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Cyclin-Dependent Kinase 12 Increases 3" End Processing of Growth

Factor-Induced c-FOS Transcripts

Tristan T. Eifler,® Wei Shao,® Koen Bartholomeeusen,®* Koh Fujinaga,® Stefanie Jager,”° Jeff R. Johnson,® Zeping Luo,?

Nevan J. Krogan,®° B. Matija Peterlin®

Department of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, California, USA%; Department of Cellular and Molecular
Pharmacology, University of California at San Francisco, San Francisco, California, USA®; California Institute for Quantitative Biosciences, QB3, San Francisco, California,

USA®

Transcriptional cyclin-dependent kinases (CDKs) regulate RNA polymerase II initiation and elongation as well as cotranscrip-
tional mRNA processing. In this report, we describe an important role for CDK12 in the epidermal growth factor (EGF)-induced
c-FOS proto-oncogene expression in mammalian cells. This kinase was found in the exon junction complexes (EJC) together
with SR proteins and was thus recruited to RNA polymerase II. In cells depleted of CDK12 or eukaryotic translation initiation
factor 4A3 (eIF4A3) from the EJC, EGF induced fewer c-FOS transcripts. In these cells, phosphorylation of serines at position 2
in the C-terminal domain (CTD) of RNA polymerase II, as well as levels of cleavage-stimulating factor 64 (Cstf64) and 73-kDa
subunit of cleavage and polyadenylation specificity factor (CPSF73), was reduced at the c-FOS gene. These effects impaired 3’
end processing of c-FOS transcripts. Mutant CDK12 proteins lacking their Arg-Ser-rich (RS) domain or just the RS domain
alone acted as dominant negative proteins. Thus, CDK12 plays an important role in cotranscriptional processing of c-FOS

transcripts.

NA polymerase II (RNAPII) transcribes protein-coding

genes. It is regulated at multiple stages during transcription,
including recruitment to promoters, initiation, pausing, release,
and termination. In the process, RNAPII also orchestrates cotran-
scriptional capping, RNA splicing, and cleavage/polyadenylation
(CPA) of nascent transcripts (1-5). Though originally considered
to be divided into distinct phases, there is increasing evidence that
many steps in mRNA transcription and processing are concurrent
(6,7).

Transcriptional cyclin-dependent kinases (CDKs) are impor-
tant regulators of various phases of RNAPII transcription. With
their respective cyclin subunits, they regulate transcription by
phosphorylating various effectors as well as the C-terminal do-
main (CTD) of RNAPII itself (8, 9). CDK7 and CDKS8 are com-
ponents of the general transcription factor TFIIH and Mediator,
respectively. They regulate early steps of transcription by phos-
phorylating Mediator subunits and the CTD (10-13). CDK7
phosphorylates serines at position 5 in the CTD (Ser5P). This
action recruits the capping complex, which adds the 5" methyl cap
to nascent transcripts (14, 15). A role for CDK7 in the release of
paused RNAPII has been attributed to its activation of CDK9 (16).
CDKO9 phosphorylates negative elongation factors NELF (17) and
DSIF (18), thereby promoting the release of the paused RNAPII
into elongation (19-21). Phosphorylation of serines at position 2
(Ser2P) in the CTD is involved in recruitment of 3 RNA-process-
ing factors, which play a major role in the termination process (12,
22,23).

Recently, CDK12 joined the ranks of known transcriptional
CDKs. Knocking down this kinase reduced overall levels of Ser2P
in fly, human, and Caenorhabditis elegans germ line cells (24-26).
It also decreased the expression of a subset of cellular genes, e.g.,
those involved in the DNA damage response (DDR) (27), and
the activation of luciferase reporter genes with cytomegalovirus
(CMV) and simian virus 40 (SV40) promoters (26). CDK12 is also
required for 3’ cleavage of c-Myc transcripts (28). This attenuated
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cleavage could be correlated to decreased levels of Ser2P and
cleavage stimulation factor 77 (CstF77) (29) at the c-Myc gene.
CDK12’s cyclin partner is cyclin K (CycK, or CCNK), which also
binds to CDK13 (27). Interestingly, depleting CDK13 does not
decrease levels of Ser2P (24).

In this report, we provide evidence that CDK12 is required for
the optimal induction of the c-FOS proto-oncogene (30, 31) by
epidermal growth factor (EGF). In this context, depletion of
CDK12 led to decreased levels of Ser2P, cleavage stimulation fac-
tor 64 (CstF64) (32), and cleavage and polyadenylation specificity
factor 73 (CPSF73) (33) at this gene and attenuated 3" end forma-
tion of c-FOS transcripts. Proteomic and functional analyses re-
vealed that CDK12 associates with the exon junction complex
(EJC) and SR splicing factors (SRSFs), which recruit it to the
RNAPII elongation complex.
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MATERIALS AND METHODS

Plasmids and reagents. Mammalian expression vectors encoding CDK12
domain deletion mutants were produced from the parental pcdna.
CDK12-Flag, described previously (27), by PCR-mediated deletion and
BamHI religation. The following primers were used: for ARS, F_ATAGG
ATCCCATCACGCTAGCCAGCTTGG and R_ATAGGATCCATGGAT
GGAAAGGAGTCCAAG:; for AKD, F_ATAGGATCCCCAGTCGCTTTC
TGTTTGTC and R_ATAGGATCCAAAGATGTCGAACTCAGCAAA
ATG; for ACT, F_ATAGGATCCTCGTAGACGCCTTCGATATTGC and
R_ATAGGATCCAGAGGAGTTCCTTACGAGCTT. RS only was pro-
duced using primers ACT F and R_ATAGGATCCGGGAAACGCTGTG
TGGACAAG. Expression plasmids for SRSF4 to SRSF6 were a kind gift
from Stefan Schwartz (Uppsala University, Sweden). Anti-CDK12 anti-
body (87011; Novus Biologicals) was used for chromatin immunoprecipi-
tation (ChIP), and two anti-CDK12 antibodies (87012 [Novus Biologi-
cals] and ab57311 [Abcam]) were used for Western blotting and RNA
immunoprecipitation (RNA-IP). Antitubulin (ab6046; Abcam), anti-
phospho-extracellular signal-regulated kinase 42/44 (anti-P-ERK42/44)
(43705 Cell Signaling Technology [CST]), and anti-total ERK (4695; CST)
were used for Western blotting. Human recombinant EGF was purchased
from Sigma (E9644). Anti-RNAPII (sc899; Santa Cruz Biotechnology
[SCBT]), anti-Ser2P RNAPII (61084; Active Motif), and anti-Ser5P
(61085; Active Motif) were used for ChIP. Antihemagglutinin (anti-HA)
(H3663; Sigma-Aldrich) and anti-Flag (F1804; Sigma-Aldrich) were used
for immunoprecipitation and Western blotting. Anti-CPSF73 (sc101923;
SCBT) and anti-CstF64 (sc166647; SCBT) were used for Western blotting.
Anti-SRp55 (MABE152; Millipore), anti-eukaryotic translation initiation
factor 4A3 (anti-elF4A3) (sc-365549; SCBT), and anti-CDK12 (ab57311; Ab-
cam) were used for native immunoprecipitation.

Cell culture and transfection. HEK293 and HEK293T cells were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal
calf serum (FCS) at 37°C and 5% CO,. Transfection of plasmid DNA
was performed using X-tremeGENE HP DNA transfection reagent
(06366546001; Roche) according to the manufacturer’s instructions.
Small interfering RNA (siRNA) was transfected for 72 or 48 h using Lipo-
fectamine RNAIMAX transfection reagent (13778030; Invitrogen) ac-
cording to the manufacturer’s instructions. siRNA targeting CDK12 or a
nontargeting siRNA was purchased from SCBT (sc-44343 or sc-37007,
respectively). siRNA targeting eI[F4A3 (antisense_ GACAACAUGCUGU
CCGUAA and sense_ GCUGGAUUACGGACAGCAU) was purchased
from Integrated DNA Technologies.

Reverse transcription-quantitative PCR (RT-qPCR). Total RNA was
prepared using TRIzol reagent according to the manufacturer’s instruc-
tions (15596-026; Invitrogen). Total RNA (1 pg) was treated for 30 min
with Turbo DNase (AM2238; Ambion) and subsequently reverse tran-
scribed and quantified using a SuperScript I1I first-strand synthesis system
(18080-051; Life Technologies) with random hexamers or gene-specific
primers on a Stratagene Mx3005P platform. Control reaction mixtures
lacking reverse transcriptase (RT-minus) were routinely incorporated
and indicated at least 10-fold lower signal in all experiments. The follow-
ing primers were used: for c-FOS exon 4 (total c-FOS), F_GAGAGCTGG
TAGTTAGTAGCATGTTG and R_CTATCTACCAGAAAATAAAGTCG
TATG; c-FOS exon poly(A) (pA), F_GCATTGTTTGCTTATTGTTCCA
AGAC and R_CCAGCAGCTACCCTTCTTGACAAA; F1, F_GGAGA
CCAGTTTGTCAAGAAGGGTAG and R_GACGGGGTTTCTCCATG
TTGG; F2, F_AGAACGTGACCTTTGTCCG and R_TCTCCTTTCCCT
GTGGTTTG. For glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
the primers were F_CTGGCGTCTTCACCACCATGG and R_CATCAC
GCCACAGTTTCCCGG. Primers used to determine splicing of the c-FOS
RNA were described by Gu et al. (34).

ChIP and RNA-IP. ChIP was performed as described previously (35).
Sonicated lysate of 3 to 5 million cells was immunoprecipitated using 3 pg
of the appropriate antibody. Immunoprecipitated DNA was detected by
qPCR using a Bioline SensiFAST SYBR Lo-ROX kit (BIO-94002; Bioline,
Cincinnati, OH) with annealing at 57°C and 15-s elongation steps. The
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following primers were used: for c-FOS promoter (Pro), F TGAGCCCG
TGACGTTTAC and R_TGCAGATGCGGTTGGAG; exon 2 (Ex2), F_CT
GGCGTTGTGAAGACCATGAC and R_TCTGTACTGGGCTCCTGC
ATC; exon 3 (Ex3), F_ AAGGGAAAGGAATAAGATGGCTG and R_CG
CTTGGAGTGTATCAGTCA; pA, F_GCATTGTTTGCTTATTGTTCCA
AGAC and R_CCAGCAGCTACCCTTCTTGACAAA; 3’ flanking region
1 (F1), F_GGAGACCAGTTTGTCAAGAAGGGTAG and R_GACGGGG
TTTCTCCATGTTGG. For detection of RNA associated with immuno-
precipitated proteins, sonicated lysate of cross-linked cells was treated the
same as for ChIP, eluted from the beads, and reverse transcribed as de-
scribed previously (36).

Immunoprecipitation. Immunoprecipitations were performed as de-
scribed before (37). HEK293 or HEK293T cells (~5 X 10°) were lysed on
ice (10 min) in lysis buffer (20 mM HEPES, pH 7.4, 150 mM NaCl, 0.1%
NP-40, 0.5% Triton X-100). The cell lysates were centrifuged (10,000 X g
for 2 min at 4°C), and the supernatants were collected. Supernatants were
then precleared with protein A- or G-Sepharose beads (Invitrogen) for 1 h
at 4°C. Precleared lysates were incubated with 3 pg of the appropriate
antibodies overnight at 4°C. The lysates were then centrifuged (10,000 X
g for 10 min at 4°C), and supernatants were incubated with protein A- or
G-Sepharose beads for 1 h at 4°C. Beads were washed five times with 800
wl of lysis buffer, and immunoprecipitated complexes were boiled in SDS
sample buffer and analyzed by Western blotting. Native immunoprecipi-
tations were performed as follows. HEK239T cells were cultured in
DMEM supplemented with 10% fetal bovine serum (FBS) in 15-cm cul-
ture dishes at 37°C and 5% CO,. Once confluent, the cells were washed
with cold (4°C) Dulbecco’s phosphate-buffered saline (DPBS) and lysed
in 1.2 ml of cold immunoprecipitation buffer (50 mM Tris-HCI, pH 7.5,
150 mM NaCl, 5 mM EDTA, 0.5% NP-40, 1.0% Triton X-100). Cells were
then scraped from the dish and sonicated on ice. Cell lysates were centri-
fuged (10,000 X g for 10 min at 4°C), and the supernatants were collected.
The supernatant was precleared with protein A-Sepharose (Invitrogen)
for 1 h at 4°C. Precleared lysates were incubated with 4 pg of anti-CDK12
antibody (NB100-87011; Novus Biologicals), anti-CDK12 (ab57311; Ab-
cam), anti-e[F4A3 (sc-365549; SCBT), anti-SRp55 antibody (A303-669A;
Bethyl Laboratories), or anti-SRp55 (MABE152; Millipore) overnight
with rotation at 4°C. RNase treatment was performed by incubating the
lysates in RNase A (200 ng/pl) for 30 min. The lysates were then centri-
fuged (14,000 rpm at 10 min for 4°C); the supernatants were recovered
and then incubated with protein A-Sepharose beads for 1 h at 4°C. Beads
were washed three times with 1 ml of lysis buffer. The immunoprecipi-
tated complexes were boiled in sample buffer (Laemmli sample buffer
with B-mercaptoethanol) at 95°C and analyzed via Western blotting.

MS. Immunopurification and mass spectrometry (MS) were carried
out as previously described (38). HEK293T cells (5 X 10°) were trans-
fected using calcium phosphate precipitation and lysed in 1 ml of lysis
buffer (50 mM Tris-HCI, pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.5%
NP-40) on ice for 45 h posttransfection. Insoluble material was pelleted
for 20 min at 2,800 X g. Supernatants were incubated with 20 pl of Flag
M2 affinity gel (Sigma-Aldrich) for 2 h. After washing, beads were eluted
in 30 pl of elution buffer (50 mM Tris-HCL, pH 7.5, 150 mM NaCl, 1 mM
EDTA, 100 ng/ml 3XFlag peptide [ELIM Biopharmaceuticals], 0.05%
RapiGest SF). Immunopurified samples were denatured and reduced in 2
M urea, 10 mM NH,HCO;, and 2 mM dithiothreitol (DTT) for 30 min at
60°C and then alkylated with 2 mM iodoacetamide for 45 min at room
temperature. Trypsin (Promega) was added at a 1:100 enzyme-to-sub-
strate ratio, and peptide mixtures were digested overnight at 37°C. Fol-
lowing digestion, samples were concentrated using C,¢ ZipTips (Milli-
pore) according to the manufacturer’s specifications. Digested peptide
mixtures were analyzed by liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) on a Thermo Scientific Velos Pro ion trap mass
spectrometry system equipped with a Proxeon Easy nLC high-pressure
liquid chromatography and autosampler system. Samples were injected
onto a precolumn (length, 2 cm; inside diameter [i.d.], 100 pwm; packed
with ReproSil Pur C,5 AQ 5-pum particles) in 0.1% formic acid and then
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FIG 1 CDK12 associates with the exon junction complex (EJC) and SR splicing factors (SRSFs). (A) Visual representation of the CDK12 proteome. Proteins
coimmunoprecipitated with the Flag epitope-tagged CDK12 protein from HEK293T cells. They were identified using mass spectrometry. Nodes represent
CDK12-binding partners. Distances between nodes and CDK12 are inversely proportional to the number of peptides identified for each protein. Nodes in a
darker color also mark proteins with greater number of peptides within known complexes, such as the EJC and SRSFs. Other nodes contain proteins that could
not be validated further (see Fig. S1 in the supplemental material): teal, PRP19-CDC5L proteins; red, PRPF40A; yellow, miscellaneous RNA-associated proteins.
(B) CDK12 interacts with EJC proteins in cells. Anti-Flag antibodies immunoprecipitated Flag epitope-tagged MAGOH or eIF4A3 (EMAGOH or f:eIF4A3)
proteins from HEK293T cells (lower panels). Anti-CDK12 antibodies revealed CDK12 in these immunoprecipitations in the absence (lanes 3 and 6) or presence
(lanes 4 and 7) of RNase A by Western blotting (upper panels). Input (5% lysate) (lanes 1 and 5) and anti-IgG (lane 2) control lanes are also presented. (C) CDK12
interacts with SRSFs in cells. Anti-HA antibodies immunoprecipitated HA epitope-tagged SRSF4 (lanes 4 and 8), SRSF5 (lanes 2 and 6), and SRSF6 (lanes 3 and
7) (h:SRSF) proteins from HEK293T cells (lower panels). Anti-CDK12 antibodies revealed CDK12 in these immunoprecipitations by Western blotting (upper
panels). Left panels show input (5% lysate), and right panels show immunoprecipitations. Lanes C, input lysates (lane 1) and immunoprecipitations from
HEK293T cells (lane 5) expressing only the empty plasmid vector. (D) Endogenous CDK12, eIF4A3, and SRSF6 proteins interact in cells. Anti-CDK12 (upper
panels) and anti-SRSF6 (lower panels) antibodies immunoprecipitated native proteins from untransfected HEK293T cells. Next, anti-e[F4A3 and anti-SRSF6
antibodies revealed these proteins in anti-CDK12 immunoprecipitations by Western blotting (upper panels). Anti-CDK12 and anti-eIF4A3 antibodies revealed
CDKI12 in anti-SRSF6 immunoprecipitations by Western blotting (lower panels). Inputs and IgG lanes (1 and 2) are as described for panel B. Lysates were
incubated in the absence (lane 3) or presence (lane 4) of RNase A. a, anti.

separated with a 2-h gradient from 5% to 30% acetonitrile (ACN) in 0.1%
formic acid on an analytical column (length, 10 cm; i.d., 75 pwm; packed
with ReproSil Pur C,43 AQ 3-pm particles). The mass spectrometer col-
lected data in a data-dependent fashion, collecting one full scan followed
by 20 collision-induced dissociation MS/MS scans of the 20 most intense
peaks from the full scan. Dynamic exclusion was enabled for 30 s with a
repeat count of 1. The resulting raw data were matched to protein se-
quences by the Protein Prospector algorithm (39). Data were searched
against a database containing Swiss-Prot human protein sequences
(downloaded 6 March 6 2012) and concatenated to a decoy database
where each sequence was randomized in order to estimate the false-posi-
tive rate. The searches considered a precursor mass tolerance of 1 Da and
fragment ion tolerances of 0.8 Da and considered variable modifications
for protein N-terminal acetylation, protein N-terminal acetylation and
oxidation, glutamine-to-pyroglutamate conversion for peptide N-termi-
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nal glutamine residues, protein N-terminal methionine loss, protein N-
terminal acetylation and methionine loss, methionine oxidation, and
constant modification for carbamidomethyl cysteine. Prospector data
were filtered using a maximum protein expectation value of 0.01 and a
maximum peptide expectation value of 0.05.

RESULTS

CDK12 binds to the EJC and SRSFs. CDK12 exists as a CycK:
CDK12 heterodimer in vivo (24, 26, 27). To gain mechanistic in-
sight into the role of CDKI12 in transcription, we identified its
proteome. Flag epitope-tagged CDK12 protein was expressed with
or without CycK (CCNK) in HEK293T cells. After immunopre-
cipitation, CDK12-associated proteins were identified by mass
spectrometry (MS). We found an almost exclusive enrichment of
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RNA-binding proteins, which included components of the EJC
(e.g., MAGOH, elF4A3, RBMS, and RNPS1), SRSFs, the CDC5L/
PRPF19 complex (CDC5L, PRPF19, and BCAS2), and other non-
specific proteins (Fig. 1A; see also Table S1 in the supplemental
material). Apart from CycK, the elF4A3 subunit of the EJC was the
highest-scoring candidate-binding partner.

EJC and SRSFs are found in the same complexes (40-43).
MAGOH, elF4A3, Y14, and MLN51 form the core of the EJC that
binds to sequences 20 to 24 nucleotides upstream of exon-exon
boundaries (43, 44). The EJC is recruited to transcripts by the
intron-binding protein IBP160 (45) and deposited on the RNA via
eIF4A3 prior to exon ligation during splicing (46, 47). The EJC has
been implicated in transcription, nuclear mRNA export, non-
sense-mediated decay (NMD), and enhanced translation (48-51).
It also acts as a general scaffold for a variety of factors implicated in
cotranscriptional mRNA processing, especially 3" end formation
(e.g., UPF2, UPF3, and RNPS1) (44). SRSFs are characterized by a
common domain organization: one or two N-terminal RNA rec-
ognition motifs (RRMs) and a C-terminal Arg-Ser-rich domain
(RS domain). SRSFs have been implicated in transcription elon-
gation, splice site selection, and 3’ end processing as well as mRNA
stabilization, export, and translation (52). RS domains of SRSFs
serve as protein interaction domains (53). Given the presence of
an RS domain in the N-terminal region of CDK12, the high score
of e[F4A3 in the proteomic analysis, and established association
between the EJC and splicing factors, which contain multiple
SRSFs (5), we proceeded to characterize interactions between
CDK12, the EJC, and SRSFs.

Endogenous CDK12 protein coimmunoprecipitated with ec-
topically expressed Flag epitope-tagged elF4A3 and MAGOH pro-
teins in the presence and absence of RNase A (Fig. 1B, lanes 3 and
4 and lanes 6 and 7). Representative HA epitope-tagged SRSFs
(SRSF4/SRp75, SRSF5/SRp40, and SRSF6/SRp55) also coimmu-
noprecipitated with CDK12 (Fig. 1C, lanes 6 to 8). Importantly,
endogenous elF4A3 and SRSF6 proteins also interacted with
CDKI12 in an RNA-independent fashion (Fig. 1D). In contrast,
other representative proteins of our proteome failed to coimmu-
noprecipitate with CDK12 (see Fig. S1 in the supplemental mate-
rial). We conclude that CDK12 is a component of EJC:SRSF com-
plexes in cells.

CDK12 and eIF4A3 are required for optimal c-FOS activa-
tion by EGF. CDKs play critical roles in inducible gene expression
by targeting transcriptional regulators and RNAPII. For instance,
rapid activation of the c-FOS gene by EGF mediated via CTD
phosphorylation has been used as a model system for inducible
gene expression (54—56). Furthermore, cotranscriptional recruit-
ment of SRSFs, which are known to associate with the EJC (43), is
integral to RNA processing (52, 57). Multiple SRSFs were identi-
fied as candidate CDK12-binding partners (Fig. 1A; see also Table
S1 in the supplemental material). To evaluate possible interac-
tions between CDK12 and the EJC:SRSF complexes in growth
factor-stimulated activation of c-FOS, HEK293T cells were de-
pleted of CDK12, e[F4A3 (58-60), or both proteins by siRNA for
48 h and subsequently stimulated with EGF for 30 min. Levels of
c-FOS RNA were quantified by RT-qPCR. Induction of c-FOS
transcripts in CDK12-, elF4A3-, and CDK12/elF4A3-depleted
cells was 5-fold lower than levels in control cells (Fig. 2A, compare
black, striped, and hatched bars to the white bar). Thus, CDK12
and the EJC appear to be required for optimal c-FOS gene activa-
tion by EGF. Interestingly, simultaneous depletion of eIF4A3 and
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FIG 2 Depletions of CDK12 and eIF4A3 inhibit c-FOS activation by EGF. (A)
Depletion of CDK12, eIF4A3, or both proteins decreases levels of EGF-in-
duced c-FOS transcripts. HEK293T cells were treated with scrambled siRNA
(siScr), siRNAs targeting CDK12 (siCDK12), eIF4A3 (sielF4A3), or both
siRNAs (siCDK12 + sielF4A3) for 48 h and then lysed (group 1 bars) or
incubated first with EGF for 30 min prior to lysis (group 2 bars). Levels of
c-FOS transcripts were determined by RT-qPCR and normalized to those of
GAPDH RNA. Values represent the averages * standard deviations (n = 3).
The horizontal line (3) below the schematic for c-FOS transcripts represents
the region amplified by RT-qPCR. The schematic is as follows: ball, the
7-methylguanosine (m7G) cap; black ovals, exons; zigzag line, poly(A) tail. (B)
Confirmation of e[F4A3 and CDKI12 knockdowns. Levels of CDK12 and
elF4A3 in HEK293T cells treated with scrambled siRNA and siRNAs targeting
CDK12, eIF4A3, or both, as indicated (see above), were determined using
specific antibodies by Western blotting. a-Tubulin levels were used as the
loading control (lower panel).

CDK12 did notlower c-FOS levels below those observed in knock-
downs of e[F4A3 or CDK12 alone (Fig. 2A, compare hatched bar
to black and striped bars). Small differences in the levels of c-FOS
activation can be attributed to the incomplete knockdown of
CDK12 compared to that of e[F4A3 (Fig. 2B, lanes 2 and 3). Phos-
phorylation of ERK1/2 (P-ERK1/2) was not affected, demonstrat-
ing that CDK12 depletion did not reduce signaling via the canon-
ical EGF receptor (EGFR)-Ras-Raf-MEK-ERK1/2 signaling
pathway (see Fig. S2 in the supplemental material). This finding
suggests that CDK12 and EJC:SRSF complexes act through a com-
mon pathway for optimal c-FOS induction by EGF.

CDK12 depletion decreases levels of Ser2P, CstF64, and
CPSF73 at the EGF-stimulated c-FOS gene. CDK12 depletion
decreases overall levels of Ser2P in flies, humans, and C. elegans
(24-26). To determine whether this inhibition also occurs on the
EGF-induced c-FOS gene in HEK293 cells, we performed chro-
matin immunoprecipitations (ChIPs) (Fig. 3). A schematic dia-
gram of the c-FOS gene and interrogated sequences is provided in
Fig. 3A. We found that CDK12 knockdown had minimal effects
on levels of RNAPII and Ser5P throughout the c-FOS gene and its
3’ flanking region (Fig. 3B and C). In contrast, it reduced Ser2P
levels 2-fold in the body of the gene (Fig. 3D). These findings are in
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treated (2) HEK293 cells (see above) by Western blotting.

agreement with those published with the c-Myc gene in CDK12-
depleted HeLa cells (28). Thus, CDK12 also promotes Ser2P in the
CTD of RNAPII on the c-FOS gene.

Since Ser2P levels have been correlated with recruitment of
CPA factors to RNAPII, which decreased at the c-Myc gene in the
absence of CDK12 (28), we also examined whether recruitment of
CPA factors to c-FOS is affected by CDK12 depletion in c-FOS.
Polyadenylation site selection and cleavage of the nascent RNA are
mediated by components of the heterotrimeric CstF complex (61,
62). The RNA-binding component of CstF, CstF64 (32), is also a
determining factor in alternative polyadenylation (APA) (63). In
addition, CPSF plays a critical role in 3" cleavage of nascent tran-
scripts. Indeed, CPSF73 is the endonuclease that cleaves the tran-
script 18 to 20 nucleotides 3’ to the poly(A) site (33). We found
that levels of CstF64 and CPSF73 were reduced at the poly(A) site
and 3’ flanking sequences of the c-FOS gene in CDK12-depleted
cells (Fig. 3E and F, pA and F1 regions). This finding was not due
to decreased levels of CstF64 and CPSF73 in these cells, which
were not affected by the absence of CDK12 (Fig. 3G). Since
CDK12 regulates only a small subset of cellular genes, this finding
is not surprising. It also confirmed that CDK12 promotes not only
Ser2P but also the recruitment of CPA factors to RNAPII at af-
fected genes (28).
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CDK12 affects 3’ end processing of the activated c-FOS gene.
Decreased levels of ¢-FOS transcripts in CDK12-depleted cells
(Fig. 2A) cannot be explained by the slightly reduced enrichment
of RNAPII at the c-FOS gene (Fig. 3B). Rather, they reflect rates of
transcription, cotranscriptional processing, and stability of the
mature RNA. Indeed, the proper splicing and CPA of newly tran-
scribed RNA also influence its overall stability (64—66). By acting
as a recruiting platform for splicing and CPA factors, the phos-
phorylated CTD affects the cotranscriptional processing of nas-
cent RNA (67). Reduced phosphorylation of the CTD attenuates
these processes (34).

To evaluate consequences of CDK12 depletion on ¢c-FOS tran-
scripts, we examined c-FOS splicing and 3’ end processing follow-
ing EGF stimulation. First, we compared levels of mature and
read-through transcripts by RT-qPCR. Mature and read-through
transcripts as well as primers used in this study are depicted in
Fig. 4A. Note that RT-qPCRs were normalized to total c-FOS
RNA, which was determined with primers to exon 4 (total in Fig.
4A). As presented in Fig. 4B, we found no significant changes in
splicing patterns in CDK12-depleted cells using primers that span
exon-exon junctions (introns 1, 2, and 3). Next, we determined
the 3" end processing efficiency of transcripts downstream of the
major poly(A) site (Fig. 4C). RT-qPCR with the indicated primers
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(pA, F1, and F2) demonstrated that total cellular c-FOS RNA in-
cluded 3- to 4-fold more downstream sequences in CDK12-de-
pleted cells (Fig. 4C, black bars). A similar increase of c-FOS read-
through transcripts was observed in eIF4A3-depleted cells (Fig.
4G, striped bars). Again, depletion of CDK12 and eIF4A3 did not
significantly change levels of these read-through transcripts (Fig.
4C, hatched bars), further indicating that they regulate c-FOS
RNA 3’ end processing via a common pathway. Thus, knockdown
of these factors reduced total c-FOS RNA levels (Fig. 2) and in-
creased c-FOS transcripts with extended 3" ends, which is charac-
teristic of mRNAs featuring extended 3’ untranslated regions
(UTRs) (68).

CDK12 does not associate with nascent and mature c-FOS
transcripts after e[F4A3 depletion. CDK12 is recruited to the
c-Myc gene and comigrates with RNAPII during transcription
(28). Given our proteomic data (Fig. 1), we hypothesized that
depletion of eIF4A3 should reduce CDK12 enrichment at the
EGF-induced c-FOS gene. To this end, we performed ChIPs on
control (using scrambled siRNA [siScr]) and eIF4A3-depleted
(siRNA targeting eIF4A3 [sielF4A3]) HEK293T cells using anti-
CDK12 and anti-N20 (RNAPII) antibodies, normalizing levels of
CDK12 to those of RNAPII (Fig. 5A). We used the same primers as
shown in Fig. 3. Indeed, we observed 2- and 5-fold decreased levels
of CDK12 at the body (exon 2/intron 2) and poly(A) site (pA) of
the c-FOS gene, respectively, in e[F4A3-depleted cells (Fig. 5A).
Thus, the EJC is involved in the recruitment of CDK12 to the
c-FOS gene.

Given that the EJC and SRSFs associate extensively with mRNA
(43,53, 59, 69), we also performed RNA immunoprecipitations to
determine the relative enrichment of CDK12 on ¢-FOS transcripts
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(Fig. 5B). The schematic representation of c-FOS exons, introns,
and primers is presented above the bar graphs in Fig. 5. Ex2 prim-
ers correspond to exon 2 and intron 2 sequences and represent
unspliced transcripts while Ex3 primers amplify exon 3 and there-
fore reflect total c-FOS RNA. As presented in the bar graph
(Fig. 5B), the association between CDK12 and unprocessed and
total c-FOS RNA was decreased 5- and 20-fold, respectively, in
elF4A3-depleted cells. Of interest, CDK12 dissociation was more
severe with total c-FOS RNA. This finding could indicate that
there are additional interactions between nascent transcripts,
CDK12, and RNAPII on genes or that CDK12 and the EJC remain
associated with mature transcripts after splicing. These interac-
tions further support a role for CDK12, the EJC, and SRSFs in
transcription and cotranscriptional processing of target genes.

Mapping interactions between CDK12 and RNA-binding
complexes. The EJC and SRSFs interact in an RNA-independent
fashion (43). Furthermore, SRSFs are found together with the EJC
during cotranscriptional processing on nascent transcripts and
interact with CDK12 equivalently (Fig. 1C and D). We hypothe-
sized that mutant CDK12 proteins that no longer interact with
these complexes could also function as dominant negative pro-
teins. They could be used to analyze further the role(s) of CDK12
in transcription. Thus, we performed additional binding studies
using mutant CDK12 and wild-type (WT) SRSF proteins.

Flag epitope-tagged deletion mutant CDK12 proteins (Fig. 6A)
were coexpressed with HA epitope-tagged SRSF6, followed by
anti-Flag immunoprecipitations in HEK293 cells. Detection of
SRSF6 indicated that the kinase domain and the C-terminal re-
gion of CDK12 were dispensable for this binding (Fig. 6B, lanes 9
and 10). In contrast, the deletion of the N-terminal RS domain
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control levels set to 1. Values represent the averages * standard errors (n = 3).

seemed to abolish interactions with SRSF6 (Fig. 6B, lane 8). How-
ever, removal of the RS domain destabilized CDK12 and reduced
its levels of expression (Fig. 6B, lane 2). To stabilize this mutant
protein, we added enhanced green fluorescent protein (eGFP) to
its N terminus (ARS.GFP CDK12) (Fig. 6C, lane 3). In this con-
text, removing the RS domain also disrupted interactions between
CDK12 and SRSF6 (Fig. 6C, lane 6). Conversely, the N-terminal
CDK12 RS domain was sufficient for binding to SRSF6 (Fig. 6B,
lane 11). We also determined that the RS domain of CDK12 was
sufficient for interactions with all three SRSFs (Fig. 6D, lanes 5 to
7). Thus, the RS domain of CDK12 interacts with the EJC and
SRSFs.

RS domain of CDK12 is important for its effects on tran-
scription. To determine if these interactions between CDK12 and
RNA processing factors are necessary for activation of the c-FOS
gene, we expressed ARS.GFP CDK12 in HEK293T cells. Whereas
expression of the WT CDK12 protein did not affect activation of
the c-FOS gene, that of the mutant ARS.GFP CDKI12 protein de-
creased it 3-fold (Fig. 7A, bars 2 and 3). Furthermore, the exoge-
nous expression of the CDK12 RS domain led to a 4-fold decrease
in the activation of the c-FOS gene by EGF (Fig. 7A, bars 2 and 4).
Similar to depletion of CDK12 or elF4A3, expression of the
CDK12 RS domain also increased read-through transcription of
the c-FOS gene (Fig. 7B). These data support and extend the role
for CDK12 in the cotranscriptional processing of a target gene,
particularly at its 3’ end.

DISCUSSION

In this study, we extended our previous observations on the im-
portance of CDK12 on the expression of long genes, such as those
involved in the DDR, to those that are induced rapidly in cells
(27). CDK12 was found to associate with the EJC and several
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SRSFs. We determined that EGF-mediated induction of c-FOS
was diminished in cells depleted of CDK12 and eIF4A3. This find-
ing correlated with reduced levels of Ser2P and CPA factors on the
c-FOS gene. In these cells, RNAPII read-through past the c-FOS
poly(A) site was observed. Levels of read-through transcription
correlated with those of diminished c-FOS transcripts. Additional
mapping of these interactions pointed to a critical role of the EJC
in the recruitment CDK12 to the c-FOS gene. Mapping and anal-
yses of dominant negative CDK12 proteins also pointed to a role
of the RS domain in CDK12 for these interactions and effects.
Thus, CDK12 is recruited to elongating RNAPII by RNA-process-
ing factors, where it phosphorylates Ser2P in the CTD, thus in-
creasing the recruitment of CPA factors for optimal 3" end pro-
cessing of target genes.

Although knockdown of CDK12 and/or eIF4A3 resulted in a
modest reduction (5-fold) of EGF-induced ¢c-FOS RNA levels
(Fig. 2A), a similar reduction was observed with dominant nega-
tive CDK12 proteins, which indicates that these effects were spe-
cific. Most likely, other CDKs, e.g., CDK9 in positive transcrip-
tional elongation factor b (P-TEFD), also contribute to increased
levels of ¢-FOS transcripts and Ser2P in EGF-induced cells (70,
71). This scenario is likely as P-TEFb affects early steps in tran-
scription. Thus, stress induced by CDK12 depletion could have
released free P-TEFD from the inhibitory 7SK snRNP (20). Con-
sequently, increased levels of active P-TEFb would have been re-
cruited to the c-FOS promoter via the super elongation complex
(SEC) (72). Another possibility is that with a rapidly induced short
gene, the EJC and SRSFs are not fully associated with its nascent
transcripts during transcription and thus less CDK12 is recruited.
On long genes with many introns and exons, such as those in-
volved in DNA damage repair (27), these RNA-bound complexes
would be more stably associated, which could result in greater
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noprecipitated (lanes 5 to 8) Flag epitope-tagged RS protein.

effects of CDK12 depletion. Finally, although CDK12 depletion
reduced CPA of c-Myc transcripts in cells (28), we found no dif-
ferences in c-Myc RNA levels (data not presented), suggesting that
not all transcripts are destabilized by increased read-through tran-
scription.

CDK12 is the closest homolog of the Saccharomyces cerevisiae
Ctkl (24). Interestingly, knockout of Ctk1 in yeast cells also leads
to read-through transcription of select genes (73, 74). This finding
suggests some degree of functional conservation between Ctkl
and CDK12. Indeed, CDK12 depletion impacted the recruitment
of CstF64 and CPSF73 to the c-FOS gene. CDK12 also increased
levels of CPA factors and CPSF-mediated cleavage of nascent c-
Myc transcripts (28). In our study, these effects depended on in-
teractions between CDK12, the EJC, and SRSFs. Further position-
ing of the 3’ end processing machinery on the nascent RNA is
determined by specific interactions between CPA factors with the
(AAUAAA) polyadenylation signal and U- or G/U-rich element
downstream of the cleavage site (75). Thus, Ser2P in the CTD
facilitates their cotranscriptional recruitment to the nascent RNA.
In agreement with this finding, replacing all serines at position 2 in
the CTD with alanines resulted in increased read-through tran-
scription of the c-FOS gene (34).
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The EJC also promotes NMD and translation of mRNA (58,
76). However, we found no effect of CDK12 depletion on these
processes (data not presented). Rather CDK12 elucidates a previ-
ously less appreciated role of the EJC in cotranscriptional process-
ing of target genes (43, 49). This role appears to be specific for a
subset of genes—those that are rapidly induced, such as c-FOS,
and those that are long and contain many exons and introns (27).
It is also possible that in cells where CDK12 is expressed at higher
levels, e.g., stem and cancer cells (77), it plays a greater role in
overall transcription of genes.

CycK binds to CDK12 and is highly expressed in developing
germ cells (78). CycK promotes spermatogenesis and is highly
expressed in testicular cancer (79). Along with BRCA1 and
BRCA2, CDK12 depletion also sensitizes tumor cells to poly-
(ADP-ribose) polymerase 1/2 (PARP1/2) inhibition, which tar-
gets an important component of the DDR (80). Taken together
with the kinase’s predilection for DDR genes and our data on
c-FOS gene expression, this finding suggests that CDK12 is an
important regulator of cell growth and proliferation. Mutations in
CDK12 may result in, or at least contribute to, carcinogenesis via
pleiotropic effects. Deregulation of the function of different CDKs
has been linked to disease phenotypes such as growth defects and
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cancer etiology (16, 81, 82). Given recent advances in whole-ge-
nome sequencing, a correlation between CDK12 gene amplifica-
tion and tumor formation is becoming more evident. The CDK12
gene is located in the q12-q21 region of chromosome 17 (17q12-
q21). This locus is amplified in a large number of cancers, includ-
ing ovarian and prostate cancer and up to 30% of breast cancers
(83, 84).
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