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EPIGRAPH

Alice: Would you tell me, please, which way I ought to go from here?

The Cheshire Cat: That depends a good deal on where you want to get to.

Alice: I don’t much care where.

The Cheshire Cat: Then it doesn’t much matter which way you go.

Alice: ...So long as I get somewhere.

The Cheshire Cat: Oh, you’re sure to do that, if only you walk long enough.

—Lewis Caroll, Alice in wonderland
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ABSTRACT OF THE DISSERTATION

Ecology of Flows and Drift Wave Turbulence: Reduced Models and Applications

by

Rima Hajjar

Doctor of Philosophy in Engineering Sciences (Engineering Physics)

University of California, San Diego, 2018

Professor George R. Tynan, Chair
Professor Patrick H. Diamond, Co-Chair

In this dissertation, we present advances in turbulence modeling for magnetically confined

plasmas. We investigate the ecology of microscopic drift wave turbulence and the self-generated

macroscopic flows in magnetically confined plasmas. We formulate reduced models that self-

consistently describe the evolution of turbulence and mean plasma profiles (including flows) and

recover trends obtained from the CSDX device and HL-2A tokamak. The dissertation is divided

to three parts. The first part presents a reduced model that describes the interplay between drift

wave turbulence and zonal and axial flows in the adiabatic plasma of CSDX, where the electron

response is Boltzmann. The model explains how free energy released from the density gradient

xv



accelerates both axial and azimuthal flows in CSDX. A description of the interactions between

the disparate scales of the plasma via the parallel and perpendicular Reynolds stresses 〈ṽxṽz〉 and

〈ṽxṽy〉 is presented. Expressions for these stresses are decomposed into a diffusive component

that relaxes the flow profile, and a residual stress responsible for accelerating the corresponding

flow. Moreover, parallel and perpendicular flow dynamics are described using an extended

mixing length approach. This accounts for the degree of symmetry breaking in the parallel

direction and parametrizes the efficiency of ∇n in driving the axial flow. In the second part of the

dissertation, the relationship between drift waves and zonal flows is examined in depth via a more

specific model. Analytical results obtained from this model confirm the published experimental

data showing a suppression of turbulence with the increase in magnitude of the magnetic field

B. A new criterion for access to enhanced confinement is introduced. This criterion captured

by the dimensionless quantity RDT , compares the production rate of turbulent enstrophy due to

relaxation of the mean profiles, to the corresponding destruction rate via coupling to the mean

flow. When RDT > 1, the profiles steepen and enhanced confinement is accessible. In the third

paper, a novel idea for understanding the physics of the density limit problem in low β tokamaks

is presented. The collapse of the zonal shear flow when the electron response transitions from

Boltzmann to hydrodynamic scaling, along with cooling of the edge and the onset of MHD

activity is predicted by the observation that the zonal flow drive will drop as the electron parallel

diffusion time increases with density. This leads to a simple, verified understanding of the density

limit phenomenon in L-modes.

xvi



Chapter 1

INTRODUCTION

1.1 Nuclear Fusion: Concepts and Definitions

The greatest increase in demand for energy is envisaged to come from developing

countries where, with rapid urbanization, large-scale electricity generation will be required. With

environmental requirements for zero or low CO2 emission sources and the need to invest in a

viable energy mix, new energy sources must be developed. Since the 1950s, nuclear fusion has

been investigated as a means for humans to generate sustainable energy. As an alternative to

burning fossil fuels, nuclear fusion has the potential of producing high outputs of clean energy

that can be easily converted to electric power. In contrast to nuclear fission reactions, controlled

fusion reactions safely release high amount of energy while producing fewer radioactive particles.

In spite of currently remaining an experimental technology for power production, nuclear fusion

will be available as a future energy option, and should acquire a significant role in providing a

sustainable, secure and safe solution to tackle the global energy needs.

Plasma, also referred to as the fourth state of matter, is a hot ionized and charged gas that

can be classified into two categories: a natural plasma that occurs in the Sun, the stars and the

interstellar clouds..., and a laboratory or a man-made plasma. The latter is currently being studied

1



as a potential route to fusion energy. The primary fuel used in experimental fusion power plants

is composed of Hydrogen isotopes. The three nuclear reactions involving hydrogen isotopes are:

2
1H +2

1 H→3
2 He+1

0 n+3.27MeV (1.1)

2
1H +2

1 H→3
1 H +1

1 H +4.03MeV (1.2)

2
1H +3

1 H→4
2 He+1

0 n+17.59MeV (1.3)

Of these, the reaction with the highest cross section is a D-T reaction, where a nucleus of

deuterium (2
1H) fuses with a nucleus of tritium (3

1H) to produce an alpha particle (4
2He) and

a neutron. Because of the mass difference between the reactants and products, this reaction

produces an energy excess of 17.6 MeV , carried mostly by the light neutron. In advanced

nuclear reactor designs, the resultant neutron escapes the electromagnetic fields, and reacts with a

plasma breeder blanket composed mainly of Lithium (6
3Li) composites according to the following

reaction:

1
0n+6

3 Li→4
2 He+3

1 H +4.8MeV (1.4)

This reaction produces an additional alpha particle and another tritium nucleus, which

is recycled back to fuel the original (D-T) mixture in the reactor core. Conventional energy

conversion methods are then used to produce electric power out of the 4.8MeV exothermic

energy yielded by the Lithium reaction. Macroscopically, 1 kg of the D-T fuel produces 108kWh

of energy in the nuclear fusion process, enough to provide the requirement of a 1GW electric

power station per day [Wes04]. This means that, while a 103 MW coal-fired power plant requires

2.7 million tons of coal per year, a fusion plant will only require 250 kg of D-T fuel per year,

half of it being deuterium, the other half being tritium [ite].

For the Deuterium-Tritium reaction to occur, the D-T mixture needs to be heated to a

sufficiently high temperature to overcome the Coulomb repulsive force. At a sufficiently high

temperature (roughly > 10 keV ), the cross section of the D-T reaction is optimal as shown in

2



figure (1.1), inter-particle collisions are frequent, and both electrons and ions coexist together.

Figure 1.1: Fusion reaction rates versus temperature.

A crucial step after creating the plasma is keeping the ionized gas spatially confined for

a long time, in order to achieve a sufficient number of fusion reactions. The goal is to exceed

break-even, meaning the fusion energy output exceeds the energy required to heat the plasma.

As a D-T plasma is heated to thermonuclear conditions, the alpha particle provides an increasing

fraction of the total heating. When adequate confinement conditions are provided, a point is

reached where the plasma temperature can be maintained against the energy losses, solely by

alpha particle heating. The applied heating can then be removed and the plasma temperature is

sustained by internal heating. This is called ignition.

A promising and well-known approach for plasma confinement is by using externally

imposed magnetic field lines to keep the ionized particles inside the fusion device. Toroidal

devices, like tokamaks (Fig.(1.2)) and stellerators, or linear devices, such as the Controlled Shear

Decorrelation eXperiment (CSDX) (Fig.(1.3)) rely on the concept of magnetic confinement to

shape the plasma. While confining the plasma is an important and necessary first step, it remains

limited by thermal conduction and convection and radiation processes. Moreover, Coulomb

collisions cause major losses of particles and energy from the plasma.
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Figure 1.2: Magnetic configuration inside a tokamak.

1.2 Classical, Neoclassical, and Anomalous Transport

A main issue limiting the confinement of energy and particles in fusion devices are

the strong thermal and particle losses that exceed both the classical and neoclassical estimates.

According to the classical theory of diffusion, an estimate of the particle transport scale length in

a plasma column is the corresponding Larmor radius ρ. For a characteristic collision time τc, the

total plasma confinement time is: τ∼ τc(a/ρ)2, where a is the plasma radius. Since both τc and

ρ are mass dependent, the total confinement time of the electrons is higher than that of ions by

(mi/me)
1/2. Like-particle collisions do not produce any diffusion because the particles simply

shift around in the center of mass reference frame. Therefore, electrons and ions diffuse at a

rate equal to the electron-ion collision frequency νei ∼ n/T 3/2
e . The classical theory of diffusion

hence predicts a confinement time: τc ∝ 1/νei.

In tokamaks, however, this argument does not hold and significant modification is

required, as diffusion of particles is enhanced by the complex magnetic topology. Accounting
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Figure 1.3: Controlled Sheared Decorrelation eXperiment (CSDX)

for the effects of the outward force that results from the presence of a pressure gradient has given

rise to the study of neoclassical transport. Depending on the plasma collision frequency, the

particle diffusion coefficient is further enhanced compared to the classical coefficient Dc [Wes04].

Despite taking neoclassical effects into consideration, experimental transport rates remain much

higher that those calculated, even for cases of low plasma temperatures where Coulomb collisions

are more frequent.

To reiterate, predicted particle and energy transport rates, which would naturally occur in

the absence of instabilities, are much lower than those reported experimentally. Data obtained

from various devices show that the actual ion thermal conductivity is larger by an order of

magnitude when compared to the neoclassical ion conductivity κneo. In addition, both the

electron thermal conduction and the particle diffusion coefficients are greater by about two orders

of magnitude than what is expected neoclassically [IIFY99, Sta05]. In order to reconcile the

experimental data to the theoretical calculations, it is thought that anomalous plasma transport

is due to the presence of instabilities that cause particles and energy to escape at a higher rate.

These micro-instabilities are generated by turbulent fluctuations in the plasma pressure and/or in

the electric and magnetic fields. Their presence is almost unavoidable in most fusion devices, so

much so that one focus of nuclear fusion research is now directed towards understanding how to
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control and stabilize them.

1.3 Turbulence and Instabilities

Turbulence in plasma has several characteristic features. Indeed, the level of fluctuations

and the spectrum of turbulence are strongly influenced by the configuration of the plasma

and its thermodynamic state [YII03]. Although the most conspicuous instabilities observed in

tokamaks are of long wavelength, low-m MHD modes, such as those responsible for disruptions,

there appears to be little correlation between the intensity of these modes and the observed

electron loss rates in macroscopically stable plasmas. Such modes affect local transport in

the vicinity of their resonant surface, but do not appear to contribute to the overall electron

loss rate. Consequently, investigations have focused on short wavelength fluctuations, referred

to as micro-turbulence [Sta05]. In particular, investigations distinguished between turbulence

along the magnetic field B and turbulence perpendicular to B (in the radial direction), which

induces a variety of plasma responses, i.e., various plasma instabilities. There are two ways

for micro-turbulence to enhance the radial transport: the E×B drift across the confining field

lines resulting from the fluctuating electric fields, or parallel plasma motion along the magnetic

field lines with a fluctuating radial component. Most effort has been devoted to understanding

turbulent transport arising from E×B drifts.

One type of instability frequently observed in almost all fusion devices is that caused

by drift waves (DWs). Driven by radial inhomogeneities in the plasma density, drift waves are

inherently stable. However, a simple dissipation mechanism - such as parallel resistivity caused

by eletron-ion collisions - can drive them to be unstable. The transport of particles and energy

would then grow, leading to a loss of the plasma confinement in some cases.
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1.4 Drift Waves and Drift Wave Instabilities

In this section, we introduce the drift waves, which are the main topic of investigation in

this dissertation. Drift waves are low-frequency electrostatic waves (ω� ωi� ωe) associated

with the presence of density gradients ∇n. They propagate in a direction almost perpendicular to

the magnetic field, so the B-parallel component of the wave vector k is small in such a way that

vth,i� ω/kz� vth,e. Here, the ion and electron thermal velocities are vth,i and vth,e, respectively

and ω is the frequency of the drift waves. Driven by the pressure gradient ∇p = T ∇n (assuming

Figure 1.4: Geometry of the problem, showing the density gradient and the magnetic field
vector.

a constant temperature), these waves drift across the plasma at a velocity of:

vi =
KBTi

eB
d lnn(x)

dx
ŷ (1.5a)

ve =−
KBTe

eB
d lnn(x)

dx
ŷ (1.5b)

where KB is the Boltzmann constant, and ŷ is the direction perpendicular to both B and ∇n (see

Fig.(1.4)).

1.4.1 Linear Analysis and Linear Solutions

The expressions for the drift velocities are obtained by examining the density and

momentum equations of both electrons and ions. Considering the electrons first, and neglecting

7



their inertia in the parallel direction, we obtain the Boltzmann isothermal relation from the

momentum equation:
∂ lnne

∂z
≈ e

KBTe

∂φ

∂z
(1.6)

or

ne = n0(x)exp[eφ/KBTe] (1.7)

The quasistatic process described by eq.(1.7) shows how the electrons respond instanta-

neously to the drift waves, moving almost spontaneously from a wave crest to a wave trough to

establish an equilibrium in the parallel direction. As for the ions, their velocity perpendicular to

the magnetic field is approximated by the E×B drift: ui =
ẑ×∇φ

B , where the electrostatic potential

E =−∇φ is introduced. The ion continuity equation then becomes:

∂ni

∂t
+∇.(

ẑ×∇φ

B
ni) = 0 (1.8)

Keeping in mind the quasi-neutrality condition ne ≈ ni, combining eq.(1.7) and eq.(1.8) gives:

∂φ

∂t
− KBTe

e
∇φ× ẑ

B
.
∇n0(x)
n0(x)

= 0 (1.9)

Note that, for a plasma with constant magnetic field B, the ion perpendicular motion

is incompressible since ∇.(∇φ×B) = 0. The plasma fluctuations are thus associated with

variations in the density profile, as the ions move in and out along a density gradient taken in

the x̂-direction according to fig.(1.4). In order to obtain the corresponding dispersion relation

of these perturbations, we write the fluctuating electric potential as: φ = φ0(x)exp(iωt + ikyy),

where ω and ky are the frequency and the wavenumber of the corresponding turbulent mode.

From eq.(1.9), we obtain:

ω = ω
? = uDe(x)ky (1.10)
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where the electron diamagnetic velocity in the x̂ direction is:

uDe(x) =−
KBTe

eB
.
∇n0(x)
n0(x)

(1.11)

Eq.(1.10) is a dispersion relation with only a real component. Therefore, it describes a

local and stable drift wave fluctuation. This peculiar result is a consequence of ignoring the ion

inertia in both parallel and perpendicular directions, which makes eq.(1.9) linear in φ(x) although

no linearization assumptions were actually made.

A general form of the dispersion relation is obtained by keeping the ion inertia in the

momentum equation for cold ions:

M(
∂ui

∂t
+ui.∇ui) = e(−∇φ+ui×B) (1.12)

The perpendicular ion velocity is then:

ui⊥ =−∇φ× ẑ
B
− M

eB2 [
∂

∂t
(ui×B)+ui.∇(u×B)] (1.13a)

=−∇φ× ẑ
B
− M

eB2

[
∂

∂t
− 1

B
∇φ× ẑ.∇

]
∇⊥φ (1.13b)

The first term in eq.(1.13) represents the lowest order E×B drift. The second term represents the

ion polarization drift that makes ∇.ui 6= 0. The parallel component of the momentum equation

remains:

M(
∂ui‖
∂t

+ui.∇ui‖) =−e
∂φ

∂z
(1.14)

Using the quasi-neutrality condition ne ≈ ni, and assuming isothermal Boltzmann electrons, we

obtain the following nonlinear equation in φ(x):

∂φ

∂t
+

KBTe

e
∇.u+u.∇φ+

KBTe

en0(x)
dn0(x)

dx
u.x̂ = 0 (1.15)
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Figure 1.5: Drift wave perturbation reproduced from [Pec13]. The solid line indicates a
contour of constant density, while the electric fields and the ion velocities are indicated by
small arrows. Charge densities are indicated by + and - symbols. Regions with enhanced

density are shaded for clarity.

where u = {u⊥,u‖}. A linear solution to the set of eqs.(1.13-1.15) gives the following dispersion

relation in a collisionless plasma [Pec13]:

ω
2(1+ρ

2
s k2

y)−ωkyuDe− c2
s k2

z = 0 (1.16)

Here ρs = cs/ωci = (c
√

TeMi)/(eB) is the effective ion Larmor radius with an electron

temperature Te, where cs =
√

Te/Mi is the plasma sound speed and ωci = eB/Mic is the ion

Larmor gyrofrequency. For a homogeneous plasma, ky = 0 and one easily recovers the dispersion

relation for an acoustic wave ω = cskz. The second term inside the parenthesis of eq.(1.16)

represents the contribution of the polarization drift and results from considering the ion inertia.

For small ρs and kz, the initial dispersion relation ω = ω? = kyuDe is recovered, and the wave

propagates in the direction of the electron diamagnetic drift. In the limit kz → 0, the DW

dispersion relation becomes:

ω =
kyuDe

1+ρ2
s k2

y
(1.17)

Fig.(1.5) illustrates the basic mechanism of the drift wave perturbation. A solid line

represents the contours of constant plasma density, i.e., the contours of constant electric potential
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(because of the Boltzmann equilibrium relation). When the polarization drift induced by the ion

inertia is neglected, the ion drift velocities are approximated to the lowest order by the E×B drift.

If the electric fields were steady, ions would drift with the local E×B velocity. However, because

of the fluctuating density, the plasma electric potential, and thus, the corresponding electric

field E are also fluctuating. Since E fluctuates in the ŷ direction, ions are accelerated in the

x̂-direction, and their lowest order velocity is equal to vx = Ey/B =−ikyφ/B. The corresponding

dispersion relation is then that given by eq.(1.10). Because eq.(1.10) gives a non-imaginary

frequency: ω = kyuDe, there is no growth rate associated with such waves, which are considered

to be inherently stable.

To see how drift waves become unstable, one must realize that the ion drift velocity is

not really equal to the E×B drift, and that there are corrections due to the ion polarization drift.

When accounting for this additional drift, the electric potential lags the density fluctuations,

forcing ui to be outward where the plasma has already been shifted outward, and causing the

perturbations to grow. Without this polarization drift, n and φ would simply be 90◦ out of phase

and the motion of the waves would be purely diffusive [Che84]. An analytical derivation of

the corresponding dispersion relation for a drift wave instability is obtained by considering the

effects of the parallel plasma resistivity on the electron adiabatic response. Because the plasma

current is divergence free:

∇. j = ∇⊥. j⊥+∇‖. j‖ = 0

the perpendicular ion polarization drift will necessarily affect the electron parallel response via

the parallel plasma resistivity η‖. When writing the density and momentum equations for both

electrons and ions, it is essential to consider the momentum exchange terms that result from

electron-ion collisions. Such terms are directly proportional to the electron collision frequency

νei. An analytical derivation by [HW83] shows that the electron linear response is no longer
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adiabatic, but rather equal to:
n
n0

=
eφ

KBTe

ω?+ ibσ‖
ω+ ibσ‖

(1.18)

where we have used the conventional notation b = ρ2
s k2
⊥ and σ‖ = (k2

z/k2
y)(ωceωci/νei). The

density n0 is the average plasma density used as a normalization constant. Proceeding as above,

the linear dispersion relation that describes the evolution of the drift wave perturbation is equal

to:

ω
2 + iσ‖

(
ω(1+b)−ω

?
)
= 0 (1.19)

This quadratic equation bears a damped solution:

ωdamped =
1
2

(
− iσ‖(1+b)−

√
4iσ‖ω?−σ2

‖(1+b)2
)

(1.20)

as well as an unstable solution that describes the character of a drift wave instability:

ωunstable =
1
2

(
− iσ‖(1+b)+

√
4iσ‖ω?−σ2

‖(1+b)2
)

(1.21)

The analysis used to derive the previous dispersion relations was a linear analysis that

remains valid only for waves with small amplitudes. Moreover, two approximations were made

to derive these linear equations: the assumption of quasi-neutrality (plasma approximation) and

the omission of ion polarization drifts (ion inertia) in certain cases. The relaxation of these two

assumptions leads to weakly nonlinear physics described by the Hasegawa-Mima (HM) equation

and the nonlinear Hasegawa-Wakatani (HW) equations. In the following subsections, we relax

these two approximations, and perform a nonlinear analysis to get the corresponding dispersion

relation.
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1.4.2 Hasegawa-Mima Equation

The Hasegawa-Mima equation describes a turbulent plasma regime where time scales are

fast (ω−1
ci ∂/∂t� 1), and parallel distance scale is long. Using this ordering, the perpendicular

ion velocity is still given by eq.(1.13), and the nonlinear equation for φ(x), i.e., eq.(1.15) is

re-written as:

∂φ

∂t
− KBTe

e
.
∇⊥φ× ẑ

B
.∇⊥ lnn0−

c2
s

ω2
ci

(
∂

∂t
− ∇⊥φ× ẑ

B
.∇⊥

)
∇

2
⊥φ = 0 (1.22)

The previous equation is known as the Hasegawa-Mima equation. Upon normalization, it

becomes:
∂

∂t

(
∇

2
⊥φ−φ

)
+ ẑ×∇⊥φ.∇⊥

(
∇

2
⊥φ

)
−β

∂φ

∂y
= 0 (1.23)

where the constant β = −d lnn0/dx measures the electron diamagnetic drift. The notation is

eased by introducing the Poisson brackets: { f ,g}= ∂x f ∂yg−∂xg∂y f , giving the final form of

the Hasegawa-Mima equation:

∂

∂t

(
∇

2
⊥φ−φ

)
−β

∂φ

∂y
+{φ,∇2

⊥φ}= 0 (1.24)

In its linear form, the Poisson brackets are dropped from the (HM) equation which becomes:

∂

∂t

(
∇

2
⊥φ−φ

)
−β

∂φ

∂y
= 0 (1.25)

The corresponding linear dispersion relation is then obtained as: ω = βky/(1+ k2
⊥) = ω?/(1+

k2
⊥). This is the same dispersion relation given by eq.(1.17).
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1.4.3 Hasegawa-Wakatani Equations

A self-evident restriction of the Hasegawa-Mima equation is that it describes linearly

stable waves or fluctuations, i.e. any perturbation has to be imposed initially. This feature

violates the basic property of drift waves being unstable. The Hasegawa-Mima equation can

however readily be generalized to include this feature. For a divergence free electric current:

∇.J = 0 =⇒ ∇⊥.J⊥,i =−∇‖.J⊥,e. Here the perpendicular current driven by the ions is balanced

in the parallel direction by the electrons motion. The ion velocity is equal to:

v⊥,i =
E×B

B2 − 1
ωciB

d∇⊥φ

dt
+

µii

ωciB
∇

2(∇⊥φ) (1.26)

where an ion viscosity term µii has been added. Noting the plasma average density and resistivity

as n0 and η respectively:

∇⊥J⊥,i = en0∇⊥v⊥,i = en0∇⊥

[
− 1

ωciB
d∇⊥φ

dt
+

µii

ωciB
∇

2(∇⊥φ)
]

In a similar way:

−∇‖J‖,e =−en0∇‖ve =−
Te

ηe
∇

2
‖(

n
n0
− eφ

Te
),

therefore:
1

ωciB

[d∇2
⊥φ

dt
−µii∇

2(∇2
⊥φ)
]
=

Te

ηe2n0
∇

2
‖(

n
n0
− eφ

Te
) (1.27)

The electron continuity equation on the other hand gives: dn/dt +n∇.v = 0 or:

d
dt

[
lnn0 +

n
n0

]
=

Te

e2n0η
∇

2
‖

[ n
n0
− eφ

Te

]
(1.28)

A normalization of the time scale, the plasma density, and the plasma electric potential
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by the ion cyclotron frequency t = ωcit, the average density: n = n/n0, and χ = eφ/Te gives:

dn
dt

+β
∂χ

∂y
=

Te

e2n0η

∂2

∂z2 (n−χ) (1.29a)

d∇2
⊥χ

dt
=

Te

e2n0η

∂2

∂z2 (n−χ)+µii∇
4
χ (1.29b)

The two previous equations constitute the Hasegawa- Wakatani (HW) equations. When linearized,

the Haseawa-Wakatani equations become:

∂n
∂t

+β
∂χ

∂y
=

Te

e2n0η

∂2

∂z2 (n−χ) (1.30a)

∂∇2
⊥χ

dt
=

Te

e2n0η

∂2

∂z2 (n−χ)+µii∇
4
χ (1.30b)

By Fourier transform, it is readily shown that eq.(1.30a) reproduces eq.(1.18), and that the linear

dispersion relation is given by eq.(1.19)

1.5 The Drift Wave- Zonal Flow Relation

The results of the previous section show that, under certain conditions, drift waves can

become unstable. As the levels of turbulence inside the plasma increase, transport of particle

and energy is enhanced, and confinement is easily destroyed. Fortunately, the mechanism

of turbulence regulation via self-generation and amplification of zonal flows (ZFs) [DIIH05,

FII+04].

Formation of zonal flows is a well-known and well-documented phenomenon in 2D

turbulent systems [DIIH05]. In contrast to 3D turbulent systems, vortex stretching is inhibited

in 2D systems, and turbulence is characterized by an inverse energy cascade in which energy

is transferred to large spatial structures. In the inertial range, a direct enstrophy cascade where

turbulent energy is driven to smaller scales dominates. The turbulent energy is then dissipated
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Figure 1.6: Direct energy cascade in 3D turbulent systems.

Figure 1.7: Dual cascade in 2D turbulent systems.

into heat on a Kolmogorov length scale η = (ν3/ε)1/4 [Pop08]. Here ν is the fluid viscosity, and

ε is the average rate of dissipation of the turbulent kinetic energy per unit mass. In addition to

η, the Kolmogorov theory defines τ = (ν/ε)1/2 and u = (νε)1/4 as the time scale and velocity

scale at which viscosity dominates. Besides the direct enstrophy cascade, 2D systems also

experience an inverse cascade of energy to larger scales. This inverse cascade is responsible

for the generation of mesoscopic flows (see Fig.(1.7)). Examples include the famous quasi-2D

geostrophic Rossby waves. These atmospheric waves result from the conservation of potential

vorticity and are influenced by the Coriolis force and pressure gradient.

In plasmas, zonal flows represent linearly stable azimuthal E ×B sheared layers that

decorrelate the turbulent eddies, thus reducing the transport properties inside the plasma. In
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the case of a smooth mean shear flow, it is well-known that shearing tilts the eddies, narrowing

their radial extent and elongating them (fig.(1.8)). ZFs are radially localized flow structures with

Figure 1.8: Tilting and shearing of the eddies.

azimuthal mode number n = m = 0 and finite radial wavenumber and low eigenfrequency ω. In a

cylindrical plasma, ZFs are in the direction of the electron diamagnetic drift velocity (azimuthal

direction). Because of their symmetry, zonal flows do not generate additional energy or particle

transport, and are not subject to Landau damping. They are primarily damped by collisional

processes. This is why ZFs are thought of as an ideal reservoir for the free plasma energy.

Experiments show a suppression of turbulence through the zonal flows when the E×B shearing

rate becomes greater than the linear growth rate of the drift wave instability, γl [HB95, TKE+99].

Numerous theoretical, experimental, and numerical studies describing the relation between DWs

and ZFs have been published, so much so that the problem is now referred to as ”the problem of

ZF/DW turbulence.”

From a theoretical point of view, the formation of zonal flows results from direct nonlinear

energy transfer between different unstable modes in the plasma. It is a consequence of non-local

interaction in the wavenumber space. This process is related, but not identical, to the inverse

energy cascade that occurs via non-local coupling [DIIH05]. Zonal flows are thought of as being

generated by triad coupling,~k1 +~k2 =~kZF , according to fig.(1.9). Here~k1,~k2, and~kZF are the

wavenumbers of turbulence and zonal flow, respectively. According to the geometry of fig.(1.9),

~kZF is smaller than both~k1 and~k2. In addition, the zonal flow frequency is much lower than that

of the individual waves.

The turbulence drive mechanism of zonal flows has been described by a simple fluid
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Figure 1.9: Generation of zonal flows by triad coupling. The wavenumbers of the drift waves
are bigger than that of the zonal flow:~k1,~k2�~kZF

model [DGH+08] as:
∂VZF

∂t
=− ∂

∂x
〈ṽxṽy〉−νdVZF (1.31)

where VZF is the zonal flow velocity, and νd is the zonal flow damping rate. The quantity 〈ṽxṽy〉 is

the turbulent Reynolds stress that redistributes momentum among different spatial locations. The

divergence of the Reynolds stress is related to the vorticity flux via the Taylor identity [Tay15]:

− ∂

∂x
〈ṽxṽy〉= 〈ṽx∇

2
φ〉 (1.32)

The Reynolds stress plays a major role in the saturation process of turbulence. It is

through 〈ṽxṽy〉 that the plasma self-organizes into zonal flows, and energy is exchanged between

its different turbulent components [DIIH05, Sco05].

A predator-prey relation exists between drift waves and zonal flows. Several analytical

models have been developed to describe the nonlinear energy exchange between the disparate

scales of the plasma. In these models, the zonal flows, i.e., the predators, feed on the prey

population, i.e., the drift waves. The population of the predators is thus determined by that of the

prey, as well as by the collisional damping rate of the zonal flows. The drift wave population

on the other hand is determined by the predator-prey relation, as well as by the drift wave

growth rate. This predator-prey relation has been verified experimentally, theoretically and
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numerically [DIIH05, MRS09].

1.6 The Drift Wave-Axial Flow Relation

In addition to the drift wave-zonal flow relation, theoretical studies supported by ex-

perimental results reveal a similar relation between drift waves and the axial (parallel) flows

in both toroidal and linear plasmas [KIIe5, KIK+16, IKI+16]. Measurements from Alcator

C-Mod tokamak show that the observed intrinsic flow is proportional to the edge temperature

gradient [RHD+11]. The plasma behaves like a heat engine that uses the free energy to produce

an intrinsic flow. During this process, the temperature gradient excites turbulence, which not

only relaxes ∇T , but also drives a non-diffusive residual stress [KDG10]. In a similar vein,

measurements from PANTA linear device show a direct relation between the parallel Reynolds

stress and the parallel flows. These axial flows play an important role in stabilizing the plasma

and reducing certain MHD and resistive wall modes, particularly in large scale fusion devices

where parallel momentum injection via external Neutral Beam Injections (NBIs) is thought

to be insufficient on its own. The aforementioned experimental observations were explained

by theoretical investigations, which attribute an essential role to the parallel Reynolds stress

〈ṽxṽz〉 in accelerating the formation of axial flows [DMG+09, KJD+11, DKG+13]. Similar to

the perpendicular Reynolds stress, the parallel Reynolds stress redistributes the momentum in

the parallel direction, and uses the ∇n free energy to accelerate vz. Specifically, it is the presence

of a non-zero parallel residual stress Πres
xz = Πres

xz (∇n,∇Te) when the parallel symmetry is broken

that triggers the generation and acceleration of vz. The parallel residual stress is the counterpart

of the poloidal residual stress that accelerates the zonal flows. Experiments on TJ-II stellarator

confirm the existence of a significant turbulent residual parallel stress that produces a toroidal

intrinsic torque. An electrode biasing experiment on J-TEXT achieved a nearly zero toroidal

rotation profile, thereby showing that the intrinsic torque can be explained by the measured
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residual stress [GmcHP+06]. Recently, a gyrokinetic simulation also predicted that the residual

stress generates the intrinsic torque, which is consistent with the measured rotation profile in

DIII-D [WGE+17].

Besides the parallel residual stress, the turbulent diffusion of the parallel momentum χz

also plays an important role in the dynamics of vz, since the expression for the parallel Reynolds

stress is:

〈ṽxṽz〉=−χz∇vz + 〈ṽxṽz〉res (1.33)

where Πres = 〈ṽxṽz〉res. The competition between Πres
xz and χz may create a spectral imbalance,

thus promoting the growth of certain unstable modes. A well-documented example in CSDX is

Figure 1.10: Spectral imbalance in the parallel wavenumber space [LDXT16].

that discussed in [LDXT16]. The energy released from the density gradient is used to accelerate

vz and steepen its profile. The axial flow then self-amplifies through a process of negative

viscosity [LDXT16]. Nevertheless, vz loses acceleration, as a parallel shear flow instability

(PSFI) ultimately limits the growth of the plasma axial flow. This is somewhat analogous to the

zonal flow saturation by tertiary instability [LDXT16].
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1.7 Dissertation Outline

As discussed above, drift waves play a key role in regulating turbulence and controlling

the dynamics of axial and zonal flows. To better understand and control fusion plasmas, it is

essential to examine and map the relation between these three plasma components. Toroidal

plasmas are complex systems that are characterized by high temperature (∼ several keV ).

Moreover, tokamaks are usually large-scale devices, where the magnetic field B is not constant.

This is why a magnetic shear is always present in a tokamak plasma. These aspects make the

plasma diagnosis in a toroidal device difficult. To make progress, scientists reduce the problem

by focusing their studies on an elementary linear plasma, such as that of CSDX. Not only is the

CSDX plasma simpler to study compared to large toroidal plasmas, but also presents a unique

opportunity to investigate the evolution of both turbulence and mean profiles near the plasma

edge. Measurements from both Langmuir and Mach probes are easily obtained from CSDX

low-temperature plasma.

Figure 1.11: Scaling comparison between standard tokamak, tokamak transport barrier regime,
and CSDX [CAT+16].

CSDX is a promising testbed for exploring drift-wave physics in compressed scale

regimes [CAT+16]. The range of scales in CSDX is essential in formulating the appropriate
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physical models used to describe turbulence and flow dynamics as shown in figure (1.11). Note

that in CSDX, the normalized radius ρ? = ρ/a is comparable to that in H-mode edge transport

barrier regimes. Moreover, the mesoscopic length lmeso is eliminated from the scale ordering in

CSDX. This shows why CSDX is a useful venue, where studies of scale compression can be

performed. The characteristics of CSDX plasma are summarized in the following table:

Table 1.1: Characteristics of CSDX plasma.
Gas Type Argon

Total Plasma Length (L) ≈ 3 m
Plasma Radius (a) ≈ 10 cm
Plasma density (n) 0.9−1×1013 cm−3

Electron Temperature (Te) 3.0−3.3 eV
Ion Temperature (Ti) 0.5−0.7 eV

Ion Sound Speed (cs() 2.8×105 cms−1

Ion gyroradius (ρs = cs/ωci) 1.1 cm
Ion-ion viscosity (µ⊥) 4.6×103 cm2s−1

Ion-neutral collision frequency (νin) 6×103 s−1

The low electron temperature Te and high ion-neutral collision frequency νin in CSDX

are comparable to existing values in the edge regions of large-scale devices. Details of the

experimental device, operating regimes, plasma diagnostics, and typical radial profiles of the

standard plasma parameters can be found in references [TBC+14, AYT07].

In this dissertation, I investigate the relation between drift waves and plasma zonal and

axial flows. In particular, I formulate reduced models that self-consistently describe the evolution

of turbulence and flow dynamics in both adiabatic and hydrodynamic electron limit of the plasma.

The aim is to map different relations between the fluctuations and the macroscopic flows, while

also verifying the experimental results obtained in CSDX and HL-2A tokamak. A flow chart

summarizing the work covered in this dissertation is shown below Fig.(1.12). In Chapter 2,

we present a reduced model that describes the ecology of drift wave turbulence and flows in

CSDX. The model explains how the ∇n free energy accelerates both zonal and axial flows via the

Reynolds stresses, 〈ṽxṽy〉 and 〈ṽxṽz〉. The model describes time and space evolution of the density
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n, the azimuthal and axial flows vy and vz, and the turbulent energy ε = 〈ñ2 + ṽ2
y + ṽ2

z/2〉. The

model explains how the Reynolds stresses redistribute the momentum in the axial and azimuthal

directions. It also relates parallel to perpendicular flow dynamics by introducing a coupling

constant σvT . This constant measures the degree of parallel symmetry breaking, as well as the

correlator 〈kmkz〉, which is at the essence of the parallel residual stress. Chapter 2 presents a

complete picture of the different interactions that occur between turbulence and mean profiles,

including a detailed study of feedback loops that exist between different elements of the plasma.

In Chapter 3, I focus on the DW/ZF relation. A numerical validation and verification

of the turbulence regulation phenomenon in CSDX is presented. This turbulence regulation

has been observed experimentally in references [CTD+15, CAT+16]. For this purpose, another

reduced model that describes space and time evolution of n and vy, in addition to the usual

potential enstrophy ε = 〈(ñ−∇2φ̃)2/2〉 is formulated. Chapter 3 focuses only on the DW/ZF

relation in the adiabatic electron limit. It presents numerical results that describe the evolution of

the plasma mean and turbulent profiles, as the magnitude of the magnetic field B is varied. In

addition, a new criterion for turbulence saturation is established. This criterion is characterized by

the dimensionless quantity RDT , which compares the production rate of the turbulent enstrophy

due to the relaxation of the mean profiles, to the destruction rate of ε via coupling to the mean

flow because of the predator-prey relation.

Chapter 4 examines the relation between DWs and ZFs is examined in another plasma

limiting case, known as the hydrodynamic limit. In this case, the equations that describe the

behavior of the plasma density and vorticity decouple, and are essentially reduced to a 2D

Navier-Stokes equation. In contrast to the adiabatic limit, zonal flows are shown to collapse

in the hydrodynamic limit, and turbulence is enhanced instead of being suppressed. These

changes in the plasma dynamics are interpreted from a zonal flow production perspective. As

the adiabaticity parameter decreases, the particle transport increases, while the efficiency of

plasma zonal flows production decreases. The edge shear layer weakens, the thermal confinement
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degrades, and an MHD activity is eventually triggered. This chapter is of particular interest in the

context of understanding the enhancement of turbulence and the collapse of the edge shear layer

in density limit experiments - a topic of crucial importance for future magnetic fusion devices.

Lastly, Chapter 5 summarizes the findings of this dissertation, points to future work on

the relation between turbulence and mean flows, and presents a list of potential experiments and

recommendations to further advance the experiments of this study.
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Figure 1.12: (De)-evolutionary tree of plasma models showing the organization of the
dissertation.
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Chapter 2

THE ECOLOGY OF FLOWS AND

DRIFT WAVE TURBULENCE IN CSDX:

A MODEL

2.1 INTRODUCTION

Drift wave (DW) turbulence is one of the fundamental issues in magnetically confined

plasmas, and continues to be a subject of interest for many experimental and theoretical stud-

ies [Ter00, DIIH05]. Driven by radial inhomogeneities, drift wave fluctuations increase the

turbulent transport of particles and energy, which leads ultimately to loss of the plasma particles,

heat, etc. One mechanism that regulates these fluctuations is the self-generation and amplification

of sheared E×B flows by turbulent stresses. This is related, but not identical to the inverse energy

cascade in a two-dimensional fluid that occurs via local coupling in the wavenumber space. Here,

the generation of zonal (azimuthal) flows occurs through non-local nonlinear energy transfer

between the small and large scales of the plasma [Hor99, Sco05, MRS09]. Such flows play an

important role in saturating the drift wave instabilities, in L−H transition, and in the formation
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of internal transport barriers (ITBs) [KD03]. Drift wave turbulence is also responsible for the

generation of toroidal/axial flows, which play a crucial role in the macrostability of fusion grade

tokamak plasmas. In particular, intrinsic toroidal flows are needed in large scale devices, where

momentum input through NBI is not effective. Such flows stabilize some MHD and resistive wall

modes, suppress turbulence, and enhance the overall particle confinement [KJD+11, GTA+99].

The relationship between drift waves and zonal flows has been extensively studied, so

much so that the problem is now referred to as drift wave/zonal flow turbulence. Several self-

regulating predator-prey models were developed, where the drift wave fluctuations correspond to

the prey population and the zonal flows correspond to the predator population [DLCT94, II96,

IIFY99]. As the population of drift waves grows rapidly, it supports the predator population.

Zonal flows then control the drift waves by feeding on them, while being themselves regulated

by a predator-prey competition and by nonlinear damping [DIIH05]. The existing versions of

these models however, do not adequately address the problem of zonal flow saturation.

In a different vein, axial flow formation by turbulence requires a breaking in parallel

symmetry and a non-zero correlator 〈kzkm〉 = ∑m kzkm|φ̃|2. In tokamaks, it is (usually) the

magnetic shear that enables the parallel symmetry breaking. In linear devices however, B

is constant and standard mechanisms do not apply. Recently, a parallel symmetry breaking

mechanism that is based in drift wave turbulence and axial flow shear was developed [LDXT16].

This mechanism does not rely on complex magnetic geometry to generate a parallel residual

stress Πres
xz ∝ 〈kzkm〉. The energy released from the density gradient is used to accelerate an axial

flow through a negative viscosity process. For strong flows, the parallel shear flow instability

(PSFI) controls the dynamics of v̄z.

Inverse energy cascade has been observed in both 2D and 3D systems [BMT12]. Ex-

amples include reversal of the flux of energy in geophysical flows subject to the Earth’s rota-

tion [MAP09], as well as in shallow fluid layers [XBFS11]. In plasmas, inverse energy cascade

that results in the generation of broadband turbulence and large scale coherent structures from
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DW fluctuations is widely accepted now. With drift waves triggering the formation of both axial

and azimuthal flows (Fig.2.1), fundamental questions concerning the flow configuration arise:

What mechanisms regulate the self-organization process, and ordain the final configuration of

turbulence and flows in the plasma? How is energy partitioned between the fluctuations and the

different flows v̄z and v̄y in the plasma? Moreover, since fluctuations and mean flows constitute

an interdependent system, could there be a coupling relation between v̄y and v̄z? If so, what

determines the strength of this coupling? And most importantly, how does this coupling affect

the energy branching ratio in the plasma?

To answer these questions, we present in this paper a 1D (in radius) reduced k− ε type

model that describes the evolution of the three mean fields: density n̄, axial and azimuthal flows

v̄z and v̄y, as well as variations in the fluctuation intensity ε = 〈ñ2 +(∇⊥φ̃)2 + ṽ2
z 〉, in the linear

plasma of CSDX. The model is derived from the Hasegawa-Wakatani system with axial flow

evolution included. The model self-consistently relates variations in ε to the evolution of the

mean profiles via the particle flux 〈ñṽx〉, and the parallel and perpendicular Reynolds stresses

〈ṽxṽz〉 and 〈ṽxṽy〉. Because of parallel compression, the fluctuation intensity is the relevant

conserved field.

To explain the relation between v̄y and v̄z with respect to ε, the model uses a mixing

length lmix that reflects turbulence suppression by the axial and azimuthal flow shear. External

particle and axial flow sources which result from injection of neutrals and axial momentum, are

included in this model. When the work done by the fluctuations on the parallel flow is less than

that done on the perpendicular flow, the model can be reduced to a 2-field predator-prey model,

where the azimuthal flow feeds on the density population.

The model is a necessary intermediary between a 0D model that shows the structure of

the flows and fluctuations, and a full DNS. For a multiscale system such as CSDX, a reduced

model provides a route to an interpretation of the experimental results, and gives detailed insight

into the feedback loops between the disparate scales. At the same time, it avoids the labor of
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Figure 2.1: A schematic of the ecology of drift wave turbulence, zonal, and axial flows. The
first feedback loop relates the drift waves to the zonal flows via 〈ṽxṽy〉. A second feedback loop

exists as a result of a potential relation between v̄y and v̄z. The second loop relates the
fluctuations to both mean flows.

a full DNS. The model consists of a set of compact equations that describe the evolution of

the plasma stresses and flows. It shows how ∇n̄ free energy accelerates both v̄y and v̄z, and

investigates the coupling relation between the parallel and perpendicular flow dynamics in CSDX

by introducing σV T , the empirical measure of the acoustic coupling in the plasma.

The 1D reduced model description taken here should provide a useful new interme-

diate approach for the simulation of self-consistent evolution edge and SOL plasma profiles,

transverse and parallel flows and turbulence, and would allow the study of main plasma and
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trace impurity dynamics across timescales ranging from a few turbulent correlation times up to

system equilibrium timescales. When modified to include toroidal and open-field line effects,

and extended to a 2D geometry along the magnetic field and binormal directions, our proposed

reduced model would bridge the gap between existing time-averaged fluid codes of the edge and

SOL region of confinement devices (see e.g. ref.[WRK+15]) which are incapable of capturing

such self-consistent dynamical phenomena, and fully turbulent direct numerical simulations

(see e.g. refs. [TGT+10, RMRP92]) which capture self-consistent profile and flow evolution but

are computationally expensive and thus difficult to use for long time scale dynamical evolution

studies. Such a new capability might be useful to study the self-consistent entrainment and

transport of eroded wall impurities in flowing edge and SOL plasma and the long-time migration

of these materials in the SOL and divertor regions of confinement devices. These obvious

extensions are left as future work.

The rest of the paper is organized as follows. Section 2.2 presents the structure of the

model, as well as a full derivation of the involved equations and an interpretation of each term of

these equations. Section 2.3 elaborates on the relation between drift waves and zonal flows, and

calculates the turbulent expressions for the particle flux and the vorticity flux. Expressions for the

perpendicular Reynolds stress and the Reynolds work are also presented. Section 2.4 is dedicated

to the parallel Reynolds stress. This sections explains how drift waves accelerate the axial flows

through 〈ṽxṽz〉. An empirical constant σV T is introduced in this section. By analogy to pipe

flows, σV T is presented as a measure of the acoustic coupling or the efficiency of converting the

∇n̄ energy to drive an axial flow. σV T is then used to establish a direct relation between the axial

and the azimuthal flow shear, as both residual stresses Πres
xy and Πres

xz are proportional to ∇n. An

expression for the mixing length lmix that depends on both shears is derived in section 2.5. In

section 2.6, we give a summary and a discussion of the model, before reducing it to a 2-field

predator-prey model in section 2.7. Finally, conclusion and discussion are given in section 4.8.

30



2.2 THE MODEL AND ITS STRUCTURE

The basic equations are derived from the Hasegawa-Wakatani system [HW83, HW87],

with axial flow velocity ṽz evolution included. In a box of dimensions: 0≤ x≤ Lx, 0≤ y < Ly

and 0≤ z≤ Lz, and for a straight magnetic field B = Bẑ, these equations are [LD17]:

dñ
dt

+vE .∇〈n〉+n0∇zṽz =−
v2

th
νei

∇
2
z (φ̃− ñ)+D0∇

2
⊥ñ+{ñ, φ̃} (2.1a)

d∇2
⊥φ̃

dt
+vE .∇〈∇2

⊥φ〉=−
v2

th
νei

∇
2
z (φ̃− ñ)+µ0∇

4
⊥φ̃−νin(v̄y− v̄n)+{∇2

⊥φ̃, φ̃} (2.1b)

dṽz

dt
+vE .∇〈vz〉=−c2

s ∇zñ+ν0∇
2
⊥ṽz−νin(v̄z− v̄n)+{ṽz, φ̃} (2.1c)

Here x, y and z are the radial, azimuthal and axial directions respectively. The fields

are normalized as follows: ñ≡ ñe/n0, φ̃≡ eφ̃/Te, t ≡ ωcit, ṽz ≡ ṽz/cs and length≡ length/ρs.

n0 and Te are the average density and electron temperature respectively, ωci = eB/mi is the ion

cyclotron frequency, cs =
√

Te/mi is the ion sound speed and ρs = cs/ωci is the ion Larmor

radius with temperature Te. vth and νei are the electron thermal velocity and the electron-ion

collision frequency, respectively. The total time derivative is: d/dt = ∂t +vE .∇, and the axial

ion pressure gradient is neglected in the ṽz equation. The neutral friction, proportional to the ion-

neutral collision frequency νin = nn
√

8Ti/πmi, is a natural sink for energy that inverse cascades

to larger scales. This friction is especially significant near the plasma boundary. Its expression

can be further simplified by taking v̄n ≈ 0 close to the boundary. Terms that are proportional

to D0, µ0 and ν0 dissipate energy via viscous collisions. Finally, the nonlinear advection terms

are expressed as Poisson brackets: { f ,g}= ∂x f ∂yg−∂xg∂y f , and represent spatial scattering of

fluctuations.

The system of eqs.(2.1) describes a variety of linearly unstable modes. One eigenmode

of this system is the strongly damped ion drift wave with an eigenfrequency that satisfies the
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relation: |ω| < |kzcs|. Here kz is the parallel wave number. Such a wave is heavily damped,

will be difficult to excite, and thus will not be considered here. A second solution to this

system describes the dynamics of the parallel shear flow instability (PSFI). The PSFI describes

turbulence production due to free energy released from parallel flow shear [KIK+16, KII16]. In

contrast to other linear plasmas [KIIe5, IKI+16], experimental results from the CSDX linear

device show that the parallel flow shear v̄′z is well below the critical threshold necessary to drive

PSFI [LD17]. The PSFI is thus heavily damped in CSDX, and will also not be considered here.

A third solution describes the dynamics of the coupled 3D drift-ion acoustic turbulence. In

this paper, we are mainly concerned with the coupling between the parallel and perpendicular

flow dynamics. Thus we focus only on the dynamics of the coupled drift-ion acoustic waves.

We decompose each field into a mean and a fluctuating part: f = 〈 f 〉+ f̃ (x,y,z, t), where the

averaging is performed over the directions of symmetry y and z:

f̄ (x, t) = 〈 f (x, t)〉= 1
LzLy

∫ Lz

0
dz

∫ Ly

0
dy f (x,y,z, t)

where we assume that the plasma profiles do not change substantially along the axial direction.

In the presence of compressible parallel flows, conservation of potential vorticity (PV) -

and thus that of the potential enstrophy - is broken. Coupling between the PV fluctuations and

the parallel flow compression thus defines an energy transfer channel between the parallel and

perpendicular flow dynamics. This energy exchange influences the wave momentum density and

modifies the zonal momentum balance theorem [WDH12]. In its new form, the zonal momentum

balance theorem shows that coupling between drift-acoustic waves acts as a driving source that

allows stationary turbulence to excite zonal flows in the absence of any driving force or potential

enstrophy flux. The coupling drive involves both perpendicular and parallel dynamics, and does

not require symmetry breaking in the turbulence spectrum. Therefore, instead of using potential
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enstrophy as the fluctuation intensity field, we use the mean fluctuation energy 〈ε〉 defined as:

〈ε〉= 1
LzLy

L‖∫
0

dz
2π∫

0

dθε(r) =
1

LzLy

∫ Lz

0
dz

∫ Ly

0
dyε(x) =

〈
ñ2 +(∇⊥φ̃)2 + ṽ2

z
〉

2
,

where z and y are the axial (parallel) and azimuthal (perpendicular) directions respectively, and

L‖ = Lz is the axial length of the plasma. Here we assume periodicity in the axial direction z.

The mean fluctuating energy 〈ε〉, interpreted as a sum of internal energy 〈ñ2〉 and kinetic energy:

〈(∇⊥φ̃)2〉+ 〈ṽ2
z 〉, is conserved up to dissipation and internal production, as demonstrated later.

The time evolution of 〈ε〉 is:

d〈ε〉
dt

=
1

LzLy

∫
(ñ

dñ
dt

+∇⊥φ̃
d∇⊥φ̃

dt
+ ṽz

dṽz

dt
)dydz (2.2)

An expression for eq.(2.2) is obtained by multiplying the set of eqs.(2.1) by ñ, −φ̃ and ṽz

respectively, and integrating along the directions of symmetry to get:

〈dε

dt
〉=−〈ñṽx〉

dn̄
dx
−〈ṽxṽy〉

dv̄y

dx
−〈ṽxṽz〉

dv̄z

dx
− 1

LzLy

v2
th,e

νei

∫ [
∂z(Φ̃− ñ)

]2
dz−〈ñṽz〉

−νin

(
〈ṽ2

y〉+ 〈ṽ2
z 〉
)
− 1

LzLy

∫ (
D0(∇⊥ñ)2 +µ0(∇

2
⊥φ̃)2 +ν0(∇⊥ṽz)

2
)

dydz

+
1

LzLy

∫ (
ñ{ñ, φ̃}− φ̃{∇2

⊥φ̃, φ̃}+ ṽz{ṽz, φ̃}
)

dydz

(2.3)

Here we have used periodic boundary conditions in the y direction to obtain the fourth

term of the RHS of eq.(2.3). The first three terms on the RHS of eq.(2.3) are direct mean-

fluctuation coupling terms. They relate the variations of ε to the variations of the mean profiles

of n̄, v̄y and v̄z via 〈ñṽx〉, 〈ṽxṽy〉 and 〈ṽxṽz〉.

A common issue that arises while using such reduced models is the closure problem.

To obtain equations that contain only the mean quantities, we simplify the energy equation by

examining each term of eq.(2.3), in order to properly construct the equation for ε. In the case of
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pure drift wave turbulence, the dv̄z/dx term is absent and ω < ω? ∝ ∇n̄. The density gradient

term is then the only source of energy production. It is positive definite, and represents the rate

at which free energy is extracted from the density gradient ∇n̄. The second term on the RHS of

eq.(2.3) is the Reynolds power. It represents the free energy coupled to the azimuthal flow v̄y

via the Reynolds stress 〈ṽxṽy〉. For pure DWs and stable Kelvin-Helmholtz (KH) modes, this

energy is transfered to the mean flow and the Reynolds power is negative. The third term, on

the other hand, can represent either an energy source or an energy sink. Depending on the sign

of the cross phase between ṽx and ṽz, this term can be either positive or negative. A detailed

discussion of this cross phase relation and of the parallel Reynolds stress is deferred to a later

section. The dissipation term −
∫
[∂z(Φ̃− ñ)]2dz is associated with the phase difference between

the density fluctuations ñ and the electric potential fluctuations φ̃. This term is always negative.

In the frequently encountered case of weakly non-adiabatic electrons, this term is always smaller

than the energy input source term: −
∫
[∂z(Φ̃− ñ)]2dz� −〈ñṽx〉∇n̄ [SDSK13]. Indeed, for

ñ = (1− i∆)φ̃ with ∆� 1 and ω ' |ω?|/(1+ k2
⊥ρ2

s ), the estimates of the dissipation and the

energy input terms are: ω2(|ω?|−ω)2 and ω|ω?|(|ω?|−ω)2 respectively. With ω < |ω?|, the

dissipation term can be neglected from eq.(2.3). The 〈ñṽz〉 term represents parallel particle

flux. Since such flux can be experimentally zeroed, it will be omitted from the energy equation.

Terms that are proportional to D0, µ0 and ν0, represent collisional energy dissipation by direct

energy cascade. These terms damp the fluctuation energy at small scales at a rate
√

ε/lmix.

We write the energy dissipation as ε3/2/lmix, and leave the discussion of the expression for

the turbulent mixing length lmix to a subsequent section. In addition to collisional dissipation,

ion-neutral collisions represent a nonlinear energy damping to larger scales. Both collisional

dissipation and neutral energy damping represent a sink of turbulent energy ε. Finally, the

nonlinear terms in eqs. (2.1) are related to the E×B drift, the polarization drift, and the axial drift

respectively. These terms represent the spreading of turbulence. This spreading is mesoscopic,

and involves two aspects. The first aspect is a perturbation in the local intensity gradient ∂xε,
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i.e., a diffusion of the energy envelope to a more stable region away from its source. The second

aspect includes nonlinear interaction of the local fluctuations via inverse cascade. Based in the

three wave coupling, zonal flows created through inverse cascade shear the fluctuations and

regulate turbulence spreading [GDH06, GDH07]. We write this energy spreading as a Fickian

energy flux: Γε =−Dε∂xε =−lmixε1/2∂xε. An energy source P representing drift wave turbulent

energy production is added to eq.(2.3). The generation of these fluctuations results from the

relaxation of the mean profiles and represents the excitation in the linear phase. The energy

production term is linear in ε and proportional to γε, the characteristic growth rate of the DW

instabilities: P = γεε. The final form of eq.(2.3) then becomes:

∂ε

∂t
+∂xΓε =−〈ñṽx〉

dn̄
dx
−〈ṽxṽz〉

dv̄z

dx
−〈ṽxṽy〉

dv̄y

dx
− ε3/2

lmix
+P (2.4)

In addition to eq.(2.4), the equations for n̄, v̄y and v̄z, which form the reduced model of

turbulence intensity for the modified Hasegawa-Wakatani model are:

∂n̄
∂t

=− ∂

∂x
〈ṽxñ〉+Dc

∂2n̄
∂x2 +Sn (2.5)

∂v̄z

∂t
=− ∂

∂x
〈ṽxṽz〉+νc,‖

∂2v̄z

∂x2 −νinv̄z−νiiv̄z +Svz (2.6)

∂v̄y

∂t
=− ∂

∂x
〈ṽxṽy〉+νc,⊥

∂2v̄y

∂x2 −νinv̄y−νiiv̄y +Svy (2.7)

Here we assumed that the electron pressure gradient does not vary neither in the axial nor in

the azimuthal direction. Note however that this assumption remains valid only in the case of

an attached plasma. When the pressure of the injected neutral gas is high enough, a detached

plasma is obtained, and axial and azimuthal variations of ∇pe are no longer equal to zero. The

first terms on the RHS of eqs.(4.8a-2.7) represent particle and momentum transport, while those

proportional to Dc, νc,⊥ and νc,‖ represent collisional diffusivity and viscosity respectively. A
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particle source Sn representing the ionization of the injected neutrals is added to the density

equation. Similarly, axial and azimuthal momentum sources Svz and Svy representing external

input of momentum into the plasma are added to v̄y and v̄z equations. In CSDX however, no

external momentum is injected and Svz = Svy = 0, in contrast to refs. [IKI+16, KIK+16, KII17]

where external axial momentum is injected into the plasma. In eq.(2.7), the term proportional to

the ion-neutral collision frequency νin represents momentum transfer between ions and neutrals,

and is significant only in the boundary layer close to the plasma wall. The last term proportional

to νii represents viscous damping via ion-ion collisions. The expressions for viscous and diffusive

coefficients are [LL94]:

Dc =
D

1+ω2
ciτ

2
i
' De

(ωciτi)2 ∼
4
√

2πn0 lnΛe2√me

3
√

Te
(2.8a)

νc,⊥ = νi,⊥ =
3
10

niTi

ω2
ciτi
∼

2
√

πn2
0 lnΛe2m3/2

i

T 1/2
i

(2.8b)

νc,‖ = νe,‖ = 0.73neTeτe ∼
3
√

meT 5/2
e

4
√

2π lnΛe4
(2.8c)

The system formed by eqs.(2.4-2.7) conserve the total energy Etot in time, up to dissipa-

tion and production. Here Etot is equal to the sum of the turbulent energy ε and the mean energy

Emean =
(
n̄2 + v̄2

z +(∇⊥φ̄
)2
)/2. For zero energy flux conditions at the boundaries (∂xε = 0),

energy conservation (up to dissipation and production) is demonstrated as:

d〈Etot〉
dt

=
d〈ε〉
dt

+
d〈Emean〉

dt

=
d〈ε〉
dt

+
1
2

∂

∂t

∫ [
n̄2 + v̄2

z +(∇⊥φ̄)2
]
dzdy

=−〈ñṽx〉
dn̄
dx
−〈ṽxṽz〉

dv̄z

dx
−〈ṽxṽy〉

dv̄y

dx
+P− ε3/2

lmix

+ 〈ñṽx〉
dn̄
dx

+ 〈ṽxṽz〉
dv̄z

dx
+ 〈ṽxṽy〉

dv̄y

dx

=−ε3/2

lmix
+P

(2.9)
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where the order of operations .̄. and 〈..〉 have been interchanged. Eqs.(2.4-2.7) thus constitute a

model that describes profile evolution for both parallel and perpendicular flows, in addition to

the plasma density, by self-consistently evolving turbulence as well as the mean profiles. This

model offers the possibility to explain the generation and acceleration of intrinsic axial flows as

a result of changes in the turbulence spectrum, governed by conservation of total energy Etot .

2.3 CALCULATING THE TURBULENT FLUXES

Eqs.(2.4-2.7) describe time and space evolution of the three mean fields: n̄, v̄y and v̄z,

in addition to the mean fluctuating energy ε. The solution of this system of equations requires

calculating the expressions for the different turbulent fluxes in terms of ε and the mean field

gradients. In this section, we determine the expressions for the various turbulent fluxes, with the

provision that these expressions are valid only in the case of nearly adiabatic electrons, that is

when k2
z v2

th/(νei|ω|)� 1. In this limit, quasi-linear theory is used to calculate the expressions for

the transport fluxes by Fourier decomposing each field as: f̃m = δ fm(x)ei[kmy+kzz−ωt] where ω =

ωr + i|γm|, with |γm| � ωr
m = ω?(1+k2

⊥ρ2
s )
−1. Here ω? = kmvd , where the electron diamagnetic

velocity is vd =−ρscs∇n̄ = ρscs/Ln,

2.3.1 The Turbulent Particle Flux

The particle flux 〈ñṽx〉 is calculated after linearizing the density equation:

∂ñ
∂t
− ṽxvd +∇zṽz =−

v2
th

νei
∇

2
z (φ̃− ñ)+D0∇

2
⊥ñ+{ñ, φ̃} (2.10)

The expression for the particle flux is then:

Γ = 〈ñṽx〉= ∑
m

vd(α+ |γm|)−αωr/km

|ω/km + iα/km|2
|δφ

2| (2.11)
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In the case of classic resistive drift waves, |γm| � 1 and the particle flux is:

Γ = ∑
m

α
vd−ωr/km

|ω/km + iα/km|2
|δφ

2| (2.12)

where α = k2
z v2

th/νei is the plasma adiabaticity parameter. The first term of the numerator

represents diffusive relaxation of the density gradient, while the second is due to pumping by

waves. The competition between these two terms is what ultimately sets the sign of Γ, i.e., the

direction of the particle flux. For adiabatic electrons: k2
z v2

th/νei� |ω|, and α� (ωr, |γm|). The

particle flux then becomes:

Γ = 〈ñṽx〉= ∑
m
−k2

mρ2
s c2

s
α

.
k2
⊥ρ2

s

1+ k2
⊥ρ2

s
.

1
n0

dn̄
dx

.|δφ
2|

=−D.
1
n0

dn̄
dx

> 0

(2.13)

where the particle diffusion coefficient D is:

D = ∑
m

k2
mρ2

s c2
s

α
.

k2
⊥ρ2

s

1+ k2
⊥ρ2

s
|δφ

2|=
k2
⊥ρ2

s

1+ k2
⊥ρ2

s
.
〈δv2

x〉
α
≈ f ε

α
(2.14)

The factor f introduced in eq.(2.14) represents the fraction of the fluctuation energy ε which is

kinetic energy of radial motion, i.e., f = 〈δv2
x〉/ε.

Expression for the energy fraction f

Since the fluctuation energy ε is composed of internal energy as well as kinetic energy

for both radial and axial motion, we write the following expression for the fraction of ε allocated

to kinetic energy in the radial motion as:

f =
〈δv2

x〉
ε

=
〈δv2

x〉
〈δn2〉+ 〈δv2

x〉+ 〈δv2
z 〉
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Writing the density and radial velocity fluctuations as δn = (1− i∆)δφ and δvx =

−ik⊥ρscsδφ respectively, straightforward linearization of the axial velocity equation gives:

〈δv2
z 〉=

(kmρscs∇v̄z− kzc2
s (1+∆2))

ω2 +1/τ2
c

〈δφ
2〉

With τc = lmix/〈ṽ2
x〉1/2 = lmix/

√
f ε, the denominator is equal to:

1
ω2 +1/τ2

c
=

l2
mix(1+ k2

⊥ρ2
s )

2(
l2
mixω?2 + f ε(1+ k2

⊥ρ2
s )

2
)

The final expression for f is:

f =
k2
⊥ρ2

s

(1+∆2)+ k2
⊥ρ2

s +
|kmρs∇v̄z− kzcs(1− i∆)|2

ω2 +1/τ2
c

(2.15)

For adiabatic electrons and in the absence of mean axial shear (v̄′z = 0), f is:

f =
k2
⊥ρ2

s

1+ k2
⊥ρ2

s + k2
z c2

s/(ω
2 +1/τ2

c)
(2.16)

with ω = |ωr|= kmρscs/[Ln(1+k2
⊥ρ2

s )] and 1/τ2
c = ε/l2

mix. In the limit of small kz and pure DWs,

eq.(2.16) gives: f = k2
⊥ρ2

s/(1+ k2
⊥ρ2

s ) ' k2
⊥ρ2

s and 〈δv2
x〉 ' k2

⊥ρ2
s ε, as expected for adiabatic

electrons. Eq.(2.15) includes the correlator 〈kmkz〉, which expresses the cross phase relation

between the velocity fluctuations in the radial direction (ṽx ∼ kmφ̃) and those in the axial

direction (ṽz ∼ kz p̃∼ kzTeñ). Here we assumed adiabatic response with constant temperature Te.

In CSDX, the parallel to perpendicular coupling is small in comparison to k2
⊥ρ2

s , as indicated by

measurements of modest axial flow velocities [HLT+17, HLH+17]. The 〈kmkz〉 correlator can

thus be neglected in f . However, in the parallel Reynolds stress, 〈kmkz〉 appears as zeroth order

and so cannot be dropped. Here it will be expressed in terms of an empirical constant σV T that

will be introduced in a subsequent section.
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2.3.2 The Vorticity Flux, the Perpendicular Reynolds Stress and the

Reynolds Work

The expression for the Reynolds force needed in eq.(2.7) is obtained from Taylor’s

identity: −∂x〈ṽxṽy〉= 〈ṽx∇2
⊥φ̃〉, which relates the Reynolds force to the vorticity flux, and links

the eddy fluxes of momentum and potential vorticity [Tay15]. When neutrals are negligible and

in the presence of an externally imposed azimuthal flow V0, the quasi-linear expression for the

vorticity flux Πxy is obtained after linearizing the vorticity equation [ADG16]:

Πxy = ∑
m

{
−|γm|

vd +d〈∇2
⊥φ〉/dx+V ′′0

|V ′0−ω|2

+
|γm|vd +α

(
vd +V0−ωr/km

)
|ω+ iα−V ′0|2

}
k2

mρ
2
s c2

s |δφ
2|

=−χ
non−resonant
y d(〈∇2

⊥φ〉+V ′0)/dx+Π
res
xy

=−χ
non−resonant
y d2(v̄y +V0)/dx2 +Π

res
xy

(2.17)

Here 〈∇2
⊥φ〉 is a self generated flow driven by the DW interaction. The expression for the

vorticity flux thus consists of a residual flux Πres
xy and a diffusive part proportional to χnon−resonant

y :

χ
non−resonant
y = ∑

m

|γm|
|V ′0−ω|2

k2
mρ

2
s c2

s |δφ
2| (2.18)

The denominator of χnon−resonant
y is a competition between the wave frequency ω and

the flow shear V ′0. In CSDX, a comparison between the shearing rate V ′0 and the drift wave

frequency ω shows that V ′0� ω [CAT+16]. Thus we neglect the flow shear from the expression

for χnon−resonant
y :

χ
non−resonant
y = ∑

m

|γm|
|ω|2

k2
mρ

2
s c2

s |δφ
2|

We also mention that the total turbulent viscosity is: χtot
y = χresonant

y +χnon−resonant
y , where
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χresonant
y and χnon−resonant

y are the resonant and the nonresonant turbulent viscosities respectively.

Here χresonant
y = ∑m k2

mρ2
s c2

s πδ(ω− kmv̄y− kzv̄z) results from the resonance between the plasma

flows and the unstable mode of frequency ω [MD10]. Hereafter, we drop the resonant and

non− resonant superscripts to simplify the notation. The residual vorticity stress Πres
xy is:

Π
res
xy = ∑

m

{
|γm|vd +α(vd−ωr/km)

|ω+ iα|2

}
k2

mρ
2
s c2

s |δφ
2|−χyvd (2.19)

Note that it is through Πres
xy that the free energy in the density gradient is converted into

positive Reynolds work, resulting in the generation of flow shear. The residual stress Πres
xy is the

only term in the vorticity flux that survives when both v̄y and v̄′y vanish. Thus, it must be the

case that the density gradient ∇n̄ accelerates the azimuthal flow from rest through Πres
xy . For pure

Kelvin-Helmholtz modes, kz = α = 0 and the total stress is:

Πxy =−χyd〈∇2
⊥φ〉/dx (2.20)

The residual vorticity of the pure KH modes is zero and the density gradient alone cannot

drive these instabilities. KH modes simply relax the E×B flow profile via viscous diffusion.

Using the expression for the particle flux, Πres
xy is rewritten as [ADG16]:

Π
res
xy = Γ−χyvd (2.21)

In the near adiabatic limit, the particle flux Γ ∝ 1/α� 1 as α� |ω| and the residual

stress is: Πres
xy =−χyvd =−χyρscs∇n̄. The expressions for χy and Πres

xy in this limit are:

χy = ∑
m

|γm|
|ω|2

k2
mρ

2
s c2

s |δφ
2|= τc〈δv2

x〉= lmix
√

f ε

Π
res
xy =−∑

m

|γm|ω?k2
mρsc2

s
|ω|2

|δφ
2|=−〈δv2

x〉τccs

ρsLn
=− lmix

√
f εωci

Ln

(2.22)
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where the fluctuation correlation time is τc = lmix/
√

f ε.

In addition to the Reynolds force, the expression for the local Reynolds power is needed

in eq.(2.4). For this, we write the Reynolds stress as:

〈ṽxṽy〉=−χy
dv̄y

dx
+ 〈ṽxṽy〉res

The total Reynolds power PRe =
∫
(dv̄y/dx)〈ṽxṽy〉dV where dV = dxdydz can then be written as:

PRe =
∫ dv̄y

dx

(
−χy

dv̄y

dx
+ 〈ṽxṽy〉res

)
dV

=
∫
−χy

(dv̄y

dx

)2
dV +

∫ dv̄y

dx
〈ṽxṽy〉resdV

=
∫ {
−χy

(dv̄y

dx

)2
− v̄y∂x

[
〈ṽxṽy〉res

]}
dV + v̄y〈ṽxṽy〉res

∣∣∣
bound

=
∫
−χy(

dv̄y

dx
)2dV +

∫
v̄yΠ

res
xy dV

(2.23)

Here we drop the boundary term v̄y〈ṽxṽy〉res
∣∣∣
bound

that results from integration by parts. We

justify this by the strong neutral drag (close to the plasma boundary), so the perpendicular flow

v̄y must vanish at the boundary due to no-slip condition. The local Reynolds power density is

thus:

〈ṽxṽy〉
dv̄y

dx
=−χy

(dv̄y

dx

)2
+ v̄yΠ

res
xy (2.24)

2.4 THE PARALLEL REYNOLDS STRESS 〈ṽxṽz〉

Adding axial flow to the Hasegawa-Wakatani equations breaks conservation of PV, and

thus that of potential enstrophy. Moreover, it introduces an energy transfer channel between the

parallel and perpendicular directions, via acoustic coupling. Experimental results show that when

drift waves dominate, the turbulence production due to the release of free energy in ∇n̄, can excite

secondary parallel flows [IKI+16, KIK+16, KII17, TGM+16]. Theoretical studies also show
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that both axial and zonal flows are driven by turbulence, particularly by the non-diffusive residual

stress in both expressions for 〈ṽxṽy〉 and 〈ṽxṽz〉 [HLT+17, LD17, KII16, KDG10, DKG+13].

Ref.[WDH12] investigates the relation between the axial and azimuthal flows and turbulence,

and formulates a new zonal momentum balance theorem for the coupled drift-ion acoustic

waves. Due to acoustic coupling, a dynamical mechanism for ZF generation is established. This

mechanism does not require any potential vorticity flux. The sheared E×B layers so formed,

break parallel symmetry (in a sheared magnetic field), generate a non-zero parallel residual

stress Πres
xz , and accelerate the axial flow v̄z, according to the mechanism of ref. [GDHS07]. We

note, however, that strong E×B shear eventually will damp the PSFI (Fig.4.4). As an aside,

we mention that the acceleration of zonal flows does not require external breaking of azimuthal

symmetry. Zonal flows are generated by modulational instability of drift waves to a seed shear.

This does not require a geometrically broken azimuthal symmetry. Axial flows on the other hand

require a non-zero parallel residual stress, which can develop from a broken parallel spectral

symmetry. This is one reason why zonal flows are much easier to accelerate than parallel flows.

These parallel symmetry breaking mechanisms usually require the presence of a magnetic shear.

Figure 2.2: Feedback loop between axial and zonal flows via 〈kmkz〉. A strong zonal flow
shear can affect the axial flow.
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However, such mechanisms are not relevant to CSDX, since B is constant and magnetic shear

is absent. Symmetry breaking is then provided by a dynamical mechanism, based on DWs and

momentum evolution [LDXT16]. The growth rate of the DWs in CSDX is determined by the

frequency shift: |γ| ∼ ω?−ω. A test flow shear v̄′z changes this frequency shift, setting modes

with kmkz|v̄′z|> 0 to grow faster than those with kmkz|v̄′z|< 0, and causing a spectral imbalance in

the km− kz space to develop. This creates a parallel residual stress Πres
xz =−|χres

z |∇v̄z. The latter

reinforces the test shear, and amplifies the parallel flow through a process of ’negative viscosity’.

If v̄′z keeps increasing, the parallel shear flow instability (PSFI) will occur [KIIe5, KIK+16].

When the PSFI is turned on, ∇v̄z saturates at the PSFI linear threshold and the total viscosity

remains positive: χtot
z = χDW

z +χPSFI
z −|χres

z | > 0. In CSDX, no external axial momentum is

injected into the plasma, and ∇v̄z never exceeds the critical value necessary to destabilize the

PSFI [LD17]. Turbulence production thus primarily accelerates the axial flow in CSDX without

destabilizing it.

2.4.1 Calculating the Expression for 〈ṽxṽz〉

In the near adiabatic limit, the expression for the parallel stress 〈ṽxṽz〉 is obtained by

writing ṽx =−ikmρscsφ̃ and using eq.(2.1c) to get:

〈ṽxṽz〉=−
|γm|〈δv2

x〉
|ω|2

dv̄z

dx
+ 〈kmkz〉ρsc3

s

[ |γm|
|ω|2

+
(ω?−ωr)

|ω|α

]
(2.25)

In obtaining the expression for 〈ṽxṽz〉, we neglected the contribution of the flow shear V ′0

with respect to the wave frequency ω, as we did in the expression for 〈ṽxṽy〉. Just like χy, the

total parallel diffusivity χz is equal to the sum of the resonant and the non-resonant part. The

first component of eq.(2.25) is a diffusive term that is written as −χzdv̄z/dx, where the turbulent

diffusivity is:

χz =
|γm|〈δv2

x〉
|ω|2

= τc〈δv2
x〉= lmix

√
f ε (2.26)
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We note that the turbulent parallel diffusivity χz given in eq.(2.26) is the same as the

perpendicular diffusivity χy given in eq.(2.3.2). The remaining part of eq.(2.25), involving

the correlator 〈kmkz〉 = ∑kmkz|δφ2|, constitutes the parallel residual stress, Πres
xz . This term is

responsible for generating the intrinsic axial flow. The expression for the parallel residual stress

is:

Π
res
xz = ∑

m

|γm|kmkzρsc3
s

|ω|2
|δφ

2|+ kmkzρsc3
s (ω

?−ωr)

|ω|α
|δφ

2|

= ∑
m

|γm|kmkzρsc3
s

|ω|2
|δφ

2|+
kmkzρ

3
s c3

s k2
⊥

α
|δφ

2|

= 〈kmkz〉ρsc3
s

[
τc +

ρ2
s k2
⊥

α

]
(2.27)

2.4.2 Analogy to Pipe Flow: A Simple Approach to the Physics of the

〈kmkz〉 Correlator

In order to calculate the parallel residual stress Πres
xz , an expression for the correlator

〈kmkz〉= ∑kmkz|δφ2| is needed. More importantly, in order to model the axial flow generation

in CSDX, 〈kmkz〉 needs to be expressed in terms of a simple coefficient that can be used in

numerical results. We thus draw an analogy with turbulence in a pipe flow and write ṽz as:

ṽz =−ṽxτc∇v̄z + ṽres

=−lmix∇v̄z +R∇n̄
(2.28)

The first term (proportional to ∇v̄z) results from turbulent mixing on a scale lmix. The

second term (proportional to ∇n̄) relates to DWs and represents the acoustic coupling from

turbulent mixing of ∇n̄. The latter shows how the free energy creates a residual velocity ṽres
z ,
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(i.e., a parallel residual stress). The parallel velocity equation reads:

dṽz

dt
=−ṽx

dv̄z

dx
− c2

s ∇z

[eφ̃

Te
+

p̃e

pe

]
(2.29)

In the CSDX plasma which is nearly adiabatic and where variations of the electron

temperature are negligible, we have eφ̃/Te ∼ ñ/n̄ and p̃e/pe ∼ ñ/n̄. Proceeding as for Prandtl

mixing length theory, we write ñ/n̄∼ lmix|∇n̄|/n̄, and obtain:

ṽres
z =

σV T c2
s τc

L‖
.
(−lmix

n̄
dn̄
dx

)

where L‖ = Lz is the axial plasma length, n̄ is the average plasma density and τc = lmix/ṽx is the

fluctuation correlation time. The constant σV T is introduced as a dimensionless scaling factor

between variations of ṽz and variations of the density gradient ∇n̄. The final expression for ṽz is

then:

ṽz =−lmix
dv̄z

dx
+

σV T c2
s τc

L‖
.
(
− lmix

n̄
dn
dx

)
,

The parallel Reynolds stress 〈ṽxṽz〉 then becomes:

〈ṽxṽz〉=−χz
dv̄z

dx
− σV T c2

s 〈l2
mix〉

L‖
.
∇n̄
n̄

(2.30)

The first term in eq.(2.30) is the diagonal stress and is proportional to χz = 〈l2
mix〉/τc. The second

term represents the parallel residual stress:

Π
res
xz =−σV T c2

s 〈l2
mix〉

L‖
.
∇n̄
n̄

(2.31)

The parallel Reynolds stress can then be written as:

〈ṽxṽz〉=−χz

[dv̄z

dx
+

σV T c2
s lmix

ṽxL‖n̄
.
dn̄
dx

]
(2.32)
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A comparison of eq.(2.27) and eq.(2.30) shows that the correlator 〈kmkz〉 is equal to:

〈kmkz〉
[ lmix√

f ε
+

ρ2
s k2
⊥

α

]
=−σV T ∇n̄

n̄
.
〈l2

mix〉
L‖ρscs

(2.33)

Eq.(2.33) shows that σV T is the counterpart of the correlator 〈kmkz〉. This constant σV T

can be written as:

σV T =
〈kmkz〉
〈k2
⊥〉1/2/L‖

(2.34)

where both L‖ and the radial wavenumber 〈k2
⊥〉

1/2 can be determined empirically. σV T captures

the cross-phase information between ṽx and ṽz, and determines whether the parallel Reynolds

power density −〈ṽxṽz〉∇v̄z is an energy source or sink in eq.(2.4). σV T also represents the degree

of symmetry breaking in the correlator 〈kmkz〉, and quantifies the efficiency of ∇n̄ in driving

an axial flow. For turbulence-driven axial flows, with no axial momentum input, the parallel

Reynolds stress vanishes, and the net axial flux is equal to zero: 〈ṽxṽz〉= 0. The relation between

the axial velocity shear and the density gradient must be:

∇v̄z =−
σV T c2

s τc

L‖n̄
∇n̄ (2.35)

Eq.(2.35) can be used to determine empirically the value for σV T , as τc is experimentally

measurable.

One can also relate the variations in ∇v̄z to those in the azimuthal shear ∇v̄y via σV T .

For a zero net vorticity flux: 〈ṽx∇2
⊥φ〉= 0, and the diffusive and the residual components of the

vorticity flux are at balance:

χy
d2v̄y

dx2 = Π
res
xy ∝ ∇n̄

Using eqs.(2.22) for χy and Πres
xy in the near adiabatic limit, as well as the scaling of eq.(4.36),
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we obtain the following relation:

d
dx

∇v̄y =
ωciL‖

σV T c2
s τc

∇v̄z (2.36)

Eq.(2.36) shows then how parallel and perpendicular flow dynamics are coupled. It also

explains how the azimuthal shearing ∇v̄y limits the axial plasma response to the parallel residual

stress Πres
xz . As ∇v̄y increases, turbulence is suppressed, and v̄z decreases. This in turn causes

σV T to decrease, thus reducing the acoustic coupling.

2.5 THE RADIAL MIXING LENGTH lmix

A solution of the coupled drift-ion acoustic wave system requires an expression for the

radial turbulent mixing length lmix. In 2-D turbulent systems, the Rhines’ scale, lRh, defined as

the scale beyond which the inverse energy cascade terminates, emerges as an appropriate mixing

length [HDAT17]. Turbulence simply changes character for l > lRh, and the plasma dynamics

evolve from a turbulence cascade regime to wave like behavior. In CSDX, the plasma system

does not exhibit a sufficiently large dynamical range of energy transfer to observe this transition

in turbulence dynamics [MXTT11, CAT+16]. Therefore, the significance of the Rhines’ scale is

unclear in this experiment. As mixing is regulated primarily by shearing in CSDX, a scale length

that accounts for turbulence suppression due to coupling between radial fluctuations and sheared

azimuthal and axial flows is suggested.

2.5.1 Case of a purely azimuthal shear

In the case of mean azimuthal shears, the following form of mixing length is sug-

gested [BDT90]:

l2
mix =

l2
0[

1+(v̄′y)2τ2
c

]δ
(2.37)
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Here δ is the suppression parameter, τc is the fluctuation correlation time, and l0 is the

mixing scale for turbulence in CSDX in the absence of shear flow. When the azimuthal shearing

rate is greater than the fluctuations growth rate: v̄′y > |γm|, turbulent eddies are decorrelated and

turbulence is suppressed. Coupling between the azimuthal shearing and the turbulent radial

scattering of fluctuations can quench turbulence and decrease lmix. An empirical relation for

the scale length of turbulence l0 = [(k̄2
r )

1/2]−1 is found by expressing the inverse radial wave

number k−1
r as a function of the density fluctuations ñ normalized by the average plasma density

n̄ [HDAT17]:

l0 ' 2.3ρ
0.6
s L0.3

n (2.38)

This suggests that the CSDX turbulent plasma diffusion coefficient scales like:

DCSDX ' DBρ
0.6
? (2.39)

where DB is the Bohm diffusive coefficient, and ρ? is the ion gyroradius normalized by the

inverse density gradient scale length: ρ? = ρ/Ln. Eq.(2.39) suggests that the scalings of diffusion

in CSDX fall in between the Bohm and gyroBohm diffusion scalings. For τc, we write:

1/τc =
(

k2
m(v
′
y)

2
χy

)1/3
(2.40)

where the wavenumber is km ' 1/l0 and the turbulent diffusivity is χy = τc〈δv2
x〉= τc f ε. The

correlation time is then:

τc =
[(v′y)2 f ε

l2
0

]−1/4

and the mixing length becomes:

l2
mix = l2

0

[
1+
|v′y|l0√

f ε

]−1
(2.41)
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The structure of eq.(2.41) shows an intuitively plausible inverse relation between the shear and

the mixing length.

2.5.2 Case of azimuthal and axial shear

When both axial and azimuthal shear are present in the system, and when the azimuthal

shear rate is greater than the radial correlation rate: v̄′y >
√

f ε/l0, the expression for the mixing

length becomes:

l2
mix =

l2
0[

1+
(

kmv̄′y + kzv̄′z
)2

τ2
c

] (2.42)

Here the wavenumbers can be chosen as: km = 1/l0 and kz = 1/L‖. The expression for the

mixing length is:

l2
mix = l2

0

[
1+
( v̄′y

l0
+

v̄′z
L‖

)2 l2
0

f ε

]−1
(2.43)

The structure of eq.(2.43) is not significantly different from that of eq.(2.41). Both

expressions show that lmix is inversely proportional to v̄′y/v̄′z: as the shear grows, the mixing

length lmix shrinks. This in turn reduces the turbulent energy ε, and increases the mean energy

because of total energy conservation. In CSDX, the effective mean azimuthal shear v̄′y dominates

the mean axial shear v̄′z.
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2.6 SUMMARY AND DISCUSSION OF THE MODEL

In summary, the model consists of the equations:

∂n̄
∂t

=− ∂

∂x
〈ṽxñ〉+Dc

∂2n̄
∂x2 +Sn (2.44a)

∂v̄z

∂t
=− ∂

∂x
〈ṽxṽz〉+νc,‖

∂2v̄z

∂x2 +Svz (2.44b)

∂v̄y

∂t
=− ∂

∂x
〈ṽxṽy〉+νc,⊥

∂2v̄y

∂x2 −νin(v̄y− v̄n)−νiiv̄y +Svy (2.44c)

∂ε

∂t
−∂x(lmixε

1/2
∂xε) =−〈ñṽx〉

dn̄
dx
−〈ṽxṽz〉

dv̄z

dx
−〈ṽxṽy〉

dv̄y

dx
− ε3/2

lmix
+P (2.44d)

The expressions for the turbulent fluxes and the Reynolds power density are:

〈ñṽx〉=−
f ε

α
.

k2
⊥ρ2

s

1+ k2
⊥ρ2

s
.

1
n0

dn̄
dx

(2.45a)

−
∂〈ṽxṽy〉

∂x
=−lmix

√
f ε

d2v̄y

dx2 −
lmix
√

f εωci

Ln
(2.45b)

−〈ṽxṽy〉
dv̄y

dx
=−lmix

√
f ε

(dv̄y

dx

)2
− v̄y

lmix
√

f εωci

Ln
(2.45c)

〈ṽxṽz〉=−lmix
√

f ε
dv̄z

dx
+ 〈kmkz〉ρsc3

s

[ lmix√
f ε

+
ρ2

s k2
⊥

α

]
(2.45d)

=−lmix
√

f ε
dv̄z

dx
− σV T c2

s 〈l2
mix〉

L‖Ln
(2.45e)

Here lmix and f are given by eq.(2.43) and eq.(2.15) respectively. The model evolves the

fields n̄, v̄y, v̄z and ε in space and time (x, t) using a slowly varying envelope approximation. In

addition, the model self consistently relates the evolution of turbulence to that of the parallel and

perpendicular flow dynamics. The coupling terms associating the turbulent energy to variations
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of the mean profiles n̄, v̄y and v̄z, are expressed in terms of a mixing length lmix, the expression for

which depends on both axial and azimuthal shear (eq.(2.43)). The particle flux is purely diffusive:

〈ñṽx〉 = −D∇n̄. Both parallel and perpendicular Reynolds stresses consist of a diffusive part

(−χz∇v̄z and −χy∇v̄y), as well as a residual component proportional to ∇n̄ that generates an

axial and an azimuthal flow.

The generated axial flow is associated with the correlator 〈kmkz〉 6= 0 that measures

the acoustic coupling. A version of this model introduces the empirical constant σV T in the

expression for 〈kmkz〉 (eq.(2.31)). This experimentally measurable constant relates the variations

of the axial shear to those of the density gradient, via eq.(4.36). It also shows how free energy

released from the density gradient can accelerate v̄z, even in the case of no axial momentum

input. In addition, this constant accounts for the strength of the parallel to perpendicular flow

coupling as: σV T ∼ 〈ṽxṽz〉 ∼ 〈kmkz〉. This coupling is stated in eq.(2.36), which relates v̄′z to v̄′y

since both shears are dependent on the density gradient ∇n̄. Finally, we note that this model

manifests the well known relation between turbulence and azimuthal flows via the Reynolds

stress 〈ṽxṽy〉 and also manifests a similar relation between fluctuations and axial flows via the

parallel Reynolds stress 〈ṽxṽz〉. Numerical solutions of this model will be published in a future

work.

2.7 REDUCING THE MODEL

When the eddy turnover time τc = lmix/ṽx is smaller than the confinement time τcon f =

[n̄−1D∇2n̄]−1, the model can then be reduced to a 3 field model by slaving the expression for

ε to the mean profiles, and solving the equations for n̄, v̄y and v̄z. Experimental results from

CSDX show that the energy transfer to the axial flow via the parallel Reynolds power density:∫
−∂x〈ṽxṽz〉v̄zdx, i.e., the power exerted by turbulence on the axial flow, is less than that exerted

on the azimuthal profile via:
∫
−∂x〈ṽxṽy〉v̄ydx, by a factor of five [HLT+17, HLH+17]. The axial
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flow then can be considered as parasitic to the system of ∇v̄y and ∇n̄. The model can be reduced

even further, to 2 fields, by neglecting the axial flow equation v̄z, and solving the density and

azimuthal flow equations using the stationary slaved expression for ε obtained from the equation

for the mean fluctuating energy.

2.7.1 Equations and Fluxes

In this reduced model, one would still use the equations:

∂n̄
∂t

=− ∂

∂x
〈ṽxñ〉+Dc

∂2n̄
∂x2 +Sn (2.46a)

∂v̄y

∂t
=− ∂

∂x
〈ṽxṽy〉+νc,⊥

∂2v̄y

∂x2 −νin(v̄y− v̄n)−νiiv̄y (2.46b)

We note here that, unlike tokamaks where there is a clear scale separation: a ≥ Ln ≥

lmix > ρs, the scale ordering in CSDX is compressed: a > Ln ' lmix ≥ ρs. Here a is the radus of

the plasma. In addition, when
√

ε/lmix < (D∇2n̄)/n̄, a steady state solution of the energy equation

generates an expression for ε, which can be used in both n̄ and v̄y equations. The predator-prey

model thus obtained describes turbulence suppression and azimuthal flow evolution, where the

flow v̄y feeds on the density gradient ∇n̄. An interesting feature of this model is that, unlike the

model of ref. [HS93], the fluctuations intensity is not treated as an ad hoc constant, but rather

evolves self consistently, albeit adiabatically (i.e. slaved to n̄ and v̄y). The shear ∇v̄y and ∇n̄

evolve in time, allowing for the level of fluctuation intensity to vary as well. In the near adiabatic

electron limit, the expressions for the particle and vorticity fluxes are:

Γ =−ε f 2

α

d lnn
dx

=−D
d lnn

dx
(2.47a)

Π =−
√

f εlmix
d2v̄y

dx2 +
lmix
√

f εωci

Ln
=−χy

d2v̄y

dx2 +Π
res (2.47b)

Here f = k2
⊥ρ2

s/(1+ k2
⊥ρ2

s ) and lmix is given by eq.(2.41).
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2.7.2 Closure by Slaving

For slaved turbulence, both the energy spreading and the energy production terms are

neglected, because the eddy turnover time is shorter than the confinement time. Using eq.(2.24)

for the Reynolds power, the fluctuation turbulent energy equation is:

−Γn
dn̄
dx

+χy(
dv̄y

dx
)2− v̄yΠ

res− ε3/2

lmix
= 0 (2.48)

with χy and Πres given above. Solution of this equation gives:

ε =−ρ
2
s

(dv̄y

dx
)2 +

l2
0
4

[
f 2

α

(dn
dx

)2
+
√

Θ

]2

(2.49)

where

Θ =

[
f 2

α

(dn̄
dx

)2
]2

+4 f

[(dv̄y

dx

)2
− v̄yωci

dn̄
dx

]
(2.50)

One can thus use eq.(2.49) in the expressions for Γ and Π to close this reduced 2-field

model. We note here that, in contrast to the model of ref. [HS93], the fluctuation level evolves in

time. The reduced model then presents a coherent description of turbulence and mean profiles,

without imposing a fixed level of turbulence. Solutions of this reduced model can be found by

numerically solving the equations for n̄ and v̄y, while taking into account the corresponding

expressions for lmix.

2.8 CONCLUSION

This paper presents a 4-field reduced model that describes the evolution of turbulence

and mean profiles in the cylindrical drift-ion acoustic plasma of CSDX. The model studies

the spatiotemporal evolution of the parallel and perpendicular flow dynamics, as well as the
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variations of the fluctuation intensity ε. Also, the model fills the gap in approach between a

0-D 2-field reduced model (n̄ and v̄y), and a DNS of the three primitive equations. Moreover,

this reduced model yields a better physical interpretation for the mesoscopic results observed in

CSDX, while avoiding the computational cost of a full 4-field DNS.

A self-consistent description of the variations of three mean fields: density n̄, azimuthal

flow v̄y, and axial flow v̄z, in addition to the fluctuation intensity ε is presented here. Conservation

of the total (mean + turbulent) energy, including dissipation and internal energy production,

is a key element. Due to acoustic coupling, 〈ñ2 +(∇⊥φ̃)2 + ṽ2
z 〉 is the conserved energy field.

Because mixing occurs primarily by shearing in CSDX, the model employs a mixing length that

is inversely proportional to both axial and azimuthal flow shear (eq.(2.43)). However, we note

that in CSDX, v̄′y > v̄′z. The choice of a mixing length that is inversely proportional to the shear

closes the loop on the total energy, and allows development of improved confinement in CSDX.

Key elements of the model and its predications of experimental findings are:

1. Evolution of the profiles, including mean flows and turbulent stresses, in a cylindrical

plasma characterized by a constant magnetic field. The model explains how an increase

in the magnitude of B decreases the scale of turbulent transport and steepens the density

profile. Free energy released from ∇n̄ accelerates then the azimuthal plasma flow v̄y, as

verified experimentally [CAT+16]. The current model is an extension of that presented in

ref.[HDAT17], where the predator/prey relation between DWs and ZFs was derived and

validated.

2. In the DW dominated plasma of CSDX, a test axial flow shear breaks the parallel symmetry,

which results in a residual stress Πres
xz ∝ ∇n̄ and an axial flow v̄z. Energy released from

∇n̄ also accelerates v̄z via the parallel Reynolds stress 〈ṽxṽz〉. This trend is in agreement

with the experimental results [HLT+17, HLH+17], and supports the analogy between the

plasma and an engine [KDG10]. The model thus unfolds a coupling relation between v̄z

and v̄y, as both flows are accelerated by the same free energy source.
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3. The model reduces the evolution of plasma profiles to three fluxes: a particle diffusive flux,

as well as a parallel and perpendicular Reynolds stress with residual components Πres
xz and

Πres
xy . These fluxes regulate the transfer of energy between fluctuations and mean flows

and governs the ecology of flows and drift wave turbulence.

4. The model introduces an empirical constant σV T that measures the correlator 〈kmkz〉 =

∑m kmkz|φ̃|2. This correlator encodes the broken symmetry of turbulence, and quantifies the

efficiency of drift waves in driving Πres
xz and v̄z through eq.(4.36). Because σV T measures

the cross phase relation between ṽx and ṽz, it determines the direction of energy transfer

between turbulence and axial flow.

5. Eq.(4.36) provides an expression for the critical density gradient necessary for onset of

an axial flow shear ∇v̄z. By balancing the residual and the diffusive components of the

parallel Reynolds stress, we obtain:

∣∣∣∇n̄crit

n̄

∣∣∣= k2
z v2

th
νei

ω?L‖
〈kmkz〉ρsc3

s τc

where τc is the correlation time. The model thus explains why a sheared v̄z flow was

observed only above a critical B value in CSDX, i.e., beyond a critical density gradient.

6. Through eq.(2.36), the model provides a direct expression for the parallel to perpendicular

flow coupling that is reported experimentally in refs.[HLT+17, HLH+17]. Because χy = χz,

and since both Πres
xy and Πres

xz are proportional to ∇n̄, the relation:

d(∇v̄y)/dx
∇v̄z

=
Πres

xy

Πres
xz

=
ωciL‖

σV T c2
s τc

is established, and σV T is interpreted as a measure of the magnitude of coupling between

∇v̄y and ∇v̄z.
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7. According to eq.(2.39), turbulent diffusion in CSDX does not follow Bohm scaling.

Scalings of turbulent diffusion in both CSDX and larger devices characterized by higher

temperature follow the same trend [TBI+04, GKP+03]

When the axial to azimuthal flow coupling is weak, the axial flow is mainly driven by the

turbulent Reynolds stress, particularly by the parallel residual part. The reduced 4-field model

can thus be simplified to a 2-field predator-prey model which evolves v̄y and n̄. In CSDX, probe

measurements show that the magnitude of v̄z is moderate, and that the parallel Reynolds power is

much less than that in the perpendicular direction. Measurements also indicate a weak coupling

between v̄y and v̄z [HLT+17, HLH+17]. This is consistent with the observation that ∇v̄y� |ω|

(i.e. moderate azimuthal flow) and the absence of transport barriers, because of a decoupled

v̄z from v̄y. Analytically, in order to simplify the model, a slaved expression for ε is replaced

in the equations for density and azimuthal flow. In contrast to the model in ref.[HS93] which

treats the fluctuations as an ad hoc constant, both the fluctuations and the shear evolve in this

new predator-prey model. An investigation of the numerical results obtained from such a 2-field

reduced model is planned as a future work. The theory suggests the formation of zonal flows

is the key part of turbulence regulation, with axial flows as parasitic. 〈ṽ2
x fluctuations can be

determined using eq.(2.49), and then used to obtain v̄z(x) via eq.(2.44b).

Future work also includes an investigation of the numerical results obtained by simulation

of the reduced 4-field model, while using appropriate boundary conditions and initial profiles.

These results will elucidate the details of the acceleration of axial flow, and the coupling between

v̄y and v̄z. Numerical results will also confirm the existence of a critical density gradient ∇n̄|crit

necessary for the onset of the axial flow shear ∇v̄z. The possibility of the emergence of a staircase

in this 4-field model can be examined. Such crucial step is essential to understand the evolution

of mesoscale structures that condense to form macroscopic barriers in the density profile.

Finally, future work in CSDX includes adding both a particle source as well as an external

axial momentum source. These two sources enhance the interactions between the flows and
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turbulence in the plasma, leading thereby to further coupling between v̄y and v̄z according to the

mechanism illustrated in fig.2.3. However, the azimuthal Reynolds power is much larger than

 

Drift Wave Turbulence 

Zonal Flows Axial Flows 

Coupling Relation 

∇n Particle 
Source  

Momentum 
Source  

Figure 2.3: The future of CSDX: particle and axial momentum sources enhance the
interactions between flows and turbulence, and generate further coupling between the axial and

perpendicular flow dynamics.

the axial Reynolds power, so one may regard the axial flow evolution as parasitic to the drift

wavezonal flow system. This is consistent with the observation that V moderate azimuthal flow

shear) and thus there is no transport barrier.
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Chapter 3

MODELING ENHANCED

CONFINEMENT IN DRIFT WAVE

TURBULENCE

3.1 Introduction

Turbulent phenomena and their evolving properties in fluids are topics of both classical

and current significance. Of particular interest are the spectral features and transport properties

of turbulence in magnetized plasmas. Density and temperature gradients, typically present near

the edges of large scale magnetically confined devices, generate fluctuations that give rise to fully

developed drift wave (DW) instabilities. Such instabilities carry fluxes via cross-field transport

and limit the energy confinement time τE [Hor99, Gar01]. Suppression of these instabilities and

reduction of the cross-field transport rates are therefore essential requirements for achieving

enhanced confinement, in ITER and future tokamaks.

One way the plasma itself mitigates cross-field transport rates is via fluctuation driven

zonal flows (ZF). In laboratory plasmas, zonal flows are strongly sheared E×B layers. Generated
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via Reynolds stresses and particle transport, zonal flows arise when low-frequency drift modes

interact by modulational instability or via an inverse cascade, to form a large scale anisotropic

structure. The direct relation between microscale drift waves and macroscale zonal flows has been

already well established both theoretically [MDM+15] and experimentally [SZR+12, TXD+13],

so much so that the system is now referred to as ”drift wave-zonal flow turbulence” (see

ref.[DIIH05] for a detailed review).

Interaction between separate components of the DW-ZF turbulence is found to affect

the turbulent transport dynamics. Experimental studies in both linear and toroidal devices show

that the state of turbulence changes with on the magnetic field (CSDX)[BTA+05, AYT07], the

filling gas pressure (LMDU)[AKI+09] and the radial electric field (KIWI)[KLP+97]. Shearing

of the DW structures leads to an energy transfer between low frequency fluctuations and vortices

with finite azimuthal mode numbers, including m ∼0 zonal flows. This coupling initiates a

process of depletion of the fluctuations energy, which may continue to the point of the collapse

of the turbulence intensity. When sufficient heat source, torque and fueling are available, a

thermally insulation layer, supported by a strongly sheared E×B flow is formed. A transport

barrier is thus created and an enhanced confinement regime occurs [DGH+08, CLGD93, Hin91].

The concept of shear enhanced turbulence decorrelation was proposed nearly three decades

ago [BDT90, HB95]. Since then, several variations on the theme of predator-prey model

describing the interplay between turbulent fluctuations and E ×B sheared flows have been

suggested to explain the plasma evolution towards an enhanced confinement state in fusion

devices like TJ-II [EHH+10], NSTX [ZMH+10] and EAST [XWW+11]. Moreover, net inward

fluxes would often accompany this transition, as it was observed in various toroidal [MBB+11,

SGK+99] and small scale linear devices [KIK+16, ZHB+10, THY+06].

In CSDX, early observations showed a controlled transition from nonlinearly coupled

eigenmodes to fully developed broadband turbulence in the plasma, as the magnitude of B is

increased [TBC+14]. Recent studies revealed the existence of an enhanced regime at B = 1200G,
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associated with a steepening of the mean density profile, the development of a strong velocity

shearing and turbulent kinetic energy coupling to the flow. An inward particle flux as well as a

change in the global and local turbulence features were also observed [CTD+15, CAT+16].

Figure 3.1: Experimental plasma profiles at different magnetic field values. Reprinted with
permission from Cui et al., Physics of Plasmas, 22, 050704 (2015). Copyright 2015 AIP

Publishing. [CTD+15]

We present a reduced 1D transport model that describes the space-time evolution of

turbulence and mean fields in the turbulent plasma conditions of CSDX. The model is formulated

in terms of potential vorticity dynamics, and conserves total potential enstrophy [AD16]. All

evolution is expressed in terms of the particle and vorticity fluxes. Flux nonlinearity enters via a

gradient dependent mixing length, and the vorticity flux includes both a diffusive and a residual

component. The model recovers profile evolution in CSDX with increasing B, without the need

to include an explicit inward particle pinch in the expression for the particle flux. This evolution

corresponds to: i) steepening of the mean density profile as a signature of a enhanced confinement

ii) the development of a radially sheared azimuthal flow velocity that triggers the transition to

an improved energy confinement state and iii) negative Reynolds work values indicating that

energy is transfered to flow as the system self-organizes. We mention here that the Reynolds
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work sign convention used in ref.[CTD+15, CAT+16] is opposite to the one adopted here; a

positive Reynolds work in ref.[CTD+15, CAT+16] indicates a turbulence decay and a zonal flow

drive. The model can also be used to study the effects of other factors on the dynamics of this

global transition. These factors include: presence of a thin layer of neutrals around the plasma,

variations of the plasma ion fueling intensity S and of the macroscopic turbulent mixing length

l0 to be defined in a subsequent section. The model is used to investigate the relevant case of a

plasma with a high collisional Prandtl number: Pr = νc/Dc.

The remainder of this paper is organized as follows: Section (II) presents the model, with

a discussion of the corresponding physics and assumptions. This requires an explanation of

the expression for the mixing length lmix, and a review of the physics behind the Rhines’ scale.

Expressions for the density, vorticity and potential enstrophy fluxes and coefficients are also

presented in this section, along with the three spatio-temporal equations of the model. Section

(III) reports on the numerical results obtained when varying the magnitude of the magnetic field.

A diffusive vorticity flux: Π =−χ∇u, where the vorticity u = ∇2φ, is first used in section (III).

A residual stress Πres is then included in the vorticity flux expression: Π = Πres−χ∇u to assess

its potential role. A set of local and global validation metrics are then presented in Section(IV) in

order to verify that the model truly describes the plasma evolution as it occurs in CSDX. Section

(V) explores the energy exchange between fluctuations and the mean flow and studies time

variations of two parameters; RT already introduced in a previous work [MDG+12] and a new

parameter RDT , derived from this model. Both parameters provide quantitative and qualitative

measurements of this exchange, and serve as turbulence collapse indicators. Conclusions are

presented in section (VI).
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3.2 Structure of the 3-Field Reduced Model.

The proposed model investigates space and time variations of the following three fields:

the mean density 〈n〉, the mean vorticity 〈u〉 = 〈∇2φ〉 and the turbulent potential enstrophy

ε = 〈 (ñ−ũ)2

2 〉. It is derived from the collisional Hasegawa-Wakatani equations [HW83, HW87]:

(∂t−∇φ× ẑ.∇)∇2
⊥φ̃ =−c1∇

2
‖(φ̃− ñ)+ c2∇

2(∇2
⊥φ̃) (3.1a)

(∂t−∇φ× ẑ.∇)(ñ+ lnn0) =−c1∇
2
‖(φ̃− ñ) (3.1b)

Here c1 = Te/e2n0ηωci and c2 = µ/ρ2
s ωci. µ and η are the ion viscosity and plasma

resistivity, n0 is the average plasma density, and n and φ are the normalized fluctuating density

and potential. CSDX plasma being collisional, a modified Hasegawa-Wakatani model can be

used to describe turbulent transport in this device. In addition, LIF measurements in CSDX

show that the axial flow is well within the subsonic limit [TGM+16]. Thus, the radial gradient

of the parallel velocity reported as contributing to an inward particle flux in ref.([IKI+16]),

does not contribute to such a flux here, as a parallel shear flow instability simply cannot be

triggered [LD17]. This fact is taken into account while formulating the model. Our reduced

model relies on two related points: conservation of the total potential enstrophy PE (mean and

turbulent) up to dissipation and external forcing, and inhomogeneous potential vorticity (PV)

mixing via vorticity diffusion. This mixing occurs on a scale lmix that is an interpolation between

an excitation scale l0 and the Rhines’ scale of turbulence lRh. Dynamic dependence of lmix on lRh

results from the interaction between the mean fields and the turbulence structures, and allows

the model to capture the internal energy exchange during this interaction. The Rhines’ scale is

inversely proportional to the potential vorticity gradient ∇q = ∇n−∇u, hence lmix has also an

inverse dependence on ∇q and shrinks as ∇u and ∇n steepen. The model uses purely diffusive

expressions for the turbulent field fluxes without an explicit pinch velocity contribution to the

64



particle flux. In fact, local expressions for the fluxes of n, u and ε as derived using the quasi-linear

theory are [ADG16]: Γn = −Dn∇n, Γε = −Dε∇ε and Π = Πres−χ∇u. A discussion of the

diffusion coefficients and the residual vorticity stress is deferred to a later section.

A full derivation of the model is available in ref.[AD16]. We mention here only the

relevant equations:

∂tu =−∂xΠ+µc∇
2u (3.2a)

∂tn =−∂xΓn +Dc∇
2n (3.2b)

∂tε =−∂xΓε +P− ε
3/2− (Γn−Π)(∂xn−∂xu) (3.2c)

for mean density n and mean vorticity fields u, as well as for fluctuating potential enstrophy

ε = (ñ/n0−ρ2
s ∇2eφ̃/Te)

2/2. Here, the fields are expanded into a mean and a fluctuating part:

n = 〈n〉+ ñ, vE = 〈v〉ŷ+δv, u = 〈u〉+ ũ = ∂x〈v〉+ ũ. Fluxes of turbulent vorticity, density and

potential enstrophy fluxes are: Π = 〈ṽxũ〉, Γn = 〈ṽxñ〉 and Γε = 〈ṽxq̃2〉 respectively. Turbulent

enstrophy is related to the fluctuating potential vorticity q̃ = ñ− ũ via: ε = 〈q̃2〉/2. µc and Dc are

plasma collisional viscosity and diffusivity, ñ and φ̃ are normalized to n0 and Te/e, space and

times scales are normalized to ρs =
√

miTe/eB and 1/ωci = mic/eB.

The first terms of the RHS of eqs.(3.2a-3.2c) represent a turbulent diffusive flux or

spreading of the corresponding field. In eq.(3.2c), P represents the enstrophy production due

to an external stirring, and replaces explicit linear instability which is not treated in this model.

Note that in this model formulation, the forcing serves only to initialize a background turbulence

level. It does not represent the turbulence drive in the steady state. Drive is due to ∇n relaxation,

i.e., Γn∇n term in eq.(3.2c). The turbulence and transport results are insensitive to the initializing

forcing, and we write it as: P =
√

ε(u2
0− ε). This form of P reflects generation of enstrophy via

external stirring. Other forms of P ∝ ε are equally valid and generate similar results. Enstrophy

dissipation, proportional to ε3/2, is a direct outcome of the forward enstrophy cascade associated
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with nonlinear dissipation of ε at smaller scales. The last term of eq.(3.2c) is a direct coupling

between the vorticity and density fluctuations, and is interpreted as an internal production of

potential enstrophy. As PV mixing occurs, mean PE values are converted into turbulent ones and

vice versa, while total PE is conserved. Eqs.(3.2a-3.2c) constitute a closed system that can be

solved numerically once expressions for the field fluxes are known. Since the model is diffusive,

expressions for the diffusion coefficients and the corresponding mixing length are thus needed.

Although CSDX is a cylindrical plasma, the previous equations are written in a 1D form. This

results from taking the axial and azimuthal average of the density, vorticity and enstrophy fields

in order to obtain the corresponding mean quantities: 〈n(r)〉, 〈u(r)〉= 〈∇2φ〉 and 〈ε(r)〉.

3.2.1 The Mixing Length

Central to the formulation of a Fickian flux is the use of a mixing length lmix. In this model

lmix is an interpolation between the external excitation dimension l0 and the Rhines’ scale of

turbulence lRh [Rhi75]. The dimension l0 is known from experiment, and thus an investigation of

lmix requires a study of the physics behind the Rhines’ scale. In 3D turbulence, vortex stretching

leads to enstrophy production that drives the fluid energy to smaller scales until it is removed

from the system by viscous dissipation. However, in quasi 2D turbulence, vortex stretching is by

definition inhibited and other nonlinear processes, such as vortex merging, play the prominent

role. In the 2D case, energy undergoes an inverse energy cascade towards larger scales, which

explains the emergence of large scale jets from small scale turbulent structures. As eddies

become bigger, their size increases and their overturning slows, which makes their dynamics

much more wave-like. The Rhines’ scale lRh can be interpreted as a transition length scale

between a turbulence dominated regime and wave-like dynamics [Rhi75], and is obtained by

balancing the turbulence characteristic rate, i.e., the eddy turnover rate, with the wave frequency.

In a DW system, an estimate of the eddy turnover rate is: 1/τc ≈ δv/lRh ≈
√

ε, while the drift

wave frequency is: ω≈−kyvDe/(1+ k2
⊥ρ2

s )≈ lRh∇q where vDe is the electron diamagnetic drift
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velocity. Balancing these two scales then gives: lRh ≈
√

ε/∇q =
√

ε/∇(n−u).

In our model, l0 and lRh are the two significant length scales of the system. When

l0� lRh, the vorticity gradient is weak, and the natural estimate of the mixing length is simply

the external dimension: lmix ∼ l0. This prescription however is not accurate in the case of a

strong vorticity gradient, where ∇q can no longer be neglected. In this case, when the Rhines’

scale is much smaller than the stirring dimension (lRh� l0), coupling between different scales is

stimulated. A reasonable estimate of the mixing length is then obtained by balancing the mean

kinetic energy dissipation rate and the mean PV gradient frequency [SM00]. The Rhines’ scale

is then the governing spatial structure for turbulence mixing in these cases of steep PV gradients,

generating lmix ∼ lRh. In between these two limiting cases, one should include the effect of finite

drift-Rossby frequency in lmix. This is achieved by writing lmix as an interpolation between l0

and lRh:

l2
mix =

l2
0

1+(l0/lRh)2 =
l2
0

1+ l2
0(∂x(n−u))2/ε

(3.3)

3.2.2 Expressions for the Turbulent Fluxes

Expressions for the turbulent density and vorticity fluxes were previously derived using

quasi-linear theory [ADG16]. In the near adiabatic regime in which parallel diffusion timescale

is the smallest characteristic time scale of the system, and in the absence of any shear, the drift

wave frequency is ω? = ωr = vdkm/(1+ k2
⊥) where k2

⊥ =−∇2
⊥φ/φ. Expressions for the fluxes
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and the diffusion coefficients are:

Γn =−Dn∂x〈n〉 (3.4a)

Π = (χ−Dn)∂x〈n〉−χ∂
2
x〈v〉= Πres−χ∂x〈u〉 (3.4b)

Dn = ∑
m

k2
⊥

1+ k2
⊥

k2
m
α
〈δφ

2
m〉 (3.4c)

χ = ∑
m

|γm|
|V0−ω/km|2

〈δφ
2
m〉 (3.4d)

Here the dimensionless electron drift velocity is vd(x) =−d lnn0(x)/dx = χ∇n and the

plasma flow velocity is V0 = 〈v〉. The mode number is m = (m,n,l) with m, n and l being the az-

imuthal, axial and radial mode numbers respectively. ω = ωr + i|γm| is the mode eigenfrequency,

km and k‖ are the azimuthal and parallel wave numbers and α = ηk2
‖ is the parallel diffusion rate.

The residual stress Πres in eq.(4.16) originates from a decomposition of the Reynolds

stress into a diffusive and non-diffusive components, and appears when the off-diagonal terms

of the poloidal Reynolds stress does not vanish. This results as a consequence of a symmetry

breaking mechanism in 〈krkθ〉 where 〈. . .〉 is a spectral average [DMG+09, GDH08]. Physically,

Πres converts parts of the diving particle flux to an azimuthal flow. Πres is responsible of

generation of plasma flows through the density gradient, even in the absence of any magnetic

shear [LDXT16]. Using quasi-linear theory, the residual stress Πres = Γn/n−χvd [ADG16].

In the adiabatic regime, the first term in the expression of Πres is negligible with respect to

the second one, simply because it is proportional to 1/α and α� 1. One can thus label it as

the non-adiabatic term. When no flow is present, or when the flow velocity V0 is constant, the

vorticity flux reduces to Πres. Writing Γε =−Dε∂xε and plugging in the model equations, we
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obtain the final form for the three field equations:

∂tn = ∂x[Dn∂xn]+Dc∂
2
xn (3.5a)

∂tu = ∂x[χ∂xu]+µc∂
2
xu−∂x[Πres] (3.5b)

∂tε = ∂x[Dε∂xε]+Πres(∂xn−∂xu)− (χ∂xu−Dn∂xn)(∂xn−∂xu)− ε
3/2 +

√
ε(u2

0− ε) (3.5c)

Eqs.(3.5a-3.5c) are rearranged and integrated to give:

∫ L

0
∂t(ε+

(n−u)2

2
)dx =

∫ L

0
(P− ε

3/2−∂xΓε− (Γn−Π)(∂xn−∂xu)+(n−u)(∂tn−∂tu))dx

=
∫ L

0
(P− ε

3/2)dx

(3.6)

after neglecting the terms proportional to Dc and µc. This shows that the system conserves total

PE up to forcing and dissipation, as a result of enstrophy exchange between mean fields and

fluctuations. The internal turbulent PE production term is canceled by the corresponding loss

term in the evolution equation for the mean PE as a part of this enstrophy exchange. In view of

the total PE conservation elucidated above, we go back to eq.(3.3) to emphasize how crucial the

expression for lmix is in closing the feedback loop between the PV gradient and the corresponding

diffusion coefficient: as ∇q = ∇n−∇u steepens, the mean potential enstrophy (n−u)2

2 increases,

causing a drop in turbulent potential enstrophy ε as a result of total PE conservation. When ε

decreases, the mixing length and thus the corresponding PV diffusion coefficient shrink, leading

to a further increase in the PV gradient. Hence a closed feedback loop is generated.
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3.2.3 Viscosity and Diffusion Coefficients

In the near adiabatic regime, the timescale ordering is: ηk2
‖�ω�V ′0. Using |k2

m〈δφ2
m〉|=

|〈δv2
m〉| ≈ l2

mixε, the particle diffusion coefficient Dn is:

Dn = εl2
mix/α (3.7)

where the resistive parallel diffusion rate has been rescaled as: α = (1+ k2
⊥)α/k2

⊥. From dimen-

sional analysis, α is proportional to
√

ε and the particle diffusion coefficient is: Dn = l2
mix
√

ε. As

for the vorticity diffusion coefficient, χ is not dominated by a large resistive parallel diffusion

rate. Unlike the expression for Dn, the denominator of eq.(3.4d) represents the competition

between the flow shear V ′0 and the wave frequency ω. In the absence of shear, instabilities are

density gradient driven collisional DWs, that are damped by viscous dissipation. Their growth

rate is then that of a drift wave: |γDW |= ω2/α, reduced by the dissipation rate |γµ|. The vorticity

diffusion coefficient is then:

χ = ∑
m

(|γDW |− |γµ|)|k2
m〈δφ2

m〉|
ω2 = ∑

m

ω2

α
|k2

m〈δφ2
m〉|

ω2 ∼ εl2
mix
α

When a flow shear V ′0 is present, the vorticity diffusion coefficient χ is reduced, as the net

turbulence correlation time decreases. When incorporating the shear effect into the turbulence

correlation time, 1/α becomes: 1/α' 1/
√

(k⊥δv)2 +(V ′0)
2 ' 1/

√
ε+q2, reflecting enstrophy

generation and presence of flow shear respectively. The vorticity diffusion coefficient χ then

becomes:

χ = εl2
mix/

√
ε+q2 = l2

mixε/
√

α2 + cuu2 (3.8)

Here a coefficient cu reflecting the strength of the shear flow has been added to the

expression of χ. We will show later on that the numerical solutions for this model are insensitive

to the parameter cu. In a stationary regime,
√

ε > q and the vorticity coefficient χ =
√

εl2
mix
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found previously [BLSY98] is recovered. In a strong shear regime where q >
√

ε, the vorticity

coefficient is χ = εl2
mix/|q|. Finally, we use the following expression for Dε: Dε = l2

mixε/α. We

mention here that the model includes three different time scales: the wave frequency and growth

rate inverse time scales ω−1
m and |γ|−1 appearing in the spectral sums of the diffusion coefficients

expressions, the correlation or eddy turnover time ε−1/2 appearing in the enstrophy equation,

and a diffusive time scale which characterizes the evolution of the mean field quantities as a

result of turbulent fluxes evolution. While the first two are fast time scales, the last one is a slow

(diffusive) one.

3.3 Model Predictions of Plasma Profiles.

In order to compare the model predictions to the experimental results obtained from

CSDX, we present in this section the density and vorticity profiles numerically predicted by the

model for different B values. Two forms of vorticity fluxes are considered. First, a diffusive

vorticity form: Π =−∂xu. Then, a residual stress Πres is added to the vorticity flux. The two

cases are then compared to evaluate any potential role of Πres. Before proceeding, we lay out the

experimental parameters of CSDX cylindrical magnetized helicon plasma: the plasma column has

a total length L = 2.8m and a radius a = 10cm. Argon plasma with the following characteristics

is produced: ne = 1013cm−3, Te = 4eV and Ti = 0.3−0.7eV . The magnitude of the magnetic

field B ranges between 800G and 1300G, giving ω
−1
ci ≈ 30µs and ρs = Cs/ωci ≈ 1cm where

Cs =
√

Te/mi is the plasma sound speed. Argon neutrals are radially injected at a constant

flow rate of 25 sccm, and the corresponding neutral gas pressure Pgas = 3.2mTorr is equivalent

to a neutral density nn = 1014cm−3 [CTD+15, CAT+16]. Plasma neutral ionization rate at

Te = 5eV is S = nenn〈σionve〉 = 1017cm−3s−1, where 〈σionve〉 = 10−10cm3/s is the ionization

rate coefficient at 5eV. These values will be used in our calculations, in order to benchmark our

model predictions to the experimental results.
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3.3.1 Diffusive Vorticity Flux: Π =−χ∂xu

Model Equations

For a shear strength parameter cu = 0 and α =
√

ε, the diffusion coefficients are equal:

Dn = χ = Dε = l2
mixε1/2 and Πres = 0. The vorticity flux is then: Π = −χ∂xu. Eqs.(3.5a-3.5c)

are rescaled using: x≡ Lx, ε≡ u2
0ε, n≡ Lu0n, u≡ Lu0u, t ≡ L2t/u0, µc ≡ u0µc and Dc ≡ u0Dc:

∂tn = ∂x[
l2
0ε3/2∂xn

ε+ l2
0(∂x(n−u))2

+Dc∂xn]+S (3.9a)

∂tu = ∂x[
l2
0ε3/2∂xu

ε+ l2
0(∂x(n−u))2

+µc∂xu] (3.9b)

∂tε = ∂x[
l2
0ε3/2∂xε

ε+ l2
0(∂x(n−u))2

∂ε

∂x
]+L2[

l2
0ε3/2(∂x(n−u))2

ε+ l2
0(∂x(n−u))2

−2ε
3/2 +

√
ε] (3.9c)

Here L is the total plasma column length and S (normalized to n0 = 1013cm−3) is the

external fueling source for ion density. The latter represents the combination of continuous

neutral injection and the ionization energy provided by the external source of heat, i.e. CSDX

external antenna. Parameters of eqs.(3.9a-3.9c) are rescaled to their dimensional form to express

the B dependence: t ≡ t/ωci and u ≡ ∇2
⊥(Teφ/e)/ρ2

s . In addition, length ≡ length×ρs. As a

matter of fact, we report the following scale for turbulence in CSDX. Here we use normalized

density fluctuations ñ/n0 to calculate k̄r:

Table 3.1: Scaling of k̄r with B
B(G) 800 900 1000 1200 1300

ρs(cm) 1.40 1.24 1.12 0.93 0.86
L−1

n (cm−1) 0.53 0.55 0.6 0.62 0.5
k̄r(cm−1) 0.33 0.33 0.37 0.32 0.34

1/[2.3ρ0.6
s L0.3

n ] 0.29 0.32 0.34 0.39 0.37
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Thus:

l0 = k̄−1
r = 2.3ρ

0.6
s L0.3

n ∼ ρs

as Ln and ρs are of the same order before the transition occurs. Similarly, the Rhines’ scale

lRh ∼ ρs, as it involves a radial derivative proportional in turn to ρs. We mention here that

these results are clearly affected by the low values of ρ∗ = ρs/a in CSDX. Further studies at

lower ρ∗ are clearly needed. The potential enstrophy ε = (n−ρ2
s ∇2
⊥φ)2/2 = (n−ρ2

s k2
⊥φ)2/2 =

(n− (ρs/lmix)
2φ)2/2 does not depend explicitly on B, as both n and ρsk⊥ = ρs/lmix are explicitly

B-independent. With both the perpendicular ion diffusivity Dc and viscosity µc proportional to

1/B2, we obtain the following B-dependent equations:

ωci∂tn = ∂x[
ε3/2l2

0∂xn
ε+ l2

0(∂x(n−u/ρ2
s ))

2
+Dc∂xn]+S (3.10a)

ωci∂tu = ∂x[
ε3/2l2

0∂xu
ε+ l2

0(∂x(n−u/ρ2
s ))

2
+µc∂xu] (3.10b)

ωci∂tε = ∂x[
ε3/2l2

0∂xε

ε+ l2
0(∂x(n−u/ρ2

s ))
2
]+L2[

l2
0ε3/2(∂x(n−u/ρ2

s ))
2

ε+ l2
0(∂x(n−u/ρ2

s ))
2
−2ε

3/2 +
√

ε] (3.10c)

Numerical Techniques and Model Calculation.

A finite difference method with a fixed space step size and adaptive time step sizes is

used. The boundary conditions used here are: n|x=1 = u|x=1 = ∂xn|x=0 = ∂xε|x=0 = ∂xε|x=1 =

∂xu|x=0 = 0. Note that Neumann boundary conditions are imposed on ε at both ends of the

domain to prevent energy inflow/outflow from or to the system. As a trial case, we use the

following initial profiles: n(x,0) = (1− x)exp[−ax2 + b], u(x,0) = cx2 + dx3 and ε(x,0) =

(n(x,0)− u(x,0))2/2 with a = −5, b = 0.125, c = 1 and d = −1. The initial density profile

corresponds to a fitting of CSDX experimental data at B = 800G. Initial vorticity and enstrophy

profiles are arbitrary. Collisional Prandtl number Pr = µc/Dc = 650� 1 and a normalized mode

scale length l0 = 1/5 are used. We write the ion density source S(x) as a shifted Gaussian:
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S(x) = S(1−x)exp[−(x−x0)
2/e], where x0 = 0.7, e = 0.05 and S is the source amplitude. This

form of density source is justified by the fact that radially injected neutrals become ionized at

a normalized radial position x0 = 0.7, as revealed by the decreasing (increasing) radial profile

measurements of neutrals (ions). These radial variations are insensitive to any change in the axial

location of the probe along the magnetic field axis. As for the amplitude S, the ionization rate

corresponding to the conditions of CSDX experiments implies a normalized value of S = 104.

In addition to calculating the plasma profiles at different B values to relate to CSDX

experiments, we perform a scan of the external ion density fueling source and calculate the

profiles at different S values. The latter corresponds to a change in the heating power of

CSDX. Unless stated otherwise, we will use the following code colors throughout the paper:

Bblue < Bred < Bgreen < Bblack. Fig.3.2 shows radial variations of the density profiles for an

increasing magnetic field B and two ion source amplitudes S = 10 and S = 104. The latter

corresponds to a CSDX experiment. Similar to experimental results, a steepening trend in

the mean density profiles is observed in both cases, as B increases. This steepening is clearly

noticeable in the range 0.2 < x < 0.5 for the S = 104 case.
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Figure 3.2: Density profiles for S = 10 and S = 104 for increasing B.

A closer look at the S = 104 density profiles shows that a density peak initially observed

at the injection location x0 = 0.7, appears to shift inward as B increases. Moreover, the peaking

of density profiles close to the center as B increases suggests the existence of an inward flux.

This begs then the following questions: what is this apparent inward particle flux due to? Does
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it develop as a response to an increasing B? Is it inherent to the dynamics? To answer these

questions, we investigate variations of the radial particle flux as a function of an increasing B.

Fig.3.3 shows reduction in the particle transport, i.e., a reduction in Γn, as B is increased, for an

0.2 0.4 0.6 0.8 1.0r

-0.4

-0.3

-0.2

-0.1

0.1

0.2

Γi, S=10
4

Ion Source

Figure 3.3: Fluxes for S = 104 for increasing B.

ion density source S = 104. This occurs as a result of the decrease of the diffusion coefficient

Dn = l2
mixε1/2 with B (see fig.3.4). The calculated profiles in fig.3.3 also imply an inward Γn

for 0 < x < 0.5. Experimentally, the apparent inward particle flux was reported to increase in

response to an increasing B. This feature however, does not appear in the model. We emphasize

here though that for a helicon plasma source, the RF input power into the source varies with

B. This leads to a variation in the amplitude of the ion density source S. Typically, one would

manually adjust this power in order to keep the ion density source constant. However, this step

was not implemented in CSDX experiments. One might therefore indirectly relate a change in B

to a corresponding change in the particle flux profiles via variations of the density source S. This

option is not considered here, as S magnitude is kept constant throughout the simulations.

Examining fig.3.5a, the particle flux corresponding to S = 10 is always outward (positive).

This suggests that the experimental apparent inward flux is rather the result of the increasing

amplitude of the off-axis density source S, and not a direct consequence of an increasing magnetic

field B. We test this conjecture by holding B constant and increasing S. We find that Γn starts

to go negative in the device core for increasing S values, at constant B, as shown in fig.3.5b.

Here Sblue = 10, Sred = 30, Sgreen = 50 and Sblack = 104. Moreover, at sufficiently long times,
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Figure 3.4: Diffusion coefficient for increasing B.
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Figure 3.5: Particle flux at S = 10 for increasing B and particle flux at constant B and
increasing S : Sblue < Sred < Sgreen < Sblack.

the calculated particle flux saturates, and Γn profiles are positive and show no indication of

inward flux (fig.3.6). We conclude then that the experimentally reported apparent inward flux

appears to be a consequence of a change in the source amplitude and its position. Thus, we

recover the apparent inward flux semi-qualitatively, using a diffusive model for Γn =−∂xn (no

particle pinch Vpinch, i.e., no off-diagonal term in Γn). It is essential to note here that experiments

corresponding to different heating powers have been performed in CSDX. Data collected from

these experiments show a dependence of both the direction and the amplitude of the particle flux

Γn on the input heating power. Further investigation of this data is of crucial importance to fully

understand the nature of this apparent inward flux.

In order to determine if the model captures the DW-ZF interactions in CSDX, we examine

variations of the shear flow and of the Reynolds work with B. Fig.3.7a shows the existence

of an azimuthal velocity shear layer in the radial direction, that gradually becomes stronger

76



0.2 0.4 0.6 0.8 1.0r
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Saturated Γi, S=10
4

Ion Source

Figure 3.6: Purely outward particle flux at sufficiently long time
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Figure 3.7: Velocity shear, Reynolds Force and Reynolds work for increasing B at S = 104.

as B increases. This shear does not depend on the ion source intensity S. The Reynolds force

−∂x〈ṼxṼy〉 applied by turbulence on the flow increases in absolute value with B (fig.3.7b).

Variation rates of the Reynolds work PRe done by the turbulence on the flow, i.e., the net shear

flow production rates, also increase in absolute value (fig.3.7c). This indicates an enhanced

turbulence suppression as B increases. We note that the same values are obtained either by

direct numerical computations or by multiplication of the Reynolds force by the absolute values

of the azimuthal velocity. In summary, steepening of the density profiles, amplification of the
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azimuthal velocity shear and negative Reynolds work values are all indications of turbulence

reduction that intensifies, as B increases. As B rises, Reynolds force increases and reinforces

the plasma flow. At the same time, the corresponding cross-field ion turbulence scale length

ρs decreases, allowing for more energy transfer from the microscopic scales to the mesoscopic

ones. These observations were reported experimentally in ref.[MXTT11, XTH+09, YTH+10],

when applying cross-bispectral analysis to density and potential fluctuations data retrieved from

CSDX.

3.3.2 Vorticity Flux with Residual Stress: Π = Πres−χ∂xu

Next we study the system dynamics when a residual Πres = (χ−Dn)∂xn is included in

the vorticity flux expression. The 3-fields equations become:

∂tn = ∂x[Dn∂xn]+Dc∂
2
xn+S(x) (3.11a)

∂tu = ∂x[(Dn−χ)∂xn]+∂x[χ∂xu]+µc∂
2
xu (3.11b)

∂tε = ∂x[Dε∂xε]+Πres(∂xn−∂xu)− (χ∂xu−Dn∂xn)(∂xn−∂xu)− ε
3/2 +

√
ε(u2

0− ε) (3.11c)

Here we use the following diffusion coefficients: Dn = l2
mixε/α, Dε = l2

mixε1/2 and χ =

l2
mixε/

√
α2 + cuu2. Using the same scaling factors of the last section in addition to: α≡ u0α and
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cu ≡ cu/L2, we obtain the following B-dependent equations:

ωci∂tn = ∂x

[ l2
0ε2∂xn

ε+ l2
0(∂x(n−u/ρ2

s ))
2

1
α
+Dc∂xn

]
+S (3.12a)

ωci∂tu = ρ
2
s ∂x

[ l2
0ε2

ε+ l2
0(∂x(n−u/ρ2

s ))
2

[
(

1
α
− 1√

α2 + cu(u/ρ2
s )

2
)∂xn

+(
1√

α2 + cu(u/ρ2
s )

2
+µc)∂xu

]]
(3.12b)

ωci∂tε = ∂x

[ l2
0ε3/2∂xε

ε+ l2
0(∂x(n−u/ρ2

s ))
2

]
+L2

[ l2
0ε2ρs(∂xn−∂xu/ρ2

s )

ε+ l2
0(∂x(n−u/ρ2

s ))
2)
(− 1

α
+

1√
α2 + cu(u/ρ2

s )
2
)

−
l2
0ε2

ε+ l2
0(∂x(n−u/ρ2

s ))
2
(−∂x

α
+

1√
α2 + cu(u/ρ2

s )
2

∂xu
ρ2

s
)(∂xn− ∂xu

ρ2
s
)−2ε

3/2 +
√

ε

]
(3.12c)

We show here numerical results that correspond to both Dirichlet and Neumann vorticity

boundary condition at x = 1. Starting with a Dirichlet condition u|x=1 = 0, for an arbitrary case

α = 3 and cu = 6 trial case, numerical results are similar to those obtained when no residual

stress is included in the expression of Π. The steepening of the density profiles, the sheared

azimuthal velocity layer and the negative Reynolds work values in the three left figures of fig.3.8

are all consistent with a global transition that occurs in the plasma as B increases. Variation of

the shearing coefficient cu, which reflects a change in the strength of the flow shear, does not

seem to affect qualitatively the numerical results (right three figures of fig.3.8); the results are

simply insensitive to a change in cu. Therefore we conclude that, while Πres is needed to account

for intrinsic rotation in tokamaks and axial flow generation in linear devices [LDXT16], a state

of enhanced confinement can be recovered using a simple diffusive form of the vorticity flux,

without the need to include a residual stress in the expression for Π.

The scenario of a plasma column surrounded by a layer of fixed neutrals next to the

walls corresponds to a Neumann vorticity boundary condition: ∂u
∂x |x=1 = 0. Viscous effects are
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negligible in this case. We mention here though that the usual experimental case corresponds to

a Dirichlet boundary condition. Steepening of the density profiles, as well as negative Reynolds

work values are recovered as a sign of turbulence suppression, as B increases. The velocity shear,

although present and prominent at the density steepening location, is B independent (top three

figures of fig.3.9). Higher magnetic field values are required for this B-dependence to appear.

The Reynolds work becomes then positive (bottom three figures of fig.3.9). The latter suggests

turbulence production by the flow at high B values, i.e., an instability that might be triggered by

the vorticity gradient at high B instead of being suppressed by the velocity shear.

A change in the mode scale length from l0 = ρs/5 to l0 = 10−3ρs leads to the same

previously mentioned trends of turbulence suppression as indicated by density profile steepening,

negative Reynolds work values and a B dependent sheared azimuthal velocity (see fig.3.10).

More interesting is the relevant case of a higher Prandtl number Pr = µc/Dc = 65000. In

this case, momentum diffusivity dominates the behavior of the plasma characterized by a low

diffusion coefficient Dc. Fig.3.11 shows time evolution of the plasma profiles at consecutive times

t1 and t2. The plasma density builds up at the injection location and the inward flux develops

as a result of density localized concentration, regardless of the magnitude of B. Evidence of a

turbulence suppression such as negative Reynolds work rates and sheared azimuthal velocity are

also recovered.

3.4 Validation Metrics for Model Comparison with Experi-

ment.

Going beyond the simple qualitative comparisons between numerical and experimental

profiles, we propose here a set of quantitative metrics which aim to test whether the adopted model

equations are indeed capable of explaining the experimental observations. Quoting Oberkampf

and Trucano (2002), ”an important issue concerns how comparisons of computational results
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and experimental data could be quantified” (p.216) [OT]. A set of validation metrics is therefore

needed to check the consistency of the model with the experimental data [Hol16]. We start first

by checking the relative variation of the inverse density gradient scale length 1/Ln = |∇ lnn| and

recover a value close the experimental one obtained from profiles of fig.(2) in ref.[CAT+16]:

∆(1/Ln)

Lni

=
1/Ln f −1/Lni

1/Lni

=


0.70 numerically

0.55 experimemtally

Here 1/Lni (1/Ln f ) is the inverse gradient scale length of the initial (final) density profile,

i.e., before (after) the plasma transition occurs. Similarly, we calculate the corresponding relative

variation of the inverse gradient scale length of the velocity profiles and find:

∆(1/Lv)

Lvi

=
1/Lv f −1/Lvi

1/Lvi

=


0.73 numerically

0.57 experimentally

While the previous validation metrics constitute local assessment quantities, we also

propose two global validation metric. Fig.3.12 is a plot of the radially integrated Reynolds work,

PRe−tot =
∫ 1

0 PRedr which denotes the total work done by turbulence on the flow over the plasma

cross section as a function of the density gradient. 1/Ln and PRe−tot are proportional to each

other; as B increases, density profiles steepen, the ion gradient scale length Ln shrinks and the

total Reynolds work rate increases, indicating a transfer of energy from fluctuations to flow.

Further validation of turbulence suppression is obtained by examining the particle loss

rate 1/τturb−loss, due to turbulent radial transport. This rate is expected to drop as B increases.

Integration of the particle flux along r gives values of the loss rates: 1/τturb−loss ∝
∫ r

0 rΓndr.

Data reported in table (3.2) show a declining trend as B increases. This suggests a change in the

global particle balance, i.e., a change in the nature of the turbulence in the system.

81



Table 3.2: Particle loss rate 1/τ for increasing B.
1/τloss(×10−2) S = 10 S = 50 S = 104

Bblue 1.4 3 1.1
Bred 1.2 2.6 0.5

Bblack 0.9 1.8 0.2

3.5 What is the Criterion for Turbulence Suppression?

A conceptual question in modeling drift wave-zonal flow turbulence is the prediction of

when transport barriers are triggered. A variety of proposals are on record. Most are equivalent

to a comparison of linear growth rate to E×B shearing rate (i.e., |γL| vs. |γE×B|). The relevance

of this type of criterion to fully developed turbulence is, at best, unclear. A somewhat non-trivial

criterion [MDG+12], is RT > 1 where:

RT =
〈ṽxṽy〉′vE×B

|γe f f |〈ṽ2
⊥〉

(3.13)

is the local ratio of the Reynolds power density, to the effective increase in turbulent kinetic energy.

Here |γe f f |(∇n,∇T,VZF) is the turbulence effective growth rate. The idea here is that when

RT > RTcrit (usually RTcrit ∼ 1), the energy transfer to the shear flow exceeds the effective increase

in turbulent kinetic energy, suggesting a collapse of the kθ 6= 0 portion of the turbulence spectrum,

i.e., the part which causes transport. For the model under study here, the instantaneous potential

enstrophy growth rate is |γe f f | = (1/ε).(∂ε/∂t) and 〈ṽ2
⊥〉 = εl2

mix = l2
0ε2/(ε+(l0∇(n− u))2).

Fig.3.13 shows variations of RT with B for this system. Here, RT values are calculated at the

density steepening location and at the turbulent energy saturation time. The proportionality

between B and RT is recovered as anticipated, since an increase in B triggers the formation of

transport barriers.

While the RT > RTcrit criterion is attractive for its extreme simplicity, it suffers from the

facts that: i) |γe f f | is ill-defined, and difficult to calculate, ii) contributions from energy other than
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the kinetic are ignored. Thus we propose here an alternate criterion, RDT ≥ RDTcrit , where the

global parameter RDT = τrelax/τtrans f er. Here 1/τrelax =−
∫

dxΓn∇n/n0, where Γn = 〈ṽxñ/n0〉

is the normalized particle flux, 1/τrelax is the rate of relaxation of the free energy source, which

is ∇n in this model. Of course, ∇n relaxes by exciting drift wave turbulence, so 1/τrelax is

effectively the turbulent enstrophy production rate and would have a connection to the energy

input rate, |γe f f |, used in the RT criterion. Logically then, that should be compared to the rate

of transfer of enstrophy to the mean flow vorticity profile. This may be thought of a turbulent

enstrophy destruction rate, and is closely related to the Reynolds work which appears in RT .

We have then: 1/τtrans f er =−
∫

dx〈ṽxũ〉∇u where u = ρ2
s ∇2
⊥(eφ/Te). Integrating by parts gives:

1/τtrans f er =
∫

dx∂x〈ṽxũ〉u so:

RDT =

∫
∂x〈ṽxũ〉udx

−
∫

Γn∇n/n0dx
(3.14)

RDT is manifestly dimensionless and the integrals are calculated along the radius. Noting

the Taylor identity and the fact that u∼ ∇⊥(∇⊥φ)∼ ∇⊥Vy, the correspondence of the numerator

of RDT to that of RT is evident. Finally, given that the potential vorticity is conserved on fluid

particle trajectories, it is not difficult to see the correspondence between fluctuating entropy

(∼ −
∫

dv(δ f )2/〈 f 〉) and fluctuating enstrophy. Thus, RDT may be thought of as the ratio of

fluctuation entropy destruction via coupling to the mean flow, to fluctuating entropy production

via relaxation of ∇n. Both numerator and denominator reflect flux-gradient interaction and

both emerge naturally from the formulation of the model, i.e. from expanding the production

term Pprod = (Γn−Π).(∇n−∇u) = Γn∇n+Π∇u−Π∇n−Γn∇u in eq.3.2c. Neglecting the

last two cross terms in Pprod , the numerator and denominator of RDT simply represent the

product of Π and ∇u, and Γn and ∇n respectively. Thus RDT exceeding unity may be thought

of as the simplification of the more general criterion that
∫

Pprod passes through zero, i.e.,∫
Pprod > 0→

∫
Pprod < 0, as the indicator of turbulence collapses. Fig.3.14 shows variations of

RDT with B at the same time and location as for RT . The close relation between RDT and B can

also be interpreted in terms of enstrophy exchange of fluctuations to flow, as B increases. However,
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the RDT > RDTcrit criterion has a broader and more solid theoretical foundation then RT > RTcrit ,

and easily may be generalized (to more complex models) by expanding the consideration of

potential enstrophy balance. When either RDT or RT exceeds unity, the turbulence levels will

drop and a barrier is likely to be formed. We do not have a proof of either though - particularly

given the ambiguity in just exactly what a barrier is.

3.6 Discussion ans Conclusions.

Features of a CSDX improved confinement are reproduced here using a 1D time-

dependent reduced model. The model recovers the profile evolution in CSDX with an increasing

B, and includes both a slow and a fast time scale: the former corresponding to the time evolution

of the mean fields, and the later corresponding to turbulence production and fast dissipation.

Potential enstrophy is conserved up to dissipation and initial forcing. Inhomogeneous PV mixing

is a central feature here, and occurs on a mixing length that is inversely proportional to the PV

gradient. The use of a mixing length that shrinks as ∇n and ∇u steepen, closes the positive

feedback loop on PV. The model novelty relies in the fact that it reduces the profiles evolution to

only two fluxes: a vorticity and a density flux.

Numerical solutions agree with the experimental findings, and show: a steepening of the

density profile, a reinforced E×B sheared layer, an increased Reynolds work and a reduction

in the turbulence and particle transport, as B increases. Numerical solutions also show that the

steepening of ∇n is recovered without the use of an off-diagonal term nVpinch in the expression

of the particle flux Γn. The experimentally apparent inward flux is simply of diffusive nature at

high B. Moreover, the model predicts qualitatively similar results, with or without the inclusion

a residual stress Πres in the vorticity flux expression Π. We conclude then the following: both

density and vorticity fluxes have purely diffusive forms: Γn = −∂xn and Π = −∂xu, where u

is the vorticity. The inward pinch Vpinch and residual stress Πres necessary to drive axial flows
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in linear devices are not required to recover the experimental results. As a matter of fact, the

validation metrics presented above show a consistent level of agreement between computation

and experiment, using purely diffusive expressions for Γn and Π.

The only experimental feature not recovered is the apparent inward particle flux. The ap-

parent inward flux, experimentally believed to be related to increasing B, is a direct consequence

of the amplitude and location of the ion source. Additional investigation of the influence the

fueling intensity might have on the particle flux, is crucial to determine the nature of this inward

flux.

The energy parameter RDT , defined in eq.(4.33), emerges as a better global turbulence

collapse indicator to be used in the future. It rests on a broader and more solid theoretical

foundation than RT , and can be obtained both in computations and experiments. In addition,

RDT includes the basic physics behind RT , but transcends it. Finally, modeling of the parallel

flow dynamics is planned for future work. This will be pursued by adding an equation for v‖ to

the model.

3.7 Acknowledgments

The text and data in chapter 3 is a reprint of the material as it appears in ”Modeling

Enhanced Confinement in Drift-Wave Turbulence” in the Journal of Physics of Plasmas 24,

062106 (2017). Hajjar R. J., Diamond P. H., Ashourvan A., Tynan G.R, American Institute of

Physics, 2017.Hajjar. R. J., Diamond P. H., Ashourvan A., Tynan G. R. (2017). The dissertation

author was the primary investigator and author of this paper.

85



0.2 0.4 0.6 0.8 1.0r

0.2

0.4

0.6

0.8

1.0

ni

Ion Source

0.2 0.4 0.6 0.8 1.0r

0.2

0.4

0.6

0.8

1.0

ni

Ion Source

0.4 0.6 0.8 1.0radius

-1.2×10-7
-1.×10-7
-8.×10-8
-6.×10-8
-4.×10-8
-2.×10-8

Velocity Shear

0.2 0.4 0.6 0.8 1.0r

-1.5×10-6

-1.×10-6

-5.×10-7

5.×10-7
Velocity Shear

0.2 0.4 0.6 0.8 1.0r

-1.5×10-14

-1.×10-14

-5.×10-15

Reynolds Work

0.2 0.4 0.6 0.8 1.0r

-2.5×10-12

-2.×10-12

-1.5×10-12

-1.×10-12

-5.×10-13

Reynolds Work

Figure 3.8: Profiles with Πres and Dirichlet boundary conditions for cu = 6 and cu = 600.

86



0.2 0.4 0.6 0.8 1.0r

0.2

0.4

0.6

0.8

1.0

ni, low B

Ion Source

0.2 0.4 0.6 0.8 1.0r

0.2

0.4

0.6

0.8

1.0

ni, high B

Ion Source

0.2 0.4 0.6 0.8 1.0 r

2

4

6

8

Velocity shear,

low B

0.2 0.4 0.6 0.8 1.0 r

1

2

3

4

Velocity shear,

high B

0.2 0.4 0.6 0.8 1.0r

-7.×10-8
-6.×10-8
-5.×10-8
-4.×10-8
-3.×10-8
-2.×10-8
-1.×10-8

Reynolds Work,

low B

0.2 0.4 0.6 0.8 1.0r

5.×10-6

0.00001

0.000015

Reynolds Work,

high B

Figure 3.9: Profiles with Πres and Neumann boundary conditions for increasing B.
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Figure 3.10: Profiles for l0 = 10−3ρs and increasing B.
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data at t1 and t2 respectively.

88



5.2 5.4 5.6 5.8 1/Ln

2.×10-8

4.×10-8

6.×10-8

8.×10-8

Total Reynolds Work
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Chapter 4

DYNAMICS OF ZONAL SHEAR

COLLAPSE FOR HYDRODYNAMIC

ELECTRONS

4.1 Introduction

Drift wave (DW) turbulence is one of the fundamental issues in magnetically confined

plasmas, and continues to be a subject of interest for many experimental, theoretical and numeri-

cal studies [DIIH05, Ter00]. Driven by radial density gradients, drift wave turbulence enhances

particle and thermal transport, and increases the loss of particles and heat from fusion devices.

One mechanism that regulates DW fluctuations is the self-generation of sheared zonal flows

(ZFs) by turbulent Reynolds stresses. These flows decorrelate turbulent eddies by shearing, thus

allowing for energy transfer between the disparate scales of the plasma [Hor99, Sco05]. ZFs are

therefore often linked to L−H transition and internal transport barrier (ITB) formation [KD03].

Many models describing the regulations of DWs by ZFs have been proposed, so much so that

the problem is now referred to as DW/ZF turbulence.
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In another vein, there is evidence to suggest that ZFs collapse when the plasma density

approaches the Greenwald density limit nG. This limit is an operational bound on the plasma

density, and represents the maximum attainable density before the plasma develops strong MHD

activity [GTW+88]. Increasing the density above nG leads ultimately to degradation of particle

confinement and disruption. A series of symptoms are frequently manifested at the density limit.

These include, but are not limited to: edge cooling, multifaceted asymmetric radiation from edge

(MARFE), current shrinkage and weakening of the edge shear E×B layers. In particular, a

recent experiment in the HL-2A tokamak [HTD+18] showed that as n̄ approaches nG, the edge

shear flow collapses. This is accompanied by an enhancement of the turbulent particle flux near

the separatrix as the plasma density increases in these ohmic L-mode discharges. Cooling of the

edge plasma and decrease in the Reynolds force responsible for driving the zonal flow were also

observed as n̄/nG increased. Also, there was a significant decrease in the adiabaticity parameter

α = k2
z v2

th/(νei|ω|) from 3 to 0.5, as n̄ was increased. Here |ω| represents the frequency of the

DW unstable mode. Note the low β values in this HL-2A experiment, where 0.01 < β < 0.02.

A conventional approach is to attribute these observations to an increase in the plasma

collisionality with n̄, and an increase in the damping of the ZFs[Gre02, GTW+88]. Increasing the

plasma density boosts the collisional damping of zonal flows, thus inhibiting the self-regulation

of turbulence [MRS09, XTD+12]. As a result, transport of particle and heat is enhanced, and

plasma confinement degrades. Alternatively, another approach links these observations to the

development of additional linear instabilities, such as resistive ballooning modes, in the edge

of the tokamak [RDZ98, Tok03, TKL05]. The onset of resistive ballooning modes is linked

to k2
z v2

th/(νei|ω|) dropping below one. These additional instabilities are thought to enhance

transport and lead to further deterioration of the plasma confinement.

Motivated by these observations, we present a model that investigates turbulence and

the collapse of the plasma edge shear layer in the hydrodynamic electron limit. Specifically,

we present a theory for the evolution of turbulence and mean profiles (including flows) as the
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adiabaticity parameter α decreases below unity that is, as the plasma response passes from the

adiabatic limit (α� 1) to the hydrodynamic limit (α� 1). Interestingly enough, findings of this

paper are easily applicable to the density limit experiments since α ∝ 1/n̄. A particularly simple

model proposed by Hasegawa and Wakatani describes the dynamics of two-dimensional (2D)

edge drift wave turbulence in a collisional plasma in the presence of a constant magnetic field.

This generic system of equations describes the excitation and damping of unstable modes in

terms of a few collisionality parameters, leading to a stationary turbulence level without external

drive. In particular, the Hasegawa-Wakatani system of equations remains a valid model for edge

turbulence dynamics, regardless of the magnitude of the plasma β. Although multiple studies

investigating the characteristics of turbulence in the hydrodynamic limit have been published,

no explanation of why the shear flow collapses and/or why drift wave turbulence is enhanced

for α < 1 was presented. In fact, most studies of ZF behavior in the hydrodynamic electron

regime simply repeat numerical results that show strong turbulence and weak zonal flows in

the hydrodynamic limit [KT13, NBD07, CBS95, PBN13], and verify the usual power laws of

turbulent energies in this limit [GG15]. Note that for the parameters of the HL-2A experiments,

it is quite unlikely that resistive ballooning modes are excited.

This paper addresses these questions by presenting a simple reduced model for transport

enhancement and weakening of the edge shear layer in the hydrodynamic electron limit. The

model is derived from the Hasegawa-Wakatani (HW) equations for collisional drift waves, and

self-consistently studies space and time evolution of the mean density n̄, mean azimuthal flow

v̄y and turbulent potential enstrophy ε. The model determines the role of the Reynolds stress

〈ṽxṽy〉 in the feedback loop between flows and turbulence, and gives additional insight into the

DW/ZF relation in the hydrodynamic electron limit. Quasi-linear analysis shows that both the

particle flux Γn and the turbulent viscosity χy are enhanced as α decreases. However, the residual

vorticity stress Πres, which accelerates the flow, is reduced with α. The mean vorticity gradient

equal to Πres/χy is then reduced, and the edge shear layer collapses. As a result, transport
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of particles and heat increases. These findings are relevant to the density limit experiment,

as α ∝ 1/n̄. When n̄ increases, α decreases, and Πres/χy is reduced. The plasma production

of zonal flows declines and turbulence and transport increase. Thermal and particle transport

increase, thereby triggering cooling of the edge plasma, in part because of inward turbulence

spreading. For constant pressure, a drop in plasma temperature Te leads to further increase in the

density and feedback loop between Te and n̄ forms.

The rest of the paper is organized as follows: Section (4.2) gives the linear response

analysis of the basic Hasegawa-Wakatani system, as well as solution of the DW dispersion

relation in both the adiabatic and hydrodynamic limits. Section (4.3) introduces the reduced

model used to describe the evolution of the three fields: n̄, v̄y and ε. In Section (4.4), we calculate

the expressions for the particle flux, the vorticity flux and the Reynolds work in both adiabatic and

hydrodynamic limits. The latter reflects the potential enstrophy exchange between fluctuations

and mean flow. The model is then simplified to a predator/prey model by slaving the expression

for ε in the equations for n̄ and v̄y in Section (4.5). Section (4.6) gives a physical argument as to

why zonal flow formation is weak in the hydrodynamic limit. Variations of the mean vorticity

gradient Πres/χy, as well as changes in the scaling of the vorticity flux 〈ṽx∇2
⊥φ〉 are examined,

in order to characterize the mesoscopic plasma response as α decreases. The drop in zonal flow

drive is reconciled with the persistence of potential vorticity mixing in the hydrodynamic limit.

Section (4.7) interprets the experimental observations obtained in the density limit experiment

from the perspective of the collapse of ZFs in the hydrodynamic electron limit. A scenario

linking shear layer collapse to the density limit is proposed. Finally, conclusions and future work

are discussed in Section (4.8).
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4.2 Basic System and Linear Stability Analysis

In a box of dimensions: 0≤ x≤ Lx, 0≤ y≤ Ly, 0≤ z≤ Lz, the equations for the density

n and vorticity ∇2φ in a nonuniform plasma with density n0(x) and constant magnetic field

B = Bẑ are [HW83]:

dn
dt

=−
v2

th
νei

∇
2
‖(φ−n)+D0∇

2n (4.1a)

d∇2φ

dt
=−

v2
th

νei
∇

2
‖(φ−n)+µ0∇

2(∇2
φ) (4.1b)

Here the fields are normalized as: n ≡ n/n0, φ ≡ eφ/Te, t ≡ ωcit, length ≡ length/ρs,

vth ≡ vth/cs and νei ≡ νei/ωci. The average plasma density, the electron temperature and thermal

velocity, as well as the plasma sound speed are n0, Te, vth and cs respectively. ωci is the

ion cyclotron frequency, and ρs = cs/ωci is the ion Larmor radius with temperature Te. The

collisional diffusion coefficients D0 and µ0 dissipate energy at small scales by frictional drag

through forward energy cascade. The electron parallel diffusion rate α̂ =−v2
th∇2
‖/νei = k2

z v2
th/νei

couples the vorticity fluctuations to those in the density profile. The convective derivative is equal

to: d/dt = ∂t +(ẑ×∇φ).∇ = ∂t + vE .∇ where vE is the E×B drift. The fields are decomposed

into a perturbation and a zonally averaged part: f = f̄ (x, t)+ f̃ (x,y,z, t), where the averaging is

preformed over the directions of symmetry y and z:

〈 f 〉= f̄ =
1

LyLz

∫ Ly

0

∫ Lz

0
f dydz
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Equations for the density and vorticity fluctuations are written as:

∂t ñ+ ṽx.∇n̄ =−
v2

th
νei

∇
2
‖(φ̃− ñ)−{φ̃, ñ}+D0∇

2ñ (4.2a)

∂t∇
2
φ̃+ ṽx.∇∇2φ =−

v2
th

νei
∇

2
‖(φ̃− ñ)−{φ̃,∇2

φ̃}+µ0∇
2(∇2

φ̃) (4.2b)

Here the mean flow shear ∇2φ in eq.(4.2b) is self-generated by the Reynolds stress 〈ṽxṽy〉, and

is driven by the DW interactions. Based in the triad coupling, this internal shear results from

nonlinear energy transfer related, but not identical to, the inverse energy cascade in a 2D fluid.

The nonlinear advection terms are expressed as Poisson brackets: { f ,g}= ∂x f ∂yg−∂y f ∂xg and

represent spatial scattering of the fluctuation energy.

In the Hasegawa-Wakatani (HW) system, the plasma response and the character of the

flow are mainly determined by three parameters: the collisional diffusion coefficients D0 and

µ0, and the adiabaticity parameter α = k2
z v2

th/(νei|ω|). While D0 and µ0 regulate the dissipation

of energy at small scales, α determines the efficiency of zonal flow production, and controls

its mescocopic response. Defined as the ratio between the parallel diffusion rate and the drift

frequency, α controls the phase difference between φ̃ and ñ, and thus the transport. When

α > 1, the plasma response is near adiabatic, φ̃ and ñ are closely coupled, and ñ ' φ̃. The

Hasegawa-Wakatani system effectively reduces then to the Hasegawa-Mima equation [HM77],

with a phase shift between ñ and φ̃. In the opposite limit however, α < 1, the plasma response is

said to be hydrodynamic. Eqs.(4.2a-4.2b) are then weakly coupled, and the ñ dynamics resemble

that of a passive scalar. Moreover, the vorticity equation tends toward that for a 2D Navier-Stokes

fluid [CBS95].

For a linear stability analysis of the HW equations, we write the fluctuation fields

as: f̃m = δ fm(x)ei[kmy+kzz−ωt] with ω = ωr + i|γm|. Here ωr, |γm|, km and kz are the linear

eigenfrequency, the growth rate, the azimuthal and the parallel wavenumbers of the unstable
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mode respectively. The drift wave dispersion relation is then:

ω
2 + i

α̂

k2
⊥ρ2

s

[
ω(1+ k2

⊥ρ
2
s )−ω

?
]
= 0 (4.3)

where ω? = km|vd|=−kmρscs∇n̄ > 0 is the electron drift frequency, and vd = ρscs∇n̄ < 0 is the

electron diamagnetic drift velocity. The solution of eq.(4.3) is given by:

ω =
1
2

(
− i

α̂(1+ k2
⊥ρ2

s )

k2
⊥ρ2

s
+

√
4iω?α̂

k2
⊥ρ2

s
−
(

α̂(1+ k2
⊥ρ2

s )

k2
⊥ρ2

s

)2
)

(4.4)

This expression is simplified, according to the magnitude of α̂/|ω|, i.e., the magnitude of

α.

In the adiabatic limit: (α� 1 and α̂� |ω|)

When the parallel diffusion rate k2
z v2

th/νei is larger than both the drift frequency |ω| and

the electron diamagnetic frequency |ω?|, eq.(4.4) reduces to:

ωadiabatic =
ω?

1+ k2
⊥ρ2

s
+ i

ω?2k2
⊥ρ2

s

α̂
(4.5)

In the adiabatic limit, ωr does not depend on α̂. However, the growth rate |γm| is proportional

to 1/α̂. For large α̂, the growth rate is |γm| � 1, and the drift wave eigenfrequency is simply

written as:

ωadiabatic ' ω
r = ω

?(1+ k2
⊥ρ

2
s )
−1 (4.6)

In the hydrodynamic limit: (α� 1 and α̂� |ω|)

When the parallel diffusion rate k2
z v2

th/νei is much smaller than |ω|, the expression for

the frequency reads:

ωhydrodynamic '
1
2

(
− i

α̂(1+ k2
⊥ρ2

s )

k2
⊥ρ2

s
+

√
4iα̂ω?

k2
⊥ρ2

s

)
'

√
ω?α̂

2k2
⊥ρ2

s
(1+ i) (4.7)
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In this limit, the growth rate and the real part are both equal to: ωr = |γm|=
√

ω?α̂/2k2
⊥ρ2

s . In

contrast to the adiabatic limit, the contribution of |γm| cannot be neglected in the expression for

ωhydrodynamic.

A comparison of eq.(4.6) and eq.(4.7) shows that ωadiabatic is dominantly real, while

ωhydrodynamic involves a comparable real and imaginary part. While the motion of the drift

waves is purely oscillatory in the adiabatic limit, in the hydrodynamic limit, the dynamics of the

perturbation resembles that of a convective cell. This feature dictates the behavior of the flow in

the two plasma regimes.

4.3 Reduced Model

4.3.1 The equations

In this section, a 1D reduced model that self-consistently describes the evolution of

turbulence and plasma profiles is presented. The equations relating the time and space evolution

of the plasma mean density n̄, and mean vorticity ∇2φ are obtained by averaging eqs.(4.1a-4.1b)

over the directions of symmetry:

∂t n̄ =−∂x〈ṽxñ〉+D0∇
2n̄ (4.8a)

∂t∇2φ =−∂x〈ṽx∇
2
φ̃〉−νin(v̄y− v̄n)+µ0∇

2
∇2φ (4.8b)

A neutral damping term proportional to the ion-neutral collision frequency νin ∝ nn, is

added to the mean vorticity equation. This term can be significant at the plasma edge. It is a sink

of energy transfered to larger scales, and so damps the zonal flows. The neutral friction can be

dropped from the mean vorticity equation if νin→ 0, i.e., for low neutral density nn.

In addition to eqs.(4.8a-4.8b), we formulate an equation for the fluctuation potential

enstrophy ε = 〈(ñ−∇2φ̃)2/2〉. The HW system locally conserves the potential vorticity defined
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as q = n−∇2φ, up to viscosity and particle diffusivity. A linearized equation describing the time

evolution of the turbulent potential vorticity q̃ = ñ−∇2φ̃ is obtained by subtracting eq.(4.2b)

from eq.(4.2a):
∂q̃
∂t

+ ṽx.∇q̄ =−{φ̃, q̃}+µ0∇
2q =⇒ dq

dt
= µ0∇

2q (4.9)

where q = q̄+ q̃, and µ0 and D0 are assumed to be of the same order. Eq.(4.9) represents a

conservation of the total potential vorticity up to viscous dissipation. Therefore, the potential

enstrophy ε = 〈q̃2〉/2 = 〈(ñ−∇2φ̃)2〉/2 is also conserved up to collisional diffusion. This can

be shown by multiplying eq.(4.9) by q̃ = ñ−∇2φ̃, and performing a zonal integral. Detailed

calculations can be found in ref. [HDAT17, ADG16, AD16]. Here we simply write the time

evolution equation for the potential enstrophy ε:

∂tε+∂xΓε =−(Γn−Π)(∂xn̄−∂xxv̄y)− ε
3/2 +P (4.10)

In eq.(4.10), Γn and Π are the particle and vorticity flux respectively, while ∂xn̄ and

∂xxv̄y are the mean density and mean vorticity gradients respectively. The diffusive energy flux

Γε on the LHS is the mesoscopic spreading of turbulence due to the three wave coupling. It

represents local diffusion of the potential enstrophy ε. The potential enstrophy flux is written

as: Γε =−Dε∂xε =−l2
mix
√

ε∂xε, where lmix = ṽxτc is the turbulent mixing length and τc is the

turbulence correlation time. The first term on the RHS of eq.(4.10) accounts for direct mean

flow-fluctuation coupling, and converts the mean potential enstrophy into fluctuation potential

enstrophy. This coupling term relates variations of the turbulent potential enstrophy to those in

the mean profile of n̄ and v̄y, via the particle flux Γn = 〈ṽxñ〉 and the vorticity flux Π = 〈ṽx∇2φ̃〉.

The second term on the RHS of eq.(4.10) dissipates the fluctuation potential enstrophy at a rate
√

ε. This dissipation is due to the collisional coefficients D0 and µ0. Lastly, the production term P

represents an input of the potential enstrophy due to linear growth, driven by the mean profiles. It

is proportional to ε and linear in γDW , the growth rate of the DW instability: P = γDW ε. Dropping
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the neutral damping term from the vorticity equation, as well as the ¯. . . sign, we simplify the

notation by writing u = ∇2φ to obtain:

∂tn =−∂xΓn +D0∇
2n (4.11a)

∂tu =−∂xΠ+µ0∇
2u (4.11b)

∂tε+∂xΓε =−(Γn−Π)(∂xn−∂xu)− ε
3/2 +P (4.11c)

Written in 1D (in radius), this system models the evolution of DW intensity and the formation of

zonal flows in the plasma. For this purpose, an expression for the mixing length lmix is required.

One approach consists of considering a mixing length that exhibits a turbulence suppression

through the azimuthal shear u = ∇vy:

lmix =
l0(

1+
(l0∇u)2

ε

)δ
(4.12)

where δ is a free parameter and l0 is an external dynamical turbulence production scale length.

Eq.(4.12) exhibits a decorrelation of the turbulent structures by the flow shear u = ∇vy [BDT90]:

when the flow shear increases, the mixing length decreases. When lmix is reduced, the production

of potential enstrophy ε also drops, the mean profiles steepen, and a closed feedback loop is

obtained. In the particular case of weak or collapsed flow shear, u = ∇vy ' 0 so a constant

mixing length lmix ' l0 results.

4.4 Expressions for the Turbulent Fluxes

In addition to the expression for lmix, expressions for the turbulent fluxes 〈ṽxñ〉 and 〈ṽxṽy〉

are needed to close the model and solve eqs.(4.11a-4.11c). In this section, we use quasi linear

theory to calculate the expressions for the particle flux and vorticity flux.
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4.4.1 The Particle Flux: 〈ñṽx〉

To calculate the expression for the particle flux 〈ñṽx〉, we write the electron density

fluctuation as ñ = φ̃+ h, where h is the deviation from the adiabatic response. Plugging in

eq.(4.2a), we obtain:

h =
ω?−ω

ω+ iα̂
φ̃, ñ = φ̃+h =

(
ω?+ iα̂
ω+ iα̂

)
φ̃

In the adiabatic limit, ω' ω? and the following relation between ñ and φ̃ is recovered:

ñ =
(

1− i(ω?−ω)/α̂

)
φ̃' φ̃ [LDXT16]. For ṽx =−ikmρscsδφ, the expression for the particle

flux 〈ñṽx〉 is:

Γn =−
[(α̂+ |γm|)
|ω+ iα̂|2

d lnn
dx

+
α̂ωr

kmρscs|ω+ iα̂|2
]
〈δv2

x〉

' −(α̂+ |γm|)
|ω+ iα̂|2

d lnn
dx
〈δv2

x〉

=−D
n0

dn̄
dx

(4.13)

The particle diffusion coefficient is: D =
[
(α̂+ |γm|)/|ω+ iα̂|2

]
〈δv2

x〉. The expression

for the particle diffusion coefficient D depends on α̂, and changes as the plasma passes from the

adiabatic to the hydrodynamic regime. We introduce next the factor f that represents the fraction

of the fluctuation energy εl2
mix which is in the kinetic energy of radial motion:

〈δv2
x〉= f εl2

mix =
〈δv2

x〉
〈δn2〉+ 〈δv2

x〉
εl2

mix (4.14)
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Using the expressions for ñ and ṽx, the expression for f is equal to:

f =
k2
⊥ρ2

s∣∣∣ω∗+ iα̂
ω+ iα̂

∣∣∣2 + k2
⊥ρ2

s

=


k2
⊥ρ2

s

1+ k2
⊥ρ2

s
, in the adiabatic regime

1
|ω∗/α̂|+1

, in the hydrodynamic regime
(4.15)

In the adiabatic regime, the kinetic energy 〈δv2
x〉 is less then 〈δn2〉, and the electron

total energy is mostly thermal/internal energy. Therefore, the factor f � 1. However, in the

hydrodynamic regime, the kinetic energy of the electrons rises as compared to 〈δn2〉, reflecting

an increase in the screening of ion diamagnetic oscillations such that f → 1. For small values of

k2
⊥ρ2

s � 1, the two limits of f are:


f → k2

⊥ρ2
s ' 0, in the adiabatic regime

f → 1, in the hydrodynamic regime

Finally, for purely adiabatic DWs, the relation 〈δv2
x〉 ' k2

⊥ρ2
s εl2

mix is recovered.

4.4.2 The Vorticity Flux: 〈ṽx∇2
⊥φ〉

In addition to Γn, we calculate the vorticity flux Π = 〈ṽx∇2
⊥φ̃〉. This flux relates to the

Reynolds force that controls the relation between turbulence and zonal flows via the Taylor

identity: −∂x〈ṽxṽy〉 = 〈ṽx∇2
⊥φ̃〉. The Taylor identity directly links the zonal flow momentum

conservation to potential enstrophy balance [DGH+08]. To calculate Π, we use the vorticity

equation and drop the neutral drag term, as it is significant only at the edge. The vorticity flux
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then follows as:

Π = ∑
m
−k2

mρ2
s c2

s |γm|
|ω|2

|φ̃2|
d2v̄y

dx2 +2Re
[kmρscsα̂

ω

(
ω?−ω

ω+ iα̂

)
|φ̃|2
]

=−χy
d〈∇2

⊥φ〉
dx

+Π
res

=−χy
d2v̄y

dx2 +Π
res

(4.16)

The first term of eq.(4.16) represents the diffusive flux, while the second term is the

residual stress, i.e., the non-diffusive flux driven by ∇n. The turbulent viscosity χy relating the

mean vorticity gradient d(∇v̄y)/dx to the vorticity flux Π is equal to:

χy = ∑
m

k2
mρ2

s c2
s |γm|

|ω|2
|φ̃2|= |γm|〈δv2

x〉
|ω|2

(4.17)

Here χy depends on the adiabaticity parameter, as both |γm| and |ω| are α̂-dependent.

The residual stress Πres resulting from coupling between the density and vorticity profiles

is equal to:

Π
res =

kmρscsωciα̂
[
(ωr)2(ω?−ωr)−|γm|2(ωr +ω?)−ω?α̂|γm|

]
|ω|2×|ω+ iα̂|2

〈φ̃2〉 (4.18)

Πres converts the driving particle flux into zonal (azimuthal) flow, and accelerates v̄y from

rest. Similar to the expression for χy, Πres varies as α̂ changes, affecting thereby the character

of the flow in both plasma limits. In the adiabatic limit, an examination of the expression

for Πres shows that the residual stress is inversely proportional to α̂, i.e., Πres
adia ∝ 1/α̂. In the

hydrodynamic limit however, the residual stress is directly proportional to
√

α̂, i.e. Πres
hydro ∝

√
α̂,

for α� 1.
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4.4.3 Fluxes and Reynolds Work in Adiabatic and Hydrodynamic Limits.

The expressions for the particle and vorticity flux can be simplified depending on the

value of α̂, i.e., depending on the electron plasma response.

In the adiabatic limit: (α̂� |ω|)

In this limit, α� 1. The growth rate |γm| ' 1/α� 1, and |ω|2 ' (ωr)2 =
[
ω?/(1+

k2
⊥ρ2

s )
]2

. The expressions for the particle and vorticity fluxes in the adiabatic limit are:

n0Γn =−
〈δv2

x〉
α̂

dn̄
dx
'−εl2

mix
α̂

dn̄
dx

(4.19a)

Π =−|γm|〈δv2
x〉

|ω|2
d2v̄y

dx2 −
ωci〈δv2

x〉
α̂

dn̄
dx

( k2
⊥ρ2

s

1+ k2
⊥ρ2

s

)
'−εl2

mix
α̂

d2v̄y

dx2 −
ωciεl2

mix
α̂

dn̄
dx

(4.19b)

Here 〈δv2
x〉adiabatic = fadiabaticεl2

mix = k2
⊥ρ2

s εl2
mix/(1+k2

⊥ρ2
s ). Scalings of the particle flux

Γn, the turbulent viscosity χy and the residual stress Πres in the adiabatic limit are:

Γn '−(εl2
mix/α̂)∇n̄ (4.20a)

χy ' εl2
mix/α̂ (4.20b)

Π
res '−(ωciεl2

mix/α̂)∇n̄ (4.20c)

Here, Γn, χy and Πres are all inversely proportional to α In addition, both Γn and Πres

are proportional to ∇n. The expression for the Reynolds power density PRe that represents the

power exerted by the turbulence on the flow v̄y, is obtained by multiplying the Reynolds force

FRe =−∂x〈ṽxṽy〉 by the azimuthal flow v̄y. In the adiabatic limit, PRe is equal to:

PRe =−∂x〈ṽxṽy〉v̄y '
(
− ε

α̂

d2v̄y

dx2 −
ωciε

α̂

dn̄
dx

)
v̄yl2

mix (4.21)
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In the (likely case of) absence of an external azimuthal momentum source, and for a

vanishing Reynolds power density PRe = 0, the mean vorticity gradient is independent of α̂ and

is given by:
d2v̄y

dx2 =
Πres

χy
=−ωci

dn̄
dx

(4.22)

In the hydrodynamic limit: (α̂� |ω|)

For ωr = |γm| =
√

ω?α̂/(2k2
⊥ρ2

s ), expressions for the particle and vorticity fluxes are

equal to:

n0Γn '−

√
k2
⊥ρ2

s

2kmρscs

√
|dn̄/dx|

α̂
〈δv2

x〉 ' −
εl2

mix√
α̂|ω?|

dn̄
dx

(4.23a)

Π =−|γm|〈δv2
x〉

|ω|2
d2v̄y

dx2 −
ωci〈δv2

x〉
kmρscs

.

√
k2
⊥ρ2

s

2

√
α̂

|ω?|

' − εl2
mix√

α̂|ω?|
d2v̄y

dx2 −
ωciε
√

α̂l2
mix

|ω?|3/2
dn̄
dx

(4.23b)

Here we used 〈δv2
x〉hydrodynamic = fhydrodynamicεl2

mix = εl2
mix/

[
|ω∗/α̂|+1

]
< εl2

mix. Scal-

ings of the turbulent fluxes are then:

Γn '−(εl2
mix/

√
α̂|ω?|)∇n̄ (4.24a)

χy ' εl2
mix/

√
α̂|∇n̄| (4.24b)

Π
res '−(ωciε

√
α̂l2

mix/|ω?|3/2)∇n̄ (4.24c)

While Γn and χy are inversely proportional to
√

α̂ in the hydrodynamic limit, the residual

stress Πres scales proportionally with
√

α̂. We note here that in the hydrodynamic limit, the

particle flux Γ
hydro
n is proportional to

√
|∇n̄|, and the residual stress Πres

hydro is proportional to

1/
√
|∇n̄|. Such superficially unusual scalings with |∇n̄| result from neglecting the contributions
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of the diffusive damping related to D0 and µ0 in the density and vorticity equations, while

performing the linear analysis. Obviously these should not be extrapolated to regimes of very

weak ∇n drive. In the hydrodynamic limit, the Reynolds power density is equal to:

PRe =−∂x〈ṽxṽy〉v̄y '
(
− ε√

α̂|∇n̄|
d2v̄y

dx2 −ωciε

√
α̂

|∇n̄|

)
v̄yl2

mix (4.25)

and the vorticity gradient for PRe = 0 is directly proportional to α̂ and is equal to:

d2v̄y

dx2 =−ωciα̂

|ω?|
dn̄
dx

(4.26)

4.5 Simplification by Slaving: A Predator-Prey Model

When the eddy turnover time τc = lmix/ṽx is smaller than the particle confinement time

[D∇2n̄/n̄]−1, the model can be reduced to a 2-field predator-prey model that evolves the preys (n̄)

and predators (v̄y) according to eqs.(4.11a-4.11b). Clearly, these predators do not exist without

the prey. A simplification of the previous model is achieved by slaving the expression for ε to

the mean profiles, and solving the equations for n̄ and v̄y. For slaved turbulence, both potential

enstrophy spreading and potential enstrophy production are dropped from the ε equation because

the eddy turnover time is shorter than the confinement time. The potential enstrophy equation

then reduces to the balance:

− (Γn−Π)(∂xn−∂xu)− ε
3/2 = 0 (4.27)

In the adiabatic limit: using eqs.(4.20a-4.20c), the expression for the potential enstrophy

reduces to:
√

εadia =
ω2

cil
2
mix

α̂

[(dn
dx
− du

dx

)2
−ωci

dn
dx

(dn
dx
− du

dx

)]
(4.28)
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The second term on the RHS of eq.(4.28) arises from the contribution of the residual stress Πres
adia.

For a constant mixing length,
√

εadia is proportional to 1/α̂.

In the hydrodynamic limit: the expression for the turbulent potential enstrophy is obtained

from eqs.(4.24a-4.24c) as:

√
εhydro =

ω2
cil

2
mix√
|ω?|α̂

(dn
dx
− du

dx

)2
∝

1√
α̂

(4.29)

Here
√

εhydro is proportional to 1/
√

α̂. Note that in the hydrodynamic limit, the contribu-

tion of the residual stress to the expression for ε vanishes, as Πres
hydro ∝

√
α̂→ 0. A comparison of

eq.(4.28) and eq.(4.29) shows that, in the adiabatic limit, the potential enstrophy is low, while ε is

enhanced in the hydrodynamic limit. This is one reason why mesoscocpic zonal flows are strong

in the former case, while a state of enhanced turbulence dominates in the hydrodynamic limit. In

summary, the equations of the simplified model in the adiabatic and hydrodynamic limits are:

∂tn =−∂xΓn +D0∇
2n (4.30a)

∂tu =−∂xΠ+µ0∇
2u (4.30b)

The expressions for the particle and vorticity fluxes are:

Γ
adia
n =−εl2

mix
α̂

dn
dx

(4.31a)

Π
adia =−εl2

mix
α̂

du
dx
− ωciεl2

mix
α̂

dn
dx

(4.31b)

√
εadia =

l2
mix
α̂

[(dn
dx
− du

dx

)2
−ωci

dn
dx

(dn
dx
− du

dx

)]
(4.31c)
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in the adiabatic limit, and:

Γ
hydro
n =− εl2

mix√
α̂|ω?|

dn
dx

(4.32a)

Π
hydro =− εl2

mix√
α̂|dn/dx|

du
dx
− ωciε

√
α̂l2

mix

|ω?|3/2
dn
dx

(4.32b)

√
εhydro =

l2
mix√
|ω?|α̂

(dn
dx
− du

dx

)2
(4.32c)

in the hydrodynamic limit.

An examination of the turbulence suppression criterion RDT , previously introduced in

ref. [HDAT17] as:

RDT =

∫
∂x〈ṽx∇2φ̃〉∇v̄ydx
−
∫
〈ñṽx〉dx

, (4.33)

shows that RDT decreases in the hydrodynamic limit. Here RDT is interpreted as the ratio of the

turbulent enstrophy destruction rate 1/τtrans f er due to coupling to the zonal flow through the

vorticity flux or the Reynolds stress, as compared the turbulent enstrophy production rate 1/τrelax

due to the relaxation of the density gradient. In the hydrodynamic limit, 1/τtrans f er decreases

because zonal flow production weakens.

4.6 Fate of Zonal Flows in the Hydrodynamic Limit α� 1

Numerical analyses of bifurcation phenomena in the resistive DW turbulence of the HW

model show an enhancement of turbulence and a collapse of the zonal flows for hydrodynamic

plasma electrons [NBD07]. As α decreases, the ratio of the kinetic energy of the zonal flow (F ≡

1/2
∫
(∂〈φ〉/∂x)2dxdy) to the total kinetic energy (Ek ≡ 1/2

∫
|∇φ|2dxdy) decreases, showing a

transition of the plasma to a turbulence dominated state. In other words, when α drops below

unity, zonal flows collapse and turbulent fluctuations are enhanced. To explain these observations,
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we present a series of arguments that illustrate the sequence of events leading to the enhancement

of turbulence and to the collapse of the shear layer in the hydrodynamic electron limit.

4.6.1 Physical Picture: Energy-Momentum Flux Physics

A useful insight into why zonal flow production is weaker in the hydrodynamic regime

than in the adiabatic limit may be gleaned from the wave dispersion relation. In the adiabatic

regime, the standard drift wave dispersion relation directly links radial propagation (related to

group velocity) to Reynolds stress 〈ṽxṽy〉. In this limit, |ωr| � |γm|, suggesting the range of wave

propagation is large. The expression for the Reynolds stress is:

〈ṽxṽy〉= ∑
k

ikrikm
c2

B2 |φ̃k|2 =−∑
k

krkm
c2

B2 |φ̃k|2 (4.34)

where kr and km are the radial and azimuthal wavenumbers, respectively. The wave energy

density flux 〈vgrε〉 is obtained by multiplying the group velocity vgr =−2ρ2
s krkmvd/(1+k2

⊥ρ2
s )

2

by the energy:

〈vgrε〉= ∑
k
−2ρ

2
s

krkmvd

(1+ k2
⊥ρ2

s )
2
× (1+ k2

⊥ρ
2
s )
(eφ̃

Te

)2 ρ2
s c2

s
2

= ∑
k
−ρ

4
s c2

s

(eφ̃

Te

)2 krkmvd

1+ k2
⊥ρ2

s

With the electron diamagnetic velocity vd < 0 and the group velocity vgr > 0 (by causality

for r > r0), the correlator krkm must be positive. The momentum flux is thus 〈ṽxṽy〉< 0, while

the energy flux is 〈vgrε〉> 0. The causality relation implies a counter flow spin-up, suggesting

that for outgoing wave energy flux, there exists an incoming wave momentum flux, as shown in

Fig.4.1.

In the hydrodynamic regime, however, the link of wave energy flux to Reynolds stress is
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Energy flux outward from excitation

Perturbation

Momentum flux toward excitation

Figure 4.1: Outgoing wave energy flux and incoming momentum flux from/to perturbation.

broken. The momentum flux is still given by eq.(4.34), but the group velocity vgr is:

vgr =
∂ωr

hydro

∂kr
=− kr

k2
⊥

ω
r
hydro

Note that here that causality has no implication for 〈kmkr〉, and thus for the momentum

flux, since vgr is independent of km (the wavenumber in the direction of symmetry). In the

hydrodynamic limit, there is no causality constraint on eddy tilting, so the familiar tilt and

stretch mechanism in not effective. Moreover, the waves have |ωr|= |γm|, suggesting limited

propagation.

4.6.2 Scalings of Transport Fluxes with α

When the adiabaticity parameter α decreases below unity, the system passes from the

adiabatic to the hydrodynamic regime. According to the scalings of eqs.(4.20) and eqs.(4.24),

the particle flux scaling changes from Γadia ∝ 1/α with α > 1 to Γhydro ∝
√

1/α with α < 1.

The turbulent diffusivity χy that relates the vorticity flux to the vorticity gradient also exhibits

the same scaling. The residual stress on the other hand, drops from Πres
adia ∝ 1/α to Πres

hydro ∝
√

α.

Scalings of the transport fluxes are summarized in table (4.1). An interpretation of the analytical

results shows that the Reynolds power (which generates the zonal flow underlying suppression)

109



Plasma Response Adiabatic Hydrodynamic
α� 1 α� 1

Turbulent enstrophy
√

ε
√

ε ∝ 1/α
√

ε ∝ 1/
√

α

Particle Flux eq.(4.20a) eq.(4.24a)

Γ Γ ∝ 1/α Γ ∝ 1/
√

α

Turbulent Viscosity eq.(4.20b) eq.(4.24b)

χy χy ∝ 1/α χy ∝ 1/
√

α

Residual Stress eq.(4.20c) eq.(4.24c)

Πres Πres ∝−1/α Πres ∝−
√

α

Πres

χy
= (ωci∇n̄)×

(
α

|ω?|

)0 (
α

|ω?|

)
Table 4.1: Scalings of the turbulent enstrophy ε, transport fluxes and

vorticity gradient with α in both adiabatic and hydrodynamic regimes.

drops with α. In the absence of external momentum sources and for turbulence, the diffusive

vorticity flux stress balances the residual stress. The mean vorticity gradient shown in Fig.4.2

then equals:

−χy
d2v̄y

dx2 +Π
res = 0 =⇒

d∇v̄y

dx
=

Πres

χy
(4.36)

In the adiabatic limit, the ratio between the residual stress and the turbulent viscosity

is independent of α. In the hydrodynamic limit, Πres/χy is directly proportional to α. As the

plasma transitions from an adiabatic to a hydrodynamic regime, the residual stress Πres weakens,

while the turbulent diffusivity χy increases. As a result, the ratio Πres/χy - which indicates the

plasma capacity to produce mesoscopic flows - drops. When the plasma production of zonal
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Figure 4.2: A jump in the flow shear (in blue) over a scale length D is equivalent to a vorticity
gradient on that scale.

flows drops, turbulence is not effectively regulated and anomalous transport increases.

4.6.3 Potential Vorticity Mixing and Zonal Shear Collapse

It is useful to examine the flow generation in the adiabatic and hydrodynamic regimes

from the perspective of potential vorticity (PV) dynamics. The key concept here is that zonal

flows are formed as a consequence of PV mixing [Hor99], which in a system with mean

inhomogeneity, necessitates trade-offs between mean and fluctuating PV. The classic example

follows from the observation that for a rotating flow, the total vorticity: ~ω +2~Ω is frozen in to the

fluid. If ~Ω = ~Ω(x) changes (due, say, to a variation in the axis of rotation through the plane of

motion), a displacement of a mean vortex element in latitude forces a conversion of planetary

vorticity (≈ 2~Ω) to local flow vorticity (≈~ω), in order to conserve PV. This produces a change

in vorticity, while conserving total PV. This reasoning is the underpinning of the β plane model,
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Figure 4.3: Analogy of PV conservation in geostrophic waves and drift waves: (a) change in
local vorticity ~ω of a fluid element between θ1 and θ2 forces a flow generation, (b) density
variation along the ∇n line from position 1 to position 2 triggers a change in the flow (i.e.,

vorticity) so to conserve q.

for which the potential vorticity:

q = ∇
2
⊥φ+βy

is conserved. That statement yields the familiar governing equation which is:

∂t∇
2
⊥φ+∇⊥φ× ẑ.∇⊥(∇2

⊥φ) =−βVy (4.37)

In the Hasegawa-Wakatani system, the conserved PV is: ln(n)−∇2φ which may be

expanded to:

q = ln(n0(x))+
ñ
n0
−ρ

2
s ∇

2
( |e|φ

Te

)
Since ñ/n0 = |e|φ̃/Te +h, it follows that:

q = ln(n0(x))+
|e|φ̃
Te

+h−ρ
2
s ∇

2
( |e|φ

Te

)

so that Γq, the PV flux, is equal to:

Γq = 〈ṽxh〉−ρ
2
s

〈
ṽx∇

2
⊥

( |e|φ̃
Te

)〉
(4.38)
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Observe that the adiabatic part of the density perturbation makes no contribution to

the net PV flux or mixing. In the HW system, the displacement of a mean density element

(analogous to the displacement of an element of planetary vorticity) induces a particle flux and

a Reynolds force (from the vorticity flux), which drives a zonal flow. The latter follows from

Taylor identity, assuming poloidal symmetry. Now in the adiabatic limit, density and vorticity

fluctuations are tightly coupled. Indeed, both particle and vorticity fluctuations are proportional

to α� 1. Thus, it is not surprising that both particle flux and residual stress (i.e., the non-viscous

component of the Reynolds force) scale identically (∼ 1/α) and so zonal flows are robust. Both

the particle flux and the vorticity flux support the PV flux. However, in the hydrodynamic regime,

coupling of particle and PV fluctuations is weak (∼ O(α) with α < 1), so the respective fluxes

can decouple. The PV flux is supported primarily by the particle flux Γn ∼ 1/
√

α, while the

residual stress Πres ∼
√

α is insignificant, with α� 1. Thus the non-diffusive Reynolds force

drops with α, and so does flow production. Finally, the zonal vorticity gradient, an indication of

the flow production, is proportional to α, suggesting that zonal flows and turbulence regulation

are weak in the hydrodynamic regime. This is consistent with the findings of several numerical

simulations, which note that zonal flows are robust for adiabatic electrons, but do not appear

in the hydrodynamic regime [CBS95, KT13, NBD07]. However, PV mixing (resulting from

convective cell instability) persists in the hydrodynamic regime, but it is supported primarily by

the particle flux.

4.7 Relevance to Density Limit nG

The Greenwald density limit nG is an operational bound on the plasma density and

pressure. It represents the maximum attainable density before the plasma develops strong

disruptions and MHD activity [GTW+88, Gre02]. Experiments in various toroidal devices

including a recent experiment in the HL-2A tokamak [HTD+18], indicate a reduction of the edge
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shear flow layer and a strong enhancement of turbulent particle transport as n̄→ nG. The shearing

rate of the mean E×B flow ωsh = ∇vθ drops, and the turbulent Reynolds power collapses in

those ohmic L-mode discharges approaching nG. In addition, both the core plasma density and

the edge turbulent particle flux 〈ṽxñ〉 increase with n̄. Meanwhile the cross-correlation between

the velocity and the density fluctuations grows substantially inside the separatrix. The core

plasma temperature Te on the other hand, decreases with n̄. Most importantly, the adiabaticity

parameter α drops from 3 to 0.5 as n̄ approaches nG [HTD+18]. Note that in this particular

HL-2A experiment, the plasma β = 2µ0 pe/B2 was very low, in the range: 0.01 < β < 0.02.

The aforementioned experimental findings can be interpreted according to the scalings

of Section 4.6. When the local edge plasma density increases, the adiabaticity parameter α

(∝ 1/n̄) decreases below unity, thereby triggering a plasma transition from the adiabatic to

the hydrodynamic drift wave regime. According to the scalings of the previous section, this

transition is associated with an increase in the turbulent particle flux and turbulence. Consistent

with this, the mean vorticity gradient d∇v̄y/dx = Πres/χy drops. The production of zonal flows

thus declines, so turbulence is no longer regulated effectively. Particle transport increases. So

does the thermal diffusivity, as particle and heat losses are comparable for the case of collisional

drift waves. Cooling of the edge plasma is triggered. For constant pressure pe, this leads to a

further increase in the density n̄. A feedback loop between n̄ and Te is thus formed when α drops

below unity. The provided scenario is summarized in fig.(4.4).

The uniqueness of this interpretation relies in considering the decrease of α below unity

as the trigger for the drop in zonal flow production. Such interpretation does not require appeal

to zonal flow damping effects, which are associated with collisionality, charge exchange etc.

Most importantly, in contrast to ref. [RDZ98], which postulates the development of turbulence as

due to yet another linear instability - such as the resistive ballooning mode - the current approach

explains how variations of α affect the mean and turbulent plasma profiles within the context

of generic drift wave theory. This mechanism is applicable to plasmas at low β, like that of the
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HL-2A experiment [HTD+18], where resistive ballooning effects are not relevant.

4.8 Conclusion

This paper presents a theory of the collapse of a zonal shear layer in the hydrodynamic

electron limit. It elucidates the evolution of the plasma flow and turbulence, as the electron

response passes from the adiabatic to the hydrodynamic limit. In particular, the paper describes

the variation of the turbulent fluxes and mean profiles with the adiabaticity parameter α =

k2
z v2

th/(νei|ω|). The key result of this paper is its explanation of why the zonal shear layer

weakens and disappears when the adiabaticity parameter drops below unity, and so allows

an enhanced level of turbulence. Moreover, the paper highlights the importance of the ZF

collapse in the hydrodynamic limit (α < 1) as a key parameter and a general scenario for

turbulence enhancement, even for plasmas with low β. We give a theoretical interpretation of

the experimental and numerical results obtained in the hydrodynamic plasma limit. Findings

of this paper are applicable to low β density limit experiments, where a weakening of the edge

shear layer and a degradation of the thermal confinement are obtained when the plasma density

increases sufficiently so that α < 1.

The paper presents a 1D reduced model that self-consistently describes the spatiotemporal

evolution of the mean density n̄, the azimuthal flow v̄y, as well as the potential enstrophy

ε = 〈(ñ− ũ)2〉/2. The model is derived from the Hasegawa-Wakatani system for turbulent drift

waves, and exploits conservation of PV to constrain the relation between drift waves and zonal

flows. Key results of this paper are:

1. The particle flux Γn and the vorticity flux Π are calculated as: Γn = −D∇n̄ and Π =

−χy∇2v̄y +Πres. The vorticity flux is related to the Reynolds force via the Taylor identity.

Quasi-linear analysis shows that the scalings of Γn and Π with α change as the plasma

passes from the adiabatic to the hydrodynamic limit. These scalings are summarized in
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table (4.1), and reveal the enhancement of the particle flux Γn and the turbulent viscosity

χy as α decreases. The residual stress Πres on the other hand drops with α for α� 1 as

Πres
hydro ∝

√
α.

2. Variations in the turbulent fluxes are responsible for the change in the mesoscopic flow

dynamics. When α drops, the mean vorticity gradient d(∇v̄y)/dx = Πres/χy - which

characterizes the zonal flow and the state of turbulence in the plasma - also drops. In

the adiabatic limit, the mean vorticity gradient is independent of α. However, in the

hydrodynamic limit, Πres/χy is proportional to α, indicating weakened production of

zonal flows for lower α. As the production of zonal flows decreases, the mechanism of

self-regulation fails, and the turbulence intensity rises.

3. The findings of this paper illuminate the physics of the density limit. When the plasma

density increases, the adiabaticity parameter decreases (α ∝ 1/n̄). According to the

scalings derived in Section 4.6, a decrease in the mean vorticity gradient results when n̄

increases such that α� 1. In this case, the efficiency of the zonal flow production drops.

Thermal and particle losses thus increase, and the cross phase between the velocity and the

density fluctuations also increases [HTD+18]. Cooling of the plasma edge is then triggered

causing Te to drop further. Feedback between n̄ and Te is triggered. This mechanism does

not invoke additional linear instabilities, such as resistive ballooning modes (in contrast

to ref. [RDZ98]). This is particularly significant for discharges at low β, such as the

experiment in ref. [HTD+18].

4. Important results in this paper are the expressions for the fluxes Γ and Π. These expressions

can be used to model the gradual plasma transition from the adiabatic to the hydrodynamic

limit. While previous work simply presented numerical observations of the enhancement

of turbulence [KT13, NBD07], as well as confirmation of the various power scaling laws of

the turbulence energies in the hydrodynamic limit [GG15], no papers covering a complete
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transition from one limit to the other are presented. The underlying physics was not

explained.

5. The paper gives a simple physical picture of why ZF production drops in the hydrodynamic

electron regime. There the dispersion relation is ω
hydro
r =

√
ω?α̂/(2k2

⊥ρ2
s ), so vgr =

−krω
r
hydro/k2

⊥. These are in contrast to the adiabatic case, for which ωadia
r = ω?(1+

k2
⊥ρ2

s )
−1 and vgr = −2ρ2

s krkmvd/(1+ k2
⊥ρ2

s )
2. Thus, in the hydrodynamic regime, the

condition of outgoing waves (vgr > 0) does not constrain the Reynolds stress 〈ṽxṽy〉 '

〈krkm〉, thus breaking the link between wave propagation and Reynolds stress. This link is

fundamental to ZF production by DWs.

6. The paper explains why turbulence is enhanced in the hydrodynamic limit, and ascertains

the physics of the Reynolds stress in regulating the drift wave - zonal flow relation. We

show that PV mixing in the hydrodynamic electron limit is supported by the particle flux,

i.e., 〈ṽxq̃〉= 〈ṽxh〉−〈ṽx∇2φ̃〉 ' 〈ṽxh〉. The vorticity flux drops and the particle flux rises

with α in this regime. This explains why zonal flow formation is weak in the hydrodynamic

regime.

Future work includes numerical investigation of the slow evolution of a plasma transition

from one limit to the other. Moreover, it would be instructive to investigate experimentally

the causality relation between the drop in α and the drop in ZF production. In particular, it

is useful to determine what occurs first. This would probe the predictions of the theory. One

suggestion would be to verify the decrease of the calculated total Reynolds work, as n̄/nG is

raised. When the total Reynolds work decreases, energy transfer to the mean flow structures

drops, so the fluctuations should grow. Another possible experiment consists of increasing the

plasma density n̄ and temperature Te, such that the adiabaticity parameter α ∝ T 5/2
e /n̄ remains

constant (assuming the variations of the Coulomb logarithm are negligible). According to the

theory presented above, no collapse of the zonal shear layer should be observed, simply because
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α does not change. One can also investigate the contribution of collisional damping effects

by comparing the response with and without the damping factor. This is particularly useful to

confirm the pivotal role of the Reynolds stress in the collapse of the zonal shear layer at the

density limit. Additional work also should include investigation of the role of high edge ∇p and

high β values in H-modes on the enhancement of turbulence and profile evolution in density

limit experiments.
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Figure 4.4: Profile evolution in the hydrodynamic limit. The diagram shows a feedback loop
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from a state 1© (in blue) to a state 2© (in red) are shown on the left.
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Chapter 5

SUMMARY AND FUTURE

DIRECTIONS

In this dissertation, the relationship between the microscopic drift wave turbulence and the

macroscopic zonal (perpendicular) and axial (parallel) flows was investigated. The dissertation

included a presentation of two analytical reduced models, as well as some simulation results

that validate and verify the previously published experimental data obtained from CSDX linear

plasma. In addition, one of these models explains the collapse of the zonal shear layer in the

plasma hydrodynamic electron limit closely related to the density limit experiments performed

on HL-2A tokamak. The models formulated in this dissertation are 1D (in radius) reduced

models that describe the physics of a multi-scale plasma. Such models are appropriate and

essential to understand the physics behind the feedback loops that exist between the microscopic

level and the macroscopic level in a multi-scale plasma. Moreover, reduced models generally

provide a better and more elaborate physical interpretation of the experimental results than

Direct Numerical Simulations (DNS), which have a high computational cost, and often fail

to provide a detailed insight into the actual physics of the plasma. Most importantly, reduced

models such as the ones presented in this dissertation can be easily coupled to other models
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in the framework of future Plasma Material Interaction (PMI) studies. Such models provide a

useful new intermediate approach for the simulation of self-consistent evolution edge and SOL

plasma profiles, transverse and parallel flows and turbulence, and would allow the study of main

plasma and impurity dynamics across timescales ranging from a few turbulent correlation times

up to system equilibrium timescales. When modified to include toroidal and open-field line

effects, and extended to a 2D geometry along the magnetic field and binormal directions, the

proposed models bridge the gap between the existing time averaged fluid codes of the edge and

SOL region of confinement device, and fully turbulent direct numerical simulations. Here DNS

self-consistently capture the evolution of the plasma profile and its flow, but are computationally

expensive to use for long time scales. Such a new capability might be useful to study the

entrainment and transport of eroded wall impurities in flowing edge and SOL plasma, and the

long-time migration of these materials in the SOL and divertor regions of confinement devices.

This dissertation sought to investigate three topics:

1. How are axial flows generated in CSDX plasma, and is there a direct relation between the

axial and the perpendicular flow dynamics in the adiabatic plasma of CSDX? Moreover,

what is the analytical framework that describes the energy transfer between the flows and

turbulence in CSDX? (Chapter 2)

2. What is the appropriate analytical model that describes the turbulent potential energy

exchange between drift wave turbulence and zonal flows in CSDX plasma? (Chapter 3)

3. How is the predator/prey relation between drift waves and zonal flows previously discussed

in Chapter 2 and 3 affected in the hydrodynamic electron limit? (Chapter 4)

The conclusions reached after investigating each topic are presented at the end of each chapter.

In summary, the dissertation presents a comprehensive description of the theory behind the drift

wave turbulence and both zonal and axial flows. The presented numerical results highlight the

crucial role the Reynolds stresses play in regulating turbulence. Not only does this dissertation
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formulate appropriate reduced models that describe the interactions between the mean profiles

and the fluctuations in the adiabatic electron limit, but also extends this description to the

hydrodynamic electron limit. The latter describes the behavior and dynamics of a plasma

characterized by a high density and low temperature. The constants introduced in Chapter 2

(σV T ) and Chapter 3 (RDT ) are novel criteria that describe parallel to perpendicular flow coupling,

as well as suppression of drift wave turbulence by the zonal flows.

In addition to what was presented in this dissertation, recommended future work includes:

1. Performing numerical simulations of the comprehensive model presented in Chapter 2,

and analyzing the numerical data in order to pinpoint the parallel to perpendicular flow

coupling in CSDX. It is thus recommended to calculate a numerical value for the coupling

constant σV T from the simulation profiles, and compare it to the value recovered from the

experimental data. In addition, it is also useful to perform numerical studies for the slaved

2-field model also presented in Chapter 2.

2. Adding an axial momentum source to the model of Chapter 2, in an attempt to mimic the

torque exerted on the plasma in toroidal devices. Adding an axial momentum source to the

model could be used to compare the relative magnitude of the intrinsic parallel flows to

the externally imposed ones. This is particularly helpful for studying the scaling of the

parallel intrinsic flow with the plasma characteristics in future plasma devices.

3. Simulating a full and complete plasma transition from the adiabatic to the hydrodynamic

limit. Such step is essential to characterize the changes in the mean and turbulent profiles

of the plasma. The numerical results should be ultimately compared to the experimental

data retrieved from various toroidal devices.

4. A study of the evolution of the plasma temperature, in addition to the variations in density

and flow as presented in Chapter 4. Accounting for temperature variations aims at exploring

the predator/prey relation in H-mode hydrodynamic limit plasmas.
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5. Accounting for the effects of both charge-exchange reactions, as well as the ion-neutral

collisions in a hydrodynamic plasma. This step aims at studying the importance of

collisional zonal flow damping from a numerical perspective.
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