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School of Psychological Sciences, University of Melbourne

Parkville, Victoria 3010, Australia

Abstract
Lighthouse beams are often perceived as bent rather than
straight, and observers sometimes infer that a rotating light-
house beam originates from a “phantom lighthouse” that lies
in the opposite direction from the true source of the beam. We
argue that both illusions arise as a result of Bayesian inference
based on natural scene statistics and support our argument by
implementing a formal computational model. In addition to
capturing both illusions, our model makes the novel predic-
tions that a beam viewed from the side is perceived to bend
towards the observer, and that the phantom lighthouse illusion
should only emerge at a critical point at which the observer is
located around 75 metres in front of the true source of a rotat-
ing lighthouse beam. Our theory therefore motivates a future
line of experimental work, and contributes to a broader body of
research that explains perceptual phenomena (including visual
illusions) in terms of Bayesian inference.
Keywords: visual perception; visual space; illusions;
Bayesian inference; computational model

Introduction
Our visual systems mostly provide us with reliable informa-
tion about the world, but occasionally they do not. Visual illu-
sions are clearly important for understanding why our percep-
tual systems make errors, but are also valuable because they
expose the mechanisms and principles that support accurate
perceptual inferences under many circumstances (Gregory,
2006). Here we add to a body of work which argues that
visual illusions are expected when a near-optimal perceptual
system is applied to stimuli that depart from the statistical
structure of natural scenes. We do so by presenting a simple
Bayesian model and showing that it accounts for two illusions
involving the perception of visual space.

The two illusions we consider both involve the perception
of lighthouse beams. Lighthouse beams are normally paral-
lel to the ground to allow them to travel as far as possible,
but in many cases lighthouse beams are perceived to curve
down towards the ground. A schematic illustration of this
“bent beam” illusion is shown in Figure 1a. The second illu-
sion involves an inferential error about the source of a moving
lighthouse beam, and we refer to it as the “phantom light-
house” illusion (Figure 1b). Under some circumstances, an
observer standing with her back to a lighthouse will perceive
the beams sweeping over her head not as originating from the
actual lighthouse behind her, but as originating from a phan-
tom lighthouse somewhere far away in front of her.

Although these illusions have received relatively little at-
tention, we find them striking for two reasons. First, both

a) b)

Figure 1: Two illusions involving lighthouse beams. (a) The
bent beam illusion. Lighthouse beams are horizontal in re-
ality but are often perceived as bending down towards the
ground. b) The phantom lighthouse illusion. Shown here is a
projection of three successive beams passing over the head of
an observer who is standing with her back to a lighthouse lo-
cated 75 metres behind her. In reality, the most distant points
along the beams are far from each other, but the observer may
infer that the beams meet at a distant source.

illusions are readily experienced in everyday settings without
specialized equipment. For example, the third author experi-
enced both illusions on a seaside vacation without previously
knowing about either one. Second, the phantom lighthouse
illusion in particular is notable because of the magnitude of
the error made by the visual system. In the experience of the
third author, the distance between the locations of the true and
phantom lighthouses can amount to hundreds of metres.

The earliest discussions of the phantom lighthouse illusion
that we know date from the 1930s (Colange & Le Grand,
1937; Dunoyer, 1937; Rosenthal, 1938; Colange & Le Grand,
1938), and this illusion is also discussed by Minnaert (1993),
who describes it as a “most impressive sight” (p 171) and by
Floor (1982), who describes it as the “most impressive opti-
cal illusion associated with lighthouses” (p 233). Across this
literature, three factors are proposed as contributing to the il-
lusion. The first and most commonly-mentioned factor is an
inadequate allowance for visual perspective (Colange & Le
Grand, 1937; Rosenthal, 1938; Minnaert, 1993; Floor, 1982).
In Figure 1b, for example, the three beams appear to converge
in the image plane as a result of perspective projection, and
an observer who takes convergence in the image as evidence
for real-world convergence may incorrectly conclude that the
beams are emitted from a source lying at the apparent point of
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convergence. Minnaert (1993) briefly mentions the “underes-
timation of faraway distances” as a second relevant factor, and
suggests that the illusion depends in part on the perception
that the beams do not extend infinitely but rather approach a
point some finite distance away. A third factor is introduced
by Colange and Le Grand (1937), who suggest that the photo-
metric brightness of the beams is largest towards the horizon,
which supports the inference that the source of the beams lies
out towards the horizon.

Here we focus on the second factor — “the underestima-
tion of faraway distances” — and argue that this underestima-
tion occurs because the observer relies on Bayesian inference
using a prior derived from natural scene statistics. Minnaert
(1993) devotes only a single sentence to this factor, and we
go beyond his verbal description by implementing a formal
model and showing that it accounts for both the bent beam
and the phantom lighthouse illusions. We also derive a key
prediction from the model that distinguishes it from a naive
projection account that attempts to explain the phantom light-
house illusion based on perspective projection alone. The
naive projection account predicts that the illusion will be ex-
perienced when the observer is standing relatively close to the
lighthouse, but our account predicts that the illusion only be-
gins to emerge when the separation between lighthouse and
observer exceeds a critical distance of 75 m.

Our Bayesian approach builds on two related research di-
rections. The first is a body of work that explores how per-
ception is well adapted to the statistical structure of natural
scenes (Purves & Lotto, 2003; Geisler, 2008). Our approach
is related most closely to the work of Yang and Purves (2003),
who used a laser range finder to construct an empirical prior
on distances to the nearest surface at a range of elevation an-
gles. Yang and Purves (2003) show that the resulting prior
can account for a family of visual illusions, and we show that
a similar prior accounts for the two lighthouse illusions con-
sidered here.

The second research thread is a broader body of work that
models perception as Bayesian inference (Knill & Richards,
1996; Kersten & Yuille, 2003). Within this literature, prior
distributions are often but not always based on natural scene
statistics. Most relevant to us are previous approaches that
show how perceptual illusions can arise from Bayesian infer-
ence (Weiss, Simoncelli, & Adelson, 2002; Geisler & Ker-
sten, 2002; Yildiz, Sperandio, Kettle, & Chouinard, 2022;
Khoei, Masson, & Perrinet, 2017). Gregory (2006), for exam-
ple, presents a taxonomy of illusions and classifies each one
according to whether it is consistent with Bayesian inference.
Although comprehensive, Gregory’s approach does not rely
on computational models, which means that his claims about
the Bayesian status of certain illusions are best treated as pro-
visional. For example, Gregory considers the Ponzo illusion
to be “counter-Bayesian,” or contrary to what Bayesian infer-
ence would predict, but Yildiz et al. (2022) disagree and argue
that the Ponzo illusion is indeed compatible with Bayesian in-
ference. To avoid disputes of this kind it is useful to develop

!
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Figure 2: Distance estimation. An observer in a dark room
sees a light at elevation angle θ and must infer the distance d
to the light. A Bayesian observer computes a posterior dis-
tribution over d by combining a prior over distances with a
noisy estimate of the distance of the light.

and test fully specified computational models (Weiss et al.,
2002; Khoei et al., 2017), and we follow that approach here
by implementing a Bayesian model and showing that is sus-
ceptible to the two lighthouse illusions.

We begin in the next section by describing the Bayesian
framework and the prior distribution that lie at the heart of
our work. The following two sections demonstrate that this
framework can account for both the bent beam and phantom
lighthouse illusions. We show in addition that our theory
makes two key predictions: first, that a beam viewed from the
side is perceived to bend towards the observer, and second,
that the phantom lighthouse illusion will be experienced only
when the separation between the lighthouse and the observer
exceeds a critical distance of 75 m. Testing these predictions
is beyond the scope of the current work, but we hope that
our theoretical analysis will lead to future field experiments
conducted in the presence of a lighthouse at night.

Bayesian perception of visual space
Figure 2 shows an observer in a completely dark environment
who is presented with a light at elevation angle θ. The ob-
server is uncertain about the distance d at which the light lies,
but we assume for simplicity that the elevation angle θ is per-
ceived accurately and is therefore known. This assumption
is consistent with prior empirical work suggesting that per-
ception of θ is accurate in the absence of reliable distance
cues (Ooi, Wu, & He, 2006).

Suppose that the observer’s visual system provides her with
an initial, noisy estimate d∗ that will be combined with prior
expectations to estimate a posterior distribution P(d|d∗) over
the distance d. A Bayesian observer computes this posterior
by combining a prior P(d) and a likelihood P(d∗|d):

P(d|d∗) ∝ P(d∗|d)P(d). (1)

The likelihood P(d∗|d) captures how probable the noisy
estimate d∗ would be if the true distance were d. This term
could be formalized, for example, by assuming that d∗ is
noisy but unbiased and is drawn from a Gaussian distribu-
tion centered on the true distance d. The standard deviation
of this Gaussian distribution could either be set to a constant,
or set proportional to d, which captures the idea that the initial
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estimates for distant objects are noisier than those for nearby
objects.

Here we adopt an extreme approach and assume that the
likelihood function is constant, or so flat that it is effectively
constant. This assumption is appropriate for perception under
conditions so impoverished that the noisy estimate provides
no real information about d. For example, an observer gazing
out over a featureless ocean at midnight may find it impossi-
ble to distinguish between a small light that is close (small d)
and a large light that is distant (large d). For simplicity, our
primary model results in this paper are based on a constant
likelihood function, but we have found that qualitatively sim-
ilar results are obtained using a Gaussian likelihood function
with distance-dependent noise (i.e. standard deviation propor-
tional to d).

The prior P(d) is assumed to be consistent with the ob-
server’s previous experience of natural environments. Yang
and Purves (2003) constructed a prior of this kind by taking a
laser range scanner into a series of natural environments and
repeatedly measuring the distance to the nearest objects at
a range of different elevation angles θ. The data collected
by Yang and Purves (2003) are not publicly available, but
they report that the empirical prior is roughly consistent with
a prior derived by repeatedly generating synthetic scenes in
which rectangular surfaces of different sizes were placed at
different distances from the observer, and recording the dis-
tance to the nearest surface as a function of elevation angle.
We used a related approach to compute the prior used for our
analyses.

Our simulation assumes that each scene contains 5 sur-
faces, each of which is sitting on the ground with a depth
uniformly distributed between 1 m and 150 m. The heights of
the surfaces are uniformly distributed between 1 m and 25 m,
and to simplify our computations we assume that all surfaces
within a given scene have the same height. To further sim-
plify the simulation we assume that the height of the observer
is 0 m, which means that the observer is roughly equivalent
to an eyeball sitting on the ground. We construct our prior by
enumerating pairs that specify the depth of the nearest sur-
face and the height of this surface, and for each pair storing
the distance to the nearest surface as a function of elevation
angle. With 5 surfaces uniformly distributed between 1 m
and 150 m, the depth n of the nearest surface is distributed
proportional to (150− n)4, and we weight each of our pairs
accordingly to produce a prior distribution over distance for
each elevation angle. The resulting prior is summarized in
Figure 3a, which shows the expected distance to the nearest
surface as a function of elevation angle.

All of the numerical parameters used in our simulation,
including the number of surfaces and the maximum depth
of each surface, were chosen so that Figure 3a matched the
analogous figure used by Yang and Purves (2003) to sum-
marize their empirical distance data. For example, Figure 3a
has a similar shape to the curve reported by Yang and Purves
(2003), and spans a similar range of depths and heights. The

a)

b)

c)

Figure 3: (a) A prior on distances at different elevation an-
gles. The shape of the prior closely matches the empirical
prior documented by Yang and Purves (2003). Error bars in
light grey show the standard deviation associated with each
elevation angle. (b) Inferred beam (red dots) perceived by an
observer who is looking along a horizontal lighthouse beam
(blue dots) and who combines the prior in (a) with a constant
likelihood function to infer the positions of points along the
beam. (c). Inferred beam (red dots) perceived by an observer
who combines the prior in (a) with a Gaussian likelihood with
constant standard deviation.

curve reported by Yang and Purves (2003) does not show re-
sults obtained for elevation angles that exceed 45 degrees or
so, and we therefore consider only elevation angles between
0 degrees and 45 degrees to make sure that our prior has simi-
lar properties to their empirically-derived prior. An important
limitation of the empirical prior reported by Yang and Purves
(2003) is that the laser range scanner used in their work had
a range of 2-300m, which means that the prior assigns zero
probability to the possibility that the closest object is more
than 300 m away. Our prior inherits this limitation, and we
return to it in the Discussion.

In the next two sections, we show that a Bayesian observer
who relies on the prior in Figure 3a is susceptible to both the
bent beam and the phantom lighthouse illusions.
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a)

b)

Figure 4: A Bayesian observer infers that a horizontal beam
viewed from the side is bent in two respects. (a) The beam is
inferred to bend towards the ground. (b) The beam is inferred
to bend towards the observer.

The Bent Beam illusion
Suppose that an observer is standing with her back against
a lighthouse and that a single, static lighthouse beam with a
height of 30 m is running over her head. On a dark night
no reliable depth cues will be available and the observer’s
inference about the distance of any given point along the light
beam will be based entirely on her prior. The fact that the
curve in Figure 3a bends down towards the ground therefore
implies that the observer will perceive the lighthouse beam to
have a similar shape.

To confirm this result we enumerated points along the
lighthouse beam (blue dots in Figure 3b) and used Equation 1
and the prior in Figure 3a to compute the inferred distances
of each of these points (red dots in Figure 3b). Our Bayesian
approach specifies a posterior distribution over the depth of
each point, and we take the mean of this posterior distribu-
tion as the final depth estimate for each point. Because we
are using a constant likelihood function, the shape of the in-
ferred lighthouse beam in Figure 3b (red dots) is identical to
the shape of the prior in Figure 3a.

We considered two alternative likelihood functions and
found in both cases that the perceived beam still bends to-
wards the ground. A Gaussian likelihood that assumes
distance-dependent noise (i.e. standard deviation proportional
to the true distance) produces an inferred beam that looks vir-
tually identical to the result in Figure 3b. A Gaussian like-
lihood with a constant standard deviation of 20 metres pro-
duces the inferred beam in Figure 3c, which has a different
shape from the inferred beam in Figure 3b. Our theory there-
fore predicts that additional distance cues may alter the shape
of the beam, and that there may be be conditions under which

the inferred beam takes the shape of an inverted U. Although
different likelihood functions produce inferred beams with
different shapes, the key result that the inferred beam bends
towards the ground appears to be very robust.

The results in Figures 3b and 3c assume that the light beam
passes directly over the observer’s head, but the model pre-
dicts that the bent beam illusion occurs regardless of the ob-
server’s position with respect to the lighthouse. Figure 4
is based on an observer 40 metres away from a lighthouse
who is viewing a static beam perpendicular to her line of
sight. Consistent with prior literature (Floor, 1982; Minnaert,
1993), Figure 4a shows that the beam is perceived to bend
towards the ground as width (i.e. distance to the observer’s
right) increases. Figure 4b shows that the beam is also per-
ceived to bend towards the observer: in other words, as width
increases the depth of the beam decreases. To our knowledge,
the perceived bending in Figure 4b is not discussed in the lit-
erature, and therefore constitutes a novel prediction that can
be tested in future experiments.

The Phantom Lighthouse illusion
It is relatively obvious that the prior in Figure 3a accounts for
the bent beam illusion, but not so obvious that this prior also
accounts for the phantom lighthouse illusion. To see why dis-
tance estimates are relevant to this second illusion, consider
the three projected beams in Figure 1b. Recall that the three
beams diverge from a common source located behind the ob-
server, but because of visual perspective the furthest points
along the three beams lie nearby in the image. In reality, these
points are projected to nearby image locations because each
lies at a large distance from the observer. An observer, how-
ever, who believed that the distances of all three points were
relatively small would conclude that the points lie close to
each other in the image because they lie relatively close to
each other in the real world. The example in Figure 1b there-
fore suggests that inferences about distance are critical for
deciding whether or not the three lighthouse beams emerge
from a single, distant source. We can therefore ask whether
distance estimates computed using the prior in Figure 3a are
compatible with a distant origin for a set of observed light-
house beams.

Figure 5a provides a bird’s eye view of the configuration
we use to develop a formal analysis of the phantom light-
house illusion. Consider an observer located at point O who
is standing with her back to a lighthouse at L. The separa-
tion between the observer and the lighthouse is denoted by s.
The lighthouse beam initially lies along the segment OB, but
a moment later the beam has rotated and now lies along the
segment OB’. Here we focus on the solid blue segments of
the two lighthouse beams (AB and A’B’). The red segments
(CD and C’D’) show how these blue segments are perceived
by the observer. Consistent with the prior in Figure 3a, the
observer underestimates the distance of each point along the
beam, and the discrepancy between inferred distance and true
distance increases as the true distance increases. As a result,

2569



sL O P

A 
B

A’ 

D

D’

C

C’

B’

a)

b) (i) (ii) (iii)

Figure 5: (a) Inaccurate estimates of distance can mean that two beams which in reality converge behind an observer are
perceived to converge at a point in front of the observer. Here L and O are the locations of lighthouse and observer, and AB is a
segment of the true lighthouse beam that rotates to become A’B’ in the second snapshot of the beam. Bayesian depth estimates
mean that segments AB and A’B’ are perceived as segments CD and C’D’, and these two inferred segments converge at point
P, the location of a perceived phantom lighthouse. (b) Velocity estimates for different values of s, the separation between the
observer and the lighthouse. When s is 0, more distant points along the beam are perceived as moving faster, consistent with
the inference that the source of the beam is behind the observer (no phantom lighthouse). When s is 500, more distant points
along the beam are perceived as moving slower, consistent with the inference that the beam originates at a phantom lighthouse
in front of the observer. The transition between these two percepts occurs at a critical point near s = 75: at this location, the
most distant point on the beam is perceived as having roughly the same velocity as the closest point.

the two inferred lighthouse beams shown in red converge in a
way that suggests a common origin in a phantom lighthouse
located at P.

We will say that an observer experiences the phantom light-
house illusion if the most distant points along the inferred
beam (e.g. point D in Figure 5a) are inferred to have lower
velocities than the closest points along the beam (e.g. point
C in Figure 5). The red arrows in Figure 5b show velocity
estimates, and the reduced length of the arrow for D relative
to the arrow for C indicates that the observer at O experiences
the illusion. Based on the experience of the third author, the
spurious source of the beams is sometimes perceived as mov-
ing rather than stationary, as if the phantom lighthouse were
carried by a speeding boat far out at sea. Characterizing the
illusion in terms of the relative velocities of close and distant
points ensures that percepts involving a moving source still
qualify as instances of the illusion.

Whether or not the illusion is experienced depends criti-

cally on the separation s between the observer and the light-
house. When the separation is 0 m (ie the observer is standing
at the base of the lighthouse), Figure 5b.i shows that velocity
estimates increase monotonically with depth, which means
that no illusion is predicted to occur. When the separation is
500 m, the inferred velocities for the most distant points are
substantially lower than the inferred velocities for the nearest
points along the beam, suggesting that a strong illusion is ex-
perienced. Based on the prior in Figure 3a, the critical point
marking the transition between these two regimes is predicted
to occur for values of s around 75 metres. At the critical point
the inferred velocities of the most distant points match the in-
ferred velocities of the closest points, which suggests that the
observer may be uncertain whether the source lies in front of
her or behind her.

The results in Figure 5b assume a constant likelihood func-
tion, and virtually identical results are obtained using a Gaus-
sian likelihood with distance-dependent noise. If we assume
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a Gaussian likelihood with a constant standard deviation of
20 m, the critical point is predicted to occur at a separation
of roughly 800 m. This result therefore suggests that the
presence of additional depth cues may alter the separation
at which the illusion begins to emerge. Importantly, how-
ever, our theory predicts the existence of a critical point for
all likelihood functions that we considered.

The predicted existence of a critical point distinguishes our
theory from the naive projection account mentioned in the
introduction. This alternative account assumes that the ob-
server takes retinal distance as a proxy for distance in the real
world, and holds that the phantom illusion occurs because
distant points along successive snapshots of the beam project
to similar locations on the observer’s retina. According to
this theory, however, the phantom lighthouse illusion should
be experienced for all values of s > 0, because in all of these
cases visual perspective ensures that the most distant points
along successive snapshots project to nearby locations on the
retina. For example, the projection in Figure 1b was com-
puted for s = 75, and when s is reduced the naive projection
account still predicts that the illusion will occur because the
three projected beams still converge in the image plane.

Future experimental work can test the prediction that a crit-
ical point exists, and the more fine-grained prediction that the
point occurs at a value of s near 75 metres. If the critical point
does indeed exist, experimental studies can also explore what
people actually perceive near this point. It is possible that
observers located at the critical point will simply be uncer-
tain about the source of the light beams, but also possible that
they will confidently perceive the lighthouse as situated in
front of them on some trials and as situated behind them on
other trials.

Discussion and Conclusion
We presented a formal theory which suggests that the bent
beam and phantom lighthouse illusions both occur because
observers use Bayesian inference to infer the distance of
points along a lighthouse beam. Our theory suggests that both
illusions depend critically on the observer’s prior distribution
over distances, and we used a prior that matched a prior de-
rived by Yang and Purves (2003) from natural scene statistics.
All numerical parameters of our prior were set to match em-
pirical results reported by Yang and Purves (2003), and as
a result our prior incorporates no free parameters. Our the-
ory therefore makes parameter-free predictions that a beam
viewed from the side is perceived to bend towards the ob-
server, and that the phantom lighthouse illusion emerges at a
critical point where the separation between the observer and
the lighthouse is around 75 m.

We contrasted our theory with a naive projection account
which suggests that the phantom lighthouse illusion occurs
because observers fail to adjust adequately for perspective
projection. To us, however, it seems likely that inadequate
allowance for perspective (i.e. the focus of the naive projec-
tion model) and the underestimation of distance (the focus of

our model) both contribute to the illusion. Future theoretical
work can therefore attempt to develop and test a combined ap-
proach that includes both factors. Experimental support for a
critical point would rule out the naive projection model, but a
combined approach would be compatible with the existence
of a critical point, and may account better for future behav-
ioral experiments than either approach alone. Future work
should also consider additional factors that may contribute to
the illusion, including expectations about speed (Weiss et al.,
2002) and other factors related to motion perception.

The two components of any Bayesian theory are a prior
and a likelihood function. We have assumed that the prior is
consistent with natural scene statistics, but our theory is ag-
nostic about the origin of this prior. One possibility is that the
prior is learned from previous experience, but it is also possi-
ble that this “learning” took place over the course of evolution
and that the observer is innately provided with the prior. Our
prior is based on the work of Yang and Purves (2003), but
as mentioned earlier their prior does not allow for the pos-
sibility that the nearest object along a line of sight (e.g. a
distant mountain) may be more than 300m away. Allowing
for distances greater than 300 would not change any of the
qualitative predictions of the model, but would increase the
separation at which the critical point is predicted to emerge.

For simplicity, our primary analyses assumed that the like-
lihood function is constant which means that it makes no
contribution to our results. This assumption seems appro-
priate for an observer viewing lighthouse beams in a dark
and featureless environment, but will need to be adjusted
for situations in which reliable cues to distance are avail-
able. Our analyses of alternative likelihood functions suggest
that adding reliable depth cues may produce an inferred beam
with an inverted U shape, and may change the location of the
critical point associated with the phantom lighthouse illusion.

Although we have focused here on theoretical analysis, our
approach suggests a number of directions for future empiri-
cal work. The most urgent priority is to empirically test our
predictions that a beam viewed from the side is perceived to
bend towards the observer, and that the phantom lighthouse
illusion emerges at a critical point at which the observer is
around 75 metres in front of the lighthouse. These predic-
tions are best tested in the presence of an actual lighthouse,
but could also be tested using displays presented on a virtual
reality headset. Experimental work can also explore a wide
range of other questions, including whether the shape of the
beam in the bent beam illusion and the location of the crit-
ical point can be manipulated by presenting additional cues
to distance (e.g. visual landmarks), and whether there is a
transition for some value of s between perceiving a moving
phantom lighthouse and a stationary phantom lighthouse. Al-
though lighthouses have been around for more than two mil-
lennia, we contend that they remain underexplored as devices
for studying perception.
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