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ABSTRACT OF THE DISSERTATION
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Professor Kang Lung Wang, Chair

Two-dimensional materials provide a new platform for discovery of exotic physics and

phenomena. They possess rich electronic properties, susceptibility to electric control, dangling-

bond-free interfaces, and readily controlled thicknesses. These properties make them accessible,

engineerable, and integrable into emergent heterostructures for previously unachievable proper-

ties and applications like atomically-thin magnetoelectric devices for ultracompact spintronics.

Although layered materials like graphene are not inherently spin-polarized, magnetic proximity

effect-induced spin splitting has been identified as an effective way to realize spin transport in

graphene. Except the magnetic proximity effect, recently discovered long-range intrinsic mag-

netic orders in the van der Waals materials rise fundamental research interests. This disserta-

tion includes the experimental realization of monolayer graphene magnetized by an underlying
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antiferromagnet. By coupling graphene to an antiferromagnetic thin film, exchange splitting en-

ergy as large as 134 meV at 2 K. This exchange splitting energy can be modulated through field

coolings, which is reflected through the shifted quantum Hall plateau and quantum oscillations

in graphene. Further, magneto-optic Kerr measurement supports magnetism in the graphene at

low temperatures. This work establishes a key functionality for future graphene-based spin logic

and memory devices. Different from the induced magnetism into graphene, the interface-induced

Dzyaloshinskii-Moriya interaction and Néel-type skyrmion lattice in an intrinsic van der Waals fer-

romagnetic material Fe3GeTe2 have also been discussed. By coupling Fe3GeTe2 to 1T’-WTe2, a

large interfacial Dzyaloshinskii-Moriya interaction can be induced at the interface probably due to

the inversion symmetry breaking. Transport measurements have shown the topological Hall effect

in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron

microscopy is used to directly image Néel-type skyrmions along with aligned and stripe-like do-

main structures. This interfacial coupling induced Dzyaloshinskii-Moriya interaction is estimated

to have a large energy of 1.0 mJ/m2, which is much larger than the critical value required to sta-

bilize the Néel-type skyrmions. This work paves a path towards the skyrmionic devices based on

van der Waals layered heterostructure. Based on either induced or intrinsic magnetism in van der

Waals materials, possible quantum anomalous Hall insulators and van der Waals heterostructure

are listed and proposed.
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Chapter 3 Néel-type skyrmions in WTe2/Fe3GeTe2 heterostructures 54

3.1 Transport properties of FGT 54

3.2 Transport properties of WTe2 films 59

3.3 Topological Hall effect in WTe2/FGT heterostructure 60
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3.4.3 Néel-type nature of the skyrmions 78

3.4.4 Stability of the existence of skyrmions 82

3.4.5 Interface coupling in heterostructure with varied FGT thicknesses 85

3.5 Micromagnetic simulation: a finite penetration depth 85

3.6 Comparison of skyrmion size between transport and Lorentz transmission electron
microscopy measurements 88

Chapter 4 Summary and Outlook 92

4.1 Conclusion 92

4.2 Future work 94

4.2.1 New intrinsic quantum anomalous Hall insulators 95

4.2.2 Van der Waals heterostructure 97

References 99

vii



LIST OF FIGURES

1.1 Material library for layered vdW nonmagnetic materials, including graphene,

black phosphorus, transition metal dichalcogenides, and III-VI family. 3

1.2 Haldane model for quantum Hall effect without Landau levels in graphene. Two

inequivalent sites A, B belonging to the same unit cell are labelled. Dashed lines

indicate the next nearest neighbor hopping and solid lines with arrows indicate the

next nearest neighbor hopping direction. 4

1.3 The crystal structure of WTe2 with a unit cell. The graph was drawn with a

software called CrystalMaker. Left graph shows the front 3D view and the right

graph shows the front 2D view with lattice parameters a = 3.49Å, b = 6.27Å and
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Chapter 1

Introduction to van der Waals magnetic materials

Two dimensional (2D) materials have attracted extensive attention due to their huge potential

for applications in electronic and optoelectronic devices. Numerous studies have been carried out

on conventional van der Waals materials like graphene[1, 2, 3], black phosphorus[4, 5], hexagonal

boron nitride (h-BN)[6], transition metal dichalcogenides (TMDs)[7] and other materials since the

discovery of the mechanical exfoliation with scotch tape. In this part, starting from conventional

van der Waals materials discovered ten more years ago, the recently recognized van der Waals

magnetic materials, including their heterostructures, are discussed.

1.1 2D electronic systems

Layered materials are characterized by a planar structure held together with the strong in-plane

covalent bonds and vertical stacking by the weak van der Waals (vdW) force. They have been

expanded over the years and now are a large family as listed in Fig. 1.1, enabling the discovery of

new physics and phenomena. The first material discovered using the mechanical exfoliation was

graphene, a semimetal with no band overlap. Later, the 2D family included the semiconductors

like some TMDs, metals like superconducting NbSe2, and insulators like h-BN. Most few layers

of these materials (with a thickness of several nanometers) are unstable under the air conditions
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with water and oxygen, and usually h-BN is served as a protection layer to isolate the materials

from the ambient conditions.

Interestingly, the properties of such 2D materials are always sharply different from those in the

bulk case. For example, graphene is a zero gap semiconductor while graphite is a semimetal with a

band overlap and monolayer TMDs have direct band gaps while their few-layer or bulk forms have

indirect ones. Moreover, much more unknowns raise when it comes to the combination of these

layered materials into a heterostructure. Such heterostructure is held together by a vdW force, the

same force that holds the materials stacking vertically. It not only allows a great number of com-

binations which have a much more sharper interface than that from any traditional growth method,

but also enables the new physics arising from the stacking parameters like the relative orientation

which can be controlled and altered. Taking advantage of the proximity effect in these heterostruc-

tures, the neighboring thin films can have charge redistribution in the first-order approximation.

They can also induce structural changes in each other and these alternations can be controlled by

adjusting the relative orientation between the individual layers.

1.1.1 Induced magnetism in graphene

Unique features of graphene electronic properties arise from its gapless, massless and chiral

Dirac spectrum. Combined with the exceptionally high carrier mobilities, graphene is one of the

most alluring and widely studied 2D materials. Quantum Hall effect at low temperature[3] and

even at room temperature[1] was soon observed in graphene after obtaining it from mechanical

exfoliation.
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Figure 1.1. Material library for layered vdW nonmagnetic materials, including graphene, black
phosphorus, transition metal dichalcogenides, and III-VI family.

Even before the advent of monolayer graphene, Haldane has proposed the quantum Hall effect

without Landau levels which is quantum anomalous Hall effect in ‘2D graphite’. Applying a toy

model with nearest and next nearest neighbor hopping in graphene as shown in Fig.1.2, closed

paths of next nearest neighbor hopping enclose nonzero magnetic flux. As a result, particles taken

through this trajectory will accumulate a nonzero phase, which is emblematic of a nonzero Berry

curvature in this system. Thus a gapped state, hosting a zero-field quantized Hall conductivity,

was proposed by Haldane[8]. However, this has not been experimentally proved in monolayer

graphene so far. Instead, the quantum anomalous Hall effect has been observed in twisted bilayer

graphene and graphene/h-BN systems[9, 10].

Recently, to realize the quantum anomalous Hall effect, attempts to create ferromagnetism in
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Figure 1.2. Haldane model for quantum Hall effect without Landau levels in graphene. Two
inequivalent sites A, B belonging to the same unit cell are labelled. Dashed lines indicate the next
nearest neighbor hopping and solid lines with arrows indicate the next nearest neighbor hopping
direction.

nonmagnetic 2D materials like graphene emerge[9, 10]. One of the mostly adopted strategies is

using vacancies or adding adatoms such as hydrogen and fluorine[11, 12, 13]. The local mag-

netic moments from unpaired electrons ware produced in graphene through such methods taking

advantage of the defect engineering. However, ordering these moments in a long range is still

very challenging during the material preparation. There are still some disputes over the feasibil-

ity of these approaches to form the long-range magnetic orders in graphene[14, 15]. The second

way to realize the ferromagnetism in graphene is through the structure engineering instead of the

structural imperfections[10, 16, 9]. By controlling the relative orientation between graphene or

graphene/hBN layers, 2D ferromagnetism from originally nonmagnetic 2D materials is created

and even the quantum anomalous Hall effect has been observed. For example, in bilayer graphene

with electrical fields applied perpendicular to the basal plane, the two layers of graphene will ex-

perience different electrostatic potential and hence a gap can be induced. This gap is proved to be

nontrivial and quantum anomalous Hall effect has been reported experimentally[16]. Nevertheless,
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it is still challenging to precisely control and reproduce this kind of intrinsic magnetic properties

of ultrathin film since these traditional thin films easily suffer from various perturbations including

interfacial hybridization, electronic redistribution, atomic interdiffusion, strain, crystalline recon-

struction, irregular shapes and so on. The third approach is from the magnetic proximity effect.

This method makes nonmagnetic 2D material magnetic by borrowing properties from adjacent

magnetic layers. Experiments were carried out by putting graphene onto ferromagnets. Exam-

ples like graphene/yttrium ion garnet (YIG)[17] and graphene/EuS [18] are experimentally shown

that graphene becomes magnetic by showing the anomalous Hall effect or extracting the mag-

netic exchange field from nonlocal transport measurements. However, this anomalous Hall effect

in graphene/YIG samples cannot be a direct evidence for the ferromagnetism in graphene since

this effect in the transport measurements might comes from spin-dependent interfacial scattering

or ferromagnetic impurities[19]. Proving the ferromagnetism in graphene through the quantifi-

cation of the magnetic exchange field and observation of quantum Hall effect at a lower field in

graphene/EuS is more convincing for the interfacial exchange coupling. Unlike ferromagnets, an-

tiferromagnets (AFMs) are magnetically ordered with a net zero magnetization, which means that

they produce no stray field and are always free of the external magnetic field perturbations. These

properties make them promising for the reliable future spintronic devices. Theoretical calculations

have shown the exchange coupling with a high energy of ∼70 meV and quantum anomalous Hall

effect can be induced at graphene/BiFeO3 structures. However, for this approach, the strong inter-

facial coupling cannot be easily obtained and it strongly depends on the physical properties of the

materials themselves.
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1.1.2 Transition metal dichalcogenides

TMDs have the form of MX2, where M is a transition metal like W and Mo and X is a chalco-

gen like Te and Se. They offer a broad range of electronic properties ranging from insulating or

semiconducting to metallic or semimetallic or superconductors. These different conductive proper-

ties result from the progressive filling of the nonbonding d bands by the transition metal electrons.

All these TMDs have a hexagonal structure with a layer of metal atom sandwiched between two

chalcogen layers. They also have a strong covalent bond for the atomic bonding within the lay-

ers and a weak vdW force between the layers. The presence of two constituent chemical species

results in a predominant semiconducting nature, placing TMDs in a favorable perspective for elec-

tronic and spintronic applications. Besides, their metal-semiconductor crossover as a function of

thickness and magnetic response of the semimetallic character give rise to a lot of interest over the

years.

Among all the TMDs, 1T’ WTe2 is a special member of the TMD family and has been studied

extensively in the past few decades due to its wide range of physical, chemical, electronic and op-

tical properties. For the electronic properties, it can be a type-II Weyl semimetal[20, 21], quantum

spin Hall insulator[22] and a superconductor[23] under different physical conditions. The crystal

structure of 1T’ WTe2 is shown in Fig. 1.3, which is orthorhombic with space group Pmn21 and lat-

tice parameters a = 3.49Å, b = 6.27Å, c = 14.04Å. It is nonmagnetic and non-centrosymmetric.

Both the transport measurements[24] and angle-resolved photoemission spectroscopy[25] show it

has multiband semimetal nature.

Many physical properties of WTe2 are related to the strong spin-orbit coupling inside this ma-
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Figure 1.3. The crystal structure of WTe2 with a unit cell. The graph was drawn with a software
called CrystalMaker. Left graph shows the front 3D view and the right graph shows the front 2D
view with lattice parameters a = 3.49Å, b = 6.27Å and c = 14.04Å.

terial, like the quantum spin Hall effect and large nonsaturating magnetoresistance. Spin-orbit

coupling recently shows its potential applications in novel spintronic devices. It enables the flow

of angular momentum between the spin angular momentum of the electronic system and the me-

chanical angular momentum of the lattice[26], which provides the opportunity for more energy

efficient electrical manipulation of the magnetic order. Systems for investigating such spin-orbit

effects are typically heavy metal/ferromagnet bilayers based on the spin-orbit torques. These spin-

tronic devices can also utilize unique properties of quantum materials such as 2D TMDs. Materials

like WTe2 are adopted to study the spin-orbit torques[27]. In this dissertation, the strong spin-orbit

coupling in WTe2 is used to form an interface between a 2D ferromagnet, which would be ex-

plained in Chapter 3.
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Ferromagnets TC (K) Antiferromagnets TN (K)
Cr2Ge2Te6 60[33] FePSe3 106[34]
Cr2Si2Te6 32[33] FePS3 116[35]
CrI3 45 [36] CrCl3 17[37]
Fe3GeTe2 220[38] Mn1Bi2Te4 25[31]

Others VSe2, MnPS3, MnPSe3, FeCl3, α-RuCl3, etc

Table 1.1. Representative van der Waals magnets, including ferromagnets and antiferromagnets.

1.2 Intrinsic 2D magnetic materials

A list of the vdW magnets is shown in Table 1.1. The first reported 2D magnetic crystals

are Cr2Ge2Te6[28]. Later ferromagnetism and antiferromagnetism have been reported in CrI3[29]

with a layer number dependence. Cr2Ge2Te6 is a 2D Heisenberg ferromagnet with small magnetic

anisotropy with spin moments oriented toward all directions and CrI3 is probably a 2D Ising A-type

antiferromagnet with spin moments oriented normal to the basal plane. Thus CrI3 has intralayer

ferromagnetism and interlayer antiferromagnetism. Similar to Cr2Ge2Te6, Cr2Si2Te6 is also a fer-

romagnet. And the magnetic properties of CrCl3 is similar to CrI3. Later, 2D magnetic family is

joint by a ferromagnet with a high Curie temperature (critical temperature for the transition from a

paramagnet to a ferromagnet), Fe3GeTe2 (FGT). Different from those four Cr-based magnetic vdW

materials which are relatively electrically insulating with a large gap, FGT is metallic. Fe-based

magnetic family is further enlarged by including Ising antiferromagnets like FePS3 and FePSe3.

Similar to these materials, MnPS3 and MnPSe3 are also antiferromagnets with a Néel temperature

(critical temperature for the transition from a paramagnet to an antiferromagnet) close to that of

FePS3 and FePSe3. In addition to these materials, room-temperature ferromagnetism has been re-

ported in molecular beam epitaxy grown monolayer VSe2[30]. Until recently, Mn1Bi2Te4 is proved

to be a vdW antiferromagnet, a quantum anomalous Hall insulator and an axion insulator[31, 32].
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1.2.1 Fe-based vdW magnets

FGT is a metallic ferromagnet with a high Curie temperature. In each layer, three of the quin-

tuple sublayers are iron, the top and bottom sublayers are tellurium, and the central one partly

is germanium as shown in Fig. 1.4. Intrinsic magnetocrystalline anisotropy in FGT monolayers

counteracts thermal fluctuations and preserves the 2D long-range ferromagnetic order, and this

is precluded in an isotropic magnetic system according to the Mermin-Wagner theorem[39](this

statement is based on three assumptions). The Curie temperature varies between 150 K and 220

K, which is largely dependent on the Fe concentration[40]. It has a strong perpendicular magnetic

anisotropy with an energy of ∼ 107 erg/cm3, which is almost two orders of magnitude larger than

that of Cr2Ge2Te6 (105 erg/cm3). For bulk and a few-layer FGT, magnetization characterization,

electrical transport[38], scanning tunneling microscopy [41], and magnetic force microscopy[42]

are adopted to investigate the magnetic phase.

Fe
Ge
Te

z
xy

x

y

a

c

Figure 1.4. The crystal structure of FGT with a unit cell. The graph is drawn with a software called
CrystalMaker. The left and right graph show the front 3D and 2D views. The lattice parameters
are: a = 3.99Å and c = 16.34Å.
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In FGT, the interplay of both spin and charge degrees of freedom can be well investigated

from its conductivity. Intriguing properties like large anomalous Hall current driven by topological

nodal lines[43], with the spin degree of freedom quenched by the robust ferromagnetic polarization

and line degeneracy protected by crystalline symmetries, demonstrate that orbital-driven nodal line

is an effective source of a large AHE in hexagonal vdW ferromagnets and provides some insights

for the design of ferromagnetic vdW materials with a large anomalous Hall effect. Besides, it

is found that the itinerant ferromagnetism in FGT can persist in monolayer form with an out-

of-plane magnetocrystalline anisotropy, and with an ionic liquid gate the Curie temperature of a

four-layer FGT can be lifted to the room temperature[38]. Another work[42] found out that FGT

transforms from 3D to 2D Ising ferromagnetism at a thickness around five layers, with a fast drop

of Curie temperature from 207 K down to 130 K. For thick FGT more than ∼ 15 nm, the magnetic

transition in FGT under a magnetic field showing no square hysteresis is related to the formation

of labyrinthine domain structures.

1.2.2 Mn-based vdW magnets

Mn-based vdW magnets includes ferromagnets like MnSex[44] and antiferromagnets like MnPS3[45]

and Mn1Bi2Te4. Among all the vdW magnets, Mn1Bi2Te4 is experimentally proved to be an in-

trinsic magnetic topological insulator. Before discovery of the few-layer Mn1Bi2Te4, magnetic

topological insulator has only been realized by doping nonmagnetic topological insulators with

3d transition metals, which leads to strongly inhomogeneous magnetic and electronic properties

of these materials and limits the observation of quantum effects at low temperatures. Mn1Bi2Te4

is a layered ternary tetradymite compound that consists of Te-Bi-Te-Mn-Te-Bi-Te septuble layers.
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This materials can be viewed as layered Bi2Te3 with a Mn-Te bilayer inserting between each of its

Te-Bi bonds as shown in Fig. 1.5. The magnetism in this material originates from the Mn2+ ions

in the crystal, which has a spin of S=5/2 and a large magnetic moment of ∼ 5µB, where µB is the

Bohr magneton. The magnetic coupling between the septuble layers is antiferromagnetic with fer-

romagnetic ordering in adjacent septuble layers. The bulk Mn1Bi2Te4 is an antiferromagnet with a

Néel temperature of TN = 25 K.

Te
Bi

Mn

Figure 1.5. The schematic two septuple layers of Mn1Bi2Te4 with the antiferromagnetic coupling
between layers. The yellow, green and purple spheres are for Te, Bi and Mn atoms, respectively.
The red arrows indicate the spin polarization directions for Mn atoms.

First principle calculations[46] show the fundamental gap value for the bulk is around 220 meV.

And at certain parameter range, a non-zero nontrivial topology of Mn1Bi2Te4 can be generated. It

is classified as an antiferromagnetic topological insulator[46]. For the experimental parts, the odd-

layer Mn1Bi2Te4 is reported to be a quantum anomalous Hall insulator at 1.4 K and with a large

external magnetic field the quantization temperature can be raised up to 6.5 K[31]. Due to the

antiferromagnetic coupling between layers, the odd-layer Mn1Bi2Te4 is a ferromagnet and even-

layer Mn1Bi2Te4 is a antiferromagnet. Thus the ferromagnetism in odd-layer Mn1Bi2Te4 breaks
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the time reversal symmetry and turns it into a quantum anomalous Hall insulator, also a Chern

insulator. In even-layer Mn1Bi2Te4, for example a six septuble-layer device, a large longitudinal

resistance and zero Hall plateau have been observed[32], suggesting an axion insulator state in

zero magnetic field over a wide magnetic field range and at relatively high temperatures. When

a large enough magnetic field is applied, it becomes a quantum anomalous Hall insulator with a

quantized Hall resistance of h/e2, where h is Planck’s constant and e is electron charge. Later,

Chern insulating states with different quantization values of h/νe (ν is an integer) have also been

discovered in this material system[47].

1.3 2D magnetism

Driven by the exchange coupling with interaction between the neighboring spins, spin orien-

tations favor specific relative directions between them. Thus an ordered arrangement of magnetic

moments over macroscopic length scales exists, resulting in a spontaneous time-reversal symmetry

breaking. Theoretically at zero temperature, this local order can extend to large scales. However,

the increasing temperature will always lead to thermal fluctuations and misalign the moments. In

three-dimensional case, a magnetic phase transition always happens at a finite temperature while

in one-dimensional case a long-range order only occurs at a zero temperature[48]. Whether or

not a system undergoes a phase transition across a finite temperature in 2D case is decided by

the effectiveness of thermal fluctuations on the spin textures, which is related to its presence and

the strength of magnetic anisotropy as shown in Fig. 1.6. When the spins are aligned in a line

(2D Ising model) as shown in Fig. 1.6a, Onsager[49] provided an exact solution and showed a
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magnetic phase transition at TC > 0. In this case, the anisotropy of the system results in a gap

opening in the spin-wave spectrum and suppresses the effect from the thermal fluctuations. Based

on the finite-range exchange interactions, Mermin and Wagner[39] proposed an isotropic Heisen-

berg model which concluded that thermal fluctuations could destroy long-range magnetic order

in 2D system at any finite temperature with the spins arranged in all directions (Fig. 1.6c). This

theory is based on the idea that the excitation of spin waves can destroy the magnetic order, with

the magnetization at a temperature T expressed as:

M(T) = M(T = 0)−∆M(T). (1.1)

The reduction term ∆M(T) is due to the thermal excited spin waves. This term is related to

the dimensionality of the system and probability for the thermal occupation with the form of

∆M(T) ∼
∫∞

0
N(E)[1/(eE/kBT − 1)]dE, where N(E) is the density of states of the excitations

depending on the system dimensionality. In a general case where excitations has a dispersion of

E ∼ kn and a volume of kd−1dk in a d-dimensional k space, the density of states can be ap-

proximated as N(E) ∼ E(d−n)/n. For the dispersion of spin-waves in a ferromagnet with the

Heisenberg Hamiltonian n = 2 and two dimensions d = 2, the density of states is a constant.

Thus the reduction term ∆M(T) diverges for finite T, indicating the breakdown of the magnetic

order. They conclude at finite temperatures the spin waves are infinitely easy to excite and can

destroy magnetic orders. However, this theory is based on the assumptions of isotropic interac-

tions, short-range interactions and the dimension of two or smaller. All three assumptions can be

false since magnetic orders can be stabilized by anisotropy, longer-range interaction or a slightly
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higher dimension. It has been recently proved that even a small uniaxial magnetic anisotropy can

open up a large excitation gap and lift the restrictions imposed by the Mermin-Wagner theorem.

As a result, 2D magnets can survive at a finite temperature. For the case of spins orienting in a

plane as shown in Fig. 1.6b, referred to as the XY model, there is no magnetic transitions con-

ventionally. Berezinskii[50], Kosterlitz and Thouless[51] point out there are an algebraic decay of

spin correlations and the bond of the pairs of vortex and antivortex arrangements of spins in this

system. And they conclude below the Kosterlitz-Thouless temperature TKT that a quasi-long-range

magnetic order can be established in this system, where in the margin of the system a finite order

parameter is suppressed. Before thinning down the vdW materials into 2D region, this theory has

been validated in magnetic thin films grown on a substrate[52] and 3D layered transition metal

compounds[53] over the past several decades.
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Figure 1.6. Thermal fluctuation effects on the spin dimensionality. a, Ising model with spin align-
ing in a line. Spin dimension of one. b, XY model with spin residing in a plane. Spin dimension
of two. c, Heisenberg model with spin in all directions. Spin dimension of three.
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A generalized Heisenberg spin Hamiltonian can be used to describe the 2D magnetism[54]:

H = −1

2

∑
<i,j>

(JSi · Sj + ΛSzi S
z
j )−

∑
i

A(Szi )2, (1.2)

where J is the exchange coupling between spins Si and Sj on neighboring sites with J > 0 for

ferromagnetic order and J < 0 for antiferromagnetic order. And A and Λ are the on-site and inter-

site exchange magnetic anisotropies, respectively. The Ising model and XY model correspond

to A → +∞ and → −∞, respectively. The isotropic Heisenberg model representing the spins

in all directions corresponds to the absence of magnetic anisotropy, that is A ∼ 0 and Λ ∼ 0.

This Hamiltonian also considers the dipole-dipole interactions, but is not applicable to systems

including neighboring magnetic coupling or any other couplings.

1.4 Detection of 2D magnetism

Methods to detect the 2D magnetism in a small scale with a size of several square micrometers

(the size of mostly exfoliated monolayer or few-layer vdW magnets) are rather limited. Currently,

mostly adopted measurements are based on microscopy, optics and electronic probes.

Microscopy measurements for 2D magnets include Lorentz transmission microscopy (L-TEM),

single-spin microscopy and photoemission electron microscopy. These techniques help map either

morphology or structure of the materials based on behaviors of the ions, electrons, photons or

physical cantilevel probes. Informations about spin arrangement and magnetic domain in the real

space can be collected under external fields. L-TEM can provide the information about magnetic

domains in the real-space with a resolution under 5 nm and the skyrmion lattice images under mag-
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netic fields and different temperatures. Its principle is based on the Lorentz force which electrons

experience under a magnetic field. Meanwhile, single-spin microscopy provides high spatial reso-

lution at the nanoscale and can detect a single atomic spin by taking advantages of the exceptional

properties of a defect in diamond called a nitrogen-vacancy center. A diamond nanocrystal with

a nitrogen-vacancy center is embedded in the tip of an atomic force microscopy probe. When the

tip approaches the material surface, the local magnetic field of the materials causes the Zeeman

splitting in the energy level of the nitrogen-vacancy center. The resulting fluorescene intensity

depends on the position of the atomic force microscopy tip, which corresponds to the magnetic

distribution of the material. One example of applying this method is the study of the magnetic

properties of CrI3 with the magnetization of monolayers determined to be ∼ 16 Bohr magnetons

per square nanometer[55]. Another technique is photoemission electron microscopy, a powerful

surface imaging technique with an ultrahigh resolution through the detection of electrons from a

sample surface. This method has been applied to investigate the magnetic domain in FGT and it is

reported that the ferromagnetism can persist up to room temperature induced by the patterning[56]

.

Optical probes function through light-matter interaction with the advantages of simple opera-

tions and high sensitivity. Optical characterizations like Raman scattering, photoluminescence and

magneto-optic Kerr effect (MOKE) have been used to investigate the magnetization of 2D magnets.

However, they are not as efficient as the microscopy methods in providing the mapped magnetic

domains of the thin film. Raman is a conventional way to identify the structural information and op-

tical properties based on the spin-phonon interaction and lattice dynamics. Three phase transition

temperatures of MnPS3 have been reported using the polarized Raman spectroscopy[57]. Unlike
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Raman, photoluminescence probes the photoexcitation process light absorption. With spontaneous

circular polarization photoluminescence, the helicity can be determined by the magnetization di-

rection in the case monolayer CrI3[58]. MOKE detects the change of the polarization of an incident

light when reflected or transmitted by a magnet. It is widely adopted for the measurement of phys-

ical properties of magnetic thin films, like magnetic domain, spin density of states and magnetic

phase transition. As examples, the discovery of the ferromagnetism in CrI3[59] and Cr2Ge2Te6[28]

was using MOKE.

Since the electronic properties of 2D magnets are significantly affected by their magnetic or-

ders, electronic transport studies of longitudinal resistance and Hall resistance can also provide

some information about the magnetizations. Magnonics or magnon-based spintronics of 2D mag-

nets combine the magnetization and spin waves in the nanoscale materials. Such magnon-modified

transport behaviors of a 2D antiferromagnet MnPS3 have been observed by the longitudinal resis-

tance measurements[60], with magnon propagation over several micrometers. The Hall effect,

especially the anomalous Hall effect and quantum anomalous Hall effect, can be used to determine

the ferromagnetism and estimate the Curie temperature of the materials.

The extraordinary properties of 2D magnets make them a promising candidate for the future

spintronic and electronic applications. Exploring the intrinsic properties of these materials not only

helps understand the physical mechanism of low-dimensional films, but also exists in developing

the next-generation devices down to the atomic scales with an ultra-compact configuration.

17



1.5 Magnetic heterostructure based on 2D materials

The use of 2D materials as part of the heterostructures not only expands the functionality of the

heterostructure for the future applications, but also enables the phenomena from proximity effect

to study the magnetic properties of the materials. Through the interface engineering of 2D mag-

nets, charge transfer occurs first, which effectively changes the carrier concentration and orbital

occupation in the materials. Second, the interface dipole or built-in electric field can modify the

electronic properties of the 2D magnets. Third, interfacial orbital hybridization may affect the mag-

netic properties of the 2D materials, which is the case of induced magnetism in our graphene/CrSe

heterostructures which will be discussed later in Chapter 2. Fourth, lattice strain may exist at the

interface of the heterostructure, resulting in the properties change in the materials. Fifth, there

are exchange interactions between the materials. Sixth, a brand new lattice may form when a 2D

magnet interfaces with a material with a similar lattice constant, which is the case of twisting bi-

layer graphene or band renormalization in graphene on h-BN. Seventh, the dielectric screening of

electron-electron interaction exists at the interface[61]. Last but not least, spin-orbit proximity ef-

fect can play an important role when 2D magnets are coupled to heavy elements, which is the case

of emergent skyrmions in our FGT/WTe2 heterostructure which will be discussed later in Chapter

3.

With strong covalent bonds formed between atoms within the plane, the layers are connected

with the vdW interaction, which is a great advantage when stacking these materials together. The

seamless integration and interplay of vdW heterostructure can produce a large interfacial exchange

interaction. For example, CrI3/WSe2 heterostructure has a large interfacial exchange energy mea-
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sured through circularly polarized photoluminescence, which is equivalent to the effect of a 13 T

magnetic field. This is explained due to the lifted valley degeneracy of WSe2 via flipping the mag-

netization of CrI3[62]. Apart from combing 2D magnets with 2D materials, a Pt/FGT heterostruc-

ture has also been investigated. The spin current generated in Pt can switch the magnetization of

the FGT layer by exerting a damping-like spin orbital torque from Pt[63].

1.6 Sample assembly using pick-up transfer technique

Although some few-layer 2D materials like graphene can be synthesized by chemical vapor

deposition or molecular beam epitaxy method with good control and uniformity, the quality (like

carrier mobility) of materials obtained from these methods are still not as good as the exfoliated

ones from the bulk. The exfoliation method usually produces flakes with different sizes and thick-

nesses randomly distributed over the substrate, which includes a few atomically thin flakes. Thus

optical identification like microscopy is engaged to find atomically thin crystals with a relatively

large size from a crowd of thick bulky flakes.

However, the combination of mechanical exfoliation and microscopy only still cannot directly

provide more complex system like heterostructures, which is formed by stacking different material

thin films and requires an accurate alignment under a microscope. To fabricate such system, a pick-

up transfer technique is needed as schematically shown in Fig. 1.7. In this method, two sample

planes are required to hold the samples, where one is attached to the slide glass and the other one

is placed onto the heater. While tuning the focus of the microscope, two sample planes can be

clearly seen under the microscope and thus the relative positions of two sample can be accurately
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heater
sample on the substrate

microscope

slide glass

Figure 1.7. Schematic illustration of the sample assembly. There are two sample planes under the
microscope. One is on slide glass and the other one is on the substrate as indicated. The heater is
used to apply heat with DC current during pick-up and transfer procedure.

aligned. When putting the two samples together, a heater is switched on to help the sample on

the slide glass fall onto the other sample on the substrate. Our homemade pick-up transfer stage

is shown in Fig. 1.8, which uses one microscope with long-distance objective lens, one xyz stage,

one xy stage, one rotation stage, one CCD, one heater, and one DC power supply. The images are

obtained through the CCD which is linked to a computer. To protect the few-layer sample from air

conditions, the pick-up transfer process is done inside a glove box filled with inertia gas of N2 gas.

One example of using the pick-up transfer technique to fabricate black phosphorus/graphene

heterostructure is shown in Fig. 1.9. Before doing the transfer, thin films of polydimethylsiloxane

(PDMS)/Polypropylene carbonate (PPC) are coated on the slide glass. Then these layers are used to

pick up the black phosphorus exfoliated on the 300 nm-thick SiO2/Si substrate. When PDMS/PPC

is attached to the black phosphorus, the heater is on for 10 minutes and the temperature is raised

to ∼ 50◦C. After turning the heater off, the slide glass is detached from the substrate and black

phosphorus is sticked to the PPC. Then PDMS/PPC/black phosphorus on the slide glass is used to
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slide 
glass 

sample on 
substrate

Figure 1.8. Homemade sample assembly facility using pick-up transfer technique. The top white
part is the microscope with objective lens. The left white part is the heater. Slide gas is attached to
a XY aligner and sample on the substrate is attached to the heater which is on a XY stage.

pick up graphene on the substrate using the similar heating process. After that, PDMS/PPC/black

phosphorus/graphene layers can be put onto any desired substrate by heating up to ∼ 70◦C. Since

the PPC can be dissolved in acetone, the black phosphorus/graphene/any substrate sample is ready

after being taken out from acetone.

SiO2/Si

black phosphorusPPC

PDMS

graphene

Any desired substrate

Figure 1.9. Black phosphorus/graphene heterostructure assembly using pick-up transfer tech-
nique. PDMS/PPC is used to pick up black phosphorus exfoliated onto the SiO2/Si substrate
first. After pick-up, PDMS/PPC/black phosphorus is used to pick up graphene. After transfer-
ring PDMS/PPC/black phosphorus/graphene onto any desired substrate and dipping in acetone,
heterostructures can be formed.
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1.7 Outline

In this dissertation, we summarize our work on the proximity effect of graphene/antiferromagnet

and WTe2/FGT heterostructures. The contents are arranged as the following. In Chapter 2, crys-

tal and magnetic structure of CrSe thin film, magnetized graphene from transport and MOKE

measurements and Landau level fitting using machine learning are shown in details. In Chap-

ter 3, transport properties of FGT, transport properties of WTe2, topological Hall effect in the

heterostructure, Néel-type skyrmions under L-TEM, micromagnetic simulations and comparison

between the transport and L-TEM results are discussed.
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Chapter 2

Magnetism in graphene coupled to an

antiferromagnet

To realize the quantum anomalous Hall effect in graphene, one way is to induce local magnetic

moments, like doping atoms with unfilled d or f shells[64]. Different from doping, proximity

coupling does not bring unnecessary disorder to graphene. It is reported that ferromagnetism in

graphene has been observed in graphene/YIG heterostructure[17] where YIG is a ferromagnet

with a high Curie temperature of 560 K. The hybridization between the π orbitals in graphene

and nearby spin-polarized d orbitals in magnetic insulators gives rise to the exchange interaction

required for long-range ferromagnetic ordering. Like ferromagnets, antiferromagnets (AFMs) are

magnetically ordered.

In this part, quantum oscillations in monolayer graphene interfaced with CrSe thin film, an

AFM, have been observed. A sizable exchange coupling was detected from the π bond formed

by the p orbitals of carbon and Cr atoms in the CrSe layer. When the field-cooling was applied,

changes in the interfacial antiferromagnetic order significantly modify the exchange splitting of

graphene, making the quantum oscillations shifted to a larger or smaller magnetic field strength

according to the cooling-field strength and direction. The magnetism induced into graphene from

the proximity effect was also confirmed by the MOKE measurements. This spin-splitting energy
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is estimated to be ∼ 134 meV from fitting Landau level index using the machine learning.

2.1 Crystal and magnetic structure of CrSe film

Bulk Cr1−δSe1+δ is known to have a complex phase diagram. For example, when δ is in the

range of 0≤ δ ≤0.05, this material has more than six stable phases, all of which are pseudo-NiAs

phase at room temperature. To confirm this as-grown CrSe film has a NiAs-type crystal structure

and antiferromagnetic orders, transmission electron microscopy (TEM), X-ray diffraction (XRD)

and neutron diffraction measurements have been carried out. All the results have shown the CrSe

thin films used in our experiment is an antiferromagnet with a NiAs-type structure and a Néel

temperature of ∼ 270 K.

CrSe thin films were grown in an ultra-high vacuum Perkin-Elmer molecular beam epitaxy

(MBE) system. Semi-insulating GaAs [111B] (001) substrates were cleaned by acetone with ultra-

sonic for 10 minutes before being loaded into the growth chamber. To effectively remove the native

oxide, Se rich atmosphere was used to do the thermal annealing up to 580◦C. During the growth

of CrSe, a two-step growth method was adopted, where the first step was to maintain the GaAs

substrate at 200◦C with the Cr and Se shutters open at the same time and the second one was rais-

ing the substrate temperature to 400◦C and maintaining at this temperature to finish growth with

the same Cr and Se flux. This epitaxial growth was monitored by an in situ reflection high-energy

electron diffraction technique.
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2.1.1 Crystal structure from TEM and XRD

In this study, CrSe thin films were grown on GaAs [111]B substrates by molecular-beam epi-

taxy method. The NiAs-type CrSe crystal structure is shown in Fig. 2.1, with alternating basal

planes of Cr and Se.

Se
Cr2

Cr1

α1

α2

α3

Figure 2.1. NiAs-phase CrSe with alternating layers of Cr and Se atoms and labelled axis for the
unit cell. The lattice parameters for the unit cell are: a1 = a2 = 3.60 Å and a3 = 5.81 Å.

The cross-section of the high-quality interface via TEM is shown in Fig. 2.2. The line scan

indicates a high quality NiAs-type structure with evidence of ordered Cr vacancies as expected, and

the Cr vacancies are in the form of dark horizontal stripes. The NiAs-phase is fully developed after

one or two seeding layers of CrSe interfacing with GaAs. In the experiment, monolayer graphene

was put to the top surface of CrSe, with a well-developed NiAs-phase CrSe thin film shown under

TEM.

From the XRD, the lattice parameters can be extracted, with a1 = a2 = 3.60 ± 0.01 Å and

a3 = 5.81 ± 0.01 Å, respectively. These values are close to those reported for NiAs-CrSe and
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CrSe

GaAs5nm

Figure 2.2. Transmission electron microscopy for side view of CrSe/GaAs heterostructure indi-
cates the good quality of CrSe.

Cr7Se8 [65, 66]. Considering the deposition temperature of 230◦C for the first step and 400◦C for

the second step and the relative strength of the (001) and (002) diffraction peaks, the thin film was

expected to have a composition relatively near the stable window of a mixed phase of CrSe and

Cr7Se8[66, 67, 68].
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Figure 2.3. X-ray diffraction shows that CrSe has a NiAs-type crystal structure.

2.1.2 Spin texture from neutron diffraction

The TEM and XRD measurements show the thin film grown by MBE method has a crystal

structure close to NiAs-phase. More importantly, the antiferromagnetic order in this thin film
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should be investigated and confirmed. Thus neutron diffraction was carried out by our collaborators

in National Institute of Standards and Technology, which revealed strong temperature dependent

(200)Mag and (201)Mag Bragg peaks shown in Fig. 2.4. The ‘Mag’ subscript indicates that the peaks

may be indexed using the rotated and expanded unit cell as described in the previous work[65].

The presence of such a large fully in-plane magnetic diffraction peak (200)Mag requires a large

spin component along the growth axis, that is the out-of-plane direction. Further, the in-plane

contribution of the (200)Mag and (201)Mag peaks can be translated into the structural unit cell, and

it indicates a [2
3
, 2

3
,0] in-plane propagation vector. This suggests a non-collinear antiferromagnetic

order in this CrSe thin film.

Fitting the temperature-dependent peak intensity of CrSe films on GaAs using a mean-field

Brillouin function gives the Néel temperatures of 273 ± 8 K and 270 ± 7 K, respectively. These

results are consistent with the reported Néel temperature for bulk CrSe, which is approximately

280 K[65]. As a result, the high-temperature non-collinear antiferromagnetic ordering with an

out-of-plane spin component has been proved in this thin CrSe films.

2.1.3 Transport properties of CrSe film

The Néel temperature in the CrSe thin film matches that in the bulk form, however, the transport

properties of this thin film differ from that in the bulk[65]. As has been reported before, the bulk

CrSe is metallic[69]. In our case, the 60 nm-thick CrSe film is metallic and shows a decreasing

resistivity when the temperature decreases (Fig. 2.5). However, for 30 nm-thick CrSe, which

was put next to a monolayer graphene in this experiment, shows an increasing resistivity when
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Figure 2.4. Neutron diffractions of (200)Mag and (201)Mag Bragg peaks indicate the Néel temper-
ature for our AFM thin films is close to the reported values in bulk. The dots are the measured
data and the lines are the fitting curves. Error bars represent a single standard deviation. The in-
set shows the reflection high-energy electron diffraction during molecular beam epitaxy growth of
CrSe on GaAs.

the temperature decreases. This deviates from the metallic behavior. The origin of this thickness

dependent transport behaviour is unclear at the present stage. Possible reasons are vertical quantum

confinement in thinner films and band bending due to interfacial electrostatics. Nevertheless, the

30 nm-thick CrSe have been shown to be semiconducting with an out-of-plane antiferromagnetic

order.

2.2 Magnetized graphene from transport and MOKE measure-

ments

Monolayer graphene was first mechanically exfoliated onto a 300 nm-thick SiO2/Si substrate

and then transferred onto the the CrSe thin film. To form the heterostructure, the dry trans-

fer method was adopted. First, the PDMS stamp sticked to a glass slide was coated with a
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Figure 2.5. Temperature dependent resistivity of 30 nm-thick and 60 nm-thick CrSe films. 60
nm-thick CrSe is metallic while 30 nm-thick CrSe is semiconducting.

thin film of PPC. The monolayer graphene on the 300 nm-thick SiO2/Si was picked up by the

PDMS/PPC on the glass slide by heating up to 50◦C. After that, the PDMS/PPC/graphene tri-

layer was aligned with the CrSe/GaAs. After heating up to 110◦C, PPC detached from PDMS and

the PPC/graphene/CrSe/GaAs structure was formed. Then acetone was used to remove the PPC

thin layer and graphene/CrSe heterostructure was formed after the removal. Since a monolayer

graphene has a low contrast on the CrSe/GaAs substrate, whereas it does have a good contrast on

SiO2, the monolayer graphene pieces which are close to an adjacent multilayer one were always

chosen to be the ideal sample. In this case, the multilayer piece could serve as a locator for finding

the monolayer graphene on CrSe/GaAs substrate. Hall-bar devices with dimensions of 13 µm× 6

µm were fabricated using standard photolithography later for the electrical measurements.

Raman spectroscopy are measured with a 20× objective at 514 nm with a Renishaw micro-

Raman spectrometer, having a 1800 grooves/mm grating and spectral resolution of ∼3 cm−1. This

suggests a monolayer graphene on CrSe/GaAs and the absence of the D peak indicates a low level
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of disorder as shown in Fig. 2.6.
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Figure 2.6. Raman spectroscopy of monolayer graphene indicates the monolayer graphene with a
high 2D peak and a low level of disorder with a negligible D peak. The inset shows the microscopic
image of graphene/CrSe before (top graph) and after (bottom graph) doing photolithography. The
nearby thick flake on the left side of the graph serves as a locator when doing photolithography.

2.2.1 Field cooling dependence of graphene/CrSe heterostructure

The transport measurements were carried out with the physical property measurement system

(PPMS) with a magnetic field range of ±9 T and a temperature range from 2 K to 400 K. After

cooling down the sample temperature from room temperature to 2 K, the magnetoresistivity of this

heterostructure ρxx was measured, which showed quantum oscillations under an applied out-of-

plane magnetic field (Fig. 2.7). Some kinks also appeared in the Hall resistivity at large magnetic

fields. As expected, given the antiferromagentic nature of CrSe, no ferromagnetic hysteresis was

observed when sweeping the magnetic fields back and forward.

Field cooling is well known as a convenient method to introduce exchange bias in heterostruc-

ture formed by a ferromagnet and an antiferromagnet[70, 71, 72, 73]. The field cooling is done by
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Figure 2.7. Magnetoresistivity in the blue curve and Hall resistivity in the red curve for graphene
on 30 nm-thick CrSe with no external magnetic field when cooling down. Quantum oscillations of
longitudinal resistivity and dips of Hall resistivity were observed.

applying an external magnetic field above the Néel temperature (TN) and lowering the temperature

to a base temperature which is much lower than TN as schematically shown in Fig. 2.8. When

the temperature reaches the base value, the external magnetic field can be withdrawn. For anti-

ferromagnets alone, it was reported recently that field coolings could manipulate the Néel vector

for a certain case of anisotropy [74]. In our case, uncompensated spins are expected to be on the

CrSe surface since half of their neighboring antiparallel moments are missing. Thus, the surface

moments of CrSe can be pinned at field coolings under an external magnetic field, resulting in a

net magnetic moment frozen out of plane. The Cr-d orbitals of these frozen moments overlap with

the p orbitals on the adjacent carbon atoms, inducing a spin splitting energy, ∆. And this energy

can be modulated through the magnitude and direction of the cooling fields.

For the graphene/CrSe heterostructure, quantum oscillations have been observed in the magne-

toresistivity measurements. When applying different field coolings, the quantum oscillations dips

and peaks are shifted according to the field coolings as shown in Fig. 2.9. The same dip as denoted
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Graphene CrSe

GaAs

+BFC

Figure 2.8. Schematic graph for graphene/CrSe under field coolings. The black arrow indicates the
applied magnetic field direction. The hexagonal lattice is graphene. The green and purple cuboids
are CrSe and GaAs layers, respectively.

by the dashed in Fig. 2.9 are shifted by the field coolings, where the positive field cooling shifts

the quantum oscillations rightwards and negative one shifts the oscillations leftwards.

The same pattern occurs for the Hall channel as well (Fig.2.10). As indicated by the dashed

arrow, the kink is moved to a larger magnetic field when the field cools down with a positive

magnetic field.

To exclude the possibility that the oscillations and shifts are from CrSe layer since it also

contributes to one conducting channel in this heterostructure, the transport properties of pristine

CrSe thin layers grown on GaAs substrates (Fig. 2.11) have been investigated. The longitudinal

resistivity of CrSe of the control sample ρxx−CrSe is only greater than longitudinal resistivity of the

heterostructure ρxx by about one order of magnitude. The quantum oscillations are completely

suppressed in the control pristine CrSe, and thus definitely attributing the quantum oscillations

observed in the heterostructure to the the Landau levels in the graphene layer. Since the carriers of

CrSe are also involved in the transport measurements and the Hall resistivity of CrSe film ρxy-CrSe
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Figure 2.9. Magnetoresistivity of monolayer graphene/CrSe sample under different field coolings.
The same dip as denoted by the dashed are shifted by the field coolings, where the positive field
cooling shifts the quantum oscillations rightwards and negative one shifts the oscillations leftwards.

is comparable to the Hall resistivity of the heterostructure ρxy, the Landau level index is difficult to

be extracted by directly treating two conductive channels in parallel: one resistivity is from CrSe
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Figure 2.10. Hall resistivity of monolayer graphene/CrSe sample under different field coolings.
The quantum Hall plateau is shifted with respect to the field cooling.
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Figure 2.11. Hall resistivity and magnetoresistivity of 30 nm-thick CrSe/GaAs at 2K show little
dependence on field coolings. This helps exclude the possibility that the shift of the quantum
oscillations in the heterostructure is from CrSe.

and the other one is from graphene since direct subtractions yield divergent values sometimes. The

quantum Hall plateaus of the graphene layer are thereby buried in the background associated with

the CrSe layer, resulting in a set of ‘kinks’, significantly deviated from the expected multiples of

h
e2

. Later, a novel way to determine the Landau level index through the quantum oscillations by

machine learning will be discussed.
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As mentioned before, the negative field coolings shift the quantum oscillations to a smaller

magnetic field direction while the positive ones shift to the opposite direction. In Fig. 2.10, the

Hall signal can be shifted to opposite directions after positive and negative field cooling. That

is, each quantum-Hall ‘kink’ also shifts its position but keeping at the same height for all Hall

measurements after different field coolings. The shifts in the SdH minima in ρxx as shown in Fig.

2.9 are precisely synchronised with the corresponding shifts in the kink locations of as shown in

Fig. 2.10. The field-cooling dependent positions of the ρxx minima identified by the dashed line

in Fig. 2.9 and the kink identified by the arrow in Fig. 2.10 are plotted together in Fig. 2.12 to

highlight the similar trend.
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Figure 2.12. For the quantum oscillations dip indicated by the arrow in Fig. 2.9 and quantum Hall
plateau indicated by the dashed arrow in Fig. 2.10, which have the same Laudau level index, the
red filled circles are for the magnetic fields at the middle of the quantum Hall plateaus and the blue
squares are for the magnetic fields at the dips of the quantum oscillations.

Another signature observed under the field coolings is the phase transition occurred in the

temperature dependent of ρxx. Fig. 2.13 shows the longitudinal resistivity ρxx during a cooling-

warm cycle for the graphene/CrSe heterostructure within a temperature range of 10 K to 300 K
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(from above to far below the Néel temperature). First an out-of-plane field of 2 T was applied

during the cooling down from 300 K to 2 K and then no magnetic field was applied during the

temperature warming up. The longitudinal resistivity ρxx shows a peak and a dip for the cooling

and warming processes, respectively. These two signatures both present at approximately 265 K

which is about 8 K lower than the Néel temperature from the neutron diffraction measurements.

This indicates the carrier transport in the heterostructure is indeed affected by the magnetic orders.

100 200 300

18

21

24

ρ x
x(
Ω

)

2T cool down

0T warm up
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Figure 2.13. Magnetic phase transition revealed by the kink around 265K (which is 8K lower than
the Néel temperature) both at 2T FC cool down followed by the 0T warm up.

2.2.2 Super-paramagnetism from MOKE measurements

The field cooling can help pin the surface magnetic moments of CrSe with the external magnetic

field, and this results in a net magnetic moment frozen out of plane. The Cr-d orbitals of these

frozen moments overlap with the p orbitals on the adjacent carbon atoms, inducing a spin splitting

energy ∆. As shown in the transport measurements, this spin splitting energy ∆ can be modulated

through the field coolings. In this case, the proximity effect induced orbital hybridizations can
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help magnetize the graphene layer. Thus MOKE measurements were used to directly investigate

the magnetism in this heterostructure since CrSe alone, as an antiferromagnet, will not contribute

any net magnetization theoretically.

The MOKE set-up[75] is schematically shown in Fig. 2.14. The system begins with a He-Ne

CW laser centered at 633 nm as its light source as shown in the right part. The laser beam is then

intensity-modulated at ∼ 100 KHz using a photo-elastic modulator (PEM) and polarized linearly.

The following half-wave plate (HWP1) is used to adjust the polarization plane with respect to

the sample orientation, with half of the laser power sending into a power meter by a 50/50 beam

splitter. Then the laser passes through a second half-wave plate (HWP2) of which the principal axis

is carefully aligned with the polarization plane of the laser. The polarization plane shown in the

upper part of the reflected light is therefore rotated by−θK away from the initial polarization plane

after passing through HWP2 the second time. An objective with an amplification of 20X is used

to focus the laser beam into the a micrometer-size spot on the sample surface and carefully aligned

to ensure the normal incidence. For the low temperature measurements, the sample is mounted in

a JANIS ST-100 optical cryostat for cooling. The reflected beam is sequentially passed through a

half-wave plane (HWP3) and a Wollaston prism. The Wollaston prism is used to separate the s-

component and p-component of the laser, and HWP3 is used to initially set these two components

equal when no magnetic surface is presented. Consequently, the resultant non-zero θK is reflected

in the difference between the s-component and p-component for a magnetic sample, which can be

captured by the balanced photodetector. Due to the intensity modulation of the laser, the output

voltage from the photodetector is fed into a lock-in amplifier with the reference frequency locked

to the PEM at 100 KHz to extract the relative value of Kerr rotation θK .
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Figure 2.14. The experimental set-up for the magneto-optic Kerr effect measurement. The system
begins with a He-Ne CW laser centered at 633 nm. The laser beam is then intensity-modulated at
∼ 100 KHz using a photo-elastic modulator and polarized linearly.

In our case, a beam of the linearly polarized laser consisting of 633 nm HeNe with a power of 50

mW was incident along the surface normal of the graphene/CrSe heterostructure. During a scan of

the out-of-plane magnetic field, any magnetization pinned by the fields should result in a detectable

Kerr rotation of the polarization direction. This experiment was carried out at temperatures both

above and far below the Néel temperature of CrSe (300 K and 12 K).

The Kerr rotation for the heterostructure and a control sample consisting of pristine CrSe are

shown in Fig. 2.15 in the up and low panels, respectively. At 12 K, a sizeable Kerr rotation

was detected as a function of the external magnetic field. The rotation angle indicates a super-

paramagnetic behavior for the graphene/CrSe heterostructure, suggesting a detected out-of-plane
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Figure 2.15. MOKE measurements of the graphene-on-CrSe sample and a control sample. The
Kerr rotation of graphene-on-CrSe shows the magnetized graphene at 12 K and no magnetic signal
at room temperature. The graph below shows the Kerr signal for CrSe on the same substrate. The
arrows indicate the magnetic field sweeping direction.

component of the magnetization when an out-of-plane field is applied. This is absent in the control

sample at the sample temperature. When the temperature is raised up to 300 K, no detectable Kerr

rotation has been observed in both samples since the Néel order in CrSe is destroyed by the thermal

fluctuations.

Further, the comparison between the anomalous Hal effect at 2 K after -5 T field cooling and the

low-temperature MOKE data is shown in Fig. 2.16. The Kerr rotation angle saturates at ∼ ±0.25

T, this is consistent with the Hall resistivity curve. Both curves suggest a net magnetization induced
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into the heterostructure from the orbital hybridization at the graphene/CrSe interface.
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Figure 2.16. Comparison between MOKE data at 12 K and transport data at 2 K for graphene/CrSe
heterostructure. It shows a good consistency between MOKE and transport data.

2.3 Landau level fitting using machine learning

As mentioned before, the transport signal from the heterostructure consists of two channels:

one is from the CrSe thin film and the other one is from the graphene. Due to the comparable

scale of the Hall resistivity for the control pristine CrSe and the graphene/CrSe heterostructure,

it is impossible to get the precise values of graphene resistivity when simply treating the system

as a parallel circuit. Thus, for the first time, a precise way was reported to determine the Landau

level index in graphene by taking advantage of the emergent new field: machine learning. Simply

speaking, the determination of Landau level index is done by optimally fitting the Landau fan

diagram.
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2.3.1 Landau level considering the spin-splitting term

Here the exchange splitting induces a rigid shift in the Landau-level spectrum. Starting with

the low-excitation Hamiltonian, the spin splitting is included as:

H = vFp · σ +
∆

2
sz. (2.1)

Note that σ denotes the Pauli matrices for pseudospin, and s are the Pauli matrices for electron

spin. In the case that the CrSe surface is not atomically sharp although the valley symmetry should

be broken locally, and such asymmetry should be averaged out globally. Therefore the valley

degree of freedom is ignored. Using the Peierls substitution, the wave vector is replaced by the

gauge-invariant kinetic momentum, p→ Π
~ = −i∇+ e

~A (r), where A (r) is the vector potential:

Bez = ∇ ×A. Using commutation relation [xµ, pν ] = i~δµν and pµ = −i~ ∂
∂xµ

(µ, ν = x, y), it

leads to

[Πx,Πy] = −i~
2

l2B
(2.2)

where lB =
√

~
eB

is the characteristic magnetic length. Using ladder operators

a =
lB√
2~

(Πx − iΠy) (2.3)

a† =
lB√
2~

(Πx + iΠy) (2.4)

The Hamiltonian now becomes

H =

 h↑ 0

0 h↓

 (2.5)
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where

h↑,↓ =

√
2~vF
lB

 0 a

a† 0

+

 ±∆
2

0

0 ±∆
2

 . (2.6)

Here ↑ and ↓ correspond to + and−, respectively. Denoting the wave function by Ψ = (Ψ↑,Ψ↓)
T =

(Ψ↑A,Ψ
↑
B,Ψ

↓
A,Ψ

↓
B)T , one can solve the Schrödinger equation for each spin: h↑,↓Ψ↑,↓ = εΨ↑,↓:

√
2~vF
lB

 0 a

a† 0


 Ψ↑,↓A

Ψ↑,↓B

 =

(
ε∓ ∆

2

)Ψ↑,↓A

Ψ↑,↓B

 (2.7)

Writing out the two rows in Eq. 2.7, it leads to


√

2~vF
lB

aΨ↑,↓B =
(
ε∓ ∆

2

)
Ψ↑,↓A

√
2~vF
lB

a†Ψ↑,↓A =
(
ε∓ ∆

2

)
Ψ↑,↓B

. (2.8)

Substituting ΨA in the second row of Eq. 2.8 using the first row, it leads to

a†aΨ↑,↓B =

(
lB
ε∓ ∆

2√
2~vF

)2

Ψ↑,↓B . (2.9)

This suggests that the squared term on the right side of Eq. 2.9 is the eigenvalue of the number

operator: a†a |n〉 = n |n〉. Therefore the Landau levels are:

ε↑,↓n =
~vF
lB

√
2 |n| ± ∆

2
. (2.10)

Here n = 0,±1,±2,±3 · · · , and ∆
2

is a rigid shift of the spectrum.
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2.3.2 Slope of the Landau fan diagram

The position of the Fermi level εF and the spin-splitting energy ∆ can be quantitatively extracted

using the Landau fan diagram. In the quantum oscillations, each dip of the ρxx corresponds to a

crossing between one Landau level and εF. These dips thus result in a set of filling factors {ν},

which satisfy σxy = ν e
2

h
. Here, ν = ±4(n ± 1

2
) for εF ≷ 0, respectively[3, 76]. Each quantized

σxy and the corresponding quantum oscillations dip can be identified with one integer value of

n = 0, 1, 2, · · · , which counts the Landau levels that can intersect εF due to the band-bending.

Particularly, the floor (ceiling) function b· · · c (d· · · e) is adopted to take the integer value of the

n: n = b ε
2
F

α
1
B
c for εF > 0 and n = d ε

2
F

α
1
B
e for εF < 0 with α = 2e~v2

F . Here the floor function

chooses the greatest integer that is less than or equal to the ε2F
α

1
B

and the ceiling function chooses

the least integer that is greater than or equal to the ε2F
α

1
B

. By taking the integer values of n, a linear

relation between n and 1
B

can be obtained. As proved experimentally before[3], the discrete set of

{n} precisely aligns linearly on a fan of lines n = ± ε2F
αB
± 1

2
, with the slopes β =

ε2F
α

dependent

on the position of the Fermi level εF . In this case, ±1
2

term originates from the 0th Landau level,

where only 2 out of 4 degenerate states can intersect εF .

When graphene is magnetized by a sizeable spin-splitting energy, the low-energy Hamiltonian

of graphene includes an additional spin-splitting term and becomes H = ~vFk · σ + ∆
2

sz. The

valley degree of freedom is not resolved here since the atomic alignment at the interface cannot

be precisely controlled and the valley splitting should be easily averaged out. Considering the

spin splitting, the originally degenerate Landau levels now split into two sets, n↑ and n↓. The

filling factor now is ν = 2(n↑ + n↓) for −|∆
2
| ≤ εF ≤ |∆2 |, where n↑ = d−(εF − |∆2 |)

2 1
αB
e and
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n↓ = b(εF + |∆
2
|)2 1

αB
c. When the Fermi level is outside the spin-splitting region (εF ≷ ±|∆

2
|), the

filling factor becomes ν = ±2(n↑ + n↓ ± 1), respectively. Here, ±1 inside the bracket is due to

the 0th Landau level, n↑,↓ = d−(εF ± |∆2 |)
2 1
αB
e for εF < −|∆

2
| and n↑,↓ = b(εF ∓ |∆2 |)

2 1
αB
c for

εF > |∆
2
|. Similar to the spin-degenerate case, one can approximate the slope of the Landau fan

diagram using a smooth function when removing the floor and ceiling brackets:

β =


− 2
α

(
ε2F + ∆2

4

)
, εF < −

∣∣∆
2

∣∣
2|∆|εF
α

, |εF | 6
∣∣∆

2

∣∣
2
α

(
ε2F + ∆2

4

)
, εF >

∣∣∆
2

∣∣
. (2.11)

After removing the floor and ceiling brackets, the value of β now becomes continuous rather than

discrete. In this approximation, the total slope of the Landau fan diagram is considered as a simple

sum of the up-spin and down-spin slopes and ignores the sudden changes of the total filling factor

due to the Landau-level crossing between the down- and up-spin states.

2.3.3 Extraction of spin-splitting energy using the machine learning

This spin-splitting energy ∆ can be modulated by the field cooling in the graphene/CrSe het-

erostructure. Phenomenologically, one can assume ∆ will saturate at large enough cooling fields,

∆(BFC) = ∆0 + ∆1 tanh(ξBFC), (2.12)

where ∆0 is the spin-splitting energy at zero cooling field (BFC = 0), ∆1 shows the magnitude of

the modulation and ξ is the fitting parameter. With an odd function tanhx, the positive and negative
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field cooling can shift the up- and down-spin bands in opposite directions as schematically shown

in Fig. 2.17. Accordingly, the slope of the Landau fan diagram is modified based on Equation

2.11.

Graphene

CrSe
－BFC +BFC

M

－BFC +BFC

Δ
𝜖F

↑ ↓ ↑ ↓ ↑ ↓

Figure 2.17. The schematic view for graphene coupled to antiferromagnetic CrSe thin films. The
red and blue lines represent the linear dispersion near the Dirac points corresponding to the up and
down electron spins, respectively. The negative (- BFC) and positive (+ BFC) field coolings decrease
and increase the exchange splitting energy ∆, respectively. The blue arrows in the lower panels
represent the remanence magnetization induced at the interface.

To accurately determine the slope of the Landau fan diagram, re-plot Fig. 2.9 and changes of

the x-axis to the coordinate of 1
B

were shown in Fig. 2.18. The dips in the quantum oscillations are

equally distributed, similar to the spectrum of graphene.

Each dip of the magnetoresistivity ρxx corresponds to an integer change in n = n↑ + n↓,

thus the slopes of the Landau fan can be obtained by the period of the quantum oscillation dips.

These experimentally determined slopes are shown by the data points in Fig. 2.19, which are
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Figure 2.18. The dependence of longitudinal resistivity on the inverse of magnetic fields shows the
equally spaced periods of the oscillations under different field coolings. Quantum oscillations are
shifted by the field cooling.

corresponding to different field coolings ranging from -9 T to 9 T.

With these values, the parameter set X = {εF ,∆0,∆1, ξ}T living in R4 becomes over-determined

and therefore be extracted by searching for the optimal X than can minimize the overall fitting er-

ror. This can be achieved by solving a standard machine learning problem. The average error of

the fitting is defined as:

φ(X) =
Σi[β(Bi

FC ,X)− β̂(Bi
FC)]2

Σiβ̂2(Bi
FC)

, (2.13)

where β(Bi
FC ,X) is the theoretical Landau fan slope given a parameter set of X. The hat in β̂(Bi

FC)

denotes the experimental values. The machine learning process is the search for the parameter set
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Figure 2.19. The slope of the Landau fan diagram dependence on the field coolings from the
experiment and fitting using machine learning. It shows a perfect match between the experimental
and model values.

X in R4 that can minimize φ(X), i.e. X0 := arg minXφ(X). The searching direction of step i+ 1 is

given by conjugate gradient regression:

di+1 := −∇φi+1 + αidi, (2.14)

here

αi :=
∇φi+1 · (∇φi+1 −∇φi)

di · (∇φi+1 −∇φi)
. (2.15)

After getting values of di+1, a one-dimensional golden section line search is carried out to find

Xi+1:

Xi+1 := Xi + γidi+1, (2.16)

here

γi := arg min
γ
φ(Xi + γdi+1). (2.17)

Equation 2.15 is known as the Polak-Ribière method established in 1969[77]. The gold-sectional
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line search was originally introduced by Kiefer in 1953[78]. This learning algorithm eventually

gave a stable local minimal of φ, which is smaller than 2 × 10−5. The extracted parameters are:

εF = 142.4meV, ∆0 = 134.4meV, ∆1 = 65.03meV and ξ = 0.1834T−1.

This learning result is over-determined because perturbing the initial points of X does not

change the converged value of X0 as shown in Fig. 2.20. All four panels show the convergence

route of each parameter when they start from different initial points. This learning algorithm

converges all of them to the same value in X0 as denoted by the dashed lines.
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Figure 2.20. The stability check for the learning algorithm. Either one of the four parameters
converges into a constant when the steps are large enough.

The position of Fermi level εF suggests an unintentional doping with a carrier density around

1012 cm−2, which is likely induced by the work-function misalignment at the interface. Such level

of doping is shown in monolayer graphene exfoliated on SiO2/Si substrate before[79]. Once εF is

determined, the values of the spin splitting energy ∆(BFC) can be obtained using Equation 2.11
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using the experimental values of the slope β(BFC), called experimental values as shown in the Fig.

2.21. Another set of the spin splitting energy can be obtained using the phenomenological model

based on the Equation 2.12 as indicated by the circles. These two sets of the spin splitting energy

shows perfect self-consistency.

–9 –6 –3 0 3 6 9

0.1

0.2

BFC (T)

Δ
 (e

V)

Experimental

Model

Figure 2.21. The spin splitting energy dependence on the field coolings from experiment and fitting
using machine learning. It shows a perfect match between experimental and model values.

Next, the parameters determined by the machine learning ware used to show they perfectly

fit the Landau fan diagram through determining the Landau level indices corresponding to each

dip in the quantum oscillations. After getting the Landau fan slopes from the quantum oscillation

dips, the Landau level indices were extracted by assigning consecutive integers to each quantum

oscillation dip. These values could be checked whether to follow the expected straight lines in the

n − 1
B

plot. Since n = 0 has to be satisfied at 1
B
→ 0, there is only one way to assign the integer

values of n = n↑ + n↓ to the quantum oscillation dips. By letting n = 3 at B = 9 T, the fitting

demonstrates a perfect match as shown in Fig. 2.22. With these values, the experimental Landau
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fan then can be compared to the one given by the model. The modulations of the Landau fan slope

by the field coolings are clear.

0.0 0.1 0.2 0.3
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BFC= 2T
BFC= 5T
BFC= 9T

Figure 2.22. Landau level indices extracted in the Landau fan diagram for different field coolings,
where the dots are the experimental values and the lines are from calculations using parameters
given by machine learning.

To illustrate the uniqueness of the fitting for the Landau fan diagram, the same fitting by chang-

ing n → n± 1 has been shown in Fig. 2.23. Obviously, these sets of indices fail to coincide with

the calculated n dependence on 1
B

since the experimental points deviate from the linear fitting lines

for different field coolings.

2.3.4 Discussion of the fitting results

The above analysis attributes the slope modulation in the Landau fan diagram to the spin split-

ting energy ∆ only, while assuming the Fermi level εF to be fixed during the field coolings. The

position of εF is usually a result of the work-function misalignment at the interface. To evaluate
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Figure 2.23. Assigning the Landau-level indices by letting n→ n− 1 (a) and n→ n+ 1 (b). The
expected fan diagrams are shown by the lines in both panels. These two fittings do not match the
data.

how the εF is changed during the field coolings, further extraction of the carrier activation energy

was done in the control pristine 30 nm-thick CrSe thin film through the R− T relation.
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Figure 2.24. Same activation energy for 30 nm-thick CrSe extracted from R-T curves. Solid lines
are experimental values and dashed lines are the linear fitting curves. Inset shows the zoom-in
fitting at high temperature region.

The change of the εF should originate from a change in the interfacial band alignment, which

can be captured by the carrier activation energy εa. Using Arrhenius law R ∝ exp(εa/kBT ) which
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has been widely adopted, one can take the x axis as 1000/T and y axis as lnR, then the slope of

the high-temperature linear R − T curve provides an estimation of εa. The fitting range is below

TN and above 200 K. By fitting in this range where all carriers are fully excited by a wide enough

thermal window while the magnetic order is well preserved, εa is estimated to be 2.2 meV in Fig.

2.24. The fitting values of εa is further reduced in the fitting window with lower temperatures.

Although the field cooling BFC =-2 T does change the slope at lower temperatures, the extracted

values would be much smaller than the estimated ∆, and still cannot dominate to modulate the

total carrier density. Therefore, it is reasonable to attribute the field cooling effect only to the ∆

term in the Hamiltonian.

The extracted spin splitting energy is ∆(BFC) = 134.4 meV + 65.03 meV tanh(0.1834 T−1BFC),

ranging from 69.37 meV to 199.43 meV adjustable due to field cooling. This spin splitting energy

is induced by the hybridization between the π orbital of the carbon atoms and the d orbitals in the

Cr atoms. Previously, DFT calculations have shown that such energy can be as large as 150 meV

in a graphene/CrI3 heterostructure[80], which is within the same order of magnitude of the spin

splitting energy in our experiment.

On the other side, spin-orbit coupling is also known to modify the transport properties. Such

spin-orbit coupling has been demonstrated in graphene/TMDs heterostructures by analyzing the

transition from weak localization to weak antilocalization[81]. By coupling graphene to TMDs

containing heavy elements like tungsten, the spin-orbit coupling energy is extracted by using an

explicit theoretical expression for the magnetoconductivity due to weak antilocalization[82] and

estimated to be within 15 meV. In our case, Cr atoms are lighter than tunsten atoms, a weaker spin-
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orbit coupling is expected in our graphene/CrSe heterostructure. Thus the spin splitting energy

greater than the spin-orbit coupling strength by at least one order of magnitude, and therefore

spin-orbit coupling is neglected in our analysis.

2.4 Summary of Chapter 2

In this chapter, CrSe is proved to be an antiferromagnet with a NiAs-type crystal structure

and a Néel temperature of ∼270 K. The non-collinear antiferromagnetic spin texture in CrSe thin

films can magnetize monolayer graphene through interface coupling. The spin splitting energy is

identified through field-cooling measurements of the graphene/CrSe heterostructure by shifts in

the quantum Hall plateau and quantum oscillations. The rigorous deduction of the Landau level

considering spin splitting term and the details using machine learning to obtain the parameter sets

have been shown in details. This exchange splitting energy is approximately 134 meV with a stable

local minimal error smaller than 2 × 10−5. This energy most likely represents an averaged effect,

with atomic details at the interface smeared out.

The resistivity dependence on the temperature and MOKE measurements also suggest induced

magnetization of graphene. Compared to the pristine CrSe, which shows zero net magnetization,

the graphene/CrSe heterostructure shows super-paramagnetism at low temperature. The modula-

tion of the graphene spectrum is shown to be controllable by the magnetic order at the interface,

making it an ideal platform for both exploring quantum interface physics and developing new

graphene-based spin current devices.
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Chapter 3

Néel-type skyrmions in WTe2/Fe3GeTe2

heterostructures

The previous chapter is about the induced magnetic order into graphene from the proxim-

ity effect. This chapter will focus on in the intrinsic magnetic order in new emerging materials,

which is mentioned earlier in Section 1.5. According to the Mermin-Wagner theorem[39], in two-

dimensional (2D) system, the long-range magnetic order is strongly suppressed by thermal fluctu-

ations. However, magnetic anisotropy can counteract these thermal fluctuations and help establish

the long-range magnetic order. Among all pristine vdW materials with a 2D long-range magnetic

order, FGT is a robust and relatively stable ferromagnet with a high Curie temperature TC of ∼220

K for the bulk. Monolayer FGT was successfully isolated and proved to have an out-of-plane mag-

netocrystalline anisotropy with a Curie temperature ∼ 20 K. With an ionic liquid gating, the Curie

temperature for a four-layer FGT can be increased from ∼ 100 K to room temperature[38]. This

opens up opportunities for potential applications of atomically thin vdW crystals to electronic and

spintronic devices.

3.1 Transport properties of FGT

High quality single crystals of FGT were grown with a typical chemical vapor transport (CVT)

method for this experiment. The stoichiometric amounts of high purity elements (99.999% Fe,
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Te

Ge

Fe

Figure 3.1. Schematic side view of the atomic lattice of monolayer FGT with a scale bar of 2 Å.
Pink, blue and yellow atoms are for Te, Fe, and Ge atoms, respectively.

99.999% Ge and 99.999% Te from Alfa Aesar) along with 2 mg/cm3 iodine as the transport agent

were placed in a quartz ampoule and sealed under vacuum. The ampoule was further placed in

a horizontal 2-zone furnace over a temperature gradient from 750◦C to 750◦C and kept at that

condition for 2 weeks.

Bulk FGT consists of weakly bonded Fe3Ge layers that alternate with two Te layers and has

a space group P63mmc. The side view of a monolayer FGT is shown in Fig. 3.1. The itinerant

ferromagnetism in bulk FGT results from the partially filed Fe d orbitals, which dominate the band

structure around the Fermi level. The vdW gap is 2.95 Å between the adjacent monolayers in the

bulk. Because of the weak vdW bonding, FGT flakes peeled from the a bulk crystal have the flake

surface parallel to the Fe3Ge layers. Bulk FGT exhibits a strong magnetocrystalline anisotropy, and

this is expected to lift the restriction imposed by the Mermin-Wagner theorem. When the crystal

symmetry of the layered structure is reduced, this anisotropy will help stabilize the long-range

ferromagnetic order in FGT monolayers.

For FGT, one-layer (1L) thickness is 0.8 nm, which can be used to determine the number

of layers for FGT when combined with the atomic force microscopy measurements as shown in

Fig. 3.2. Through mechanical exfoliation, we successfully obtained FGT with different layers on

300 nm-thick SiO2/Si substrate with a clear contrast under the microscope. Then atomic force
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microscopy was used to scan the step heights for the layers.
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Figure 3.2. Atomic force microscopy for determining the thickness. a, Microscopic image of
exfoliated Fe3GeTe2 thin films. Scale bar: 10 µm. b, Cross-sectional profile of the Fe3GeTe2
flakes along the black line shown in a.

For thick FGT samples, FGT layers were first exfoliated onto the SiO2/Si substrate and then

photolithography was used to make the patterns for the Hall-bar contacts since they are stable even

exposed to the air. At last, a 10 nm-thick Cr followed by a 60 nm-thick Au was evaporated to make

the metal contacts.

The magnetism in FGT has been probed by the Hall resistivity, ρxy, under an external magnetic

field µ0H , applied perpendicularly to the vdW plane. The Hall resistivity of 60L and 30L FGT

in Fig. 3.3 has a rectangular hysteresis loops with near-vertical jumps at low temperatures as a

function of the applied external magnetic field, with a coercive field reaching over 0.5 T at 5 K.

This indicates the domination of the anomalous Hall effect with a single uniform magnetic domain

over the entire flake. The remanent ρxy at zero field is a hallmark of ferromagnetism with strong

out-of-plane anisotropy. The remanent ρxy and coercive field disappear at 220 K, indicating the
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Figure 3.3. Temperature dependence of Hall resistivity for a, 60L and b, 30L Fe3GeTe2 flakes
showing that the Curie temperature is ∼ 200 K for Fe3GeTe2 thick layers. Insets show the devices
for the measurements separately and the scale bar in the inset: 10 µm. Resistivity is shifted for
clarity. The vertical scale bars are 10 Ω.

Curie temperature is below this value. The Curie temperature in FGT is typically varied from 150

to 220 K, depending on the Fe concentration and deficiency[86]. In the 60L and 30L FGT, the Hall

resistivity indicates a TC of ∼ 200 K.

For thin FGT samples, the pick-up transfer method was adopted for the sample assembly inside

the glove box, in which H2O is about 1.2 parts per million (ppm) and O2 is kept below 50 ppm. The

bottom electrodes with a Hall bar geometry were prepared on SiO2/Si substrates. Then PDMS/PPC

was used to pick up the prepared h-BN on another SiO2/Si substrate. By heating the sample up to

50◦, h-BN was picked up to form a stack of PDMS/PPC/h-BN layers. Later, FGT was picked up
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using the same approach to form the stack of PDMS/PPC/h-BN/FGT layers and then transferred

onto the prepared bottom electrodes with the accurate alignment as observed under the microscope.

This helps prevent FGT thin layers from the oxidization in the air conditions and the FGT layers

are kept in an inertia N2 atmosphere all the time. During sample transferring to the transport

measurement, h-BN can protect the FGT from effects of the ambient conditions.
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Figure 3.4. Temperature dependence of Hall resistivity for a, 7L and b, 4L Fe3GeTe2 flakes show-
ing that the Curie temperature decreases when Fe3GeTe2 becomes thinner. Insets show the devices
for the measurements and the scale bar in the inset: 10 µm. Resistivity is shifted for clarity. The
vertical scale bars are 10 Ω for a and 100 Ω for b.

When the thickness of FGT is reduced down to 7L and 4L as shown in Fig. 3.4, TC is measured

to be around 180 K and 100 K, respectively. With the decreased Curie temperature for thinner

FGT layers, the coercive fields also decrease under the same temperatures. Apparently, thermal
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fluctuations play a more important role for thinner samples, where the perpendicular magnetic

anisotropy is relatively weak compared to the bulk crystals.

3.2 Transport properties of WTe2 films

Fig. 3.5 shows the Td phase of WTe2 crystal structure, where the a, b plane form a monolayer

WTe2. The tungsten (W) atoms are sandwiched by two tellurium (Te) atomic sheets and the three

nearest Te atoms from each sheet form a triangular pyramid with the W atom, with the two resulting

opposing pyramids rotated 180◦ along the c axis from each other. The bulk crystal is formed by

WTe2 monolayer stacks layer by layer along the c axis. The Td phase of the WTe2 we have

used in our experiment has been proved by our collaborators[87]. The WTe2 single crystals were

synthesized through the CVT method described before in Section 3.1. The stoichiometric mixture

of W and Te powders were sealed in a quartz tube with iodine used as a transport agent 2 mg/cm3.

The quartz tube was loaded into a double-zone furnace with a temperature gradient from 900◦C

to 800◦C. Plate-like single crystals can be obtained after one-week growth. After growth, the

composition and structure of the crystals were checked by an energy-dispersive X-ray spectrometer

and an X-ray diffractometer, respectively.

As a control sample, which is used to differentiate from the transport signal in WTe2/FGT

structure, the Hall resistivity of h-BN/monolayer WTe2 has been shown in Fig. 3.6. It exhibits

Hall resistivity close to a linear relation.

The temperature dependence of the longitudinal resistivity shows an insulating behavior where

it decreases as the temperature increases. Monolayer WTe2 has a resistivity on the order of 104 Ω
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Figure 3.5. Schematic side view of the atomic lattice of WTe2 with a scale bar of 2 Å. The pink
and green atoms are for Te and W atoms, respectively.
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Figure 3.6. Hall resistivity of a monolayer WTe2 on bottom electrodes at 2 K close to a linear rela-
tion, which helps exclude the possibility that the dips and peaks in the Hall resistivity of WTe2/FGT
are from WTe2 film.

at ∼ 10 K, and is relatively more insulating than a few-layer FGT.

3.3 Topological Hall effect in WTe2/FGT heterostructure

Pristine FGT has a strong perpendicular magnetic anisotropy (PMA) and spin polarizations are

always along the out-of-plane direction. However, the spin polarizations in FGT can be signif-
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Figure 3.7. Temperature dependence of longitudinal resistivity of monolayer WTe2 shows an in-
sulating behavior. Thus in the WTe2/FGT heterostructure, the current mainly goes through FGT
since FGT is more electrically conductive.

icantly modified when coupled to a monolayer or a few-layer WTe2 which as measured before

has a large spin-orbit coupling. This leads to rich many physical phenomena, one of which is the

topological Hall effect (THE), a signature of the magnetic skyrmions.

Magnetic skyrmions are small swirling topological magnetization texture and the spins inside

a skyrmion rotate progressively with a fixed chirality from the up direction at one edge to the down

direction at the center and then to the up direction again at the other edge. Their stabilization and

dynamics rely on their topological properties. Mostly, skyrmions are induced by chiral exchange

interactions, i.e. Dzyaloshinskii-Moriya interaction (DMI), between electron spins[88], associated

with atoms in non-centrosymmetric magnetic compounds or in thin films with a broken inversion

symmetry. Their sizes can be extremely small, with diameters in the nanometers range. They

behave like particles that can be moved, created and annihilated, and thus they are suitable for

applications in information storage and logical technologies.

There are two types of skyrmions: Néel-type and Bloch-type skyrmions as shown in Fig. 3.8
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(The graphs are adopted from Ref. [89].) These two types of skyrmions have different directions

of the rotation, which are related to different symmetries of the interactions between spins. For

example, this difference of symmetry may be due to the underlying crystal lattice or to the presence

of an interface.

a b

The graph from Nat. Rev. Mater. 2.7 (2017): 1-15. Ref [89]

Figure 3.8. Magnetic texture of skyrmions[89]. a, Néel-type and b Bloch-type skyrmions with
magnetization rotating from the down direction at the center to the up direction of the edge.

THE arises from the accumulated Berry phase acquired by conduction electrons in the adiabatic

limit as they pass through a skyrmion[88]. The Berry phase is proportional to the skyrmion number

and results in an emergent magnetic field produced by the skyrmion. This field can induce a trans-

verse deflection of the electrons and thus a measurable Hall voltage that allows a purely electrical

detection of the skyrmions[90, 91, 92]. Stepwise profiles of the topological Hall resistivity were

observed in the course of the varying the applied magnetic field in FeGe Hall-bar structures[93]. A

distinct additional contribution to the Hall effect in certain temperature and magnetic field ranges

of a skyrmion lattice was reported in B20 materials like MnSi[91].

WTe2 has one of the largest spin-orbit coupling among the transition metal dichalcogenides.

At the WTe2/FGT interface, the terminated atoms in WTe2 are the same as those in FGT (Fig. 3.9).

These two layers of Te atoms can be coupled through the 5p orbital and strong spin-orbit interaction
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Figure 3.9. Schematic graph for monolayer WTe2 on monolayer FGT. The van der Waals gap
between this two materials is set as∼3 Å. This graph is drawn with a software called CrystalMaker.

in WTe2 can significantly modify the spin polarizations in FGT. Thus transport measurements were

adopted to investigate the spin textures in this WTe2/FGT heterostructure. We start from sample A

(h-BN/1L WTe2/4L FGT), where hexagonal boron nitride (h-BN) is served as the protection layer

and helps prevent the samples from being oxidized in the air.

This device is assembled from the pick-up transfer method. To fabricate the device, the bottom

electrodes were patterned first by e-beam lithography. Then 5/30 nm Cr/Au was evaporated to

form the bottom electrodes. After that, WTe2 and FGT from high-quality bulk materials were

separately exfoliated onto the 300 nm SiO2/Si substrates. Then PDMS/PPC on a glass slide was

used to pick up the monolayer WTe2 on the substrate. During the pick-up procedure, the sample

stage was heated up to 50◦C when the PDMS/PPC was lowered to touch WTe2 and shut down

while detaching the PDMS/PPC from the sample stage. After that, the WTe2 was attached to the

PDMS/PPC. The PDMS/PPC/WTe2 was then used to pick up FGT thin layers using the similar

procedures. The resulted PDMS/PPC/WTe2/FGT was then transferred and properly aligned onto

the prepared bottom metal electrodes under the microscope. After putting the whole structure into

acetone, the final WTe2/FGT heterostructure on the bottom metal electrodes was obtained. To

protect the structure from oxidization in air, a h-BN thin flake was transferred onto the surface of
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WTe2. All these procedures were carried out inside the glove box with a good inertia atmosphere

condition (filled with N2 gas).
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Figure 3.10. Transport properties of sample A. a, Microscopic image of sample A with 1L
WTe2/4L Fe3GeTe2 transferred onto the bottom electrodes. b, Longitudinal resistivity dependence
on the temperature shows an increasing resistivity with decreasing temperature.

Fig. 3.10 shows the resistivity dependence on the temperature of sample A (h-BN/1L WTe2/4L

FGT). In the whole temperature range from 10 K to 300 K, the resistivity is in the order of several

tens of ohms, which is at least two orders of magnitude smaller than that of the control sample

having monolayer of WTe2 as shown in Fig. 3.7 in Section 3.2. Thus in the sample A, the conduc-

tance is mainly contributed from FGT as the monolayer WTe2 does not contribute significantly in

conductance.

In addition, the transport signals in 30L FGT with WTe2 (sample B) ware investigated. The

longitudinal resistivity dependence on the temperature is shown in Fig. 3.11. This structure with a

much thicker FGT shows the resistivity on the order of several ohms.

Similar to sample A (h-BN/1L WTe2/4L FGT), another sample with 3L FGT and WTe2 also

shows an insulating behavior from the longitudinal resistivity dependence on temperature (Fig.
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Figure 3.11. Longitudinal resistivity dependence on the temperature for sample B shows a metallic
behavior. The resistivity is close to that of FGT as the resistivity of monolayer WTe2 is two orders
of magnitude larger. The inset shows the device configuration of h-BN/WTe2/FGT on the bottom
electrodes.

3.12).

0 100 200 300

80

120

160

ρ x
x(
Ω

) 1L WTe2/3L Fe3GeTe2

T(K)

Figure 3.12. Longitudinal resistivity dependence on the temperature for 3L FGT with WTe2
shows an increasing resistivity with decreasing temperature.

The Hall resistivity dependence on magnetic field at different temperatures for sample A is

shown in Fig. 3.13. The Curie temperature for sample A is about 150 K and this is close to that

of a pristine 4L FGT. THE was also investigated using transport measurements. In the WTe2/FGT
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structure, dips and peaks near the magnetic phase transition edge are observed at temperatures

below 100 K. For example, there are pronounced dips and peaks at an out-of-plane magnetic field

strength ∼ ±975 Oe. These dips and peaks signify the presence of THE.
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Figure 3.13. Topological Hall effect in sample A. The magnetic field is applied in an out-of-plane
direction. The dips and peaks appear near the magnetic phase transition at temperatures lower than
100 K, which signify the presence of THE.

Being different from sample A, sample B (h-BN/2L WTe2/30L FGT) with a much thicker

FGT shows a completely distinct Hall resistivity dependence on magnetic field. For sample B,

PMA is well preserved in FGT when the temperature is below 180 K as shown in Fig. 3.14,

which is demonstrated by the square shape of the hysteresis loop. However, within an intermediate

temperature window ranging from 180 K to 200 K, the hysteresis loops have step-like transitions.
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For example, sweeping from positive magnetic field to negative one at 190 K, the Hall resistivity

jumps from the high saturation value to an intermediate level and then changes linearly until the

low saturation value is achieved. The reverse trace does the opposite as expected. A possible

explanation for this magnetic field dependent step-like behavior is due to the formation of multi

domains in this sample. This conjecture is supported by the observed labyrinth domain structures

in a WTe2/30L FGT sample with Lorentz transmission electron microscopy (L-TEM) as further

explained in Section 3.4.
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Figure 3.14. Step-like magnetic transitions in sample B at temperatures from 180 K to 200 K,
which is related to the formation of multi domains. The magnetic field is applied in an out-of-plane
direction.

Compared to sample B (with a thick FGT layer), sample A (with a thin FGT layer) shows a

strong interface coupling between FGT and WTe2, giving rise to the THE. For sample B, no THE

peaks and dips were seen since the measured averaged transport signal from WTe2 and thick FGT.

This may lead to the smearing out of the THE from the proximity effect if the THE signal is much

weaker than that from anomalous Hall effect.
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3.4 Néel-type skyrmions under Lorentz transmission electron

microscopy

A key consideration of studying skyrmion systems is the characterization of the physical

structure of the samples and particularly the direct observation of the magnetization textures. To

date, various methods like magnetic-force microscopy, photoemission electron microscopy, scan-

ning electron microscopy with polarization analysis and L-TEM are designed for these purposes.

Among all the techniques, L-TEM is one of the most direct methods to obtain the magnetic do-

main structures, domain walls and skyrmions with a high spatial resolution, since other techniques

based on Kerr microscopy and X-ray are limited by spatial resolution. Besides, the scattering

cross-section for electrons in L-TEM is significantly larger than that of X-rays and thus improve-

ments in signal contrast especially for the ultrathin films are achieved in L-TEM. In this section,

the observations of magnetic skyrmions by L-TEM will be described.

In situ L-TEM imaging was carried out by using a FEI Titan Cs Image TEM in Lorentz mode

(the Fresnel imaging mode) at 300 kV. By tilting the sample, an in-plane field can be applied. The

ratio of the in-plane and out-of-plane field can be tuned by varying the tilt angle.

3.4.1 Principles of Lorentz electron transmission microscopy

L-TEM is a high resolution method ideally suitable for obtaining quantitative image for chiral

magnetic domains and textures. Key length scales such as grain size and chiral variations of the

magnetization can be identified and measured when analyzing both planar and cross-sectional

samples under L-TEM. The principles of this technique are based on Lorentz force. With the
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deflection of electron beam due to an in-plane magnetic field, a contrast at a region of varying

magnetization can be formed.

For Néel-type domain boundaries in materials with PMA, no magnetic field contrast is ob-

served when the sample plane is normal to the beam propagation direction. That is, with PMA in

the sample the magnetization is along the out-of-plane direction which is parallel to the electron

beam propagation direction. Thus this leads to a zero Lorentz force and no contrast. This can also

be understood from the following equation. Using the full electron-wave treatment of the electron

beam within the small defocus limit[94], the contrast in L-TEM from the magnetic structure can

be expressed through the curl of the magnetization along the beam propagation axis (z direction):

I(r,∆) = 1− ∆eµ0λt

h
(∇×M(~r)) · z, (3.1)

where I(r,∆), ∆, e, µ0, λ, h, t and M(r) are the normalized intensity, the defocus, electron charge,

vacuum permeability, electron wavelength, Planck’s constant, film thickness and film magnetiza-

tion, respectively. This defocus range is dependent on the microscope specific parameters and valid

in the region where the contrast transfer function is linear with defocus. For Néel-type skyrmion,

the curl of the magnetization lies completely in the sample plane and thus no sample contrast can

be formed for Néel-type skyrmions with a zero sample tilt.

However, by tilting the sample plane with respect to the beam direction, the projection of the

magnetization in the sample plane enables the skyrmion contrast as schematically shown in Fig.

3.15. When the sample plane is tilted by an angle α out of the original plane, the projection of the

magnetization is nonzero in the sample plane as indicated by the brown arrows. This leads to a
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nonzero Lorentz force as indicated by the grey arrows. The electrons from the core and outside of

the skyrmions are deflected to the opposite directions, which leads to dark in the bottom and bright

on the top or bright (dark-bright) in the bottom and dark on the top (bright-dark) contrasts. The

skyrmion size is determined by the distance between the center of the dark-bright or bright-dark

contrasts.

dark

bright
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le
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skyrmion
size

x

y
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Figure 3.15. Schematic diagram of a Néel-type skyrmion on a tilt sample for Lorentz transmission
electron microscopy imaging. The red and blue circles are for positive and negative magnetizations
along z direction, respectively. Brown arrows indicate the in-plane magnetization component while
grey arrows indicate the Lorentz force.

Among the most common techniques for imaging the magnetic domains in L-TEM are Foucault

and Fresnel modes. In our experiment, the Fresnel or defocus mode is adopted for the imaging and

contrast can only be obtained in the defocus region as illustrated in Fig. 3.16[95]. For a simple

explanation, a sample with antiparallel magnetic domains is adopted. When the parallel electron

beam passes through the magnetic domains, the Lorentz force leads to the deflection of electrons

and as a result the diffraction spot splits into two, following the right-hand rule. In the in-focus
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Graph from Chin. Phys. B, 27(2018): 066802. Ref. [95]

Figure 3.16. Schematic of ray diagrams indicating the paths of electrons passing through a
magnetic specimen under the Fresnel or defocus mode of Lorentz transmission electron mi-
croscopy[95] for a in-focus, b, over-focus and c under-focus cases.

case, the deflecting electrons are focused in the final image plane and no magnetic contrast appears.

For the over-focus case, a decreased intensity comes from the deflected electrons away from the

domain wall. This leads to dark contrast lines in the domain wall region. Similarly, bright contrast

lines appear in under-focus case because of the increase electron intensity from the converged

electrons.

3.4.2 Enhanced DMI in FGT with WTe2

Strong PMA in FGT favors an out-of-plane magnetization and this makes the spin polariza-

tions form the domain in the up or down direction. However, the formation and structure of domain

walls are resulted from the competition between three main factors, i.e., exchange interaction, mag-

netic anisotropy, and dipolar interaction. The exchange interaction includes DMI, a noncollinear

exchange interaction which favors a chirally skyrmion of a specific rotational direction. Further the
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strong PMA along would lead to a stabilized single domain. The dipolar interaction is dependent

on the layer thickness, which decreases with reduced thickness. In our experiment, by comparing

the magnetic domains in the WTe2/30L FGT sample with the nearby pristine 30L FGT regions as

shown in Fig. 3.17 using L-TEM, the interfacial coupling between the WTe2 and FGT thin layers

indeed contributes a strong DMI.

30L
 Fe3GeTe2

2L WTe2 

Region 1: 
Fe3GeTe2

Region 2: 
WTe2/Fe3GeTe2

10 μm

Figure 3.17. Sample for comparing the domain difference in 30L FGT with and without bilayer
WTe2. The white dashed line region is for FGT with WTe2 while other regions inside the black
dashed line is for FGT only.

Fig. 3.18 shows the magnetic domain images for the 30L FGT thin flakes without WTe2 in

region 1 indicated in Fig. 3.17. The film exhibits labyrinth domains at 94 K with 0 T applied mag-

netic field. This could help explain the step-like magnetic transition observed from the transport

study earlier in Fig. 3.14, Section 3.3. When the in-plane field is tuned to the opposite direction

with α= -20◦ and α=21◦ as shown in Fig. 3.18, the contrast of domain edge completely switches

the sign from bright to dark.

For the WTe2/FGT heterostructure, there is no contrast when α=0◦ as shown in Fig. 3.19 and

this indicates the Néel-type nature of the domain. When α 6=0◦, aligned and stripe-like domains

appear with a certain domain width at 0 T. This domain structures is sharply different from that
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       Region 1, 0T
α= -20ο α= 21ο

2 μm

Figure 3.18. Typical labyrinth domain in 30L FGT thin flakes in region as shown in Fig. 3.17
at a 0T magnetic field. This sample has the same FGT thickness as that of sample B (h-BN/2L
WTe2/30L FGT) for studying transport properties.

of FGT thin films in Fig. 3.18 by having a much smaller domain width. Thus the DMI is largely

enhanced in this heterostructure from the coupling of the interfacial Te atoms.

α=0ο

α= 15οα= 5ο

               Region 2, 0T
α= -15ο

2 μm

Figure 3.19. Much smaller domain width observed in WTe2/30L FGT heterostructure. The contrast
changing with the tilt angle α and disappearing when α = 0◦, which indicates the Néel-type nature
of the magnetic domains. From the aligned and stripe-like domain structures of the WTe2/FGT, a
Dzyaloshinskii-Moriya interaction energy is estimated to be ∼ 1.0 mJ/m2.

To determine the domain width, a method from Bodenberger and Hubert[96] is adopted, which
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appears to be the most universal and commonly applied method[97, 98]. A stereological method[96]

is used to define the surface magnetic domain width w of complicated or arbitrary magnetic struc-

ture patterns. The domain width w is defined as:

w =
2× total test line length

π × number of intersections
, (3.2)

where the domain width is determined as the ratio of the total test line length to the number of

intersections of domain walls. In our experiment, four test straight lines running in random di-

rections are used for evaluation of the total domain width. It is illustrated in Fig. 3.20 with four

drawing test lines. As a result, the averaged domain width is estimated to be 290±10 nm.

α=-15ο
Region 2: WTe2/FGT 0T

1

2μm

Figure 3.20. Representative image used to obtain the averaged domain width of 2L WTe2/30L
FGT sample. Four line cuts are taken and the magnetic strip domain width is taken as the averaged
value, determined to be 290±10 nm.

With the domain width, a DMI energy can be obtained from a phenomenological model,

which describes the dependence of the domain width w on the domain wall energy δW as in the
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following[99]:

w = β
4πδW

M2
s

, (3.3)

where δW is the domain wall energy. It is related to exchange stiffness A, uniaxial magnetocrys-

talline anisotropy constant Ku and DMI constant |D| by δW = 4
√
AKu − π|D|[100]. Thus, this

domain wall energy is related to the DMI term. Besides, β is a phenomenological fitting param-

eter and taken to be 0.31 for FGT[99]. With a domain width of 290 nm, a domain wall energy

δW = 0.77mJ/m2 is obtained. This domain wall energy is related to the DMI term. However, for

the pristine FGT without considering DMI, the domain wall energy is simply δ′W = 4
√
AKu. By

comparing these two domain wall energy values, we can obtain the DMI energy |D| = 1.0 mJ/m2

in the WTe2 and FGT interface. During the estimation, the uniaxial anisotropy constant Ku can be

derived via[101]:

2Ku

Ms
= µ0Hsat. (3.4)

As shown in Fig. 3.21, the saturation fieldHsat decreases as the temperature increases. Thus the

ratio of the uniaxial anisotropy constant Ku-94K/Ku-5K and the ratio of the saturated magnetization

Ms-94K/Ms-5K at 94 K and 5 K can be estimated from the ratio of the saturation fields and saturated

anomalous Hall resistivity values at 94 K and 5 K, respectively. Using the parameters for bulk

FGT around 5 K[99]: Ms-5K = 376 emu/cm, Ku-5K = 1.46 × 107 erg/cm3, A = 10−7 erg/cm−1,

Ku-94K ∼ 9.7 × 106 erg/cm−3 is obtained. As a result, a domain wall energy for FGT without the

DMI term δ′W is ∼ 3.9 mJ/m−2.

The DMI energy is related to the domain wall energy by |D| = (δ′W − δW)/π. Thus a DMI

energy of ∼ 1.0 mJ/m2 is extracted in our system. This value is comparable to the reported values
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Figure 3.21. Hall resistivity shifted for clarity of 2L WTe2/30 L FGT heterostructure at 5 K and 94
K. The magnetization ratio is estimated from the ratio of the anomalous Hall resistivity value.

in heavy metal/ferromagnet thin film systems[102]. The critical value |DC|, which is the smallest

DMI energy required to stabilize chiral Néel domain wall is expressed as[102, 103]:

|DC| =
4

π

√
A

Keff
Kd, (3.5)

where Kd = 2πM2
s is the magnetostatic or stray field energy constant and Keff is the effective

anisotropy constant. In the FGT system with a strong PMA, the measured value of Keff can be an

approximate value of Ku. Hence, |DC| is estimated to be 0.1 mJ/m2 so that |D| > |DC| (|D| ∼

10|DC|) and chiral Néel textures are expected.

With a large DMI established at the WTe2/FGT interface, Néel-type skyrmions are expected in

this heterostructure. Here we show the domain difference in 35L FGT with and without 8L WTe2

and skyrmions are observed in the region of 8L WTe2/35L FGT (Fig.3.22). For the FGT without

WTe2, the magnetization saturates and enters a ferromagnetic phase when the field is 600 Oe at

195 K while a group of skyrmions shows up in the 35L FGT with WTe2. The examples of the
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observed skyrmions are shown by the purple circles in the zoom-in image at a field of 660 Oe. The

DMI at the interface generates the skyrmions and other parts of FGT away from the interface enter

uniform ferromagnetic phase, which contributes no contrast. As a result, the image captured for

the heterostructure is the skyrmions at the interface.

With WTe2
no WTe2-450 Oe 0 Oe

480 Oe 660 Oe

1 μm

Figure 3.22. L-TEM images of magnetic domains for 35L FGT with and without 8L WTe2 at 195
K with a tilting angle 30◦ and a varied field. The dashed pink line region is the Fe3GeTe2 with
WTe2. With magnetic fields in z-direction (as defined in Fig. 3.15) are -450 Oe, 0 Oe and 480
Oe, magnetic domain widths are smaller in WTe2/FGT region compared to that in FGT region.
Magnetic skyrmions appear at a magnetic field of 660 Oe. We have zoomed in and indicated the
skyrmions with purple dashed circles.
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The detailed magnetic domain evolution for this structure is shown in Fig. 3.23 with smaller

magnetic field steps of 15 Oe or 30 Oe in the range of 480 Oe and 630 Oe as shown in the Fig.

3.23. When the magnetic field is varied with a small step, the pristine FGT does not show any clear

sign of skyrmions and it enters a uniform single domain directly with the magnetic field reaches

saturated field. As a comparison, WTe2/FGT region gradually develop and present skyrmions with

the increasing magnetic field. Besides, the WTe2/FGT regions always show smaller domain wall

widths compared to the pristine FGT.

3.4.3 Néel-type nature of the skyrmions

With an enhanced DMI, Néel-type skyrmions are observed in WTe2/FGT heterostructure. L-

TEM imaging was performed at a defocus ranging from -2.00 mm to 2.50 mm, at 180 K, and a

field of 510 Oe. A focus series taken at -2.00 mm, -1.50mm, -1.01 mm, 0.00 mm, 1.02 mm, 1.50

mm, 2.00 mm, 2.50 mm is shown in Fig. 3.24, respectively. The image contrast, identifiable to

that of Néel skyrmions shown in Fig. 3.23, indicates the presence of Néel-type skyrmion lattice

stable at 180 K. From under focus to over focus, the skyrmions transform from white on the top

and dark in the bottom to the opposite contrasts. These are consistent with the Néel-type nature

of the skyrmions. Besides, when it is in-focus, there is no observable contrast of skyrmions under

L-TEM.

The dependence of the observed skyrmion contrast on the magnetic field also support its Néel-

type nature, where the magnetic field is swept from -1000 Oe to 1000 Oe at 197 K with a tilt angle

of 30◦. The skyrmions appeared at -600 Oe and 630 Oe as shown in Fig. 3.25. At -600 Oe, inside
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630 Oe

1 µm

480 Oe 510 Oe 540 Oe

555 Oe 570 Oe 585 Oe

600 Oe

Figure 3.23. Magnetic domain difference for 35L Fe3GeTe2 with and without 8L WTe2 at 195 K
with a tilting angle 30◦ and the detailed field dependence between 480 Oe and 630 Oe. FGT region
enters into the single uniform magnetic domain when the magnetic field is large enough (∼ 660
Oe), while FGT with WTe2 shows emerging skyrmions.

each skyrmion, the image appears dark on the top and bright in the bottom. After the field reversal,

at 630 Oe, the dark and bright regions indeed swapped: dark in the bottom and bright on the top.

The field dependence of a single skyrmion in the WTe2/30L FGT sample (similar to sample B
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α=30ο, -2.00 mm α=30ο, -1.50 mm α=30ο, -1.01 mm α=30ο, 0.00 mm

α=30ο, 1.02 mm α=30ο, 1.50 mm α=30ο, 2.00 mm α=30ο, 2.50 mm

0.5 μm

Figure 3.24. Defocus images of skyrmion lattice for WTe2/40L FGT sample at a field of 510 Oe at
180 K. When the focus is changed from de-focus (-2.00 mm, -1.50 mm, -1.01 mm) to over-focus
(1.02 mm, 1.50 mm, 2.00 mm, 2.50 mm), the skyrmion contrasts change from dark in the bottom
and bright on the top to bright in the bottom and dark on the top.

-660 Oe -600 Oe 630 Oe0 Oe

0.5 μm

Figure 3.25. The dependence of the skyrmion contrast on the magnetic field at 197 K with a tilt
angle of 30◦ for WTe2/40L FGT sample. The skyrmions appear at -600 Oe and 630 Oe. The
contrast is adjusted for clarity.

for the transport measurements) is shown in Fig. 3.26 with a field ranging from 540 Oe to 660 Oe

at 94 K. The skyrmion is well developed at a field of 540 Oe and 600 Oe along the z direction,

having a contrast of dark on the top side and bright in the bottom. The size is estimated to be∼150
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nm at 94 K from the intensity at each point of an image .

600 Οe 660 Οe540 Οe

500 nm 

Figure 3.26. Lorentz transmission electron microscopy observation of a Néel-type skyrmion at
T=94 K, α=21.86◦ and H=540 Oe, 600 Oe, where α is the angle between the sample plane and xy
plane. The yellow arrow points to a skyrmion. The skyrmion size is estimated to be ∼150 nm.

As shown in Fig. 3.27, a line profile is used to analyze the contrast for a skyrmion from the

point intensity in the image. The distance between the lowest and highest intensity points is the

skyrmions size. Thus the skyrmion size is extracted as ∼150 nm at 94 K and ∼80 nm at 197 K for

a 2L WTe2/30L FGT samples.

However, any domain structure in WTe2/FGT samples with the FGT thickness less than 30L

was failed to dissolve, which may be due to the small sheet magnetization in the thinner films. For

thinner FGT samples, a higher beam exposure is required for the small magnetization. But this

would exceed the tolerance of the samples and unrecoverable damages would occur. Thus, there

is no clear magnetic domain structure observed for samples similar to sample A (WTe2/4L FGT)

and samples with the FGT thickness less than 30L.

Another evidence for the Néel-type nature of the skyrmion is from the tilt angle dependence

of the image contrast as shown in Fig. 3.28. A series tilt angles of 30◦, 10◦, 0◦, 5◦, 2.5◦ and

0◦ is shown at 180 K with a field of 510 Oe for WTe2/40L FGT sample. The skyrmion lattice

image gradually disappears when the tilt angle approaches to 0◦. Without any tilting, there is no
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Figure 3.27. Line profile for the image of skyrmions observed in 2L WTe2/30L FGT samples. The
skyrmion size is determined from the point intensity along blue lines as shown in the insets. It is
estimated to be ∼150 nm at 94 K with magnetic fields of 540 Oe and 600 Oe shown in the upper
panel and ∼80 nm at 198 K with a magnetic field of 390 Oe shown in the bottom panel.

skyrmions or contrast observed.

3.4.4 Stability of the existence of skyrmions

In this section, the magnetic skyrmion position and its size dependence on time were examined

to show its stability. First the magnetic field was swept from -3000 Oe to 3000 Oe for 5 times at

195 K with a tilt angle of 30◦ and took an image every time when the field is 780 Oe. The five

images were captured at 780 Oe, showing the presence of skyrmions during each magnetic field
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α=30o

α=0oα=10o α=5o α=2.5o

1 μm

Figure 3.28. Skyrmion image dependence on the tilt angle at 180 K with a field of 510 Oe for
WTe2/40L FGT sample. When the tilt angle is close to 0◦ (α = 2.5◦ and 0◦), the magnetic
skyrmions disappear, which is consistent with its Néel-type nature. The contrast becomes most
pronounced at α = 30◦.

cycle. They did show up at random instead of fixed positions as shown in Fig. 3.29 but with the

same skyrmion size all the time.

0.5 μm

Figure 3.29. Skyrmions at different sample positions for the 2L WTe2/40L FGT sample when the
magnetic field is cycled through ,at 195 K with an angle of 30◦ and at the field of 780 Oe. The
skyrmions show up at random instead of fixed positions.

To verify its thermal stability, a state with a high skyrmion density was initiated, then nine im-

ages were captured subsequently in two minutes. By comparing the distance between two nearby

skyrmions as indicated by the purple and pink circles at 195 K with a field of 780 Oe, shown in
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Fig. 3.30, a very small variation between the position of these two skyrmions are obtained. Thus

the locations of the magnetic skyrmions will not change much in time.

0.5 μm

21 3

4 5 6

7 8 9

Figure 3.30. Skyrmions contrast measured at the same sample position for 9 times within totally 2
minutes at 195 K with a field of 780 Oe for WTe2/40L FGT. The dashed circles mark two skyrmions
with their relative positions changing through time. Contrast was adjusted by post processing. By
comparing the distance between two nearby skyrmions as indicated by the purple and pink circles,
a very small variation between the position of these two skyrmions are obtained.
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3.4.5 Interface coupling in heterostructure with varied FGT thicknesses

An enhanced DMI at the interface is also supported by the smaller magnetic domain width in

the WTe2/FGT heterostructures with varied FGT thickness. As shown in Figs. 3.18 and 3.19 in

Section 3.4.2, the magnetic domain width for 30L FGT with WTe2 is much smaller than that of

pristine 30L FGT. Thus a much larger DMI exists at the WTe2/FGT interface. Similar to this case,

when the FGT layer is thicker (35L), the stripe domain period is smaller compared to the regions

without the WTe2 capping, as shown in Fig. 3.31. However, when the FGT layer is 65L, no

observable difference was captured. The conclusion is that, when the thickness of FGT is reduced,

the interface plays a more important role, resulting in smaller stripe domain width in the WTe2

capped regions. Thus a much larger DMI exists at the interface of a WTe2 and a thinner FGT layer

and this DMI only penetrates to a finite depth into FGT layers since in the heterostructure with 65L

FGT, no observable magnetic domain difference is observed.

3.5 Micromagnetic simulation: a finite penetration depth

In addition, micromagnetic simulation has been performed for the WTe2/FGT samples. The

simulation is carried out on a 3D lattice model based on the Hamiltonian:

H =
∑
<i,j>

[−JSi · Sj + Di,j(z) · (Si × Sj)]− µ0

∑
i

Si ·Happ, (3.6)
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35L, 97 K, α=30o, Η=0 Οe 

5 μm 5 μm 5 μm

65L, 94 K, α=30o, Η=0 Οe 65L, 94 K, α=30o, Η=300 Οe 

1 μm 1 μm 1 μm

a

b

35L, 97 K, α=30o, Η=60 Οe 35L, 97 K, α=30o, Η=120 Οe 

65L, 94 K, α=30o, Η=450 Οe 

Figure 3.31. Difference of magnetic domains for the FGT and WTe2/FGT samples. a, For 35L
FGT, the region with WTe2 shows narrower domain width. b, For 65L FGT, there is no difference
of the magnetic domains. The region with dashed lines is for the FGT with WTe2.

where J and Happ are the Heisenberg exchange coupling and applied magnetic field, respectively.

The position-resolved DMI constant Di,j(z) is given by:

Di,j(z) = (z× ri,j)D(z). (3.7)

Here DMI D(z) = D0 exp( z−t
l0

), and t, l0 are the thickness of the film and a phenomenological

penetration length, respectively. This DMI term is assumed to decay exponentially from the inter-

face. The simulation results are shown in Fig. 3.32 based on a cubic lattice defined on a 25×25×20

mesh. For simplicity, it is assumed that the side walls of the mesh have periodic boundaries. The

top and bottom surfaces are open for mimicking the case of a thin film with S(r)=0 for both z > t

and z < 0. The dynamical behaviors of the local spins Si follow the Landau-Lifshitz-Gilbert
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(LLG) equation[88]:

Ṡ = −γS×Heff + αS× Ṡ, (3.8)

where γ = g
~ and α are the gyromagnetic ration and damping factor, respectively. The effective

field Heff is given by Heff = −∂H
∂S

+L, whereH is the Hamiltonian given by Equation 3.6 and L is a

random field provided by the thermal fluctuation at a finite temperature. The dissipation-fluctuation

relation 〈Lµ(r, t)Lv(r
′, t′)〉 = ξδµ,vδr,r′δtt′ is satisfied with ξ = αkBT

γ
determined by the damping

factor and the explored temperature T [88]. The average 〈· · · 〉 is taken over the realizations of the

fluctuation field. To mimic an adiabatic scan of the applied field in the experiment, the applied

magnetic field sweeps as a triangle wave with the slopes much smaller than the characteristic time

of the spins dynamics in the simulation. The parameters used in this simulation are D0

J
= 1, kBT =

0.1J and l0 = t ln( D0

Dbtm
), with Dbtm = D(z)|z=0 phenomenologically chosen as Dbtm = 0.4D0.

The simulation results in Fig. 3.32 show that for the FGT regions away from the interface, it

enters the ferromagnetic phase in the vertical profile which is the yz plane. With a finite penetration

of the DMI from the interface, the L-TEM is still can be used to capture the skyrmions at the

interface since the FGT layers away from the interface enters into a uniform ferromagnetic phase,

and contributes uniformly deflected electrons and thus no magnetic contrast.
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Figure 3.32. 3D view of the simulation of the skyrmions in WTe2/FGT. a, DMI exists at the inter-
face between the WTe2 and FGT and decays when away from the interface. b, Spin polarization
at the interface of WTe2 and FGT. c, Spin polarizations for the side of FGT close to SiN substrate.
d, Spin polarization at yz plane with a fixed x=10.

3.6 Comparison of skyrmion size between transport and Lorentz

transmission electron microscopy measurements

In this discussion, transport measurements showed the THE in 1L WTe2/4L FGT samples (Fig:

3.13), which is a signature for the presentce of skyrmions. However, there is no direction obser-

vation of the domain structure in heterostructures with L-TEM for FGT thickness less than 30L.

To bridge the gap between THE and L-TEM results, THE was obtained for samples with FGT

thickness from 3L to 5L and the skyrmion sizes ware estimated from the transport measurements.
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Fig. 3.33 shows the THE for 1L WTe2/3L FGT, 1L WTe2/4L FGT and 2L WTe2/5L FGT samples

at 100 K. For samples with thicker FGTs, no THE signal obtained so far. A possible explanation

is given as the fllowing. Assuming an exponential decay in the DMI profile, the simulation result

suggests that the skyrmions are present near the WTe2/FGT interface, with a large volume of the

ferromagnetic phase away from the interface. When carriers pass through the ferromagnetic phase,

they quickly lose the memory of the transport aquired from the THE because of the frequent scat-

terings, and the anomalous Hall effect becomes dominant. A quantitative analysis for the missing

of THE in a thicker film can start by considering the carrier density. Due to the large carrier density

in thicker FGT films, an extremely small topological Hall signal is expected. This analysis is done

using the topological Hall resistivity ρTHE
xy = 1

ne
Φ0√
3

2
r2

, where r is the skyrmion size and is taken

to be ∼100 nm, n is the carrier density, Φ0 is the quantum flux and e is the electron charge. The

topological Hall resistivity is estimated to be smaller than 0.01 Ω for the WTe2/30L FGT samples.

This topological Hall resistivity value is at least two orders of magnitude smaller than that of the

anomalous Hall resistivity. This may help explain the missing THE humps in thicker films.

To estimate the skyrmion size from the topological Hall humps, the total Hall resistivity ρxy is

decomposed into three parts: ρxy = ρN
xy + ρAHE

xy + ρTHE
xy , where ρN

xy and ρAHE
xy are the normal Hall

resistivity and anomalous Hall resistivity, respectively. With a linear ρN
xy as a background and a

square loop of the anomalous Hall effect (ρAHE
xy equals the resistivity value at the saturation field

ρAHE
xy = ρsaturation

xy without the linear background), ρTHE
xy +ρN

xy = 1
ne

(Beff +B). The THE is attributed

to an effective field Beff as discussed before in Section 3.3. With a uniform hexagonal skyrmion

lattice observed for our samples, it is reasonable to have Beff = Φ0√
3

2
r2

since each flux quantum

Φ0 contributes to a magnetic skyrmion. With the Hall coefficient 1
ne

obtained from the slope of
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Figure 3.33. Topological Hall effect for 1L WTe2/3L FGT, 1L WTe2/4L FGT and 2L WTe2/5L
FGT samples. The dips and peaks near the magnetic phase transition have been observed for FGT
thickness ranging from 3L to 5L.

ρxy after magnetic saturation, the skyrmion size is estimated as r =
√

Φ0√
3

2 [(ρxy−ρsaturated
xy )ne−B]

. The

skyrmion sizes estimated from the THE are shown in Fig. 3.34 for 1L WTe2/3L FGT, 1L WTe2/4L

FGT and 2L WTe2/5L FGT samples at 100 K with sizes within 100 nm as indicated by the magenta

circles. For the skyrmion sizes obtained from the L-TEM, as shown with the magenta square and

blue squares, they are in the order of 100 nm. Thus the skyrmion sizes from these two methods are

a close match within the same order of magnitude.

In summary, the Néel-type skyrmion lattice from the L-TEM and the THE data from the trans-

port measurement were compared for WTe2/FGT heterostructures. A large interfacial DMI energy

of ∼ 1.0 mJ/m2 was extracted from the domain wall width, which might be a result of the broken

inversion symmetry from the Rashba spin-orbit coupling. The skyrmion sizes are around 150 nm at

94 K and 80 nm at 198 K. Further studies may be carried out about the realization of 2D skyrmions

at room temperature, which can be realized using electrical gating. This may open a new area in
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Figure 3.34. Extracted skyrmion size from transport and Lorentz transmission electron microscopy
as a dependence on FGT thickness at 100 K and 195 K. The points in a circular shape are the
skyrmion sizes from topological Hall effect and in a square shape are those from Lorentz transmis-
sion electron microscopy. Points in magenta color are taken at 100 K and points in blue color are
taken at 195 K.

the field of ultra-compact next-generation spintronics.
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Chapter 4

Summary and Outlook

4.1 Conclusion

In this dissertation, firstly, material assembly using the pick-up transfer stage is demonstrated.

By using this technique, the interface coupling between the layered materials for different het-

erostructures can be formed and investigated. High spin and valley polarizations in 2D materials

provide tantalizing opportunities for efficient spintronics and valleytronics. Various material sys-

tems with the proximity effect were used to spin- or valley-polarize 2D materials. We have shown

a large exchange splitting in graphene proximitized by an antiferromagnet and an enhanced DMI

in FGT from coupling to a few-layer transition metal dichalcogenides with large spin-orbit inter-

action.

Utilizing the high-quality monolayer graphene, we are able to realize the quantum Hall effect

in the monolayer graphene. With a strong interfacial coupling between graphene and the antifer-

romagnet CrSe, the quantum oscillations and quantum Hall plateau can be shifted using the field

coolings. This is a result of the strong exchange coupling between these two materials. The NiAs-

type antiferromagnetic order in CrSe is supported by the X-ray diffraction and neutron diffraction

data, which indicates a Néel temperature of ∼ 270 K for the film. This exchange splitting en-

ergy depends on the field cooling strength and directions, which is as large as 134 meV at zero
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field coolings. The extraction of this large exchange splitting is from fitting the Landau level di-

agram using the machine learning. The fitting error is less than 2 × 10−5 with all the parameters

converging to the same value. The proximity effect induced exchange splitting in graphene is

also supported by the paramagnetism observed in graphene under magneto-optic Kerr effect mea-

surement. This work makes graphene an ideal platform for both exploring the quantum interface

physics and developing new graphene-based spintronic devices.

After the long-distance magnetic order has been discovered in 2D van der Waals materials re-

cently, we came up an idea of manipulating the spin textures in FGT with an interfacial coupling

through the large spin-orbit interaction. The layered material we have chosen with a large spin-

orbit interaction is a few-layer WTe2, which is terminated with the same Te atoms as those in the

FGT. With monolayer or bilayer WTe2 in the WTe2/FGT heterostructure for the transport measure-

ments, topological Hall effect is observed for WTe2/a few-layer FGT heterostructures, which is a

sign for topological magnetic skyrmions. To further prove the existence of the skyrmions, Lorentz

transmission electron microscopy is adopted to obtain the magnetic domains. The domain width in

the WTe2/FGT heterostructure is much smaller than that in pristine FGT, indicating an enhanced

DMI from the interfacial coupling. Using a phenomenological model, the domain wall energy can

be estimated and thus a DMI as large as 1.0 mJ/m2 is calculated, which is comparable to that in

the heavy metal/ferromagnet case. The skyrmions and skyrmion lattice have also been captured

in heterostructures with FGT thickness of no less than 30L. The skyrmion size is estimated to be

∼150 nm at 94 K and ∼80 nm at 197 K. The absence of topological Hall effect in heterostructure

of a thick FGT and skyrmions under Lorentz transmission microscopy in the heterostructure with

a thin FGT makes the two measurement results not directly related. To link these two results, we
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extracted and estimated the skyrmion sizes from the topological Hall effect and they are on the

same order of magnitude as those obtained with Lorentz transmission microscopy. Thus these two

results are consistent. This study opens a new area in the field of ultra-compact next-generation

spintronics.

4.2 Future work

Currently, the search for quantum anomalous Hall insulator among van der Waals magnetic

materials attracts lots of attentions. Among all the materials, layered Mn1Bi2Te4 is the first ma-

terial found to be an intrinsic quantum anomalous Hall insulator and an axion insulator. In this

material, the intralayer exchange coupling is ferromagnetic and the interlayer exchange coupling

is antiferromagnetic. Thus monolayer and bulk Mn1Bi2Te4 materials are a ferromagnet and 3D A-

type antiferromagnet, respectively. Similar to Mn1Bi2Te4, tetradymite-type ternary chalcogenides

in a form of M1B2T4, where M is transition-metal or rare-earth element, B is Bi or Sb atom and T

is Te, Se, or S atom is all proposed to be possible magnetic topological quantum materials on the

basis of first-principles density functional theory calculations[104]. These materials are promising

for the search of high-temperature quantum anomalous Hall insulators.

Apart from these, the family of magnetic van der Waals heterostructures arises in the search of

new structrues. With the interface between different materials, new physics and phenomena will

emerge.
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Material ferromagnet or antiferromagnet TC or TN (K)

Mn1Bi4Te7
antiferromagnet 12[106]
ferromagnet 13[105]

Mn1Bi6Te10 antiferromagnet 11[107]
Mn1Bi8Te13 ferromagnet 10.5[107]
LaCl ferromagnet 22 [108]

Table 4.1. Possible van der Waals quantum anomalous Hall insulators, including Mn1Bi2+2nTe4+3n

family and LaCl.

4.2.1 New intrinsic quantum anomalous Hall insulators

So far, Mn1Bi2Te4 and Mn1Bi4Te7[105] are reported experimentally to be intrinsic quantum

anomalous Hall insulators. In our part, we are working on new potential magnetic topological

quantum materials like Mn1Bi2+2nTe4+3n, Co1Bi2+2nTe4+3n and Cr1Bi2+2nTe4+3n with n=0, 1, 2,

3, · · · .

Tetradymite-type ternary chalcogenides in a form of Mn1Bi2+2nTe4+3n has a large family,

including the recently discovered Mn1Bi2Te4, Mn1Bi4Te7, Mn1Bi6Te10 and Mn1Bi8Te13. With

more layers of Bi2Te3 inserted between Mn1Bi2Te4, the antiferromagnetic layer coupling be-

comes weaker and weaker. As a result, with three Bi2Te3 layers inserted, Mn1Bi8Te13 turns

into a ferromagnet[107]. However, there are some discrepancies in the literature. For example,

Mn1Bi4Te7 is reported to be an ferromagnet and an antiferromagnet by two different groups as

indicated in the Table 4.1 due to their one different step of treatment during the growth. The only

difference lies in whether the electron irradiation is adopted to tune the Fermi level after the sample

growth at 20 K[105].

With bulk materials of Mn1Bi4Te7 and Mn1Bi8Te13, the electronic properties of them were

investigated. As shown in Fig. 4.1, with one Bi2Te3 inserted between Mn1Bi4Te7, it shows a
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magnetic phase transition at ∼ 10 K. Some steps in Hall resistance are present when a magnetic

field is applied.
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Figure 4.1. Transport properties of thick Mn1Bi4Te7 close to bulk. a, Side view of crystal struc-
ture. b, Temperature dependence of longitudinal resistance indicating a magnetic phase transition
around 10 K. Magnetoresistance c and Hall resistance d at temperatures of 2 K, 5 K, 10 K and 20
K.

For Mn1Bi8Te13 with more Bi2Te3 layers inserted, it becomes a ferromagnet with a Curie tem-

perature∼ 10 K with Mn atoms layers coupled ferromagnetically. The hysteresis loop is very clear

at temperatures of 2 K and 5 K as shown in Fig. 4.2.
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ture. b, Temperature dependence of longitudinal resistance indicating a magnetic phase transition
around 10 K. c, Magnetoresistance at 10 K and Hall resistance at temperatures of 2 K, 5 K, 12 K
14 K, 15 K and 20 K.

4.2.2 Van der Waals heterostructure

Inserting different vdW materials into a heterostructure will provide much more opportunities

and devices for future spintronic and electronic applications. Proximity effect between vdW mate-

rials with a magnetic material may turn the vdW material into a magnetic material[75] or quantum

anomalous Hall insulator[109]; interface coupling between a magnetic vdW material and a vdW

material may give rise to topological skyrmions[110]. New physics and phenomena have emerged

in this field. Other than changing the materials in the heterostructure, the relative crystal orientation

also plays a significant role in changing the band structrue of the heterostructures. For example,
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angle orientation engineering between bilayer graphene gives rise to a superconductor[111] or a

quantum anomalous Hall insulator[16].

More work on heterostructures like combining 2D magnetic materials and TMDs can be carried

out with potential applications to new-generation ultra-compact devices.

98



REFERENCES

[1] Novoselov, K. S. et al. Room-temperature quantum Hall effect in graphene. Science 315,
1379–1379 (2007).

[2] Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S. & Geim, A. K. The electronic
properties of graphene. Reviews of Modern Physics 81, 109 (2009).

[3] Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum
Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

[4] Chen, X. et al. High-quality sandwiched black phosphorus heterostructure and its quantum
oscillations. Nature Communications 6, 1–6 (2015).

[5] Wu, Y. et al. Negative compressibility in graphene-terminated black phosphorus het-
erostructures. Physical Review B 93, 035455 (2016).

[6] Yankowitz, M., Ma, Q., Jarillo-Herrero, P. & LeRoy, B. J. van der Waals heterostruc-
tures combining graphene and hexagonal boron nitride. Nature Reviews Physics 1, 112–125
(2019).

[7] Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal
dichalcogenides. Nature Reviews Materials 2, 17033 (2017).

[8] Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: Condensed-
matter realization of the “parity anomaly”. Physical Review Letters 61, 2015 (1988).

[9] Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer
graphene. Science 365, 605–608 (2019).

[10] Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlat-
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