arrangement represents a state 

FIG 2 The gut microbiome in health and disease. Comparison of the healthy colon (bottom left) and the inflamed colon (bottom right). The area of 

magnification shows a schematic of the ecological guild composition characteristic of the normal colon (left) and the inflamed colon (right). The pie charts below 

indicate the abundance of ecological guilds during homeostasis (left) or in individuals with the indicated diseases (right). O2, oxygen; H2, hydrogen; CO2, carbon 

dioxide; CH4, methane; Fe3+, ferric iron; Fe2+, ferrous iron; H2S, hydrogen sulfide; SCFA, short-chain fatty acids; NO, nitric oxide; Arg, arginine; Cit, citrulline; O2
−, 

superoxide; H2O2, hydrogen peroxide, H2O, water; NO3
−, nitrate; NO2

−, nitrite; N2O, nitrous oxide; N2, nitrogen; NH4, ammonium; SOD, superoxide dismutase; CAT, 

catalase; iNOS, inducible nitric oxide synthase; NOX2, phagocyte NADPH oxidase.
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of gut homeostasis that is preserved by host functions involved in upholding epithelial 
hypoxia in the large intestine (75–77).

Homeostasis becomes disrupted when the dominance of primary fermenters in the 
colonic microbiota is challenged by facultatively anaerobic bacteria (54), a change 
in the ecological guild composition that more closely resembles oxic environments 
(34). The theorem of the microbial redox tower predicts that such a change in the 
ecological guild composition involves thermodynamic filtering by electron acceptors, 
such as oxygen. Oxygen can become available when the colonic epithelium shifts its 
energy metabolism from high oxygen consumption through oxidative phosphorylation 
in the mitochondria to a conversion of glucose into lactate (aerobic glycolysis) (72). A 
shift from mitochondrial oxygen consumption to aerobic glycolysis elevates epithelial 
oxygenation, which enhances the diffusion of oxygen into the intestinal lumen (75). This 
metabolic reprogramming of epithelial cells is observed during high-fat diet (78, 79), 
infectious colitis (80, 81), chemical-induced colitis (82), in mouse models of colorectal 
cancer (83), graft vs host disease (84), as well as after antibiotic treatment (72, 85). 
In turn, increased diffusion of oxygen into the lumen (73) fuels the growth of faculta
tively anaerobic microbes in the large intestine through aerobic respiration (72, 80–83), 
thereby increasing the abundance of this ecological guild (Fig. 2).

Oxygen can also become available through the detoxification of reactive oxy
gen species that are generated when phagocytes migrate into the intestinal lumen 
during conditions of intestinal inflammation (86). The phagocyte nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase initially depletes oxygen to generate reactive 
oxygen species (O2 + NADPH → O2

− NADP+), which produces microenvironmental 
hypoxia at sites of inflammation (87). However, detoxification of superoxide radicals (O2

−) 
by superoxide dismutase (2O2

− + 2H+ → H2O2 + O2) and of hydrogen peroxide (H2O2) 
by catalase (2H2O2 → O2 + 2H2O) liberates oxygen to drive an increase in the luminal 
abundance of facultatively anaerobic bacteria through aerobic respiration (86).

A second respiratory electron acceptor contributing to thermodynamic filtering in 
oxic environments is nitrate (NO3

−), which has a redox potential that is second only to 
oxygen (35). Nitrate becomes available in the colonic environment when homeostasis is 
disrupted by inflammatory responses. Colonic inflammation is accompanied by elevated 
synthesis of inducible nitric oxide synthase (iNOS), a host enzyme producing nitric oxide 
(NO), which reacts with superoxide radicals (O2

−) generated by NADPH oxidases to form 
host-derived nitrate in the intestinal lumen (88–91). Elevated luminal concentrations 
of host-derived nitrate in the colon (92–94) increase the abundance of facultatively 
anaerobic bacteria through anaerobic nitrate respiration in mouse models of infectious 
colitis (92, 93), ulcerative colitis (95), high-fat diet (78), antibiotic treatment (72, 96), 
cancer-associated cachexia (56), and colorectal cancer (97).

Although the host is the source of oxygen and nitrate present in the colonic lumen, 
the availability of these electron acceptors is modulated by diet and the microbiota. 
High fat intake, for instance, can increase epithelial oxygenation in the colon by reducing 
mitochondrial activity (78). Similarly, the depletion of short-chain fatty acid-producing 
microbes results in the loss of epithelial hypoxia by reducing mitochondrial oxygen 
consumption (71, 72). Furthermore, when a facultatively anaerobic microbe enters the 
ecosystem, the availability of respiratory electron acceptors is shaped by competition 
with resident members of this ecological guild (85, 98–100).

Collectively, these data support the idea that colonic homeostasis is disrupted 
when host functions that shelter primary fermenters from oxic environments become 
weakened. The resulting shift from an anoxic to an oxic environment sets the stage for 
colonic domination by facultatively anaerobic microorganisms (75–77, 101–103) (Fig. 2), 
a hallmark of the compositional changes in the fecal microbiota that are linked to many 
chronic human illnesses (3–9) (Fig. 1). These insights suggest that it would be timely to 
incorporate the ecological guild concept into pipelines for analyzing metagenomic or 
metatranscriptomic data sets, e.g., by flagging changes in the abundance of respiratory 
genes (44, 104).
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DYSBIOSIS: TO BE OR NOT TO BE, THAT IS THE QUESTION

Although a disruption of colonic homeostasis features a change in the ecological guild 
composition, it is not warranted to revive the concept that dysbiosis can be defined by 
compositional changes in the gut microbiota. The focus on compositional changes is 
rooted in a microbe-centric view of the term microbiome, which was originally defined 
as the collection of all microbes and their genes (105). This narrow definition of the 
microbiome limits definitions of dysbiosis to microbial features (14), which remains 
controversial (18, 19). Furthermore, the absence of abundant core species in the gut 
microbiota deprives us of a unit of measurement to quantify health. The question is 
whether the term dysbiosis should be rejected (18, 19) or whether its definition should 
be revisited after correcting the actual problem, which is defining the term microbiome 
too narrowly (106).

There is a growing consensus that microbes and their genes comprise only one 
part of our microbiome, which is defined ecologically as the microbiota and its host 
environment (107, 108). Broadening the definition of the term microbiome is not mere 
semantics. Including the host environment in the definition introduces the idea that 
a microbiome imbalance might not be triggered by changes in the microbiota com
position, but by an underlying change in the host environment (106). In the colon, 
for instance, homeostasis is maintained by host functions that limit the availability of 
oxygen and nitrate to create an anoxic environment favoring the growth of primary 
fermenters that are best suited for the host’s dietary input (66, 109, 110). A weaken
ing of these host functions results in an increased availability of host-derived electron 
acceptors in the colonic lumen, which represents a shift toward an oxic environment (77, 
106, 109). The transition from primary fermenters to facultatively anaerobic microbes is a 
useful biomarker for an underlying weakening of host functions involved in maintaining 
homeostasis (65). Based on an ecological microbiome definition (107, 108), these host 
functions, along with the environmental parameters they control, are an integral part of 
the microbiome. Importantly, the part of the microbiome that triggers a disruption of 
gut homeostasis is a change in the host environment, whereas changes in the microbiota 
composition merely serve as a biomarker for this underlying cause (65, 75). Thus, it 
has been proposed that dysbiosis should not be defined based on species richness or 
taxonomic identity, but that it generally represents a state of weakened host control over 
the microbial environment (77, 101, 103, 106, 109). This ecological definition of dysbiosis 
is no longer subject to the fatal limitations that haunt classifications based on taxonomic 
composition (18, 19). Furthermore, parameters such as the luminal concentration of 
oxygen or nitrate in the colon can be measured, at least in theory, to determine a normal 
range in healthy individuals and diagnose gut dysbiosis in individuals in whom these 
concentrations rise above the normal range.

TOWARD TRANSLATING MICROBIOME RESEARCH INTO CLINICAL INTERVEN
TIONS

The picture emerging from this analysis is that adopting the microbial redox tower 
as a theoretical framework goes a long way in helping to understand what consti
tutes a healthy gut microbiome and how to define gut dysbiosis (77). This theorem 
suggests that increased luminal concentrations of oxygen and nitrate, a hallmark of 
dysbiosis in the colon, drive changes in the microbiota composition, which, in turn, can 
exacerbate the disease (103). Whereas thermodynamic filtering by respiratory electron 
acceptors is a common driver for changes in the fecal microbiota composition associ
ated with numerous important human illnesses (Fig. 1), the causative effects these 
compositional changes have on disease progression differ for each condition. Increased 
luminal concentrations of nitrate, for example, can boost the production of uremic 
toxins by facultatively anaerobic Enterobacteriaceae (78), which exacerbates cardiovascu
lar disease (111, 112). In mouse models of colorectal cancer, increased luminal concen
trations of oxygen or nitrate can accelerate polyp formation by driving a bloom of 
facultatively anaerobic Escherichia coli strains that produce the toxin colibactin (83, 97). In 
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immunocompromised individuals, increased oxygen availability induced by prophylactic 
antibiotics sets the stage for intestinal domination by facultatively anaerobic opportun
istic pathogens, such as Enterobacteriaceae (72) or Candida albicans (85), which is a 
common cause of invasive bloodstream infections in these patients (113, 114).

With a framework of aggregated scientific knowledge now at hand, discovery-driven 
research can be replaced by formulating and testing meaningful hypotheses. An obvious 
hypothesis to test is the idea that the negative consequences of dysbiosis on health can 
be mitigated by either blocking microbial respiratory pathways that drive compositional 
changes or strengthening host functions that limit access to oxygen and nitrate in the 
lumen. Below, we describe recent work testing this hypothesis using mouse models.

Respiratory pathways that drive a dominance of facultatively anaerobic bacteria 
during dysbiosis in the colon employ several enzymes that contain a molybdenum 
(Mo)-containing cofactor (molybdopterin) in their active site (115). Tungsten (W) can 
replace molybdenum in molybdopterin, resulting in the inactivation of the cofactor in 
Gammaproteobacteria (116), a taxon that has been implicated in exacerbating intestinal 
inflammation in mouse colitis models (117, 118). A contribution of microbes to intestinal 
inflammation is relevant for ulcerative colitis, where genetic risk factors and environmen
tal risk factors cooperate to generate inappropriate mucosal immune responses that 
are driven by the microbiota (119). The fecal microbiota composition in patients with 
ulcerative colitis features an elevated abundance of facultatively anaerobic bacteria, 
including Gammaproteobacteria (61). In mouse models of ulcerative colitis, sodium 
tungstate (Na2WO4) administration selectively blunts an expansion of Gammaproteobac
teria by blocking their respiratory metabolism, which in turn reduces intestinal inflamma
tion (118).

The gut microbiota is among the environmental factors implicated in the patho
genesis of colorectal cancer (120), the third most diagnosed cancer worldwide (121). 
One of the pathobionts implicated in causing colorectal cancer in a mouse model 
are colibactin-producing E. coli, a facultatively anaerobic bacterium that exhibits an 
elevated fecal abundance in patients with colorectal cancer (5). Metabolism-based 
editing of the microbiota with sodium tungstate blocks a bloom of colibactin-producing 
E. coli in a mouse model of colorectal cancer, thereby reducing polyp formation (97). 
These examples illustrate that negative consequences of gut dysbiosis on host health 
can be mitigated by blocking microbial respiratory pathways that drive a dominance 
of facultative anaerobic bacteria in the colon and should be explored as potential 
therapeutic interventions.

An alternative to targeting microbes with metabolism-based interventions is to 
devise therapeutic strategies that activate host functions to limit microbial access to 
oxygen. One host pathway involved in maintaining epithelial hypoxia in the colon 
is epithelial peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling (72). 
During homeostasis, the microbiota-derived short-chain fatty acid butyrate activates 
epithelial PPAR-γ signaling to maintain high mitochondrial oxygen consumption in the 
colonic epithelium, which, in turn, preserves epithelial hypoxia (71, 72). Conversely, an 
increase in epithelial oxygenation features a reduction in epithelial PPAR-γ signaling and 
decreased mitochondrial oxygen consumption (72). Epithelial hypoxia can be restored 
by treatment with 5-amino salicylic acid (5-ASA), a PPAR-γ agonist (122) that is poorly 
absorbed in the small intestine (123) and acts on the colonic epithelium (82). By reducing 
the bioavailability of oxygen in the lumen, treatment with 5-ASA blocks excessive 
growth of colibactin-producing E. coli in the colon, thereby preventing colorectal cancer 
formation in a mouse model (83).

Anaerobiosis in the colon also limits the growth of facultatively anaerobic fungi. 
Increased epithelial oxygenation during antibiotic treatment (71, 72) sets the stage for a 
bloom of the facultatively anaerobic Candida albicans, an opportunistic fungal patho
gen. An intestinal bloom of C. albicans during antibiotic therapy is the most common 
etiology of candidemia in patients with hematologic malignancies (114), which carries a 
high mortality rate (124–127). Treatment with 5-ASA restores epithelial hypoxia during 
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antibiotic treatment, thereby restoring anaerobiosis to limit an intestinal bloom of the 
facultatively anaerobic C. albicans in a mouse model (85). Thus, a strengthening of host 
functions that limit access to oxygen in the colonic lumen can alleviate some of the 
negative consequences linked to a colonic bloom of facultatively anaerobic microbes, 
such as colibactin-producing E. coli or C. albicans.

Metabolic reprogramming of the colonic epithelium has also been linked to the 
production of uremic toxins (78). Uremic toxins are metabolites exclusively produced by 
the gut microbiota, which have been implicated in the pathogenesis of chronic kidney 
disease (128, 129) and cardiovascular disease (111, 112). One of these uremic toxins 
is trimethylamine-N-oxide (TMAO), which is produced in the liver through oxidation 
of microbiota-derived trimethylamine (TMA) by flavin monooxygenases (130). TMA is 
produced by the gut microbiota from carnitine or choline present in red meat (112). 
TMAO is elevated in the plasma of patients with cardiovascular disease (111, 112, 131), 
chronic kidney disease (132), and type 2 diabetes (133). The latter is a common cause 
of chronic kidney disease (134). The fecal microbiota of patients diagnosed with these 
conditions commonly feature an elevated abundance of Gammaproteobacteria species, 
such as E. coli (3, 6, 7, 135). Mice on a high fat diet, which is a risk factor for type 2 
diabetes and cardiovascular disease (136), exhibit an elevated E. coli abundance in the 
feces (137) and an increased luminal concentration of host-derived nitrate generated 
by low-grade mucosal inflammation (78). In the presence of host-derived nitrate, E. 
coli becomes a prominent producer of TMA within the gut microbiota because nitrate 
stimulates choline catabolism (78). However, an increase in the TMAO serum levels in 
mice receiving a high-fat diet supplemented with choline can be prevented by blocking 
nitrate production with aminoguanidine (78), a chemical inhibitor of the host enzyme 
iNOS (138). This work suggests that therapeutic interventions that limit the availability 
of host-derived nitrate in the colonic lumen can prevent the production of harmful 
metabolites during gut dysbiosis.

Adverse consequences of gut dysbiosis are not limited to an increased abundance of 
facultatively anaerobic microbes but can also be associated with a reduced abundance 
of primary fermenters. For example, a low abundance of Clostridia species in the fecal 
microbiota can result from impaired microbiota recovery after antibiotic treatment 
when anaerobiosis is disrupted because a diet rich in saturated fatty acids reduces 
epithelial PPAR-γ signaling (79). Clostridia species are the main source in the colonic 
microbiota of sorbitol dehydrogenase, the enzyme catalyzing the first step in sorbitol 
catabolism (44). Sorbitol is an alcoholic sugar that is poorly absorbed by the small 
intestine, resulting in a low caloric content that makes it suitable as a low-calorie 
sweetener in “sugar-free” foods (139). When Clostridia species are depleted, sorbitol 
accumulates in the intestinal lumen (45), resulting in osmotic diarrhea (140). Through this 
mechanism, a high-fat diet-induced impairment of microbiota recovery after antibiotic 
treatment produces sorbitol intolerance (44), the third most common cause of carbo
hydrate intolerance (141). Activation of epithelial PPAR-γ signaling by treatment with 
5-ASA restores epithelial hypoxia even in the face of high fat intake, thereby promoting 
microbiota recovery after antibiotic treatment to prevent the development of prolonged 
sorbitol intolerance in a mouse model (44). In short, a strengthening of host functions 
that limit access to oxygen in the colonic lumen helps erase some of the adverse effects 
on host health that are linked to a reduced abundance of primary fermenters during gut 
dysbiosis.

In conclusion, by shining light on the ecological causes of gut dysbiosis, the theorem 
of the microbial redox tower opens a new chapter in the development of intervention 
strategies, which can target either microbial energy metabolism or host functions that 
limit access to electron acceptors. Mouse models suggest that these strategies could be 
adapted to a wide spectrum of conditions, such as colorectal cancer (83, 97), chronic 
kidney disease (78), cardiovascular disease (78), sorbitol intolerance (44), opportunistic 
Candida infections (85), ulcerative colitis (118), and perhaps many others. More work is 
needed to translate these preclinical data into clinical interventions, which will require 
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microbiome researchers to embrace the microbial redox tower and its implications 
for understanding gut homeostasis and gut dysbiosis. Given the importance of the 
colonic microbiota for human health, the development of these intervention strategies 
represents an impactful sector within the field of human microbiome research.
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