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ABSTRACT OF THE DISSERTATION

Magnetism in van der Waals Heterostructures: Graphene/CrSe and WTey/FesGeTes

by

Yingying Wu

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2020

Professor Kang Lung Wang, Chair

Two-dimensional materials provide a new platform for discovery of exotic physics and
phenomena. They possess rich electronic properties, susceptibility to electric control, dangling-
bond-free interfaces, and readily controlled thicknesses. These properties make them accessible,
engineerable, and integrable into emergent heterostructures for previously unachievable proper-
ties and applications like atomically-thin magnetoelectric devices for ultracompact spintronics.
Although layered materials like graphene are not inherently spin-polarized, magnetic proximity
effect-induced spin splitting has been identified as an effective way to realize spin transport in
graphene. Except the magnetic proximity effect, recently discovered long-range intrinsic mag-
netic orders in the van der Waals materials rise fundamental research interests. This disserta-

tion includes the experimental realization of monolayer graphene magnetized by an underlying
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antiferromagnet. By coupling graphene to an antiferromagnetic thin film, exchange splitting en-
ergy as large as 134 meV at 2 K. This exchange splitting energy can be modulated through field
coolings, which is reflected through the shifted quantum Hall plateau and quantum oscillations
in graphene. Further, magneto-optic Kerr measurement supports magnetism in the graphene at
low temperatures. This work establishes a key functionality for future graphene-based spin logic
and memory devices. Different from the induced magnetism into graphene, the interface-induced
Dzyaloshinskii-Moriya interaction and Néel-type skyrmion lattice in an intrinsic van der Waals fer-
romagnetic material Fe3GeTe, have also been discussed. By coupling Fe;GeTe, to 1T°-WTe,, a
large interfacial Dzyaloshinskii-Moriya interaction can be induced at the interface probably due to
the inversion symmetry breaking. Transport measurements have shown the topological Hall effect
in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron
microscopy is used to directly image Néel-type skyrmions along with aligned and stripe-like do-
main structures. This interfacial coupling induced Dzyaloshinskii-Moriya interaction is estimated
to have a large energy of 1.0 mJ/m?, which is much larger than the critical value required to sta-
bilize the Néel-type skyrmions. This work paves a path towards the skyrmionic devices based on
van der Waals layered heterostructure. Based on either induced or intrinsic magnetism in van der
Waals materials, possible quantum anomalous Hall insulators and van der Waals heterostructure

are listed and proposed.
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Chapter 1

Introduction to van der Waals magnetic materials

Two dimensional (2D) materials have attracted extensive attention due to their huge potential
for applications in electronic and optoelectronic devices. Numerous studies have been carried out
on conventional van der Waals materials like graphene[1, 2, 3], black phosphorus[4, 5], hexagonal
boron nitride (h-BN)[6], transition metal dichalcogenides (TMDs)[7] and other materials since the
discovery of the mechanical exfoliation with scotch tape. In this part, starting from conventional
van der Waals materials discovered ten more years ago, the recently recognized van der Waals

magnetic materials, including their heterostructures, are discussed.

1.1 2D electronic systems

Layered materials are characterized by a planar structure held together with the strong in-plane
covalent bonds and vertical stacking by the weak van der Waals (vdW) force. They have been
expanded over the years and now are a large family as listed in Fig. enabling the discovery of
new physics and phenomena. The first material discovered using the mechanical exfoliation was
graphene, a semimetal with no band overlap. Later, the 2D family included the semiconductors
like some TMDs, metals like superconducting NbSe,, and insulators like h-BN. Most few layers

of these materials (with a thickness of several nanometers) are unstable under the air conditions



with water and oxygen, and usually h-BN is served as a protection layer to isolate the materials

from the ambient conditions.

Interestingly, the properties of such 2D materials are always sharply different from those in the
bulk case. For example, graphene is a zero gap semiconductor while graphite is a semimetal with a
band overlap and monolayer TMDs have direct band gaps while their few-layer or bulk forms have
indirect ones. Moreover, much more unknowns raise when it comes to the combination of these
layered materials into a heterostructure. Such heterostructure is held together by a vdW force, the
same force that holds the materials stacking vertically. It not only allows a great number of com-
binations which have a much more sharper interface than that from any traditional growth method,
but also enables the new physics arising from the stacking parameters like the relative orientation
which can be controlled and altered. Taking advantage of the proximity effect in these heterostruc-
tures, the neighboring thin films can have charge redistribution in the first-order approximation.
They can also induce structural changes in each other and these alternations can be controlled by

adjusting the relative orientation between the individual layers.

1.1.1 Induced magnetism in graphene

Unique features of graphene electronic properties arise from its gapless, massless and chiral
Dirac spectrum. Combined with the exceptionally high carrier mobilities, graphene is one of the
most alluring and widely studied 2D materials. Quantum Hall effect at low temperature[3] and
even at room temperature[ll] was soon observed in graphene after obtaining it from mechanical

exfoliation.
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Figure 1.1. Material library for layered vdW nonmagnetic materials, including graphene, black
phosphorus, transition metal dichalcogenides, and III-VI family.

Even before the advent of monolayer graphene, Haldane has proposed the quantum Hall effect
without Landau levels which is quantum anomalous Hall effect in ‘2D graphite’. Applying a toy
model with nearest and next nearest neighbor hopping in graphene as shown in Fig[l.2] closed
paths of next nearest neighbor hopping enclose nonzero magnetic flux. As a result, particles taken
through this trajectory will accumulate a nonzero phase, which is emblematic of a nonzero Berry
curvature in this system. Thus a gapped state, hosting a zero-field quantized Hall conductivity,
was proposed by Haldane[8]. However, this has not been experimentally proved in monolayer
graphene so far. Instead, the quantum anomalous Hall effect has been observed in twisted bilayer

graphene and graphene/h-BN systems[9, [10].

Recently, to realize the quantum anomalous Hall effect, attempts to create ferromagnetism in



Figure 1.2. Haldane model for quantum Hall effect without Landau levels in graphene. Two
inequivalent sites A, B belonging to the same unit cell are labelled. Dashed lines indicate the next
nearest neighbor hopping and solid lines with arrows indicate the next nearest neighbor hopping
direction.

nonmagnetic 2D materials like graphene emerge[9, [10]. One of the mostly adopted strategies is
using vacancies or adding adatoms such as hydrogen and fluorine[11, 12, [13]]. The local mag-
netic moments from unpaired electrons ware produced in graphene through such methods taking
advantage of the defect engineering. However, ordering these moments in a long range is still
very challenging during the material preparation. There are still some disputes over the feasibil-
ity of these approaches to form the long-range magnetic orders in graphene[14, [15]. The second
way to realize the ferromagnetism in graphene is through the structure engineering instead of the
structural imperfections[10} [16} 9]. By controlling the relative orientation between graphene or
graphene/hBN layers, 2D ferromagnetism from originally nonmagnetic 2D materials is created
and even the quantum anomalous Hall effect has been observed. For example, in bilayer graphene
with electrical fields applied perpendicular to the basal plane, the two layers of graphene will ex-
perience different electrostatic potential and hence a gap can be induced. This gap is proved to be

nontrivial and quantum anomalous Hall effect has been reported experimentally[16]. Nevertheless,
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it is still challenging to precisely control and reproduce this kind of intrinsic magnetic properties
of ultrathin film since these traditional thin films easily suffer from various perturbations including
interfacial hybridization, electronic redistribution, atomic interdiffusion, strain, crystalline recon-
struction, irregular shapes and so on. The third approach is from the magnetic proximity effect.
This method makes nonmagnetic 2D material magnetic by borrowing properties from adjacent
magnetic layers. Experiments were carried out by putting graphene onto ferromagnets. Exam-
ples like graphene/yttrium ion garnet (YIG)[17] and graphene/EuS [[18] are experimentally shown
that graphene becomes magnetic by showing the anomalous Hall effect or extracting the mag-
netic exchange field from nonlocal transport measurements. However, this anomalous Hall effect
in graphene/YIG samples cannot be a direct evidence for the ferromagnetism in graphene since
this effect in the transport measurements might comes from spin-dependent interfacial scattering
or ferromagnetic impurities[19]. Proving the ferromagnetism in graphene through the quantifi-
cation of the magnetic exchange field and observation of quantum Hall effect at a lower field in
graphene/EusS is more convincing for the interfacial exchange coupling. Unlike ferromagnets, an-
tiferromagnets (AFMs) are magnetically ordered with a net zero magnetization, which means that
they produce no stray field and are always free of the external magnetic field perturbations. These
properties make them promising for the reliable future spintronic devices. Theoretical calculations
have shown the exchange coupling with a high energy of ~70 meV and quantum anomalous Hall
effect can be induced at graphene/BiFeOs structures. However, for this approach, the strong inter-
facial coupling cannot be easily obtained and it strongly depends on the physical properties of the

materials themselves.



1.1.2 Transition metal dichalcogenides

TMDs have the form of MX,, where M is a transition metal like W and Mo and X is a chalco-
gen like Te and Se. They offer a broad range of electronic properties ranging from insulating or
semiconducting to metallic or semimetallic or superconductors. These different conductive proper-
ties result from the progressive filling of the nonbonding d bands by the transition metal electrons.
All these TMDs have a hexagonal structure with a layer of metal atom sandwiched between two
chalcogen layers. They also have a strong covalent bond for the atomic bonding within the lay-
ers and a weak vdW force between the layers. The presence of two constituent chemical species
results in a predominant semiconducting nature, placing TMDs in a favorable perspective for elec-
tronic and spintronic applications. Besides, their metal-semiconductor crossover as a function of
thickness and magnetic response of the semimetallic character give rise to a lot of interest over the

years.

Among all the TMDs, 1T’ WTes is a special member of the TMD family and has been studied
extensively in the past few decades due to its wide range of physical, chemical, electronic and op-
tical properties. For the electronic properties, it can be a type-11 Weyl semimetal[20, 21]], quantum
spin Hall insulator[22] and a superconductor[23] under different physical conditions. The crystal
structure of 1T” WTe, is shown in Fig. which is orthorhombic with space group Pmn2, and lat-
tice parameters a = 3.494, b = 6.27A, ¢ = 14.04A. It is nonmagnetic and non-centrosymmetric.
Both the transport measurements[24]] and angle-resolved photoemission spectroscopy[235] show it

has multiband semimetal nature.

Many physical properties of WTe, are related to the strong spin-orbit coupling inside this ma-
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Figure 1.3. The crystal structure of WTe, with a unit cell. The graph was drawn with a software
called CrystalMaker. Left graph shows the front 3D view and the right graph shows the front 2D

view with lattice parameters a = 3.494, b = 6.274 and ¢ = 14.04A.

terial, like the quantum spin Hall effect and large nonsaturating magnetoresistance. Spin-orbit
coupling recently shows its potential applications in novel spintronic devices. It enables the flow
of angular momentum between the spin angular momentum of the electronic system and the me-
chanical angular momentum of the lattice[26], which provides the opportunity for more energy
efficient electrical manipulation of the magnetic order. Systems for investigating such spin-orbit
effects are typically heavy metal/ferromagnet bilayers based on the spin-orbit torques. These spin-
tronic devices can also utilize unique properties of quantum materials such as 2D TMDs. Materials
like WTe, are adopted to study the spin-orbit torques[27]]. In this dissertation, the strong spin-orbit
coupling in WTe, is used to form an interface between a 2D ferromagnet, which would be ex-

plained in Chapter 3.



Ferromagnets Tc (K) Antiferromagnets | Ty (K)
CryGeoTeg 60[33]] FePSes 106[34]
CrySisTeg 32[33] FePS; 116[335]]
Crls 45 136 CrCl; 17]37]]
Fes;GeTes 220[38]] Mn;Bi,Tey 25[31]]
Others VSes, MnPS3, MnPSes;, FeCl;, a-RuCls, etc

Table 1.1. Representative van der Waals magnets, including ferromagnets and antiferromagnets.

1.2 Intrinsic 2D magnetic materials

A list of the vdW magnets is shown in Table The first reported 2D magnetic crystals
are CryGe,Teg[28]]. Later ferromagnetism and antiferromagnetism have been reported in Crl3[29]
with a layer number dependence. CroGesTeg is a 2D Heisenberg ferromagnet with small magnetic
anisotropy with spin moments oriented toward all directions and Crlj3 is probably a 2D Ising A-type
antiferromagnet with spin moments oriented normal to the basal plane. Thus Crl; has intralayer
ferromagnetism and interlayer antiferromagnetism. Similar to CroGesTeg, CraSisoTeg 1s also a fer-
romagnet. And the magnetic properties of CrClj is similar to Crls. Later, 2D magnetic family is
joint by a ferromagnet with a high Curie temperature (critical temperature for the transition from a
paramagnet to a ferromagnet), Fe3GeTe, (FGT). Different from those four Cr-based magnetic vdW
materials which are relatively electrically insulating with a large gap, FGT is metallic. Fe-based
magnetic family is further enlarged by including Ising antiferromagnets like FePS; and FePSes.
Similar to these materials, MnPS3; and MnPSe; are also antiferromagnets with a Néel temperature
(critical temperature for the transition from a paramagnet to an antiferromagnet) close to that of
FePS3 and FePSes. In addition to these materials, room-temperature ferromagnetism has been re-
ported in molecular beam epitaxy grown monolayer VSe,[30]. Until recently, Mn; Bi; Te, is proved

to be a vdW antiferromagnet, a quantum anomalous Hall insulator and an axion insulator[31} 132]].
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1.2.1 Fe-based vdW magnets

FGT is a metallic ferromagnet with a high Curie temperature. In each layer, three of the quin-
tuple sublayers are iron, the top and bottom sublayers are tellurium, and the central one partly
is germanium as shown in Fig. [I.4] Intrinsic magnetocrystalline anisotropy in FGT monolayers
counteracts thermal fluctuations and preserves the 2D long-range ferromagnetic order, and this
is precluded in an isotropic magnetic system according to the Mermin-Wagner theorem[39](this
statement is based on three assumptions). The Curie temperature varies between 150 K and 220
K, which is largely dependent on the Fe concentration[40]. It has a strong perpendicular magnetic
anisotropy with an energy of ~ 107 erg/cm?®, which is almost two orders of magnitude larger than
that of CryGe,Teg (10° erg/cm?®). For bulk and a few-layer FGT, magnetization characterization,
electrical transport[38]], scanning tunneling microscopy [41], and magnetic force microscopy[42]

are adopted to investigate the magnetic phase.

®Fe
®Te
®
®
®
®

Figure 1.4. The crystal structure of FGT with a unit cell. The graph is drawn with a software called
CrystalMaker. The left and right graph show the front 3D and 2D views. The lattice parameters

are: a = 3.994 and ¢ = 16.34A.



In FGT, the interplay of both spin and charge degrees of freedom can be well investigated
from its conductivity. Intriguing properties like large anomalous Hall current driven by topological
nodal lines[43]], with the spin degree of freedom quenched by the robust ferromagnetic polarization
and line degeneracy protected by crystalline symmetries, demonstrate that orbital-driven nodal line
is an effective source of a large AHE in hexagonal vdW ferromagnets and provides some insights
for the design of ferromagnetic vdW materials with a large anomalous Hall effect. Besides, it
is found that the itinerant ferromagnetism in FGT can persist in monolayer form with an out-
of-plane magnetocrystalline anisotropy, and with an ionic liquid gate the Curie temperature of a
four-layer FGT can be lifted to the room temperature[38]. Another work[42] found out that FGT
transforms from 3D to 2D Ising ferromagnetism at a thickness around five layers, with a fast drop
of Curie temperature from 207 K down to 130 K. For thick FGT more than ~ 15 nm, the magnetic
transition in FGT under a magnetic field showing no square hysteresis is related to the formation

of labyrinthine domain structures.

1.2.2 Mn-based vdW magnets

Mn-based vdW magnets includes ferromagnets like MnSe,. [44] and antiferromagnets like MnPS3[435]]
and Mn;Bi,Te,. Among all the vdW magnets, Mn;Bi,Te, is experimentally proved to be an in-
trinsic magnetic topological insulator. Before discovery of the few-layer Mn;Bi,Te,, magnetic
topological insulator has only been realized by doping nonmagnetic topological insulators with
3d transition metals, which leads to strongly inhomogeneous magnetic and electronic properties
of these materials and limits the observation of quantum effects at low temperatures. Mn;BisTe,

is a layered ternary tetradymite compound that consists of Te-Bi-Te-Mn-Te-Bi-Te septuble layers.
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This materials can be viewed as layered Bi,Tes with a Mn-Te bilayer inserting between each of its
Te-Bi bonds as shown in Fig. The magnetism in this material originates from the Mn?* ions
in the crystal, which has a spin of S=5/2 and a large magnetic moment of ~ Sug, where pp is the
Bohr magneton. The magnetic coupling between the septuble layers is antiferromagnetic with fer-
romagnetic ordering in adjacent septuble layers. The bulk Mn;Bi,Te, is an antiferromagnet with a

Néel temperature of Ty = 25 K.

Figure 1.5. The schematic two septuple layers of Mn;Bi;Te, with the antiferromagnetic coupling
between layers. The yellow, green and purple spheres are for Te, Bi and Mn atoms, respectively.
The red arrows indicate the spin polarization directions for Mn atoms.

First principle calculations[46] show the fundamental gap value for the bulk is around 220 meV.
And at certain parameter range, a non-zero nontrivial topology of Mn;Bi,;Te, can be generated. It
is classified as an antiferromagnetic topological insulator[46]. For the experimental parts, the odd-
layer Mn;BisTe, is reported to be a quantum anomalous Hall insulator at 1.4 K and with a large
external magnetic field the quantization temperature can be raised up to 6.5 K[31]. Due to the
antiferromagnetic coupling between layers, the odd-layer Mn;Bi,Te, is a ferromagnet and even-

layer Mn;BiyTe, is a antiferromagnet. Thus the ferromagnetism in odd-layer Mn;Bi,Te, breaks
11



the time reversal symmetry and turns it into a quantum anomalous Hall insulator, also a Chern
insulator. In even-layer Mn;Bi,Te,, for example a six septuble-layer device, a large longitudinal
resistance and zero Hall plateau have been observed[32], suggesting an axion insulator state in
zero magnetic field over a wide magnetic field range and at relatively high temperatures. When
a large enough magnetic field is applied, it becomes a quantum anomalous Hall insulator with a
quantized Hall resistance of h/ e?, where h is Planck’s constant and e is electron charge. Later,
Chern insulating states with different quantization values of h/ve (v is an integer) have also been

discovered in this material system[47].

1.3 2D magnetism

Driven by the exchange coupling with interaction between the neighboring spins, spin orien-
tations favor specific relative directions between them. Thus an ordered arrangement of magnetic
moments over macroscopic length scales exists, resulting in a spontaneous time-reversal symmetry
breaking. Theoretically at zero temperature, this local order can extend to large scales. However,
the increasing temperature will always lead to thermal fluctuations and misalign the moments. In
three-dimensional case, a magnetic phase transition always happens at a finite temperature while
in one-dimensional case a long-range order only occurs at a zero temperature[48]. Whether or
not a system undergoes a phase transition across a finite temperature in 2D case is decided by
the effectiveness of thermal fluctuations on the spin textures, which is related to its presence and
the strength of magnetic anisotropy as shown in Fig. When the spins are aligned in a line

(2D Ising model) as shown in Fig. [I.6p, Onsager[49] provided an exact solution and showed a
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magnetic phase transition at Tc > 0. In this case, the anisotropy of the system results in a gap
opening in the spin-wave spectrum and suppresses the effect from the thermal fluctuations. Based
on the finite-range exchange interactions, Mermin and Wagner[39]] proposed an isotropic Heisen-
berg model which concluded that thermal fluctuations could destroy long-range magnetic order
in 2D system at any finite temperature with the spins arranged in all directions (Fig. [I.6k). This
theory is based on the idea that the excitation of spin waves can destroy the magnetic order, with

the magnetization at a temperature T expressed as:

M(T) = M(T = 0) — AM(T). (1.1)

The reduction term AM (T) is due to the thermal excited spin waves. This term is related to
the dimensionality of the system and probability for the thermal occupation with the form of
AM(T) ~ [;° N(E)[1/(e"/*T — 1)]dE, where N(E) is the density of states of the excitations
depending on the system dimensionality. In a general case where excitations has a dispersion of
E ~ k™ and a volume of k9~'dk in a d-dimensional k space, the density of states can be ap-
proximated as N(E) ~ E@™/"  For the dispersion of spin-waves in a ferromagnet with the
Heisenberg Hamiltonian n = 2 and two dimensions d = 2, the density of states is a constant.
Thus the reduction term AM (T) diverges for finite T, indicating the breakdown of the magnetic
order. They conclude at finite temperatures the spin waves are infinitely easy to excite and can
destroy magnetic orders. However, this theory is based on the assumptions of isotropic interac-

tions, short-range interactions and the dimension of two or smaller. All three assumptions can be

false since magnetic orders can be stabilized by anisotropy, longer-range interaction or a slightly
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higher dimension. It has been recently proved that even a small uniaxial magnetic anisotropy can
open up a large excitation gap and lift the restrictions imposed by the Mermin-Wagner theorem.
As a result, 2D magnets can survive at a finite temperature. For the case of spins orienting in a
plane as shown in Fig. @p, referred to as the XY model, there is no magnetic transitions con-
ventionally. Berezinskii[50], Kosterlitz and Thouless[S1] point out there are an algebraic decay of
spin correlations and the bond of the pairs of vortex and antivortex arrangements of spins in this
system. And they conclude below the Kosterlitz-Thouless temperature Tkt that a quasi-long-range
magnetic order can be established in this system, where in the margin of the system a finite order
parameter is suppressed. Before thinning down the vdW materials into 2D region, this theory has
been validated in magnetic thin films grown on a substrate[52] and 3D layered transition metal

compounds[S3] over the past several decades.
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Figure 1.6. Thermal fluctuation effects on the spin dimensionality. a, Ising model with spin align-
ing in a line. Spin dimension of one. b, XY model with spin residing in a plane. Spin dimension
of two. ¢, Heisenberg model with spin in all directions. Spin dimension of three.
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A generalized Heisenberg spin Hamiltonian can be used to describe the 2D magnetism[54]:

1
H=—3 > (JSi- S+ AS;S;) — ZA(S;)Q, (1.2)

<,j>

where J is the exchange coupling between spins S; and S; on neighboring sites with J > 0 for
ferromagnetic order and J < O for antiferromagnetic order. And A and A are the on-site and inter-
site exchange magnetic anisotropies, respectively. The Ising model and XY model correspond
to A — 400 and — —oo, respectively. The isotropic Heisenberg model representing the spins
in all directions corresponds to the absence of magnetic anisotropy, that is A ~ 0 and A ~ 0.
This Hamiltonian also considers the dipole-dipole interactions, but is not applicable to systems

including neighboring magnetic coupling or any other couplings.

1.4 Detection of 2D magnetism

Methods to detect the 2D magnetism in a small scale with a size of several square micrometers
(the size of mostly exfoliated monolayer or few-layer vdW magnets) are rather limited. Currently,

mostly adopted measurements are based on microscopy, optics and electronic probes.

Microscopy measurements for 2D magnets include Lorentz transmission microscopy (L-TEM),
single-spin microscopy and photoemission electron microscopy. These techniques help map either
morphology or structure of the materials based on behaviors of the ions, electrons, photons or
physical cantilevel probes. Informations about spin arrangement and magnetic domain in the real
space can be collected under external fields. L-TEM can provide the information about magnetic

domains in the real-space with a resolution under 5 nm and the skyrmion lattice images under mag-
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netic fields and different temperatures. Its principle is based on the Lorentz force which electrons
experience under a magnetic field. Meanwhile, single-spin microscopy provides high spatial reso-
lution at the nanoscale and can detect a single atomic spin by taking advantages of the exceptional
properties of a defect in diamond called a nitrogen-vacancy center. A diamond nanocrystal with
a nitrogen-vacancy center is embedded in the tip of an atomic force microscopy probe. When the
tip approaches the material surface, the local magnetic field of the materials causes the Zeeman
splitting in the energy level of the nitrogen-vacancy center. The resulting fluorescene intensity
depends on the position of the atomic force microscopy tip, which corresponds to the magnetic
distribution of the material. One example of applying this method is the study of the magnetic
properties of Crl; with the magnetization of monolayers determined to be ~ 16 Bohr magnetons
per square nanometer[55]. Another technique is photoemission electron microscopy, a powerful
surface imaging technique with an ultrahigh resolution through the detection of electrons from a
sample surface. This method has been applied to investigate the magnetic domain in FGT and it is

reported that the ferromagnetism can persist up to room temperature induced by the patterning[S6]

Optical probes function through light-matter interaction with the advantages of simple opera-
tions and high sensitivity. Optical characterizations like Raman scattering, photoluminescence and
magneto-optic Kerr effect (MOKE) have been used to investigate the magnetization of 2D magnets.
However, they are not as efficient as the microscopy methods in providing the mapped magnetic
domains of the thin film. Rama