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Abstract 

Fast and efficient correction of speech errors is essential to 
effective communication. Yet, despite several accounts of error 
detection, no computational account exists to explain how 
humans repair their speech errors. This paper proposes the first 
such model. We demonstrate that a simple automatic 
mechanism can form the basis of most repairs. We then 
demonstrate that augmenting the model with a conflict-based 
monitoring-control loop allows it to capture more nuanced 
findings in human speech error repair data.  

Keywords: speech error; repair; computational model; 
language production 

Introduction 

The ability to detect and repair errors in one’s own speech is 

a key aspect of successful communication. Several 

computational models exist to explain the detection process 

(Hartsuiker & Kolk, 2001; Hickok, 2012; Nozari et al., 2011; 

Tourville & Guenther, 2011; see Nozari, 2020, for a review), 

but, to date, no computational model has been implemented 

to explain the repair process. Empirical data on speech error 

repairs are relatively sparse, but they point to important 

characteristics that must be considered in a model of repair: 

(a) repairs can be performed extremely quickly. The gap 

between stopping an error and initiating a repair (e.g., “v-

horizontal”; Levelt, 1983) can be as short as zero ms. (b) 

Repairs are not always accompanied by full consciousness 

over the error, an explicit intention to repair, or a clear 

knowledge of the target. This is most obvious in young 

children and individuals with aphasia (Clark, 1978; Nozari et 

al., 2011). These characteristics are incompatible with 

proposals that view the repair process as a deliberate, stop 

and restart-from-scratch process, and instead point to a fast 

and largely automatic process that quickly replaces the error 

with an available repair without a full restart (Nooteboom & 

Quené, 2019; Nozari et al., 2019). 

This paper proposes the first computational account of such 

a process. The main idea is that the system leverages the co-

activation of multiple responses, a natural property of the 

production system, to quickly replace an error with an 

available repair, by monitoring the activation dynamics for a 

brief period after response selection. Simulation I extends the 

two-step model of word production to a time-based model 

that has the right temporal properties for modeling such a 

process. Simulation II introduces the basic model of repair 

and tests its fundamental assumptions. Simulation III shows 

the limitation of the basic model in capturing the adaptive 

nature of repairs. Finally, Simulation IV proposes the 

conflict-based repair model augmented with a monitoring-

control loop. 

Model description 

The model is based on the two-step interactive activation 

model (Foygel & Dell, 2000). It is a neural network with three 

layers of representation (semantic features, lexical items, and 

phonemes), and it maps semantics onto phonology to produce 

a word (e.g., /kæt/; Fig. 1). Naming in the model has two 

steps. In the first step (semantic-lexical mapping), an input 

vector activates the semantic features of a concept (10 units 

per concept, each receiving 10 units of activation). Activation 

spreads in a bidirectional way in the network, and each node’s 

activation is updated in parallel according to Eq. 1 

𝐴(𝑗, 𝑡 + 1) = (1 − 𝑑)𝐴(𝑗, 𝑡) + ∑ 𝑤𝑖𝑗 ∙ 𝐴(𝑖, 𝑡)

𝑖

 

+ 𝐴(𝑗, 𝑡)𝑁(0, 𝑎) + 𝑁(0, 𝑖)                                                          Eq. 1 

 

where A( j, t + 1), the activation of node j at time t+1, is a 

sum of the activation of node j at time t after decaying at rate 

d, the input that node j receives from each node i multiplied 

by the respective connection weight 𝑤𝑖𝑗, and two sources of 

noise (intrinsic noise and activation-based noise, drawn from 

normal distributions with means 0 and standard deviations i 

and a, respectively). After eight time steps, the most highly 

activated node in the lexical layer is selected. The second step 

(lexical-phonological mapping) starts by giving a jolt of 100 

units to the selected lexical node. Activation spreads for eight 

more time steps in the manner described above. The process 

concludes by selecting the most highly activated nodes in the 

phoneme layer for each syllabic position (i.e., onset, vowel, 

and coda, for a CVC like “/kæt/”). Two key parameters are s 

and p, the strengths of the connections between semantic 

features and lexical items, and lexical items and phonemes, 

respectively. The model has been highly successful in 

capturing the various patterns of speech errors in neurotypical 

adults, children, and individuals with brain damage (Budd et 

al., 2011; Dell et al., 1997, 2013; Nozari et al., 2010). 

 

The conflict-based model of error detection. An extension 

of the two-step model, the conflict-based model of error 

detection, has successfully shown that the information 

available during production can be used as a signal for 
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detecting speech errors (Nozari et al., 2011). This model is 

based on a key component of the two-step model: throughout 

the process, the spread of activation activates not only the 

target, but also related representations through their shared 

connections (e.g., “dog” and “cat”; Fig. 1). The conflict-

based model posits that higher levels of conflict are 

associated with higher probabilities of an error, a signal that 

the monitoring system uses to detect errors, sometimes before 

they become overt. Predictions of the conflict-based account 

have found support in children, individuals with brain 

damage, and L2 speakers (Hanley et al., 2016; Nozari et al., 

2011, 2019). The current paper will extend the conflict-based 

model to explain not only error detection but also the 

mechanism underlying error repairs. 

 

 
 

Figure 1. Schematic of the two-step interactive model of 

word production. “cat” is the target of the current trial. 

Simulation I (a, b): the time-based model 

The goal of Simulation I is to create a time-based version of 

the two-step model (Ia), and to determine that conflict 

generated during its processing can reliably distinguish 

between correct and error trials at the lexical layer (Ib).  

 

Simulation Ia. Despite its success in explaining error 

patterns, the two-step model does not address the temporal 

dynamics of the production process. This is clear in Figure 

2a. Activation starts at very high levels and quickly drops 

over time. In reality, neural activation starts at low levels and 

gradually builds up as input processing converges on a given 

representation (a process modeled as evidence accumulation 

in drift diffusion or similar models). Since the repair process 

unfolds over time, it is critical that the underlying model is 

more realistic in capturing the temporal dynamics of word 

production. This can be achieved by a re-tuning of the model 

parameters. In our simulations, we also clamped the 

activation of the input, as the data simulated under 

Simulations III and IV came from tasks in which visual 

stimuli for naming are visible to the participants during the 

entire production time. Table 1 demonstrates the parameters 

in the original and time-based versions of the model. 

Equation 2 shows the new activation rule,  

𝐴(𝑗, 𝑡 + 1) = (1 − 𝑑)𝐴(𝑗, 𝑡) + ∑ 𝑤𝑖𝑗 ∙ 𝐴(𝑖, 𝑡)

𝑖

 

+ ∑ 𝑤𝑖𝑗 ∙ 𝑓𝑋𝑖

𝑖

+ 𝐴(𝑗, 𝑡)𝑁(0, 𝑎) + 𝑁(0, 𝑖)   Eq. 2 

where clamping is implemented as ∑ 𝑤𝑖𝑗 ∙ 𝑓𝑋𝑖𝑖 , where 𝑋 is 

the binary input feature vector (𝑋𝑖 = 1 signifies feature 𝑖 is 

present) and f is the input feature strength. Twenty batches of 

10,000 trials were simulated using the original and time-

based models. 

 

Results of simulation Ia. As shown in Figure 2b, activation 

starts at zero and grows over time in the time-based model, 

with the activation of the target gaining over competitors with 

more time. The mean values and SDs for correct, semantic, 

and other errors were 96.93 ±0.13%, 2.76% ±0.15, and 0.31% 

±0.03% for the original model, and 97.81% ±0.16%, 2.04% 

±0.14%, and 0.15% ±0.06% for the time-based model, 

showing largely comparable response profiles across the two 

models, despite the changed temporal dynamics. Since this 

project targets lexical repairs and our proposed mechanism is 

focused on the lexical layer, all models past this point will 

only include the first step of mapping (semantic-lexical). 

“correct” and “error” will correspondingly refer to the target 

and semantic errors in the lexical layer (almost all of the 

errors at this stage in a normal production system). 

 

Table 1: Original and time-based model parameters. See text 

for parameter descriptions. 

 

Parameter Original Time-based 

s weight 0.04 0.0005 

p weight 0.04 0.0005 

d 0.6 0.05 

f 10 0.1 

i 0.01 0.003 

a 0.16 0.16 

t 8 20 

 

 
 

Figure 2. Trajectories of mean lexical activation (±SD) over 

time for correct, semantic, and other error types in the 

original (a) and time-based model (b). 

 

Simulation Ib. Next, we tested whether conflict in the time-

based model could reasonably distinguish between error and 

correct trials. Two measures of conflict were tested. (1) Point 

conflict compares the activations of the two most activated 

nodes at the end of the semantic-lexical mapping process, i.e., 

the lexical selection point (Eq. 3).  

Point conflict = 𝑙𝑛 (
1

|𝐴(cat,𝑇)−𝐴(dog,𝑇)|
)                             Eq. 3 

 

(2) The second conflict measure, Integral conflict, measures 

the activation difference between the target and semantic 

competitor nodes throughout the entire process (Eq. 4).  

(a)  riginal model (b) Time based model
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Integral conflict = 𝑙𝑛 (
1

∫|𝐴(cat,𝑡)−𝐴(dog,𝑡)|𝑑𝑡
)                    Eq. 4 

 

These two measures were calculated for each of 50,000 

trials simulated with the time-based model with parameters 

in Table 1. For each measure, values were divided into two 

distributions (correct, error) based on the lexical response at 

time t20 (Fig. 3). The sensitivity of the two measures of 

conflict in distinguishing between error and correct trials was 

compared using Cohen’s d, calculated as the difference 

between average conflict in error (𝑚𝑒) and correct trials (𝑚𝑐) 

scaled by the pooled standard deviation (𝑠𝑝) of the two 

distributions (Eq. 5).  

𝑑 =  
𝑚𝑒−𝑚𝑐

𝑠𝑝
, 𝑠𝑝 = √

(𝑛𝑐−1)𝑠𝑐
2+(𝑛𝑒−1)𝑠𝑒

2

𝑛𝑐+𝑛𝑒
              Eq. 5 

where 𝑛𝑐 and 𝑛𝑒 respectively denote the number of error 

and correct trials and 𝑠𝑐  and 𝑠𝑒  respectively denote the  

standard deviation of conflict in correct and error trials. 

 

Results of simulation Ib. Figure 3 shows the results of 

Simulation Ib. Cohen’s d for Point conflict (Fig. 3a) and 

Integral conflict (Fig. 3b) was 2.6 and 1.5, respectively, 

suggesting the former to be a more sensitive measure for 

distinguishing errors from correct responses. For this reason, 

we used the point conflict measure for gauging conflict in the 

later sections of this study. 

 

 
 

Figure 3: Density histograms of conflict measures for 

correct vs. error trials in the time-based model (scaled so 

area under each curve is 1). Point conflict (a) and Integral 

conflict (b). The vertical line shows a possible placement of 

the criterion or c, as a cutoff point above which a trial is 

determined to be an error. 

 

Discussion. Simulation I showed that the time-based version 

of the two-step model preserves its original qualities, 

including conflict as a strong signal discriminating between 

correct and error trials, while better capturing activation 

dynamics. It thus provides a suitable basic model for 

implementing the repair process in Simulation II.  

Simulation II: the basic model of repair 

Simulation II implements the basic conflict-based model of 

repairs. The proposed mechanism is a “respond and check” 

process: at a given time step (t20) the model produces a 

response by selecting the most highly activated node (this is 

similar to a deadline for response generation). Processing, 

however, is allowed to continue for a little while longer (until 

t25), at which time the model “checks” the response by re-

examining which node has the highest activation. If it is the 

same as the produced response, no action is taken. If, on the 

other hand, a different node has a higher activation at this 

point, the model automatically replaces the old response with 

the new response, i.e., it generates a repair.  

The rationale for the proposed mechanism is based both on 

the action monitoring literature and the dynamics of the time-

based model. The former points to evidence for continued 

processing after response generation as one of the key 

monitoring mechanisms for action regulation (e.g., Yeung et 

al., 2004). The latter is based upon the differential dynamics 

of activation in correct and error trials. This is illustrated in 

Figure 4, as two examples. In the majority of the correct trials 

(e.g., Fig. 4a), the correct representation gains a clear 

advantage over the error representation early on and 

maintains that advantage. This leads to the generally low 

conflict demonstrated in Simulation I. Thus, there is a high 

probability that the selected response at t20 and the check at 

t25 are the same, i.e., no repair. Error trials, on the other 

hand, often entail noisy activation of both responses up to the 

response point (high conflict), which may lead to the 

selection of the error representation as response at t20 (Fig. 

4b). Over time, however, continued processing increases the 

signal-to-noise ratio, leading to the correct representation 

gaining advantage over the error representation. We propose 

the detection of this new response triggers the repair process. 

 

 
 

Figure 4. Example of activation dynamics in correct and 

error trials. Response is the most active node at t20. Check 

happens at t25. A repair is made if the response at t20 ≠ t25. 

 

The simple and automatic nature of this process makes for 

an elegant model, but it also assumes that anytime the 

response and the check are different, a repair is undertaken. 

The efficiency of this claim must be verified, because if the 

mechanism also turns many correct responses into errors, 

then it is fairly useless as a repair mechanism. Simulation II 

addresses this issue within a signal detection framework. 

Using 50,000 simulations with the time-based model, we 

implemented the “respond and check” mechanism. The most 

activated nodes at t20 (response) and t25 (potential repair) 

were determined on each trial. Four trial types ensued from 

(t20, t25) response pairing: a hit (error, correct), a miss (error, 

error), a correct rejection (correct, correct), and a false alarm 

or FA (correct, error). A good repair model is expected to 

have a high hit rate, together with a low FA rate.  

 

 a   oint conflict  b   nte ral conflict
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Results. The simulation returned a hit rate of 76% and a FA 

rate of 1.8%. While this FA does not look that high, recall 

that there are many more correct trials than error trials, and 

thus a FA > 1% implies many correct responses turned into 

errors, which is neither efficient, nor common. A reasonable 

FA rate must, however, be determined in light of what is 

reasonable as a hit rate. Corpus analyses of repairs report that 

hit rates often hover between 50-65% (Nooteboom, 2005). 

We must thus inspect what the model’s FA rate is at hit rates 

corresponding to these values. But how to set different hit 

rates for the model? The conflict theory provides an answer: 

we set a criterion, a value of conflict above which the monitor 

determines that a trial is likely to be an error and therefore 

implements a repair if response at t20 ≠ t25 (Fig. 2a). Figure 

5 shows the relationship between the values of criterion and 

hit rate/FA rates for criteria between 2.75 and 6.5 in 

increments of 0.75. The smaller the criterion, the higher the 

hit rate, but also the higher the FA rate. A criterion of 4.25 

generates 62% hit rate (the upper bound in the corpus 

analyses), with a 0.7% FA rate, showing that for usual hit 

rates (< 65%), the model’s FA rate is reasonably low. 

 

 
 

Figure 5. ROC of conflict-based repairs generated in 

Simulation II. The values on the curve show the conflict-

based criteria for implementing a repair. 

 

Discussion. Using a simple “respond and check” mechanism 

with conflict thresholding, the basic conflict-based repair 

model successfully captures the repair pattern in human data. 

Simulation III: handling adaptive repairs 

The basic repair model in Simulation II captures the fast and 

automatic nature of repairs well, but it is unlikely that this is 

all there is to repairs. Detecting the need for repairs is a strong 

signal that additional control resources are needed to 

maintain optimal performance. In humans, this is achieved by 

a monitoring-control loop, which constantly assesses the 

need, and deploys control accordingly (e.g., Botvinick et al., 

2001; Yeung et al., 2004). The basic repair model has no such 

mechanism and is thus expected to fail in capturing the 

adaptive nature of repairs. Simulation III was designed to test 

this shortcoming using a well-replicated empirical finding in 

human speech error repair data, namely that an increase in the 

probability of errors is often accompanied by a greater 

proportion of repairs on such errors (Levelt, 1983, 1989; 

Nooteboom & Quené, 2015; Nozari et al., 2019). In other 

words, upon detecting the higher probability of committing a 

speech error, speakers adapt their behavior (e.g., by 

becoming more vigilant) to repair more of those errors, and 

thus keep communication informative. 

Empirical data are taken from Nozari et al. (2019). 

Participants watched short cartoon clips in a “haunted hotel” 

scenario, in which objects in a hotel room performed different 

actions on a second object, and described the event in 

sentences like “The yellow curtain jumped over the brown 

window” in real time. The second noun phrase, NP2 (e.g., the 

brown window), elicited significantly more errors than the 

first noun phrase, NP1, which was semantically related to it 

(e.g., the yellow curtain; Fig. 6a). Critically, participants also 

repaired a significantly greater proportion of their errors on 

NP2 than on NP1 (Fig. 6b).  

The greater error rate on NP2 stems from the semantic 

blocking effect (e.g., Schnur et al., 2009), a finding that 

producing a target word makes it more difficult to produce a 

semantically related word later. A common explanation for 

this is an error-based learning account, according to which, 

upon producing NP1, the connections between the subset of 

semantic features shared between NP1 and the related NP2 

become stronger for NP1 and weaker for NP2 (Oppenheim et 

al., 2010; Oppenheim & Nozari, 2021). This differential 

adjustment of weights leads to a greater likelihood of 

producing NP1 as an error when NP2 next becomes the 

target. Our goal was not to implement the full learning model 

in the repair model. Rather, it was to simulate the end-point 

of learning, as implemented in Oppenheim and Nozari 

(2021), to capture the mechanism underlying the higher error 

rates on NP2. Simulation III was thus run with the default 

values in Table 1 for simulating NP1, and adjusted post-

learning weights for simulating NP2 (i.e., positive and 

negative changes to the selective weights targeted by error-

based learning, with δ = 4.25E-5). A criterion of 4.25 from 

Simulation II was used to adjust the hit rate/FA ratio. We ran 

20 batches of 10,000 simulations for each NP. 

 

 
 

Figure 6. Results of Simulation III. Mean error proportions 

±SE (a) and proportion of corrected error ±SE (b) in 

empirical data from Nozari et al. (2019). Corresponding 

data on error proportions (c) and proportion of corrected 

error (d) from Simulation III. 

 

(a) (b)

(c) (d)

 mpirical data

 odel simulations

 rror proportions  roportion of corrected errors
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Results. Figure 6 shows the results of Simulation III. With 

simulated error rates (Fig. 6c) matched to the empirical data 

(Fig. 6a), and the criterion of 4.25, the model correctly 

estimates the proportion of corrected errors on NP1 to be 

around 60% (Fig. 6d), as observed in the empirical data (Fig. 

6b). However, it fails to capture the increase in the proportion 

of corrected errors in the more error-prone (NP2) situation. If 

anything, the model estimates a slightly lower repair rate on 

NP2 (59%; SE = 0.75%) than NP1 (62%, SE = 0.62%; Fig. 

6d), a pattern opposite of that observed in the empirical data. 

 

Discussion. While the basic conflict-based model captures 

the repair pattern in the baseline (NP1) condition well, it fails 

to show the enhanced repair rates in the more difficult (NP2) 

condition observed in the empirical data. Simulation IV 

proposes an augmented model to address this problem.  

Simulation IV: the augmented model of repair 

Results of Simulation III showed the limitation of the basic 

model in simulating the adaptive nature of repairs. This is not 

surprising, since the model has no regulatory mechanism. 

Simulation IV augments the model with a feedback loop. 

This loop consists of a monitor that keeps track of the amount 

of conflict and scales the input proportional to that amount. 

 One way to construct such a loop is to use the value of 

conflict in each trial to scale the input accordingly. This 

model would represent a system with no memory. More 

reasonable, however, is a loop that retains some information 

about the relative difficulty and likelihood of error in certain 

situations. For the data set used in Simulation III, for 

example, the speakers often experience greater difficulty on 

the production of NP2 than NP1, learning that this position is 

an error-prone situation over the course of the experiment. 

We model this process by maintaining a running average of 

conflict on NP1 and NP2 separately, updated each time a new 

NP is produced. This constitutes the monitoring part of the 

loop. Control is implemented by scaling the input 

proportional to the running average of conflict in each 

condition (NP1 vs. NP2). Cognitively, this translates into 

focusing attention on the concept of the to-be-produced word, 

in order to produce the correct label, a process likely to 

increase accuracy in language production. 

The simplest way to implement a monitoring-control loop 

is to have a linear function to model the input gain based on 

average conflict. The linear function has two problems 

though: (a) theoretically, it implies that every trial will get 

some boost, i.e., at least some level of additional control is 

constantly recruited. It also means that there is no upper 

bound to how much control should be recruited. This would 

be extremely energy-consuming. (b) Empirically, a linear 

function fails to improve the pattern observed in Fig. 6d, 

because it cannot overcome the differential weight changes 

that caused the disadvantage for the correct response on NP2 

to begin with. More reasonable is a function that scales input 

within a certain range, i.e., with lower and upper bounds on a 

linear function. This is best captured by a sigmoidal function. 

We thus modeled the input gain as a logistic function (Eq. 6). 

𝑖𝑛𝑝𝑢𝑡𝐺𝑎𝑖𝑛 =
𝑎

1 + 𝑒−𝑏(𝑥̅−𝑐)
                                                 Eq. 6 

where 𝑥̅ is the running average of conflict within a condition, 

a determines the activation bounds, b determines how graded 

control implementation should be, and c determines a “set 

point” against which fluctuations of conflict are measured 

(Fig. 8a). It is reasonable to assume that such a set point is 

derived from speakers’ vast experience with language 

production, i.e., is the current situation easier or more 

difficult than what I am used to? Thus to determine this set 

point in the model, we ran the model for 200,000 trials over 

each NP1 and NP2, and averaged conflict over all trials to 

simulate a range of experience. The obtained value, 3.42, was 

used for parameter c in Simulation IV. No a priori 

information is available to determine the values of a and b. 

Therefore, we ran a parameter space search to determine how 

different values of these two parameters change the behavior 

of the augmented conflict-based model of repair.  

The final model 

 

 
 

Figure 7. A schematic of the augmented conflict-based 

model of repair. The example shows a trial in which the 

error “dog” has been repaired to the target “cat”. 

 

Figure 7 presents the augmented model of repairs. The 

model has three stages: response production, monitoring-

control loop, and repair, with the steps outlined below. 

1. Response production 

a) Input for “cat” is activated at the semantic level. 

b) Lexical nodes of “cat” and “dog” are activated. 

c) The most active lexical node is produced (response). 

2. Monitoring-control loop 

a) Conflict (𝑋) is measured at the time of response (t20). 

b) Input at t21 receives a boost, which is scaled as a 

function of the running average of conflict (𝑓(X̅)). 

The gain is near-zero for conditions with conflict 

levels lower than the set-point, thus control is 

effectively only recruited on demanding trials.  

3. Repair (or not) 

a) Processing continues for a short period after response 

generation with the scaled input. 

b) The most active node in the lexical layer at t25 is 

selected as a potential repair. 

c) If original response = potential repair → no repair. If 

original response ≠ potential repair → change 

response to potential repair, i.e., the model repairs the 
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original response. A criterion can be imposed at this 

stage to adjust the hit rate. This model was used in 

Simulation IV.  

 

Results. Figure 8b shows the results of the parameter search, 

and Figure 8c illustrates the simulation results using (a, b) = 

(40, 70), which provide a good match to the empirical data. 

Two points are noteworthy about Fig. 8b. First, a large part 

of the parameter space (values above 0) produces the effect 

of interest, i.e., the increase in the proportion of repairs in the 

more error-prone condition. Second, only values of b above 

70 produce effect sizes comparable to the empirical data. 

These values correspond to a steep logistic function, in which 

small values of conflict lead to near-zero gains on the input, 

while conflict values above the set-point deploy full control. 

This, in turn, means that control is rarely recruited in 

situations where the difficulty (indexed by conflict) is 

estimated to be around or lower than that generally 

experienced by the speakers, but the detection of a difficult 

situation can quickly engage high levels of attention.  

 

 
 

Figure 8. The gain function (a), and the results of the 

parameter search for its parameters a and b. The dependent 

variable in the heat map is the increase in proportion of 

repairs from NP1 to NP2 using the augmented repair model 

(b). Results of simulation IV with a = 40 and b = 70 (c). 

 

Discussion. Augmenting the basic conflict-based model of 

repair with a monitoring-control loop enables it to simulate 

more nuanced patterns observed in human speech error repair 

data, including the adaptive nature of repairs.  

General Discussion 

The main idea expressed in this paper was that many speech 

errors can be repaired by quickly replacing a response with 

an already-activated alternative, instead of restarting the 

production process. In four simulations, we gradually built 

upon the basic structure of the two-step model of word 

production to arrive at an augmented conflict-based model, 

which, to our knowledge, is the first computational model of 

speech error repairs in humans. The simple and automatic 

basic mechanism of this model allows for fast and 

subconscious detection of lexical errors, even before they 

become overt. The addition of the monitoring-control loop 

further enables the model to capture the nuances in speech 

error data that reflect the adaptable nature of human behavior.   

Aside from capturing the data directly tested in the above 

simulations, the model provides a theoretical explanation for 

additional data not directly tested here. The basic 

subconscious process explains reports of subconscious 

repairs in children in speech (Clark, 1978) and adults in other 

modalities of language production and their rapid timing 

(Pinet & Nozari, 2021). The model also explains a behavior 

commonly observed in aphasia; patients “grope” for the 

correct response, by producing a quick string of related 

repairs. In segmental repairs, this is called conduite 

d’approche (Kohn, 1984), but it is also seen in lexical repairs, 

for example, “orange, peach, no, apple”, produced in 

response to the picture of a “watermelon” (Nozari, 2019). 

This behavior reflects the basic premise of the conflict-based 

repair model: change the current response if another one 

overtakes it quickly in activation. In healthy mature systems, 

the change is often from an error to a correct response, but in 

damaged systems, where the signal-to-noise ratio is low, it is 

possible to choose another error as repair, and repeatedly so, 

because spreading activation does not cleanly converge on 

the correct response. 

One alternative to the conflict-based model is forward 

models, e.g., DIVA (Guenther, 1994; Tourville & Guenther, 

2011). In DIVA, predicted perceptual outcomes of a speech 

motor command are compared to the actual perceptual 

outcomes of speech, and discrepancies lead to the generation 

of an error signal, which can later be used for correction. 

DIVA is a powerful model for explaining articulatory-

phonetic adjustments to speech over time (i.e., on the next 

trial), but its dependence on overt perceptual outcomes makes 

it difficult for the model to explain fast lexical repairs 

initiated pre-verbally. A similar model, the Hierarchical State 

Feedback Control (HSFC; Hickok, 2012) detects errors 

through a discrepancy in the activation of motor and 

corresponding perceptual representations, but does not 

propose a mechanism for repairs.  

Limitations and future directions  

(1) This model only implemented lexical repairs, but the 

basic process is applicable to phonological repairs as well, 

which should be explored in future work. (2) The finding of 

an increased proportion of repairs as a function of increased 

error rates has been reported under different circumstances, 

only one of which was tested in Simulation III. Future 

explorations should include other manipulations of error rates 

(e.g., by changing planning time constraints) and examining 

how the model’s repair behavior changes as a function of 

changes to the error rate. (3) Related to the second limitation, 

more appropriate gain functions may exist, which must be 

explored based on simulations of a wider range of data. 

In conclusion, this work has taken the first step to propose 

a computational model that successfully captures speech 

error repair behavior in humans, which can be used as a 

framework for future testing and improvement. 

  

 

        

    (a) (b)

(c)
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