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ABSTRACT OF THE DISSERTATION 

 

 

Pacific climate variability: insights from coral records, Earth System Models, and novel 

geochemical tracers 

 

by 

 

Sara Cassandra Sanchez 

Doctor of Philosophy in Oceanography 

University of California San Diego, 2018 

Professor Christopher D. Charles, Chair 

 

 

This dissertation aims to understand the mechanisms and consequences of the low 

frequency “unforced” component of variability in the climate system using interannual and 

decadal variability as a platform to investigate phenomena thought to be sensitive to greenhouse 

gas emissions. To combat the lack of temporally extended instrumental observations, this 



 xx 

dissertation relies on coral geochemistry and Earth System Models to identify the historical 

range of Pacific climate variability. 

Chapter 2 describes the analysis of a roughly 200 year-long coral record from Clarion 

Island, in the Revillagigedos Archipelago, Mexico. This record expresses substantial decadal 

variability in the oxygen isotopes, strongly coherent with other paleoproxies in the central 

equatorial Pacific and in Southern California, indicative of a coordinated system of ocean-

atmospheric interaction.  To best resolve the key processes involved, “forward models” are 

employed to interpret the decadal variability in the coral record. 

 The third chapter complements the first by addressing a mechanism responsible for the 

modulation of decadal variability in the North Pacific; the Pacific Meridional Mode (PMM). The 

Community Earth System Model-Last Millennium Ensemble (CESM-LME) is used to estimate 

the historical range of PMM variability, highlighting the considerable power of natural 

variability within the system. I investigate the physical processes associated with adjustments in 

PMM variance, emphasizing that relatively small anomalies in the background state have a 

significant influence on PMM variability.  

Chapter 4 examines the roles of physical and biologically mediated processes on coral 

calcification from within an equatorial Pacific coral reef. Motivated by the biogeochemical 

implications of the previous sections, this work examines the manifestation of pH tracers in coral 

skeletal tissue across a network of diverse, monitored reef sites at Palmyra Atoll. Corals were 

analyzed for δ11B, trace metal, δ18O, and δ13C composition. Despite a narrow range in the pH of 

seawater, high variance in δ11B were observed between sites, and within single sites, suggesting 

that individual coral colonies have differential capacities to regulate pH variability and other 

environmental stressors. 
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Chapter 1.  

Introduction 

 

This chapter serves as an introduction to the dissertation. This dissertation embraces 

many elements of paleoclimate research to better understand the mechanisms by which various 

aspects of the ocean/atmosphere system contribute to, or respond to “unforced” climate 

variability and “forced” climate change. Much emphasis is placed on addressing the questions: 

“Is the observed variability unprecedented? What governs the behavior of natural variability? 

Are significant changes be expected with increased greenhouse gas concentrations?”  I use 

interannual-decadal climate variability as a platform to investigate the means by which sensitive 

systems are projected to change due to a modified background state. Here, the term “sensitive 

systems” refers to large scale coupled-ocean atmosphere interactions in the subtropical Pacific 

and, at a much smaller scale, coral reef systems in the tropical Pacific. This dissertation’s 

underlying questions are chiefly motivated by concerns identified in modern observations and 

forecasted in future projections, such as extremes in decadal climate variability and linkages to 
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North American hydroclimate; the activity of an important precursor to the El Nino Southern 

Oscillation, and the ability of corals to tolerate environmental extremes. These questions are 

addressed using a medley of observations, paleoproxy evidence, and model output and these 

approaches are outlined briefly below.  

This thesis is comprised of three separate sections.  The chief focus of chapters 2 and 3 is 

the analysis of decadal variability in the Northeastern Pacific. Climate variability in this region is 

thought to be particularly sensitive to climate change. To fully address this topic, an introduction 

into interannual and decadal Pacific climate variability is necessary.  

The two key modes of decadal variability of the Pacific are the Pacific Decadal 

Oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO). The PDO is defined as the 

first EOF of sea surface temperature anomalies in the Pacific between 20° and 60° degrees north, 

and while it spatially resembles the El Nino Southern Oscillation (ENSO), it has a dominant 

period of 20-30 years (Figure 1.1A). In the atmosphere, the PDO is linked to the strength of the 

Aleutian Low (AL). The PDO was discovered when salmon fisheries experts noticed large, 

decadal scale oscillations in fisheries yields [Mantua et al.1997]. This sign change, or “regime 

shift” has occurred in 1925, 1947, 1976 and 1997 [Mantua et al. 1997, Minobe et al. 1997]. As 

the spatial signature suggests, the PDO is highly related to canonical ENSO [Shakun and 

Shaman 2009, Newman et al. 2003, Alexander et al. 2002, DiLorenzo et al. 2010]. 

The North Pacific Gyre Oscillation (NPGO) is defined as the second EOF of sea surface 

height in the North Pacific, but represents the second EOF of SST variability, and physically 

represents the strengthening and weakening of the subtropical gyre [DiLorenzo et al. 2008] 

(Figure 1.1B). The NPGO is important for ecosystem function as this mode best explains salinity 

and nutrient variability along the eastern Pacific [DiLorenzo et al. 2009]. The atmospheric 
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component of the NPGO is the North Pacific Oscillation (NPO), an oscillation with a 

characteristic dipole structure in sea level pressure, a predominantly decadal periodicity [Walker 

and Bliss 1932] and a large role on surface temperature and precipitation patterns in the 

southwestern United States [Linkin and Nigam 2007, Pierce 2005].  The North Pacific Gyre 

Oscillation has been dynamically linked to the Central Pacific ENSO phenomenon [DiLorenzo et 

al. 2010, Furtado et al. 2012]. While the relative power of the NPGO is less than that of the PDO 

in 20th century observations, the strength of the NPGO has been amplifying in the last several 

decades, perhaps as a result of its relationship with the central Pacific warming events 

[DiLorenzo et al. 2008, DiLorenzo et al. 2010, DiLorenzo and Mantua 2017]. 

The North Pacific modes of decadal variability are thought to foster fundamentally 

different interactions between the tropics and the subtropics in the Northeastern Pacific. Two 

pathways are highlighted in these exchanges: a quick, yet globalizing role of the atmosphere and 

a slower, longer persisting role for the ocean. Key mechanisms of tropical-subtropical 

interactions are the “atmospheric bridge”, the “ocean tunnel” and the “meridional mode”.   In an 

atmospheric bridge framework, tropical sea surface temperature anomalies excite atmospheric 

Rossby waves that interact with asymmetries in the zonal mean flow and midlatitude storm 

tracks that eventually influence remote sea surface temperatures.  The anomalies are sustained 

for longer periods of time through the reemergence mechanism [Alexander et al. 2002].  In an 

ocean tunnel pathway, the North Pacific’s deep mixed layer allows sea surface temperature 

anomalies to stay below the surface for a summer and either re-emerge the next winter, or travel 

along isopycnals to be upwelled at the tropics [Gu and Philander 1997]. The Meridional Mode, 

deeply discussed in this thesis, is a way in which subtropical anomalies can influence the 

equatorial regions.  In this framework of anomalies, extratropical atmospheric anomalies create 
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sea surface temperature anomalies in the subtropics. These anomalies persist long enough for the 

trade winds, closer to the tropics, to respond. As the trade winds respond, localized SST 

anomalies develop via the Wind-Evaporation- Sea surface temperature (WES) feedback [Xie and 

Philander 1994], prompting further wind anomalies. This feedback of anomalies can influence 

the development of ENSO events [Vimont et al. 2001, Vimont et al. 2003, Chiang and Vimont 

2004].  

Canonical ENSO warm events are thought to be initiated in the equatorial regions by 

westerly wind bursts and the propagation of thermocline anomalies (Figure 1.1C), [Yu et al. 

2011]. The El Nino/ La Nina pattern of variability is the first EOF of sea surface temperature 

anomalies in the tropical Pacific, but can also be calculated using area averaged anomalies in the 

equatorial Pacific. The anomalies associated with canonical ENSO are focused in the eastern 

equatorial Pacific and propagate via the atmospheric bridge and coastal Kelvin waves [Chelton 

and Davis 1982] which can cause long Rossby waves to travel westward across the Pacific 

[Jacobs 1994].  Canonical ENSO variability has been thought to influence the Pacific Decadal 

Oscillation [Shakun and Shaman 2009].   

While no two El Nino events the same, Central Pacific Warming events are thought to 

represent a fundamentally different ocean-atmospheric interaction. Central Pacific events are the 

second EOF of sea surface temperature anomalies in the tropical Pacific and distinguish 

themselves by the focused anomalies in the central equatorial Pacific, rather than the eastern 

equatorial Pacific, as is typical with the canonical ENSO events.  The Central Pacific events, 

differ in initiation is well; these anomalies are initiated via the Pacific Meridional Mode (PMM), 

[Vimont et al. 2015, Vimont et al. 2003, Yu et al. 2010, Yu and Kim 2011]. In this processes, sea 

surface temperature anomalies are observable southwest of Baja a year to 9-10 months ahead of 
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the central equatorial Pacific. Central Pacific events have been thought to be related to the NPGO 

because sea surface temperature anomalies in the central equatorial Pacific excite atmospheric 

Rossby waves which interact with the southern node of the North Pacific Oscillation [Furtado et 

al. 2012].  The NPO forces both the NPGO and initiates the “seasonal footprinting” sea surface 

temperature anomalies (Figure 1.1B). Central Pacific ENSO variability is thought to have 

become more prevalent since 1979 due to the heightened anthropogenic influence; a modeling 

study found that in a warmer world, El Nino Modoki becomes five times more common than the 

canonical, eastern Pacific El Nino due to a weakening of the mean Walker Circulation [Yeh et al. 

2009].   
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Figure 1.1 Modes of Pacific Climate Variability. Adapted from DiLorenzo and Schneider 2010, 
spatial representation of the dominant modes of climate variability in the Pacific Ocean. 4A). The SLP 
and SST anomalies associated with canonical ENSO, the first EOF of tropical Pacific SST variability. 
4B). The same, but for ENSO Modoki, the second EOF of tropical Pacific SST variability. 4C). The same 
but for the Pacific Decadal Oscillation, the first EOF of North Pacific SST variability. 4D). The same, but 
for the North Pacific Gyre Oscillation, the second EOF of North Pacific SST variability. 

 

It is still unclear if these flavors of interannual and decadal variability are completely 

independent of each other; many view the system as a continuum where multiple mechanisms 

are important [Takahashi et al. 2011, Newman et al. 2011, DiLorenzo et al. 2015, DiLorenzo et 

al. 2010, Okumura et al. 2017, Ogata et al. 2012, etc].  
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Uncertainties regarding climate variability highlight one of the most pervasive issues in 

climate science; a shortage of continuous, high quality, observations. While instrumental 

observations in the Pacific exist, they are sparse, and observational methods have changed 

dramatically through time. As an example using SST observations, recent decades are well 

constrained by satellite coverage, but prior to 1950, observational products struggle to 

consolidate the differing observational methodologies due to different interpolation/gridding 

methods, and differing means of dealing with extreme or missing values [Yasunaka and Hanawa 

2011]. The diverse methodologies (various types of insulated buckets, engine room intake 

sensors, ship hull sensors, drifting and moored buoys, and night time marine air temperature) 

have required bias correction [Kent et al. 2017, Cowtan et al. 2017], but a diversity of bias 

correction methods have been used, with no clear superior methodology [Comboul et al. 2015]. 

The significance of these bias corrections are readily observed when comparing datasets in the 

relatively under-sampled tropical IndoPacific, where long-term trends vary widely [Solomon and 

Newman 2012, Cowtan et al. 2017, Kent et al. 2017] and bias correction tends to play a larger 

role due to potential influence of large surface latent heat fluxes [Folland and Parker 1995, 

Weller and Anderson 1996]. The lack of consistent methodology can distort the estimation of 

long term trends in the climate system, the magnitude of extreme events, and decadal variability.   

Paleoclimate archives provide a means of reconstructing past climates, before the 

instrumental era. In particular, IndoPacific coral records offer potential to aid in long term 

climate reconstruction; intervals of their skeletal growth consistently yield geochemical clues, 

interpretable as environmental metrics. Porites corals records grow outwards, adding new layers 

of aragonite each year. In each layer, the coral incorporates information from the ambient 

seawater into its skeleton, allowing reconstruction of climatic variables from coral archives. 
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These coral records span ~70-150 years at roughly monthly resolution, and fossil corals can 

further extend these geochemical observations back centuries, far beyond the instrumental 

record. Figure 1.2 Identifies the location, resolution and length of IndoPacific coral record, 

previously published or mentioned in this thesis.  This thesis uses δ18O, δ13C, δ11B, Li/Ca, B/Ca, 

Na/Ca, Mg/Ca, Sr/Ca, Ba/Ca, U/Ca measurements to constrain climate variability in the Pacific.  

 

Figure 1.2. Displays the monthly SST anomalies of December of 1997, one of the largest El Nino events 
in observed history in red-blue contours. The location of 48 SST-relevant coral records from the NOAA 
paleoclimate archive and personal data are shown in bullets. The color of the bullets corresponds to the 
length of the available coral record over the 1800-2010 period. The shape of bullets corresponds to the 
resolution of the individual coral record; 75% of records are at monthly or subseasonal resolution. 
Records were obtained from the NOAA Paleoclimate archives (https://www.ncdc.noaa.gov/data-
access/paleoclimatology-data) or data I have personally handled.  
 
 

In Chapter 2, the generation and analysis of a roughly 200 year-long coral record from 

Clarion Island, roughly 400 miles southwest of Baja California, Mexico suggests that 

temperature can only explain a fraction of the substantial decadal variability expressed in the 

oxygen isotopes. This robust decadal signal is strongly coherent with other paleoproxies in the 

central equatorial Pacific and hydroclimate records in Southern California, indicative of a 

coordinated system of high amplitude ocean-atmospheric interaction.  To best resolve the key 

mechanisms controlling the coral’s geochemical record, I employ a “forward model” of the 
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decadal variability in the coral record. Given the location of the coral record, the observations 

serve to emphasize the importance of the “meridional mode” that connects low and mid-latitude 

climate variability. I show that the activity of this meridional mode was especially strong during 

the latter stages of the Little Ice Age (early 19th century).   

 Chapter 3 is complimentary to the second chapter in that it pursues an evaluation of the 

variability of Pacific Meridional Mode over the last millennium. Climate models are essential for 

this purpose because even the network of extended paleoclimatic archives is severely limited in 

the Eastern Tropical North Pacific.  The last millennium serves as a useful experimental platform 

for this analysis as it features modulations in interannual, decadal, and centennial climate due to 

the varying influence of solar cycles, volcanic eruptions, introduction of greenhouse gases, land 

use change, aerosol and ozone emissions, orbital forcing, and natural variability. Additionally, 

the last millennium has emphasized that unforced aspects of the climate system can be highly 

sensitive to small shifts in external forcing. In this chapter, I take advantage of recent modelling 

experiments associated with an array of multiple ensemble members, each prescribed with 

identical forcing conditions, but marginally different initial conditions. This array of ensemble 

members allows for a better quantification of the influence of natural variability on climate. In 

this section, the CESM’s Last Millennium Ensemble suggests that the Pacific Meridional Mode 

has an enormous range of natural variability. Even more, the CESM-LME illustrates 

commonalities in the background state between periods of historically high and low PMM 

variance, consistent with the paleoproxy record and some observational studies.  While the 

observed variance of the present day is relatively high, the variance under RCP8.5 forcing is 

expected to dramatically increase.   
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Chapter 4 of this thesis uses observations the large 2015-2016 El Nino event as a 

platform to investigate the roles of physical and biologically mediated processes on coral 

calcification. For this chapter, I collected and analyzed samples from a diverse network of 

monitored corals at Palmyra Atoll for the incorporation of traditional and novel geochemical 

tracers. Particular focus is placed on the relatively new carbonate chemistry tracers; boron 

isotopes (δ11B) and elemental boron concentrations (B/Ca), but δ18O, δ13C, and trace metal 

composition were also measured. This chapter documents a highly variable response of coral 

δ11B during extreme stress, despite a relatively narrow range of seawater pH, indicating that 

individual corals differ in ability to moderate the pH of their extracellular calcifying fluid.   

In greater detail, during this biomineralization process, corals transport Ca2+ and HCO3-, 

or allow the diffusion of uncharged aqueous CO2, through the layers of tissue and into a layer 

called the extracellular calcifying fluid (ECF). This extracellular calcifying fluid layer is thought 

to be a semi-enclosed environment, influenced by seawater, yet susceptible to internal coral 

regulation. The mechanism by which the coral acquires carbon is yet unsettled. There are three 

principal pathways by which corals acquire this carbon: a diffusive pathway, an active transport 

pathway to transport charged ions across a membrane with an ion transporter, and thirdly, 

infiltration of seawater [Adkins et al. 2003, Allemand et al. 2011].  While it is uncertain the 

degree to which the coral controls actual mineral growth [Lowenstam 1981], it is agreed upon 

that corals actively manipulate the chemistry of their calcifying fluid. One relevant example of a 

coral manipulating its own internal chemistry is the biomineralization process. A coral must 

maintain a pH higher than that of seawater in this extracellular calcifying fluid to allow for the 

precipitation of aragonite. This process is more difficult when the pH of the surrounding reef 

seawater is lower, because it steepens the pH gradient between the seawater and the ECF [Ries et 
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al. 2011, Kubota et al. 2017, Doney et al. 2009, Hoegh-Guldberg et al. 2007], emphasizing a key 

danger of ocean acidification on coral reefs.   

Boron isotopic composition in coral aragonite could serve as an effective monitor of the 

regulation of calcifying fluid chemistry.  There are two species of dissolved boron in seawater: 

boric acid and borate, and the speciation varies as a function of pH.  The isotopic composition of 

borate, the species preferentially incorporated into carbonates, therefore also varies with the pH 

of seawater [Hemming Hanson 1992, McCulloch et al. 2012, Gagnon 2013, Klochko et al. 

2006].  Borate is thought to substitute for carbonate ion in coral skeletal formation [Holcomb et 

al. 2016]. Given the method of incorporation, the boron isotopic ratio, δ11B, shows great promise 

in capturing variations in seawater pH in biogenic carbonate, but still has unclear biological 

influences. It is expected that skeletal boron isotope composition would be influenced by the 

coral “upregulation” of their internal ECF pH, but laboratory experiments have documented that 

boron isotope incorporation in corals can still reflect the pH of reef seawater through a linear, 

species dependent offsets [Trotter et al. 2011, Honisch et al. 2004, Honisch and Hemming 2007, 

Venn 2013].  

Some paleoclimatic tracers can provide insight into these biological processes. Some 

tracers, such as carbon isotopes, or even the annual extension rate have highly documented 

biological influence [Grottoli et al. 2002, Lough et al. 2014]. Other proxies are less explicitly 

influenced by these biological processes.  The experiment design in Chapter 4 accentuates the 

different processes imprinting themselves on the coral skeleton; by sampling monitored, yet 

diverse reef sites it is possible to assess a range of processes from the reef scale to organismal 

scale. Special emphasis is placed on identifying the individual, small scale differences in reef 
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environments that influence coral resilience and evaluating the manifestation of their local 

environment on the suite of geochemical tracers. 

Taken together, this thesis highlights the wide range of natural variability within the 

physical and geochemical components of the climate system. However, in most studies, 

projections using increased greenhouse gas concentrations suggest that climate change is and 

will continue to fundamentally alter these systems.  
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Abstract  

The decadal variability of the Pacific Ocean and North American hydroclimate are 

subjects of immediate concern for society, yet the length of the instrumental record limits full 

mechanistic understanding of this variability. Here I introduce a 178 year, seasonally resolved 

coral oxygen isotopic record from Clarion Island (18°N, 115°W), a region that is strongly 

influenced by the decadal-scale fluctuations of the North Pacific Gyre Oscillation (NPGO) and a 

subtropical region that serves as a critical locus for the communication of climate anomalies with 

the tropics. This Mexican Pacific coral record is highly correlated to coral records from the 

central tropical Pacific and tree ring records from western North America. Significant changes in 

the amplitude of oceanic decadal variability in the early 19th century are mirrored in the drought 

reconstructions in western North America. The spatial manifestation of this relationship was 

relatively invariant, despite notable changes in the climatic mean state.  

 

 

 

 

 

 

 

 

 

 

 



 20 

2.1 Introduction 

 

The extreme climate of 2012-2015 across the Pacific North American region featured 

concerted oceanic and atmospheric anomalies spanning nearly the entire Pacific Basin, from the 

tropics to the subpolar regions. These conditions, estimated to have cost billions of dollars in 

damage [Howitt et al. 2014], involved i.) a persistent atmospheric ridge of high pressure 

extending from Alaska to California [Swain et al. 2014] that blocked the moisture-rich 

midlatitude Pacific storm track, causing exceptional drought on the West Coast [Griffin 

Anchukaitis 2014, Williams et al. 2015]; and ii.) an adjacent trough that directed Arctic air into 

East Coast/ Midwest regions, prompting harsh winter conditions [Hartmann et al. 2015, Baxter et 

al. 2015]; and iii.) record breaking sea surface temperatures in the North Pacific [Bond et al. 

2015, Hobday et al. 2016]. Climate models and observations have suggested a variety of 

hypotheses to explain the origin of these interconnected anomalies. For example, they could be 

the product of a Rossby wave train emanating from the tropical Pacific [Seager et al. 2014, Wang 

et al. 2015, Watson et al. 2016] related to an El Nino Southern Oscillation (ENSO) precursor 

pattern associated with the North Pacific Oscillation (NPO [Wang et al. 2014, Walker and Bliss 

1932, Rogers 1981,Wang et al. 2013]). Other studies have suggested that constructive 

interference from the extratropics, such as low arctic sea ice cover [Lee 2015], could have 

amplified the anomalies. Alternatively, these anomalies could reflect variations in the subtropical 

gyre—for example, they might owe their origin to the oceanic component of the NPO known as 

the North Pacific Gyre Oscillation (NPGO, Appendix A. & Figure A.1, [DiLorenzo et al. 2008, 

Hartmann 2015, Kilduff et al. 2015]). 
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Regardless of origin, one of the most extraordinary aspects of these concerted phenomena 

was their persistence over several consecutive winters. The most common explanations for such 

resilience involve teleconnecting interactions between the tropics and extratropics [eg. Latif and 

Barnett 1994, Alexander et al. 2002, Newman et al. 2016]. If so, at least two principal 

mechanisms could transmit anomalies over such broad regional and temporal scales. Firstly, sea 

surface temperature anomalies in the central tropical Pacific atmosphere could trigger anomalous 

convection, driving divergence aloft, exciting atmospheric Rossby waves and disrupting the 

mean flow [Sardesmukh and Hoskins 1988]. This could influence the extratropics through an 

atmospheric bridge type mechanism [Alexander et al. 2002] and interaction with the NPO 

[DiLorenzo et al. 2010, Furtado et al. 2012]. Alternatively, atmospheric variability in the 

midlatitudes could force anomalous sea surface temperatures and initiate a series of 

thermodynamic feedbacks between the winds and sea surface. A feedback loop known as the 

Pacific Meridional Mode [Chiang and Vimont 2004] is initiated when NPO atmospheric 

variability influences local subtropical sea surface temperatures and, therefore, the local 

meridional temperature gradient. The strength of the subtropical trade winds is altered via Wind-

Evaporation-SST feedback [Xie and Philander 1994], and ultimately, the anomalous winds and 

sea surface temperatures propagate equatorward.  

Observations of such interactions, over multiple decadal cycles and over intervals subject 

to different radiative forcing, would constitute a critical step for understanding the mechanisms 

of Pacific North American climate change, including the extreme 2012-2015 conditions. 

Extended observations would help address whether the conditions of the last several years were 

purely the result of internal (natural) climate variability [Funk et al. 2015, Seager et al. 2015, 

Hartmann 2015], or whether the extreme conditions were forced by greenhouse gas-induced 
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warming, radiative feedbacks and nonlinear responses [Wang et al. 2014, Swain et al. 2014]. 

Additionally, extended observations could help test whether natural modes of decadal variability 

such as the NPO, and thus the Pacific Meridional Mode, might be more active with greenhouse 

gas forcing [Wang et al. 2012, Wang et al. 2014, Furtado et al. 2012, DiLorenzo et al. 2010], 

thereby modifying the mechanisms by which the subtropics and tropics interact.  

Most instrumental records of rainfall, drought, and SST are too brief to capture the full 

range of natural decadal variability. However, paleoclimatic archives from the appropriate 

climatic centers of action can complement the temporally limited studies of synoptic scale 

variability. Here I present a new seasonally resolved record of oxygen isotope variability from a 

coral collected at Clarion Island (18°N, 115°W), of the Revillagigedo Archipelago, Mexico. This 

region, known as the “Seasonal Footprinting Region,” is characterized by a strong meridional 

SST gradient and is essential for energizing the Pacific Meridional Mode [Vimont et al. 2001, 

Vimont et al. 2003, Chiang and Vimont 2004]. In models and observations, sustained SST 

anomalies in this region propagate southwestward in the direction of the climatological trade 

winds, through to the Intertropical Convergence Zone and the central equatorial Pacific. Thus, 

the extended coral record from the region offers potential insight into one of the key mechanisms 

of decadal variability in the Northeastern Pacific.  

I combine this new coral record with previously published tree ring and coral records to 

document nearly two centuries of coherent decadal-scale climate variability across the Pacific 

and North America. I provide evidence for historical oceanographic variability similar to the 

current extreme climate, featuring pronounced interaction between the mid and low latitude 

Pacific. I also show that the magnitude and recurrence interval of this pattern varied considerably 

over the past two centuries. 
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2.2 Methods 

 

The Clarion coral core was sampled every 1 mm and analyzed for its oxygen isotopic 

composition using a ThermoMAT 253 mass spectrometer equipped with a Kiel IV carbonate 

preparation device. Long-term analytical reproducibility for δ 18O is 0.08‰, deduced from a pool 

of ~200 carbonate standards (including NBS-19) analyzed concurrently with the coral samples. 

The average extension rate of the Clarion coral is 4-6 millimeters per year, implying roughly 

seasonal resolution. The coral chronology uses the seasonal cycle in the oxygen and carbon 

isotopic data, and I anchor the extremes to fixed seasons in the year. The calendar age 

assignments were validated independently by the strong annual density banding (best viewed in 

X-ray). Thus I estimate that the coral chronology is accurate to within 6 months (no more than 1 

year.) 

 

2.3 Site Characteristics 

 

The Clarion coral was collected in July of 1998 (by J.D.C.) from a depth of 8 meters in a 

well mixed, unrestricted environment with moderate currents and waves in the fore reef zone. 

Instrumental observations suggest that this site is ideally located to monitor several important 

aspects of Pacific decadal variability. Firstly, the region is strongly influenced by the variations 

in sea surface temperature and salinity associated with the NPGO-NPO (Figure 2.1A); sea 

surface temperature anomalies from Clarion Island location display significant correlation with 

the NPGO index (R= -0.24, p<0.01 at monthly resolution, and R= -0.55, p>0.1 with an 8 year 
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lowpass filter, using monthly anomalies from NOAA Extended Reconstruction from 1950-2015 

[Smith and Reynolds 2003]). This correlation implies that SST at Clarion Island shares a pattern 

of correlation with North American continental PDSI similar to that of the NPGO–NPO (Figure 

2.1B). Clarion Island lies at the termination of the California Current System (CCS); therefore it 

“feels” the influx of cooler, more saline water during the positive phase of the NPGO, and 

warmer, fresher water during the negative phase of the NPGO [DiLorenzo et al. 2008]. The 

Clarion coral differs significantly from other coral-based reconstructions in the eastern tropical 

North Pacific [Linsley et al. 2000, Tierney et al. 2015, Dunbar et al. 1994] in that it lies in the 

northeastern end of the Seasonal Footprinting Region. The opportunity to build long continuous 

records from this part of the subtropical Pacific is extremely rare, but the coral isotopic record 

presented here provides a record of regional conditions that extends to the early 19th century. 

 

Figure 2.1 Clarion coral δ18O captures NPGO-like activity. (A.) Regression of monthly mean 
SST anomalies (NOAA’s ERSST v3b, degrees C, 1950-2013, (Smith and Reynolds 2003)) with the 
negative NPGO index. On the continents: regression of (inverse) NPGO on monthly mean PDSI 
anomalies (unitless, 1950-2014, [Dai et al. 2004]). For SST, stippling indicates confidence at 95%, and 
90% for PDSI accounting for autocorrelation with effective sample size [Bretherton et al. 1999] and field  
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(Figure 2.1 continued) 
significance testing controlled with a False Discovery Rate [Wilks 2016]. The large black circles mark the 
locations of Clarion Island (18N, 115W) and Palmyra Atoll (6N, 162W). (B.) Same as A, but SST and 
PDSI anomalies are regressed with SST anomalies from the Clarion Island location. (C.) Correlation of 
from AVISO Satellite sea surface height anomalies with the negative NPGO index October 1992 to 
December 2010. Correlation of Satellite Sea Surface Height (http://www.jason.ocea- nobs.com/) with 
NPGO index. Clarion Island location is denoted by a black dot, in a region highly correlated with North 
Pacific Gyre Oscillation SSH variability. Stippling indicates confidence at 95%, accounting for 
autocorrelation with effective sample size [Bretherton et al. 1999] and field significance testing controlled 
with a False Discovery Rate [Wilks 2016]. (D.) Same as A, but, as an illustration of proxy sensitivity, 
SST and PDSI anomalies have been seasonally averaged (JFM, AMJ, JAS, OND) and regressed with the 
(inverse) Clarion coral δ18O from 1950-1998.  (E.) Normalized indices of variability from 1950-2000 
where the coral oxygen isotopic anomalies have been averaged seasonally. Clarion coral δ18O in black, 
R=0.52 with NPGO index over 1950-1998 using annual averages, Palmyra coral δ18O in blue R=0.54 
with NPGO index over 1950-1998 using annual averages, and NPGO in orange. Negative values indicate 
warm temperature anomalies and positive sea surface height anomalies in the Central and Eastern 
Tropical North Pacific, while positive values indicate cooler conditions and low SSH anomalies. Note that 
while the Palmyra record also records El Niño events, the structure of the decadal variability is highly 
coherent among indices. 
 

 

The δ18O anomalies of the Clarion coral record are a product of both SST and SSS 

anomalies [Epstien et al. 1953, Fairbanks et al. 1997, Nurhati et al. 2011, Thompson et al. 2011]. 

Available instrumental observations from the region suggest that SSS is perhaps an equally 

important source of variability for dictating coral oxygen isotopic anomalies (Appendix A., 

Figure A.2). It should be noted, however, that the salinity observations prior to the ARGO 

program are sparse [Roemmich et al. 2011], and in the Eastern Tropical North Pacific (ETNP) 

various salinity reanalysis products do not completely agree with one another [Roden 1972, 

Kessler 2006, Delcroix et al. 2011, Carton and Giese, 2008]. In the North Pacific, the 

strengthening or weakening of the subtropical gyre associated with the NPGO is the dominant 

control of salinity variability, especially in the CCS: both the first principal component of 

hindcast models and timeseries of salinity anomalies in the Gulf of Alaska and Southern 

California yield significant correlations with the NPGO index [DiLorenzo et al. 2008, Chhak et 

al. 2009, DiLorenzo et al. 2009]. SSS and SST at Clarion Island tend to be highly (inversely) 



 26 

correlated on the timescales of interest (see Appendix A.), and SSH data show that the Clarion 

region lies within a pole of high correlation to the NPGO index (Figure 2.1C). The relationship 

between SST, SSS and δ18O [Epstien et al. 1953, Fairbanks et al. 1997] is such that δ18O reflects 

variations in the density of seawater, which is directly related to regional sea surface height. 

(Low temperatures, high salinity corresponds to high δ18O, high density water masses, and low 

SSH, while high temperatures and low salinity correspond to low δ18O, low density water masses 

and positive SSH). Therefore, for discriminating large-scale patterns of variability related to the 

NPGO, the explicit resolution of temperature and salinity components is not essential to the 

analysis. I acknowledge, however, that some proposed mechanisms of Pacific decadal variability 

[e.g. Clement et al. 2009, Bellomo et al. 2014] rely primarily on radiative feedbacks in the 

subtropics and that the δ18O proxy addresses such mechanisms only indirectly.  

 

2.4 Results 

 

The complete coral isotopic record spans the years 1819 to 1998 (Figure 2.1D and 2.2). 

The Clarion coral record features prominent decadal scale variability throughout its length. 

Oxygen isotopic anomalies over the late 20th century display significant correlation with that of 

the NPGO index (R=0.52, p=0.01 from 1950-1998, using annual anomalies), as expected from 

the instrumental observations from the region. Wavelet analysis [Torrence and Compo 1998] of 

the full Clarion coral record confirms a continuous concentration of variance in the 9-23 year 

band throughout the past two centuries, and statistically significant power over the period of 

1820-1870 (95% level) (Figure 2.2). Statistical significance is assessed relative to stationary red 

noise with the given autocorrelation of the series. While the pronounced decadal variability is the 
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defining characteristic of the Clarion record, an especially striking feature of the record is that, 

relative to the late 20th century, the magnitude of decadal variability was much larger during the 

early 19th century. The wavelet analysis suggests that the decadal variability of the early 

nineteenth century was characterized by a slightly longer period than that which prevailed 

throughout the 20th century (16 years vs. 12-13 years).  
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Figure 2.2 Pacific-North American paleoproxies capture amplified decadal variability in 
the early 19th century. (A.) Morlet mother wavelet power spectrum of Clarion δ18O. Black border 
shows the 5% significance level test against red noise [Grinstead et al. 2004]. In the Clarion coral, this 
significance is especially visible in between 1820 and 1870 at periods of roughly 9-23 years. (B.) 
Detrended, normalized paleo-proxy timeseries overlain with a 9-23 year bandpass filter from years 1800-
2000, offset by 2 standard deviation units for visibility. The full length Clarion coral δ18O in black, 
Griffin-Anchukaitis tree ring index in green, MacDonald-Case tree ring index in orange, Palmyra coral 
δ18O in blue. The blue vertical lines highlight the peak of the decadal scale warm SST anomalies, dry-
warm continental conditions in the paleo records during the heightened decadal variability in the period 
from1815-1870. 
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Despite these changes to the characteristics of the decadal variability, throughout the past 

two centuries I observe strong similarities in the timing of decadal shifts with other Pacific coral 

and North American tree ring records. In particular, the Clarion coral δ18O record exhibits 

decadal variability in lockstep with that of a central tropical Pacific coral δ18O record from 

Palmyra ([Cobb et al. 2001], Figures 2.1D and 2.2, Appendix A. Figure A.4, R=0.38, p<0.01 

between Palmyra δ18O and Clarion δ18O from 1887-1998). There are no distinguishable leads or 

lags between these coral records, but it should be noted that the coral chronologies are not 

capable of resolving phase offsets shorter than several months. In any case, the strong correlation 

manifested by these two coral records confirms a strong and persistent link between the northern 

and southern ends of the North Pacific Seasonal Footprinting Region. On decadal timescales, sea 

surface temperature variability at Palmyra is strongly correlated with the NPGO ([Nurhati et al. 

2011], Palmyra δ18O-NPGO from 1950-1998 using annual anomalies R=0.54, p<0.01).) The 

strong correlation between the NPGO and coral records stretching across the southern pole of the 

NPGO (Figures 2.1D and 2.2), from the Eastern Tropical North Pacific to the Central Tropical 

Pacific, establishes a means of observing tropical-extratropical communication prior to the 

instrumental era. 

Given the association between North Pacific sea surface temperatures and the current 

western North American drought, I sought to establish whether such a relationship also extends 

to the paleoclimatic archives. A number of tree ring indices have been produced to represent 

hydroclimate variability over the western North American region. Current analysis [Funk et al., 

2014; Seager et al., 2014a, 2015; Wang and Schubert, 2014; Wang et al., 2014; Hartmann, 2015, 

Palmer 2014] suggests that the atmospheric ridge, induced by Pacific SSTAs, primarily acts to 

halt the transport of warm, moist air over the West Coast of the United States. As California is 
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one of the most strongly affected regions, the California-based MacDonald and Case 2005 

[Macdonald and Case 2005], and Griffin and Anchukaitis 2014 [Griffin and Anchukaitis 2014] 

indices are used to compare with the coral records (Figure 2.2). The MacDonald and Case 2005 

tree ring record was developed using chronologies from San Gorgonio, California and Nordegg, 

Alberta. The Griffin and Anchukaitis 2014 record is the averaged compilation of Central-

Southern California tree ring PDSI. In general, the Clarion and Palmyra coral records are 

significantly correlated with both tree ring indices on decadal timescales; using a 9-16 year 

bandpass filter, R=0.32, p=0.22 between Clarion and Palmyra (1886-1998), R=-0.73, p<0.01 

between Clarion and MacDonald-Case index (1820-1995), and R=-0.54, p<0.01 between Clarion 

and Griffin-Anchukaitis PDSI (1820-1998) using annual averages. Importantly, both the Clarion 

coral and the tree ring records exhibit heightened decadal variability over the interval 1810-1865 

AD (~2 standard deviations). There are differences between individual indices, as one might 

expect from the different regional data sources. For example, the Griffin and Anchukaitis record 

reveals late 20th century variability of roughly the same magnitude as that of the early 19th 

century. The MacDonald Case record displays strong decadal variability from the early 19th 

century until the late 19th century, longer than evidenced in the Clarion, Griffin-Anchukaitis, and 

Palmyra records. Nevertheless, these proxy records provide evidence for correlated patterns of 

ocean-atmosphere variability. The coherence between the Clarion coral record and the other 

records is found to be statistically significant on decadal timescales (at a 5% significance level 

using a cross wavelet coherence with Monte Carlo methods to generate an ensemble of 1,000 

paired datasets with the same AR1 coefficients as the input datasets [Grinstead et al. 2004]). This 

is particularly the case in the early 19th century (Appendix A., Figure A.4). The coherence 

between these oceanic and terrestrial records demonstrate that the heightened variability of the 
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early 19th century was not merely a local phenomenon in the northeastern Pacific, but, rather, 

was the product of strong, concerted North American hydroclimate-Pacific interaction over the 

last two centuries.  

Along with individual timeseries, the gridded North American Drought Atlas Version 2a 

(NADA, [Cook et al. 1999, Cook et al. 2004]) are used to explore the spatial expression of the 

variability associated with each of the individual coral records over the last two hundred years 

(Figure 2.3). NADA is a gridded dataset of June-July-August PDSI developed from tree ring 

measurements, but tested and verified against the instrumental PDSI record over the twentieth 

century. For the purposes of this comparison, the coral records have been annualized using a 

May-April year and regressed onto the NADA field to maximize the relationship between the 

winter oceanic variability to the following JJA of the continental NADA archive. The statistical 

significance of the relationship between the NADA field and the paleo index is assessed, firstly, 

by altering the number of effective degrees of freedom to account for autocorrelation [Bretherton 

et al. 1999], and secondly, by implementing a field significance test controlled with a False 

Discovery Rate [Wilks 2016]. 

The least squares linear regression of the Clarion coral δ18O record onto the tree ring 

NADA PDSI dataset exhibits a strong dipole structure of PDSI between southern California and 

central Canada (Figure 2.3A). When isolated for the period of heightened decadal variability 

(1820-1875), the Clarion coral’s regression onto the tree ring PDSI maintains nearly identical 

regional patterns to that of the full record, particularly over Western North America (Figure 

2.3B). The regression of the MacDonald-Case record onto the NADA record also shows a 

similar pattern (Figure 2.3C), as does the Griffin and Anchukaitis record (Appendix A., Figure 

A.3B). Furthermore, the regression of the annualized Palmyra coral δ18O record also shows 
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similar patterns, though Palmyra record does not extend into the period of heightened 19th 

century variability.  

 
 
Figure 2.3 Linear regression of the NADA- PDSI data (Cook et al. 1999, Cook et al. 2004) 
with various paleo proxy indices. When applicable, annual anomalies were calculated over the May-
April ENSO year; thus the JJA PDSI regression highlights the relationship with the previous winter SSTs. 
Stippling indicates confidence at 95% using a two sided student’s t-test, accounting for autocorrelation 
via effective sample size [Bretherton et al. 1999] and field significance testing controlled with a False 
Discovery Rate [Wilks 2016]. (A.). Annual anomalies of (inverse) Clarion δ18O 1820-1998. The polarity 
is such that cool-wet (blue) are associated with warm sea surface temperatures in the eastern tropical 
north Pacific, and dry-warm conditions (brown) are associated with cooler SSTs in the Clarion region. 
(B.) Annual anomalies of Clarion’s δ18O over the period of heightened variability (1820-1875, using the 
same color scheme as A). (C.) Annual anomalies (inverse) Palmyra δ18O (1886-1998AD), using the same 
color scheme as A) (D.) MacDonald and Case tree ring series (1790-1990) creating a PDO-like index 
using a dipole of tree ring series from San Gorgonio, California and Nordegg, Alberta.  
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Interannual (i.e. ENSO) variations account for much of the variance of the Palmyra coral 

record and the spatial patterns of drought over North America, particularly the north-south dipole 

structure. Thus, from spatial regression maps alone, it is difficult to distinguish a true decadal 

mode of variability across the PNA region from a reddened manifestation of ENSO [Newman et 

al. 2016, Newman et al. 2003]. This differentiation is further complicated by the fact that the 

NPO, which is potentially responsible for forcing the decadal variability, is itself influenced by 

ENSO. Thus, a full separation of ENSO from Pacific Decadal Variability is beyond the scope 

here. However, the Clarion coral record may be relatively unique in illustrating the patterns of 

decadal variability alone (however independent they may be from ENSO). Firstly, there is very 

little interannual variability in the instrumental or proxy records from Clarion (Figures 2.1E and 

2.2), given its location outside of the direct influence of ENSO. Secondly, the decadal scale 

changes in salinity monitored by the Clarion coral δ18O are consistent with the strengthening 

(weakening) of the subtropical gyre that reflects a mechanistically distinct aspect of the NPGO. 

The potential discriminatory power of the Clarion record in this regard, is, however, tempered by 

the fact that none of the grid points in Figure 2.3A and 2.3B meet the p=0.05 threshold for field 

significance. Inspection of the relevant individual time series suggests that the reduced field 

significance (with respect to that for Palmyra for example) results directly from the absence of 

ENSO variance in the Clarion coral and the detrending of the NADA field.  

 

2.5 Discussion 

 

The similarities in the timeseries and the spatial patterns expressed in the coral and tree 

ring records constitutes strong evidence for synchronous decadal variability, complementing and 
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extending the inferences drawn from instrumental observations across the Pacific North 

American region. Prior studies have noted the significant role of the NPO on North American 

surface temperature and precipitation patterns [Pierce et al. 2004, Linkin and Nigam 2008, 

Baxter and Nigam 2015]. The impact of the NPO’s lower frequency oceanic counterpart, the 

NPGO, on continental precipitation has only recently been suggested—in part because of the 

brevity of the instrumental record of this phenomenon. In observations, the extreme negative 

phase of the NPGO (warm central Pacific and warm ETNP) is associated with a tendency for a 

weak atmospheric ridge just west of North America, a slight offshore displacement from the 

winter anomalies of 2014 -2015 (Appendix A., Figure A.5); however, it is also associated with 

wet conditions on the western North American coast (Figure 2.1A, Appendix A., Figure A.5). 

This difference from the most recent expression of western North American drought highlights 

two critical aspects of oceanic forcing of hydroclimate: (i.) isolated modes of oceanic variability 

typically only account for a fraction of the continental precipitation variability--though oceanic 

forcing can be significant (30-40% for various regions of the US; [Seager and Hoerling 2014]), 

high frequency internal atmospheric processes tend to dominate continental weather; (ii.) the 

phase propagation and interplay between different modes of oceanic variability are important.  

To the extent that the Clarion and Palmyra coral records indeed reflect the distinct 

dynamics of the southern pole of the NPGO, the multiple realizations of decadal fluctuations 

expressed in these coral archives allow for a more complete assessment of the NPGO influence 

on continental hydroclimate. While extended drought in North America can stem from a variety 

of sources [Seager et al. 2014, Seager and Hoerling 2014, Cook et al. 2007, Seager et al. 2009], 

the shifts from cold/dry to warm/wet conditions in Seasonal Footprinting Region were almost 

invariably accompanied by a concurrent shift from relative drought to relative moisture surplus 
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across the western U.S. This connection held regardless of the amplitude or the recurrence 

interval of the decadal shifts. Thus it is likely that the oceanic forcing during the intervals of 

northeastern Pacific phase change was powerful enough to guide the higher frequency 

atmospheric weather that ultimately determined PDSI.  

The underlying mechanisms of the NPGO phase changes are currently debatable [Furtado 

et al. 2012, DiLorenzo et al. 2010], and their discrimination will undoubtedly require an 

extended network of observations across the various geographic poles. But, at least for the 

southern pole, the high correlation of the coral records presented here, showing no apparent leads 

or lags, requires an immediate connection between subtropical anomalies and the tropics. 

Climate models have shown that seasonal footprinting is an effective means of rapid anomaly 

propagation in the atmosphere and surface ocean between the subtropics and tropics [Vimont et 

al. 2001, Vimont et al. 2003]. The coral records strongly suggest that this mechanism played out 

repeatedly in the real ocean. This connection between subtropical anomalies and the trade winds 

is also a critical feature in determining the growth of different types of ENSO events [Chiang and 

Vimont 2004, Vimont et al. 2014, Zhang et al. 2014]. While this analysis focuses strictly on 

decadal variability, an avenue for future pursuit is to investigate how the strength of this tropical-

subtropical connection may have influenced past ENSO variability.  

It remains to be established why the decadal variance of the early 19th century was so 

strong and seemingly characterized by longer recurrence interval (at least with respect to the 20th 

century). Several studies have linked increasing variance of the NPO to greenhouse induced 

warming [Wang et al. 2014, DiLorenzo et al. 2010, DiLorenzo et al. 2008, DiLorenzo et al. 

2015], while other studies suggest that large-scale droughts will be more prevalent in a warmer 

world [Swain et al. 2014, Delworth et al. 2015, Diffenbaugh et al. 2015, Williams 2015]. Perhaps 
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the early 19th variability was an example of unforced natural variability, but this was also a time 

of a dynamic radiative balance. The Northern Hemisphere experienced the close of the Little Ice 

Age; and the Tambora eruption in 1815 led directly to the “year without a summer” in 1816 

[Wagner and Zorita 2005]. The origin of these changes is quite different from the modern 

radiative imbalance caused by anthropogenic greenhouse gas emissions. The fact that the spatial 

expression, particularly over the California region, remains much the same across these stronger 

decadal oscillations implies that many of physical linkages between regions remain intact, 

irrespective of forcing.  

In conclusion, the new Clarion coral oxygen isotopic record links large scale continental 

hydroclimate variability to the ocean, providing evidence for concerted ocean-atmospheric 

interaction across the Pacific basin over the last two hundred years. The heightened variability of 

the early 19th century implies that the 20th century decadal scale climate swings—that, among 

other things, provided a baseline for water policy and use in the western U.S.--were in fact 

relatively mild. Thus the seeming severity of the current climate must be understood in a more 

comprehensive historical context.  
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Abstract 

The Pacific Meridional Mode, a coupled ocean-atmospheric interaction responsible for 

propagating subtropical anomalies to the tropics via thermodynamic mechanisms, features 

prominently in discussions of the response of climate variability to climate change. However, it 

is presently unclear how and why the variance in PMM might change, or even if greenhouse gas 

forcing might lead to heightened activity. Here, PMM variance over the last millennium is 

assessed in the Community Earth System Model (CESM) Last Millennium Ensemble (LME). 

The model reproduces the main spatial characteristics of the PMM in the modern ocean in 

agreement with observations. With this basis, I assess the magnitude of the PMM variance over 

the past millennium, subject to forcing from a variety of sources. Internal (unforced) variability 

dominates the PMM variance in the LME, but prolonged periods of strong or weak PMM 

variance are found to be associated with characteristic spatial patterns, consistent across 

ensemble members and forcing experiments. The pattern of strong PMM variance features a 

cooler north Pacific, weaker Walker circulation, and a southward-shifted ITCZ. This pattern also 

suggests that equatorial anomalies can influence the southern node of the North Pacific 

Oscillation, and, further, that this interaction has a role in sustaining PMM variability in the 

model. Comparison with a slab ocean model suggests that equatorial ocean dynamics are 

necessary to sustain the statistically significant multidecadal variability. With respect to the last 

millennium, present greenhouse forcing does not promote exceptional PMM variance. However, 

the PMM variability projected in the RCP8.5 scenario exceeds the thresholds expressed with the 

forcings applied over the Last Millennium. Aside from multidecadal variability, the model 

observations also bear on ENSO variability and the sensitivity of climate variability to external 

forcing.  



 

 46 

3.1 Introduction  

 

The Pacific Meridional Mode (PMM) is a form of tropical ocean-atmospheric interaction, 

independent of ENSO, that can create coherent anomalies through an interplay of wind speed 

and surface evaporation. This mode has been increasingly recognized as an influential 

component of climate variability, effective in channeling extratropical anomalies to the 

equatorial ocean-atmosphere system [Chiang and Vimont 2004].  The PMM is reinforced by a 

thermodynamic feedback involving varying wind speed, evaporation, and sea surface 

temperatures (WES feedback; [Xie and Philander 1994, Chang et al. 1997]).  Central to this 

mode, extratropical atmospheric variability acts to warm (cool) local sea surface temperatures in 

the subtropical North Pacific, adjusting the mean surface wind field and spurring lesser (greater) 

evaporative cooling; this particular mechanism has been termed “seasonal footprinting” [Vimont 

et al. 2001, Vimont et al. 2003]. These positive (negative) sea surface temperature anomalies, 

typically initiated southwest of Baja California in the Eastern Tropical North Pacific, induce 

further weakening (strengthening) of the trade winds by relaxing the meridional surface 

temperature gradient. These weakened trade winds further reduce (increase) evaporation rates, 

allowing the sea surface temperature anomalies to propagate southwestward to the equatorial 

Pacific. The “meridional mode” framework is important as it links El Niño Southern Oscillation 

(ENSO) variability to internal extratropical atmospheric variability.  

Indeed, the PMM was initially hypothesized as an important precursor to ENSO [Chiang 

and Vimont 2004)]. This hypothesized connection has been supported in subsequent 

observational and modelling studies. For example, using instrumental observations between 1958 

and 2000, Chang et al. 2007 found that more than 70% of El Niños followed a positive PMM 
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event. This strong relationship has similarly been observed in National Center for Atmospheric 

Research Community Climate System Model, version 3 (CCSM3, [Zhang et al. 2009a], and in 

version 4(CCSM4, [Larson and Kirtman 2013]), and other CMIP5 models [Lin et al. 2015]. The 

PMM also seems to be important for the formation of central Pacific El Niños [Vimont 2015, 

DiLorenzo et al. 2010, Yu et al. 2011, Yu and Kim 2011, Kim and Yu 2012], and, accordingly, 

the increase in prevalence of the Central Pacific El Niño events over the past few decades has 

been attributed to an intensification of the thermodynamic coupling mechanism central to the 

PMM [DiLorenzo et al. 2015, DiLorenzo et al. 2016].  The PMM has further been identified as 

an important feature in Pacific cyclone suppression/ enhancement [Zhang et al. 2016], is thought 

to have played a role in the extreme drought, and sea surface temperatures, and resilience of a 

mid-level atmospheric high pressure system of 2012-2016 [Wang et al. 2014, Hartman et al. 

2015], the associated marine heat wave [DiLorenzo and Mantua 2016, Joh and DiLorenzo 2017], 

and is an important means of attenuating low frequency variability in the tropics [DiLorenzo 

2015].   

 While the PMM has proven to be an important feature in the climate system, the recent 

amplification of PMM variability (Figure 3.1C.), deserves careful consideration. It is still 

unknown if and why the Pacific Meridional Mode might be intensifying.  The apparent increase 

in variance might simply be the result of unforced modulations in the climate system. 

Alternatively, this intensification may have been induced by a changing mean state associated 

with anthropogenic global warming. The background state could influence the PMM through a 

number of processes: 1. The effectiveness of WES feedback could fluctuate via changes in the 

mean surface temperature and wind fields [DiLorenzo et al. 2015,  DiLorenzo et al. 2016, 

Vimont et al. 2009], 2. the characteristics of stochastic wind forcing in the extratropics can be 
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modified due to variations in atmospheric circulation [Chiang et al. 2006, Chiang et al. 2009], 

and 3. The structure and location of the Intertropical Convergence Zone (ITCZ) could change, 

potentially allowing for greater propagation of anomalies from the subtropics to the tropics 

[Zhang et al. 2014, Martinez-Villa Lobos et al. 2016]. Instrumental records are simply not long 

enough to capture the full range of variability of the PMM and to test these alternatives. 

 Over the last millennium, Earth’s radiative budget has fluctuated as a result of a variety 

of natural and anthropogenic forcings: volcanic eruptions, solar cycles, orbital variation, land use 

change, greenhouse gas and aerosol emissions. These shifts provide a means of investigating 

how sensitive is the PMM to subtle variations in the mean state and provide greater context to 

understand the extent the natural variability. In principle, therefore, the last millennium 

represents a valuable experimental platform. Paleoclimatic proxy records (e.g. from corals) 

provide some indication of PMM variance (e.g. Sanchez et al. 2016), but, as yet, are too 

geographically sparse to pinpoint mechanisms of PMM variability beyond the instrumental 

record.  Thus, temporally extended model integrations are required to make use of the 

experimental platform.  In this study, the Community Earth System Model- Last Millennium 

Ensemble (CESM-LME) is used to better understand the extent of PMM variability. My 

explanation of climate behavior in the CESM-LME seeks to address the following questions: 

How has modeled PMM changed over the last millennium? Has the PMM always operated in a 

physical framework similar to that of today? What causes the PMM to vary? Does the PMM 

respond to forced change? Do variations in the variability of the PMM influence ENSO?  

 

 

 



 

 49 

3.2 Datasets and Methodology 

 

 Several of the Community Earth System Model 1.1.1. (CAM5) experiments are explored 

to assess the low frequency variability of the PMM, outlined in Table 3.1 The Last Millennium 

Ensemble (CESM-LME, [Otto-Bleisner et al. 2015]) and the Large Ensemble (CESM-LE, [Kay 

et al. 2015]) experiments use the same coupled physical model of ocean, atmosphere (the 

Community Atmosphere Model version 5), land, and sea ice. However, the experiments differ in 

grid cell resolution and forcing employed: the CESM LME has a coarser land and atmosphere 

resolution (~2q atmosphere and land, ~0.3q-1q ocean and sea ice coupled model), while the 

CESM LE has a 1q atmosphere model. In addition, the experiments consist of a number of 

realizations to capture a fuller extent of internal variability in the model behavior. The LME is 

forced with varying solar intensity, volcanic aerosol emissions, greenhouse gas concentrations, 

land use changes, orbital variations, aerosols and ozone calibrated with values from observations 

and high resolution paleoclimate reconstructions.  Each LME ensemble member spans 1256 

years, beginning in year 850 and extending to 2006 (more information available in Otto-Bliesner 

et al. 2015).  The LME is therefore an especially useful platform for forcing-response diagnosis, 

given that there are multiple ensemble members within each prescribed forcing regime. Here, 

twelve of the all-forcing experiments, five volcanic-only forcing experiments, one control run, 

and four RCP8.5 future ensemble members are used. The “all forcing” experiments include all 

relevant radiative forcing (volcanic, greenhouse gases, ozone-aerosols, land use change, solar 

intensity, and orbital), while, as the name implies, volcanic forcing-only ensemble members have 

only been forced with historical volcanic eruptions. The control (unforced) run provides a 

measure of internal variability within the model. Finally, the future projections are an extension 
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of four of the all forcing scenario ensemble members (#2,3,8, and 9), following the RCP 8.5 

forcing pathway.  This multitude of ensemble members provides the unique opportunity to not 

only account for the range of natural variability, but also to pinpoint the common and robust 

characteristics of the modelled Pacific Meridional Mode. I additionally assess two long unforced 

control runs in the Community Earth System Model Large Ensemble (CESM-LE, [Kay et al. 

2015]) to gauge the role of ocean dynamics in the variability of the PMM. One control run comes 

from the fully coupled model (CESM-LE), the other control run comes from a slab ocean 

experiment using the CAM5 model (CESM-LE-SOM).  

Table 3.1. Characteristics of model experiments. 

Model Years Ensemble 
Members 

Applied Forcing 

CESM LME Control 
Bleisner et al. 2015 

850-
2006 

1 None 

CESM LME 
Volcanic-Only 
Bleisner et al. 2015 

850-
2006 

5 Volcanic 

CESM LME All 
Forcing 
Bleisner et al. 2015 

850-
2006 

12 Greenhouse gases, ozone-aerosols, 
volcanic, land use change, solar 
intensity, and orbital volcanic, 
greenhouse gases, ozone-aerosols, 
land use change, solar intensity, and 
orbital 

CESM LME RCP8.5 
Bleisner et al. 2015 

2006-
2100 

4 Greenhouse gases, ozone-aerosols, 
volcanic, land use change, solar 
intensity, and orbital volcanic, 
greenhouse gases, ozone-aerosols, 
land use change, solar intensity, and 
orbital 

CESM LE Control 
Kay et al. 2015 

1-1000 1 None 

CESM LE SOM 
Control 
Kay et al. 2015 

1-900 1 None 
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Observations of the present day sea surface temperature, surface winds and precipitation 

were obtained from NOAA’s Extended Reconstruction version 3B (ERSSTv3b, [Smith and 

Reynolds 2008]) and NCEP-NCAR Reanalysis version 1 [Kalnay et al. 1996] to provide an 

observationally bound reference to the CESM’s PMM. 

 

3.3 Results 

 

3.3.1 Model Validation 

The Pacific Meridional Mode is calculated as in Chiang and Vimont 2004; monthly 

means of sea surface temperatures and 1015mb zonal and meridional winds from 21qS-32qN, 

175q-265qE are removed and three month moving average is applied before taking the Maximum 

Covariance Analysis (MCA) of the three variables. As in observations, the Pacific Meridional 

Mode in CESM-LME is the second mode of maximum covariance between winds and SST after 

ENSO, and it is characterized by large sea surface temperature and wind anomalies southwest of 

Baja California, extending southwestwards towards the dateline (Figure 3.1). In the Last 

Millennium Ensemble, the magnitudes of the SST and wind anomalies associated with the PMM 

are comparable to observations; however, with respect to observations, the mean spatial pattern 

of SST and wind anomalies is shifted westward and into the Western Pacific Warm Pool region. 

The correlation of the SST and wind expansion coefficients are slightly stronger in the model 

than in observations (R=0.86 vs R=0.70, respectively), implying marginally stronger air-sea 

coupling in CESM.  
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Figure 3.1 Linear regression maps between PMM and SST and surface wind vector 
anomalies (A.) in observations, using years 1948-2006 from NOAA ERSST and NCEP winds and (B.) a 
single ensemble member the CESM-LME using years 1948-2006. The green box outlined highlights the 
region of NPO DJF zonal wind forcing used in Figure 3.6 (C.) The moving 20year standard deviation 
(using a centered window) of the Pacific Meridional Mode index in observations (relative to the 1948-
1968 mean), highlighting the often discussed trend for increasing variance.   

 

The NPO, calculated as the 2nd EOF of sea level pressure in the North Pacific, defined as 

180qW-110qW, 25qN-62qN [Walker and Bliss 1932, Rodgers 1981, Linkin and Nigam 2008], 

forces the PMM in the preceding DJF [Anderson et al. 2003, Vimont et al. 2003, Vimont et al. 

2015]. Approximately 2-3 months before the PMM peaks, wind anomalies associated with the 

NPO imprint a pattern of SST anomalies. The monthly variance of the PMM is maximized in 

March-April-May and can initiate ENSO activity in the following DJF (9 months later Figure 
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3.2A and 3.2B). That ENSO activity is described by the Niño 3 index, the area averaged SST 

anomaly for the region 5qS-5qN, 150qW-90qW. While the standard deviation of the Niño 3 

region is directly related to the variability of the PMM (Figure 3.2C), it is not as tightly coupled 

to the variability of the NPO. The NPO-PMM-ENSO chain of events is much weaker in any 

other configuration, ex. ENSO-PMM-NPO, or ENSO-NPO-PMM.   In general, the physical 

consistency of the model with observations allows us to refer to the variability within CESM-

LME to investigate both the internal and forced variability of the PMM.   

 

Figure 3.2 The model PMM is physically consistent with observations. (A.) lead-lag plot in the 
Control and 12 All Forcing experiments (colors) and observations (black) between the PMM and the NPO 
Index (calculated as the second EOF of SLP in the North Pacific); maximum correlation is found when 
NPO leads by 2 months), (median maximum correlation, R=0.27). (B.) PMM and Nino 3.4 index; a 
maximum correlation is found when ENSO follows the PMM by 9 months, (median maximum 
correlation, R=0.57). Observations here use the wind component of the PMM. (C.) For comparison’s 
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sake, I also show the relationship between the North Pacific Oscillation and the Nino 3.4 As the strength 
of the correlations are much weaker than that of the NPO-PMM, or PMM-Nino 3.4, this highlights the 
important role of the PMM (median maximum correlation, R=0.17 when the NPO leads by 12 months). 
(D.) Scatterplot of the moving standard deviations of the PMM (MAM) and the following Nino 3 (DJF). 
 

  There are two commonly used metrics for describing the strength of the Pacific 

Meridional Mode. One metric is the 30 year moving standard deviation of the SST expansion 

coefficient of the PMM MCA index in March-April-May (the months of highest variance, as in 

DiLorenzo et al. 2016, Wang et al. 2014). The other is the 30 year moving correlation between 

the wind and SST expansion coefficients from the maximum covariance analysis (used in other 

MCA analysis to show greater coupling between variables, as in Amaya et al. 2016, Lin et al. 

2015). In the observational record, both metrics have shown an increase in variability or coupling 

strength from years 1950 to the present (Figure 3.2C), implying an increase in variance and in 

the air-sea coupling affiliated with the PMM.  

 

 A 30 year moving standard deviation of the PMM is calculated in the unforced control 

run (Figure 3.3A) to provide a baseline expectation for the internal variability observed in the 

model. In the unforced control run, the 30 year moving standard deviation fluctuates roughly by 

a factor of two and experiences a wider range in variability than that of the forced runs. In 

CESM-LME, the variability in the correlation between the wind and SST expansion coefficients 

is minimal, even in the forced experiments. However, the rare deviations in the correlation 

coefficient of the expansion coefficients skew highly negatively, implying that the surface SST 

or winds are temporarily decoupled. This type of deviation is most common immediately 

following volcanic eruptions in single ensemble members, but is not found in ensemble averages. 

For these reasons, the analyses are confined to ensemble average behavior. 
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3.3.2 Unforced variability 

The term “internal” variability describes unforced processes intrinsic to the climate 

system, unprompted by any variations in Earth’s radiative balance, as in Deser et al. 2012.  The 

term “forced” variability describes processes that occur as a result of a change that alters Earth’s 

radiative balance. Common examples of forced change are the introduction of greenhouse 

gasses, aerosols, land use change even volcanic eruptions, which occur naturally. Internal 

variability in the climate system dominates the variance of the PMM in each individual ensemble 

member. In single ensemble members from each particular forcing experiment, the most 

pronounced form of variability is the low frequency variability, also readily observed in the 

control run. In each of the forced experiments, the internal variability is comparable to that of the 

control run and causes the standard deviation of the PMM to vary by about a factor of two. 

However, when ensemble members from single forcing experiments are averaged together, the 

high amplitude internal variability is smoothed out and not observable, as internal variability 

should not be coherent between ensemble members. This provides a means of identifying forced 

responses as periods when the ensemble averaged PMM index is above a particular threshold. It 

is expected that forced variability would create coherent anomalies of the same sign between 

ensemble members, regardless of their internal variability. Figure 3.3 illustrates the range of the 

ensemble members in each forcing scenario.  
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Figure 3.3. A moving 30-year standard deviation (centered window) is used on a variety of 
indices to assess the variability of the PMM over the last millennium. In (A.) A moving 30-
year standard deviation is used on the unforced control run to get a range of variability and set the mean 
standard deviation of the control run to 1. The 1 sigma mark is dashed in magenta, and the 2 sigma mark 
is dashed in rust-red. In (B.) Each ensemble member from the volcanic-only forcing experiment is plotted 
in gray to highlight the range of natural variability within the model. The median of the 5 “Volcanic-
Only” experiments is in navy. In (C.) same as B, but using 12 “All Forcings” experiments (median in 
black) and the four RCP8.5 experiments (median in dark green). The RCP8.5 experiments are merely a 
continuation of four of the “All forcing” experiments, specifically ensemble members #2, 3, 8 and 9.  
 

That said, the time series of PMM activity suggest an influence of radiative forcing. 

Volcanic eruptions tend to amplify the variability of the PMM in the ensemble mean, increasing 
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the variance of the SST expansion coefficient. For example, the Samalas event of 1257[Lavigne 

et al. 2013, Gulliet et al. 2017], the largest volcanic eruption in the last 2500 years [Lavigne et al. 

2013], created a short lived, but high amplitude signal, prompting the epoch of highest averaged 

variance in the last millennium (Figure 3.3B, 3.3C). The thirty year moving standard deviation 

calculation results in an artificially prolonged sixty-year period of high variance (excluding the 

years 1260,1261,1262, with an outstanding ensemble average 5 standard deviation anomaly, the 

variance of the 30 year moving average falls within the typical range throughout the last 

millennium (Appendix B., Figure B.1).  

Also, in the twelve All Forcing scenarios, an increase in Pacific Meridional Mode 

variance is observed through the late 20th century (through the year 2006 in the CESM 

simulations). The variance in the “present” is above average, but does not exceed the bounds of 

that simulated over the last millennium. In a single ensemble member, the variance rises above 

all previous values, but the mean trend suggests that there is no clear difference in the variability 

of the late 20th century from the variability witnessed over the last millennium 

 

3.3.3 Pattern of Variance 

Modifications in the background climate have been hypothesized to amplify or dampen 

the variability of the Pacific Meridional Mode. The three leading hypotheses describing the ways 

in which the mean climate might influence the PMM are: 1). The mean location of the ITCZ can 

influence the extent to which subtropical anomalies can influence equatorial regions [Zhang et al. 

2014, Martinez-Villalobos and Vimont 2016]. 2). The sensitivity of latent heat fluxes to the 

variations in wind speed are expected to change with the mean background temperature 

[DiLorenzo et al. 2015, Vimont et al. 2009]. 3). Finally, variations in “noisiness” in the 
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extratropical atmosphere directly impact the North Pacific Oscillation and are sensitive to 

variations in the mean atmospheric circulation [Chiang et al. 2009, Chiang et al. 2010]. To 

investigate the mean state’s influence on the PMM, I identify the characteristic conditions that 

accompany periods of extreme PMM variance. There is no reason to expect a clear background 

pattern of variability, but the existence of a pattern might help address the mechanisms 

responsible for altering the variance of the Pacific Meridional Mode.  

 A least squares linear regression of relevant climate fields is calculated on the thirty year 

moving standard deviation of the Pacific Meridional Mode (MAM) index. Each of these moving 

standard deviation time series consists of 1156 model years from each of the 12 “All forcing” 

ensemble members.  A consistent pattern of variability emerges in each ensemble member 

(Figure 3.4). Additionally, when creating a composite of the 20% most extreme events highly 

similar patterns in the climate fields (see the Appendix B.). Periods of high variance are 

characterized by anomalously cool North Pacific sea surface temperatures (of about 0.2q Celsius 

for 1 standard deviation) and cooler warm pool region, while the eastern equatorial Pacific and 

Kuroshio region shows a slight warming tendency. The surface wind field and precipitation 

response are also consistent with a weaker Walker circulation during periods of higher variance, 

while lower PMM variance tends to be characterized by a strengthened Walker Cell and warmer 

North Pacific. The precipitation response during periods of high PMM variance also features a 

contracted, southward shifted ITCZ. The same analysis is performed with Pacific mixed layer 

depth and results in a consistent pattern in the background state associated with PMM variance; 

high variance is associated with a deepening of the western Pacific and far eastern Pacific mixed 

layer depth and shoaling of central equatorial mixed layer depth, with shoaled flanks extending 
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eastward in the extratropics (Figure 3.4). The PMM variance pattern is a robust feature in CESM, 

regardless of forcing experiment.  

 

Figure 3.4. Least squares linear regression of the following DJF fields on the 30-year 
moving standard deviation of the PMM index from year 850 to 2006 in each of the twelve 
model ensemble member. The following plots show the median linear regression pattern between all 
12 ensemble members, encompassing 13,872 model years. Stippling indicates sign agreement in 100% of 
ensemble members. Extremely similar patterns are also found when compositing the most extreme 20% 
of years (See Appendix B.). Fields evaluated are (A.) SST and surface wind anomalies, (B.) Precipitation 
anomalies, (C.) Mixed layer depth anomalies, and (D.) 200mb zonal wind anomalies  
 

 
 

There is some agreement with this background pattern associated with the internal 

variability of the Pacific Meridional Mode and the previously hypothesized mechanisms of PMM 

change. Periods of high PMM activity are accompanied by a southward shifted ITCZ and a 
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weaker Walker circulation. Recent work has found that the PMM is particularly sensitive to 

ITCZ shifts in intensity and location (using a simple linear coupled model, [Martinez-Villalobos 

and Vimont 2016]. Other studies have suggested that the location of the ITCZ might inhibit or 

help types of Meridional Modes from occurring [Zhang et al. 2014]. However, the magnitude of 

the meridional shift in ITCZ position in the CESM LME simulations is small enough to preclude 

drawing conclusions of causality.  

Minor variations in the sensitivity of latent heat flux are found in the western tropical 

North Pacific associated with the PMM variance. I calculate this sensitivity of latent heat flux to 

zonal winds, or Wind-Evaporation-Sea-Surface-Temperature Parameter, or “WES” parameter (∝), using a linearized approximation as in Czaja et al. 2002 and Vimont et al. 2009.  

−∝ (𝑦) = 𝜕𝐿𝐻𝜕𝑢 = 𝐿𝑣𝐶𝑒𝜌 (𝑞𝑠𝑎𝑡(𝑇𝑠) − 𝑅𝐻𝑞𝑠𝑎𝑡(𝑇𝑟𝑒𝑓)) 𝑢𝑤 = 𝐿𝐻 𝑢𝑤̅2 

Where LH is latent heat, U is zonal wind, overbar w is wind speed (𝑤̅ = √𝑢2 + 𝑣2 + 𝑤̂2), 𝑤̂ is a 

background wind speed used to account for higher frequency variance,  𝑤̂ = 4m𝑠−1 [Czaja et al. 

2002], and ∝ has units of W s m-3. These variations are small in magnitude, and in regions not 

particularly important for the activation of the Pacific Meridional Mode. In contrast, the change 

in latent heat flux sensitivity to the mean zonal winds expected under RCP8.5 forcing creates a 

far greater magnitude change; roughly a 20% increase in the mean WES feedback parameter 

(Figure 3.5).  
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Figure 3.5. Relationship between WES parameter and the Pacific Meridional Mode. (A.) 
Mean WES feedback parameter field in W s m-3 over the 1950 to 2000 period in all 12 “All Forcing” 
ensemble members. In (B.) The 2080-2100 average under RCP 8.5 forcing are compared to the present 
day mean (1950-2000) with the four available ensemble members (#2,3,8,9). In (C.) The linear regression 
pattern associated with the natural variability of the Pacific Meridional Mode, methodology identical to 
climatological fields in Figure 3.4.  
 

Finally, using a simplified calculation for the strength of the jet stream (200mb zonal 

wind averaged over wind speed between 20qN to 45qN and 110qE to 180qE at 200mb in jet exit 
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region over western Asia, a significant correlation is found between PMM activity and weakness 

of the jet stream, R= -0.45, p<0.01. Such an association is expected on general principles: when 

the jet stream is stronger (westerlies exceed 45 m/s), baroclinic eddy activity diminishes with 

reduced atmospheric noise [Nakamura et al. 2002, Luo et al. 1994]. Thus, when there is a 

stronger jet, eddies are advected away more quickly, causing a suppression of the North Pacific 

Oscillation that ultimately forces the Pacific Meridional Mode [Chiang et al. 2009, Chiang et al. 

2010]. This correlation is apparent in Figure 3.4: the slower the jet stream, the more energetic the 

variance of the Pacific Meridional Mode, and vice versa. Again, as with the other hypothesized 

sources of PMM, the variations in wind speed found in the CESM LME are so small, they cannot 

be prime drivers for PMM behavior.  Thus, while each of the prior hypotheses cannot be 

discounted by the CESM-LME results, no single mechanism can be responsible for the internal 

variability of the Pacific Meridional Mode described here. 

 

3.3.4 Mechanisms driving variance pattern 

 It is difficult to assess the fidelity of the background climatic pattern associated with the 

variance of the model PMM with the instrumental record, because observations are too short. 

We, thus, rely on the CESM-LME to take another approach, asking: Where does this variance 

mode come from? What physical drivers are associated with this background pattern affiliated 

with PMM variance? I take a new approach to identify the processes responsible for maintaining 

the low frequency variability associated with this pattern by separate roles of the potential 

thermodynamic and dynamic mechanisms. Are ocean dynamics fundamental in the pattern of 

variance associated with the PMM, or can such epochs of extreme variance exist from 

atmospheric variability alone? 
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  The CESM-LME control and two unforced control runs from the CESM Large 

Ensemble (using a 1q latitude/longitude version of CAM5, [Kay et al. 2015]) are used to 

discriminate the role of the dynamical and thermodynamic mechanisms. In general, the CESM 

LENS was not meant to model variability over the last millennium; instead, the project sought to 

create a multitude of ensemble members over the industrial era and future projections, including 

a fully coupled controlled experiment and a slab ocean experiment, used here. The variability of 

the PMM and the NPO are assessed in both the fully coupled CESM Last Millennium Ensemble 

Control (1155 years), the fully coupled CESM Large Ensemble Control (1000 years), and the 

CESM Large Ensemble Slab Ocean Control (900 years). 

  By definition, the slab ocean model does not have an SST variable, so in this experiment 

the PMM is calculated using surface temperatures instead of SST; otherwise the treatment is 

identical to the previously described MCA method.  In other experiments, the correlation 

between the surface temperature and sea surface temperature over the PMM region are highly 

correlated. I find consistency between the fully coupled and slab ocean experiments in the 

standard metrics of the PMM. In the slab ocean experiment, the correlation of the wind and SST 

expansion coefficient, or degree of air-sea connectivity, is 0.8675, while both coupled model 

experiments observed values of 0.86 (observations R=0.7). In each simulation, the PMM follows 

NPO variability and experiences maximum variance in March-April-May.  

 In each experiment, the March-April-May portion of the PMM index is normalized to 

have a unit variance and perform multitaper mean spectrum analysis [Thomson1982, Percival 

and Walden 1993, Ghil et al. 2002].  Both the LME and LE coupled ocean model experiments 

have statistically significant PMM variability in the 26-32 year bands at 95% significance (using 

4 tapers, but still significant over a range of 2 to 8 tapers). However, there is no significant 
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multidecadal variability observed in the slab ocean model (Figure 3.6). This result is not 

influenced by the number of tapers. This fundamental difference in behavior of the slab ocean 

model implies that the decadal frequencies observed in the PMM cannot be explained by an 

attenuation of stochastic white noise and ocean thermodynamics alone; some dynamical oceanic 

mechanism is required.  

To further assess the roles of thermodynamical and dynamical mechanisms responsible 

for the low frequency PMM variability, I explore the atmospheric component that forces the 

PMM activity, the North Pacific Oscillation. The North Pacific Oscillation (NPO) is the principal 

driver of PMM variability through modifying the surface wind field in the DJF and imprinting 

the characteristic PMM SST anomaly pattern in the Eastern Tropical North Pacific the following 

MAM through anomalous latent heat fluxes. In the Last Millennium Ensemble, the ensemble 

mean correlation between the PMM (MAM) and preceding NPO (DJF) indices is R=0.52 at 

seasonal resolution in the All-Forcing Ensemble members.  The region where NPO zonal wind 

forcing is most influential on zonal winds is identified, (175E-205W, 15-30N,) and an index 

using the area averaged zonal wind components is created to assess any differences in the actual 

forcing of the PMM. Once again multitaper mean spectrum analysis is performed on the DJF 

NPO’s zonal wind forcing in the three control experiments and find that there is no significant 

difference in the low frequency (>10 years) component (Figure 3.6).  Neither the coupled model 

experiments nor the slab ocean model experiments exhibit statistically significant variability. 

Thus, the statistically significant decadal variability in the coupled models cannot be attributed to 

a low frequency component of atmospheric forcing. As the atmospheric forcing component in 

both the coupled and slab ocean models are similar, the significant decadal variability must be 

due to some feedback process between the atmospheric forcing and equatorial ocean dynamics. 
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Mechanisms for such oceanic feedbacks have been hypothesized, such as rectification of 

interannual variability onto thermocline stratification [Ogata et al. 2013, Rodgers 2004].  

 

Figure 3.6 Assessment of the necessity of ocean dynamics through contrasting experiments 
with and without an interactive ocean. I use the 1. Control from the CESM-Last Millennium 
Ensemble (green, 1156 years), 2. Control from the CESM Large Ensemble (to ensure that there are no 
critical differences when changing our spatial resolution between the LME and LE, blue, 1000 years) and  
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(Figure 3.6 Continued) 
2). A slab ocean model with no ocean dynamics (pink, 999 years).  I use multitaper spectral analysis (4 
tapers) to assess the dominant frequencies in (A.) the Pacific Meridional Mode index and (B.) averaged 
zonal winds in the region most influential on the PMM (In CESM it is U averaged over 15qN to 30qN, 
175q to 205qE, slightly westward of that in the observational record, highlighted in green in Figure 3.1). 
  

3.4 Discussion 

 

3.4.1 Feedbacks within the background state  

 Modifications in the background climate have been hypothesized to alter the variability 

of the Pacific Meridional Mode. The work presented here does not disprove the most prominent 

hypotheses (ITCZ structure, sensitivity of latent heat flux to zonal winds, and North Pacific 

storminess); however, no single process mentioned here appears to dominate the unforced 

internal variation of the model PMM. Still, a background climatological pattern associated with 

the Pacific Meridional Mode variance emerges in the CESM Last Millennium Ensemble. This 

background state is characterized by cooler North Pacific sea surface temperatures, and Weaker 

Walker circulation in the equatorial Pacific during periods of high PMM variance. This 

variability is statistically significant at multidecadal timescales and requires oceanic feedbacks to 

maintain this significance. This oceanic feedback is suspected to be dominated by equatorial 

thermocline variability.  

The equatorial thermocline has a potentially important role in the natural modulation of 

the Pacific Meridional Mode. My analysis has shown that 1. Ocean dynamics are fundamental in 

setting the timescales observed in PMM variability, and 2. robust modulations in the subsurface 

equatorial Pacific occur in association with variations in the amplitude of the Pacific Meridional 

Mode. Thermocline variability has an important role in determining the interdecadal amplitude 

of ENSO [Ogata et al. 2013, Rodgers et al. 2004, Dewitte et al. 2007, Borlace et al. 2013]. 
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During periods of high ENSO variance, a sharpening of the thermocline is observed, which 

translates to a deepening of the western equatorial Pacific thermocline [Ogata et al. 2013]. A 

sharper thermocline increases the sensitivity of surface SST to thermocline displacement, which 

supports a positive feedback between ENSO and tropical Pacific decadal variability.  However, it 

is important to note that the pattern in the CESM mixed layer depth associated with PMM 

variance does not explicitly resemble the canonical ENSO response.  

Previous studies have noted the dynamical ink between the Western North Pacific and the 

North Pacific Oscillation [Linkin and Nigam 2008, Baxter and Nigam 2015, Wang et al. 2012, 

Wang et al. 2014, Hartmann 2015] whereby anomalous convection in the Western Tropical 

North Pacific (WTNP) will generate atmospheric Rossby waves that can influence the NPO 

during the influential winter season (Wang et al. 2014, Furtado et al. 2012].  The southern node 

of the NPO is thought to be highly influenced by tropical wave train activity from the equatorial 

Pacific [Furtado et al. 2012, DiLorenzo et al. 2010]. However, our study suggests that in CESM, 

this tropical atmospheric interaction is not the driving factor maintaining the statistically 

significant decadal variability in the PMM system. While the atmospheric component of the slab 

ocean experiment is statistically indistinguishable from model runs with active ocean dynamics, 

the slab ocean simulations of the PMM do not feature significant decadal variability, implying 

that the source of the significant decadal variability stems from the oceanic feedback. Given the 

high loading in the equatorial Pacific found in the fully coupled experiments; ENSO dynamics 

are likely necessary to maintain this decadal variability.   

These results support prior studies showing distinct, yet necessary roles for both 

subtropical atmospheric noise and equatorial dynamics in maintaining decadal variability 

[DiLorenzo et al. 2015, Okumura et al. 2017]. DiLorenzo et al. 2015 neatly divided the influence 
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of “meridional” and “zonal” modes on decadal variability, noting that the Meridional Mode can 

supply decadal and multidecadal variability to the tropics, while ENSO dynamics are important 

to amplify that variability through global teleconnections. Okumura et al. 2017 further illustrated 

that influences from other regions, particularly the South Pacific, might have an important role in 

mediating interdecadal Pacific variability. This pattern in the background state is associated with 

physical characteristics that makes the PMM more receptive to forcing from the North Pacific 

Oscillation.  

The background state of the Pacific has long been thought to have the potential to 

influence on the amplitude of tropical variability. However, here I illustrate the range of internal 

PMM variability and attempt to show how it may have varied over the last millennium. Previous 

works have hypothesized mechanisms responsible for the low frequency modulation of ENSO 

[Li et al. 2011, Ogata et al. 2013, Chowdary et al. 2012, Rodgers et al. 2004, Meehl et al. 2001].  

Many of these works suggest that ENSO variance is enhanced during periods of decreased zonal 

SST contrast, deeper eastern equatorial Pacific thermocline, and weaker Walker circulation 

[Meehl et al. 2001, Imada and Kimoto 2008, Kirtman and Schopf 1998; Kleeman et al. 1999; 

Barnett et al. 1999; Ogata et al. 2013]. Complimentary to the work presented here, Okumura et 

al. 2017 found that both ENSO and extratropical variability are important in setting prominent 

decadal variability in CCSM4. The pattern associated with the interdecadal amplitude 

modulation of ENSO in CCSM4 resembles the PMM variance pattern in CESM-LME.   

 

3.4.2 Interdecadal amplitude modulation of PMM and ENSO 

The Pacific Meridional Mode is distinct from ENSO, but modulation of PMM behavior 

nevertheless may have important consequences for ENSO (Figure 3.2D). This work connects the 
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variance of the NPO, PMM, and Niño 3 in the CESM LME, showing that variations in the PMM 

are an influential means by which ENSO responds to forced change, thereby connecting ENSO 

variability to nonlocal stochastic variability. This result is supported by Chiang et al. 2009, 2010, 

which showed that a dampening of ENSO during the mid-Holocene could be attributed to 

weakened PMM variability, potentially due to a stronger jet stream, minimizing atmospheric 

noise through the mid-winter suppression mechanism [Nakamura et al. 1992]. An outstanding 

question is if the PMM’s ability to influence decadal variability and ENSO has varied throughout 

time, independent of changes in the variance of the PMM. 

While the instrumental record is too short to directly compare observations with these 

model based results, there is evidence in the observational record that central Pacific El Niño 

events, dynamically linked to the PMM, become more prevalent during colder North Pacific 

conditions [Xiang et al. 2011, McPhaden 2010, Chung and Li 2013, Choi et al. 2011].  

McPhaden [2010] pointed out that the central equatorial Pacific El Niño events were becoming 

more prevalent during a period with a cooler, negative Pacific Decadal Oscillation phase, in 

contrast to the prevailing theories suggesting that Central Pacific El Niño events were becoming 

more powerful due to the anthropogenic warming. Further studies cited mechanisms of zonal 

advective feedback, thermocline feedback, and mean suppressed convection theory to explain 

this enhancement of Central Pacific El Niño events [Xiang et al. 2011, Chung and Li 2013, Choi 

et al. 2011].  However, it is possible to assess these forced changes though the past in the PMM 

framework. 
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3.4.3 Paleoarchives 

While instrumental records lack the length to capture century-scale changes in the mean 

state, paleoclimate proxies have recorded the variations in the climate system over the last 

millennium. For example, during a period known as the Little Ice Age, years 1400-1850, 

paleoclimate proxies suggest that while mean global temperature may no have varied much 

(IPCC AR4), the Northern Hemispheric surface temperatures were 0.6q-0.8qC cooler [Mann et 

al. 1998, Mann et al. 2009], the ITCZ was displaced southward by as much as 5q [Sachs et al. 

2009] or significantly different in structure [Denniston et al. 2016, and Lechleitner et al. 2017], 

southwestern Pacific salinity increased [Hendy et al. 2002]. The exact cause of these departure 

from “average” is thought to be a combination of intense volcanism and reduced solar forcing 

[Atwood et al. 2017].  It is interesting to note that physically constrained general circulation 

models have a difficult time reproducing the magnitude of the anomalies expressed in 

paleoclimate proxies during this Little Ice Age event. This may be due partially to inaccuracies 

in model physics, and partially due to the interpretation of limited samples the paleoproxy 

record.  However, the comparison between paleoclimate proxies and models allows for a highly 

effective means of constraining past climate dynamics. While it is premature to compare the 

Little Ice Age in the Last Millennium Ensemble to the relevant paleoclimate proxies, I can 

describe some of the expected changes in the mean state. In paleoclimate proxies, there is 

evidence that PMM variability could have responded to subtle changes in the mean state. During 

the Little Ice Age, a period renowned for northern hemispheric cooling [Mann et al. 1998] and 

lower ITCZ [Sachs et al. 2009], heightened decadal variability associated with the PMM has 

been observed [Sanchez et al. 2016]. Other proxies in regions of PMM influence also show 
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heightened decadal variability during the early 19th century [Halfar et al. 2011, Hertzinger et al. 

2011 MacDonald and Case 2005, Griffin and Anchukaitis 2014].  However, it should be noted 

that equatorial upwelling is thought to have been intensified [Druffel et al. 2015], implying a 

stronger Walker Circulation, directly at odds with our implication of Weaker Walker Circulation 

during periods of high PMM activity. Additionally, ENSO reconstructions [Li et al. 2013, Emile-

Geay et al. 2013] do not show an intensification of ENSO variability, or a preponderance for an 

El Niño-like state during this time. The response of the PMM to the Little Ice Age in the CESM 

LME is not assessed because the magnitude of the mean state anomalies in the model are much 

weaker than the evidence suggested by high resolution paleoclimate archives.  

 

3.4.4 Anthropogenic Change and Forced Variability 

In the CESM LME, unforced, internal variability alone is found to modulate the moving 

standard deviation of the PMM by a factor of two. In single ensemble members, this internal 

variability dominates, while forced changes have a less substantial impact on the PMM. Four 

simulations forced by an “All Forcing” scenario were continued through year 2100 with RCP8.5 

greenhouse gas forcing. The RCP8.5 scenarios demonstrate that truly unprecedented change can 

occur. A 33% increase in standard deviation of the PMM relative to the 2006 average by year 

2100 is found, similar to the result found by Liguori and DiLorenzo 2018.  In the RCP 8.5 

scenarios, the correlations between expansion coefficients do not change, implying that no 

increase or decrease in air-sea coupling that accompanies the warming trend. Figure 3.3C shows 

the range of the ensemble members in the All forcing and RCP8.5 forcing scenarios. This forced 

change in PMM variability is distinct from the unforced, internal modulation described in depth 

here. This study also shows that suggests that at the “present” 2006, the variance observed is not 
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outstanding given the context of the last millennium.  Our study also demonstrates that volcanic 

eruptions can influence the PMM, but the link is not extremely robust (Appendix B. Figure B.3).  

 

3.5 Conclusion 

 

I set out to address how the Pacific Meridional Mode may have changed over the last 

millennium. In CESM Last Millennium Ensemble, the PMM has operated in a physical 

framework similar to modern observations. I show that the model PMM has the ability to 

influence ENSO, particularly in the N3 region.  

Our results demonstrate that PMM responds to forced change. Ensemble averages 

produce consistent responses to greenhouse gas forcing and some large volcanic eruptions. 

However, deviations in PMM variability not due to forced changes are the largest source of 

variability over the last millennium and can modify the standard deviation of the PMM by a 

factor of two. Furthermore, projected end-of-21sst century changes under the RCP8.5 pathway are 

larger than for any episode over the last millennium.  

 In the CESM LME, I have found a common pattern associated with the magnitude of the 

variance of the Pacific Meridional Mode. Epochs of high variability are associated with weaker 

Walker Circulation, cooler North Pacific sea surface temperatures, and a more southerly ITCZ. 

Conversely, epochs of low variance have nearly opposite traits. These epochs of high or low 

variance persist for decades, and ocean dynamics appear to be fundamental in setting the 

timescale. However, additional thermodynamic feedbacks between the Western Tropical North 

Pacific sea surface temperatures and the extratropics are likely to be important. 
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 My results reinforce a complexity of previously-proposed hypotheses for the generation 

and persistence of the PMM, instead of invalidating any single hypothesis. Without disentangling 

causality, I have shown the southward ITCZ shift, atmospheric noise in the extratropics, and 

strength of the WES feedback are all positively associated with PMM variability. At the very 

least, the results also allow us to interpret and test paleoclimate observations in new light, 

particularly during the Little Age when Northern Hemispheric temperatures are thought to have 

been cooler, the ITCZ thought to have been shifted further south. This work also opens new 

questions: How does the unforced “variance mode” actually enhance the PMM? Is the 

relationship between ENSO and the Pacific Meridional Mode constant? What factors are most 

important?  
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Abstract 

Limited observations from diverse coral reef systems highlight uncertainties in the 

relative importance of various small scale physical oceanographic, reef, and organismal 

processes that contribute to coral health. Here I present observations of skeletal carbon chemistry 

tracers in a network of Porites corals from Palmyra Atoll, a virtually pristine location in the 

central equatorial Pacific. The chemical and isotopic analysis of the coral skeletons spanning the 

growth years 2014-2017 overlaps with high resolution in situ observations from sensor packages 

immediately adjacent to the coral colonies sampled. This direct comparison provides a unique 

opportunity to test the fidelity of these proxies in different reef environments while also 

capturing the response to a large El Nino event. The coral records suggest differential ability to 

modify internal calcifying fluid chemistry, and, in particular, large excursions in the boron 

isotopic composition are found in some (but not all) corals coincident with a documented 

bleaching event and maximum temperature stress. The comparison of boron isotopes with other 

geochemical tracers is used to investigate the variables that control the ability of a coral to 

upregulate its internal calcifying fluid. 
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4.1 Introduction 

 

Of all the potential risks associated with progressive acidification of tropical oceans, the 

decreased vitality of the coral reef ecosystems ranks among the most prominent and important. 

Yet, despite the intense interest in, and research effort devoted to the issue, there remains a 

fundamental disconnect between the regional oceanographic understanding of the ocean 

acidification phenomenon and the ultimate projections of the effects on coral calcification. The 

source of this disconnect is at least three-fold: 

  (1) The regional trends in carbon uptake delineated by WOCE surveys and analogous 

international programs (e.g. [Doney et al., 2009; Feely et al., 2004; 2013]) do not necessarily 

capture the various scales of pH variability that actually occur on reefs. While the unidirectional 

anthropogenically forced trends in the mean state are often the principal focus of carbon cycling 

projections, natural variations in seawater carbon parameters in isolated coral reef ecosystems 

typically dwarf the magnitude of expected mean trends for even the most extreme projections of 

tropical open ocean pH (e.g. RCP 8.5 forcing scenario). For example, diurnal pH range from 7.82 

to 8.42 units were observed in a Molaki reef [Yates and Halley 2006], and diurnal variability of 

up to 0.6-0.9 pH units were found in various reef environments around Moorea [Hoffman et al., 

2011, Rivest et al.  2014]. Thus, while open ocean pH may provide an important baseline of the 

pH of seawater in coral reefs, local seawater pH in reef systems--the direct influence on coral 

physiology and vitality—can vary independently of open ocean trends. 

 (2) Secondly, various reef processes on the community scale that dictate the relative 

balance of net calcification, photosynthesis and respiration could effectively filter the primary 

oceanographic forcing in ways that might either exacerbate or mitigate the anthropogenic pH 
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variability. [eg. Cryonak et al. 2018, DeCarlo et al. 2016, Yeakel et al. 2015, DeCarlo et al. 2015,  

Andersson et al., 2013, Shaw et al. 2012, Cryonak et al. 2014, Shamberger et al. 2014, Takeshita 

2016, Nicole Price 2012, Yates and Halley 2006, Blackford and Gilbert 2007, Feely et al.2008, 

Salisbury et al. 2008]. The details of this “filtering” by reef communities are not likely to be 

universal among all reefs, and, therefore, it is difficult to extrapolate the observations from 

experimental aquaria or other mesocosm installations across the tropics.  

(3) Thirdly, on an organismal scale, the possibility exists for varying degrees of 

intracellular regulation of calcifying fluid pH. In order to precipitate calcium carbonate, corals 

must actively modulate their internal chemistry by pumping out H2+ and pumping in Ca2+. Though 

it is well-established that the pH of the coral calcifying fluid is elevated above that of ambient 

seawater, the actual mechanisms of the regulatory process--the ion transport and enzymatic 

pathways, and the internal pH monitor that ultimately dictates the traffic of these pathways (e.g. 

[Barott et al., 2013, 2017])--is largely unknown. This lack of understanding makes it essentially 

impossible to articulate a priori the expected response to pH perturbations across coral taxa. The 

most common assumption is that the coral internal calcifying fluid varies in conjunction with that 

of the surrounding seawater [Trotter et al. 2011, McCulloch e al. 2012, Venn et al. 2013, Holcomb 

et al. 2014], an assumption that is supported by at least some experimental observations [Venn et 

al. 2011].  The implication of this assumption is that if the seawater pH drops, the coral must 

expend more energy to upregulate its internal pH to precipitate aragonite and form its skeleton 

under this higher pH differential [McCulloch et al. 2012]. Since preindustrial times, mean seawater 

pH has dropped ~0.1 units, but it is estimated to drop another 0.1-0.4 pH units by the end of the 

21st century [Bopp et al. 2013]. On the other hand, other evidence suggests that calcifying fluid 
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chemistry can vary uniquely within each coral, and even within calcifying centers in an individual 

coral.  

These considerations all underscore the importance of establishing long-term monitoring 

systems for as many reef systems as possible. As straightforward as this recognition might seem, 

the practical limitations of in situ sensor installations has meant that there are only a few continuous 

in situ instrumental time series of reef pH spanning more than a season (e.g. [Bates et al., 2010]). 

And though the number of in situ installations has increased significantly in recent years [Hoffman 

et al., 2011; Cyronak et al. 2018], observations sufficient for comprehensive assessment of 

interannual-decadal variability from such installations will not be realized for another two decades. 

Furthermore, these sensor data do not, by themselves, speak to the pH variability at the site of coral 

calcification; coral skeletal characteristics must be interrogated for that insight.  

Consequently, there is a clear and immediate role for the alternative approach of looking 

backward with “retrospective” monitoring systems that make use of skeletal tracers archived in 

cores from massive coral colonies. Here I make use of one such experimental platform afforded 

by coral skeletal samples collected from Palmyra Atoll, a central Pacific reef setting that is 

largely free of direct human disturbance, but that lies close to the center of action for the El Niño 

phenomenon.  I investigate the record of carbon chemistry tracers in several massive Porites 

corals at multiple sites that have been the subject of multi-year ecological surveys that included 

instrumentation with in situ pH sensors. Furthermore, the coral skeletal samples capture the 

response of the large 2015/2016 El Nino event that witnessed a globally widespread and locally 

significant bleaching event.  

A particular focus of the study was to characterize the boron concentration and the boron 

isotopic variability in the coral skeletal samples. In seawater, boron has a long residence time, 
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yielding a rather consistent, worldwide boron isotopic composition [Spivak and Edmond 1987, 

Taylor and McLennan 1985]. There are two species of dissolved boron in seawater: boric acid 

and borate, and this speciation varies as a function of pH.  Only the borate species is involved in 

incorporating boron into the carbonate structure [Hemming and Hanson 1992].  The isotopic 

composition of borate, also varies with the pH of seawater [Hemming Hanson 1992, McCulloch 

et al. 2012, Gagnon 2013]. The boron concentration of biogenic carbonate has been used to infer 

the carbonate ion concentration of seawater or of the calcifying fluid [McCulloch et al. 2017, Yu 

and Elderfield 2007, Rae et al. 2011]. Boron isotopes offer a favorable signal to noise ratio as 

measurement reproducibility is roughly 0.02 pH units.  A number of laboratory studies have 

verified a relationship between boron isotopes in corals and seawater [Honisch et al. 2004, 

Reynaud et al. 2004], and there are a few publications using boron isotopes in corals to construct 

a long climate record in a paleoclimate context [Pelejero et al. 2005, Wei et al. 2009, Shinjo et al. 

2013]. However, the laboratory experiments lack many of the biophysical dynamics of the real 

ocean, while the reconstructions of boron isotopes in fossil corals lack a rigorous comparison to 

contemporaneous instrumental measurements of seawater pH. Here, I take advantage of the 

borate-boric acid system in seawater, by measuring boron isotopes and trace metal 

concentrations in the monitored Palmyra corals. This in situ calibration experiment, across a 

relatively undisturbed reef system and across a large ENSO event, allows us to investigate the 

role of the local environment perturbations and coral physiology in governing not only the pH 

proxy systematics, but also, more generally, coral vitality. 

 

 

 



 89 

4.2 Site Characteristics and Experiment Design 

 

Palmyra Atoll (5.8° N, 162.0° W) lies in the central equatorial Pacific and is a remote, 

essentially uninhabited marine protected area. As a result, the island experiences minimal direct 

human influences in the form of runoff, fishing, and sedimentation. This offers a unique 

environment to study the impacts of climate change on coral reef systems. As such, many 

ecological studies have taken place at Palmyra, using it as a reference for “healthy” coral 

ecosystem [Stevenson et al. 2007, Dinsdale et al., 2008; Sandin et al., 2008, Williams et al. 

2013].  

Palmyra Atoll is also ideally positioned to document the influence of the El Nino 

Southern Oscillation (ENSO) phenomenon. For example, coral skeletal tracers from this site 

have been used to document ENSO’s character over the last millennium [Cobb et al. 2001, Cobb 

et al. 2003]. At Palmyra Atoll, El Nino events are regularly characterized by anomalously warm 

sea surface temperatures, increased rainfall, changes in ocean circulation, a weakening of the 

prevailing trade winds, and occasionally coral bleaching. Globally, the 2015 and 2016 period 

stand out as the two warmest years in the instrumental record; the El Nino event was one of the 

largest documented, and associated with widespread bleaching and coral mortality [Hughes et al. 

2017, Hughes et al. 2018]. 

Four short cores of Porites were collected in October 2016 (in the recovery phase of the 

2015/2016 El Niño event) from three sites off of the western terrace of the atoll using a small, 

hand held pneumatic drill. Coring sites were targeted on the basis of proximity to one of the 

network of Honeywell Durafet®  SeapHOx sensors [Martz et al. 2010, Bresnahan et al. 2014], 

that have been deployed and maintained, beginning in 2009, as part of a long term ecological 
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study (by Jennifer Smith, SIO). These in situ sensors continuously record seawater pH, SST, and 

SSS. The record from these sensors was sampled in 15 minute intervals, though periodic sensor 

failure resulted in discontinuous time series at the various locations.  Coring sites were further 

selected to maximize local differences in site depth, rugosity, and coral cover (see Table 4.1 for 

characteristics of each site, Figure 4.1 for map of coral locations).   

 

Table 4.1 Coring site characteristics. 
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Figure 4.1 Sea surface temperature anomalies in September 2015 from NOAA Optimum 
Interpolation SST product (OISST). The study site, Palmyra Atoll (5.85N, 162.08W) is denoted 
with a black star and individual site locations are found in the bottom plot.  Individual sites are denoted 
with stars; RT10 (blue), RT4 (orange), and FR3 (purple). 
 

Two of the sampled sites are from the western reef terrace, characterized by shallow 

depth (3.8 meters at RT10, 4.7 meters at RT4), high rugosity, and some protection from the open 

ocean. However, there are some notable differences between the RT4 and RT10 sites. The RT10 

site is the most protected, with exceptional water clarity and high coral cover. The RT4 site 

experiences more regular mixing with the inner lagoon and open ocean, with higher amounts of 

surge, occasionally causing cloudy conditions. The third site was in the fore reef, at 13.5 meters 
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depth. This location has very little three-dimensional structure and is regularly subject to strong 

currents, thus promoting vigorous exchange with the open ocean.  

 

4.3 Methods 

 

Corals were collected using a ~1.5 in diameter handheld pneumatic drill under permit 

#12533-16024 from The Nature Conservancy in September/October of 2016. Corals were x-

rayed at UCSD Thornton Hospital to assess the annual banding of high and low skeletal density.  

Cores were then sampled every 1 mm along the primary growth axis and analyzed for δ13C and 

δ18O on the Finnegan MAT 253 at Scripps Institution of Oceanography. ThermoMAT 253 mass 

spectrometer equipped with a Kiel IV carbonate preparation device. Long-term analytical 

reproducibility for δ 18O is 0.08‰ and 0.06‰ for δ13C. Along with the annual density bands, 

these analyses helped to established the coral chronology, as detailed below. Coral powder was 

saved in clean Teflon centrifuge tube at Scripps Institution of Oceanography. 

Boron isotope and trace metal analysis was conducted at the University of St. Andrews 

Stable Isotope and Geochemistry (StaIG lab), in Class-100 metal free clean rooms. Analytical 

techniques follow Foster et al. 2008 (and [Rae et al. 2011, Stewart et al. 2016]). Coral samples 

from the clean centrifuge tubes were weighed for 2.5 to 4mg of sample, then were prepared for 

oxidative cleaning. Oxidative cleaning entailed warm 1% H2O2 (buffered 

in ammonium hydroxide) to remove remaining organic matter. A weak acid leach was then 

applied (0.0005 M HNO3) to remove any re-adsorbed ions. Afterwards, the cleaned samples 

were dissolved in a minimal volume of 0.5M HNO3 before centrifuging and transferring into 

clean vials. 



 93 

Prior to boron isotopic analysis, ~7% of each sample solution was reserved for trace 

elemental analysis using the Agilent Quadrupole ICP-MS. Each aliquot was diluted to have an 

equal concentration of Ca and was bracketed by well-characterized, matrix-matched synthetic 

standard solutions to yield B/Ca, Mg/Ca, Sr/Ca and U/Ca ratios for samples and to assess 

external reproducibility.  This step yielded the trace metal (Li/Ca, B/Ca, Na/Ca, Mg/Ca, Sr/Ca, 

Ba/Ca, U/Ca) data.  

In the remaining sample solutions, boron was separated from the samples’ carbonate 

matrix using 20 μl micro-columns containing Amberlite IRA 743 boron-specific anionic 

exchange resin (Kiss, 1988). Samples are loaded in a 2M sodium acetate–0.5 M acetic acid 

buffer, rinsed with MilliQ water, and collected in 450 μl of 0.5 M HNO3. Column yields, 

checked by isotope dilution, are N95% [Foster, 2008] and the elution tail of every sample is 

checked with an extra acid rinse to ensure no significant amount of sample boron remains. δ11B 

of purified boron samples were measured in triplicate on a Thermo Scientific Neptune multi-

collector (MC)-ICPMS against NIST RM 8301c [Stewart et al. in prep] and JCp-1 [Okai et al. 

2002]. Quality control was monitored by the standard deviation of the triplicate measurements of 

δ11B, by the concentration of boron in the elution tails (ensuring > 99% of sample boron was 

recovered in the sample), and measurements of the blanks and standards.  

 

4.4 Results  

 

The in situ sensor records of SSS and SST document high correlation between sites and, 

at monthly timescales, the records correlate strongly with large gridded SST products (such as 

ARGO drifting floats [Roemmich et al. 2003], NOAA ERSST [Huang et al. 2014], and NOAA 
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OISST [Banzon et al. 2016]). At higher frequencies, the reef terrace sites are characterized by 

significant (+/- 2°C) SST and (+/- 1PSU) SSS variability about the monthly mean, while the fore 

reef site features less variability on diurnal-fortnightly timescales. The similarities among all the 

sites in the monthly mean SST and SSS variability manifest themselves in the coral skeletal 

proxies that are commonly taken as monitors of the physical variables. For example, despite the 

markedly different site locations and local environmental conditions, the coral records have 

virtually identical mean and seasonal-interannual variability in δ18O and Sr/Ca. The high 

apparent correlation of δ18O and Sr/Ca with the observed SST and SSS is used to assign a 

monthly chronology to coral skeletal growth (Figure 4.2). There are limitations to the use of 

Sr/Ca as a strict SST proxy (e.g. [Alpert et al. 2016]), but the strong correlation with instrumental 

observations over the seasonal cycle provides a relatively tight constraint on the chronology 

(with an approximate uncertainty of +/- one month for any given coral record).  
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Figure 4.2 Timeseries of site characteristics. (A.) RT10 Sr/Ca and pseudo coral Sr/Ca 

record (black) using a*OISST + b, where a=-0.22‰ and b= an arbitrary constant.; (B.) OISST 
temperature (black) and temperature at each individual reef; (C.) δ18O between sites and pseudo δ18O 
(black) using a*OISST + b. 
 
 
 

Cores from the three distinct sites were analyzed for boron isotope and trace metal 

composition, resulting in archives spanning two years from RT10, nine months from RT4 and 

eighteen months from the FR3 site (Figure 4.3). Over this interval, the in situ sensors document a 

relatively narrow pH range of 0.1-0.2 units, and although the time series at individual sites is 

discontinuous, there is little agreement among sites. The most continuous of sensor records, the 

Penguin Spit Middle Sensor (Figure 4.3A), documents a decrease in pH during the summer and 

maximum seawater pH in the winter over the 2014-2016 period.  In general, the pH on most 

reefs must be controlled by the balance of net calcification and net respiration [Yeakel et al. 
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2015, Kline et al.2015, DeCarlo et al. 2016]. Thus, the lack of detailed agreement among sites 

must also point to reef-scale heterogeneity in these balances.  

 

  

Figure 4.3 Observations of Palmyra carbonate chemistry.  (A.) Smith Lab SeapHOx 
sensor data from the three coring sites, RT10 (blue), RT4 (purple), and FR3 (orange), as well as another 
more continuous reef terrace site, Penguin Spit Middle (black); data curated by Yui Takeshita, (B.) Coral 
δ11B, thought to be a proxy for extracellular calcifying fluid pH (C.) Coral B/Ca, thought to be a proxy for 
extracellular calcifying fluid carbonate ion concentration and (D.) NOAA Coral Reef Watch Degrees 
Heating Weeks bleaching index.  
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4.4.1 Boron chemistry 

Despite the narrow range of sensor pH variability, the coral δ11B records display 

considerable variability, both within a single site and in the mean composition between sites. In 

the mean, the δ11B values of RT10 are significantly higher (~1.4 ‰) than those of RT4 and FR3.  

With existing calibrations of coral δ11B to pH, an offset of 1.4‰ would imply higher seawater 

pH by ~0.2 units [Hönisch et al., 2004; Holcomb et al., 2014; McCulloch et al., 2012].  Since this 

offset is not observed in the sensor data, the offset towards higher δ11B values in RT10 must be a 

physiological effect, implying different degrees of “upregulation” of calcifying fluid pH in corals 

from the same reef.  Furthermore, the extremes in sensor pH are generally not associated with 

extremes in coral δ11B.  There is a hint of a seasonal cycle in RT10 δ11B, evidenced by 

excursions to ~2‰ lower values (albeit captured with one point) during early fall in each year. 

Excursions of ~2‰ imply a pH decrease of ~0.26 unit, which is approximately the seasonal 

cycle in the sensor data. But more data is required to evaluate the consistency of the annual 

cycle.  

The most prominent decreases in δ11B in the RT4 and FR3 cores occur in conjunction 

with the severe bleaching event of September 2015. Sea surface temperatures around Palmyra 

surpassed a bleaching threshold for an extended amount of time; peaking at 10.6 Degree Heating 

Weeks. As reference, the threshold linked to highest likelihood of coral bleaching is 8 Degree 

Heating weeks. Additionally, each sampled site has photographic evidence of bleaching from a 

field excursion to Palmyra in September of 2015, (photoquad/personal communication, See 

Table 1.). The severe decline in δ11B coeval with the bleaching event at Palmyra is not observed 

in the RT10 site.  
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The concentration of boron in corals is also meaningful, given that it is taken as a 

measure of the carbonate ion concentration of the calcifying fluid (e.g. [McCulloch et al. 2017, 

Yu and Elderfield 2007, Rae et al. 2011]). Absolute boron concentrations were notably separated 

in all cores. RT10 again had the largest offset, with a high mean B/Ca of 419 umol/mol. RT4 and 

FR3 were in a similar range again, with mean B/Ca concentrations of 369 umol/mol and 340 

umol/mon, respectively. Local extremes of B/Ca concentration do not correspond with any δ11B 

extremes within the cores.  

 

4.4.2 Carbon isotope chemistry 

The network of Palmyra cores displays marked offsets in the mean δ13C composition of 

individual cores. Cores with most direct sunlight, RT10 and RT4, have heavier mean δ13C, but 

RT4S and FR3 have lighter, more depleted δ13C values. A decrease in coral skeletal δ13C with 

depth has been observed in many studies and attributed to the difference in the directness of 

sunlight, which is likely the case for the FR3 core (e.g. [Weber et al., 1976; Bosscher, 1992; 

Carriquiry et al., 1994; Grottoli, 1999]). The large offset in RT4 and RT4S is particularly notable 

as both cores were collected from the same coral head, confirming that the observed difference in 

mean skeletal δ13C must be due to metabolic activity caused by photosynthetic activity rather 

than local seawater properties. This offset is in line with conventional ideas of photosynthetic 

fractionation; δ13C is driven to higher values with increased light availability, presumably 

because of increased zooxanthellae photosynthetic activity would sequester more of the 

isotopically light carbon from the available pool for skeletal formation (e.g. [Fairbanks and 

Dodge, 1979], and many others). Interestingly, the mean isotopic composition of the “RT4S” 

core does not have a constant offset from the RT4 top core; at interannual timescales, the carbon 
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isotope composition converges, particularly at year 2003, 2008, and 2012. There are no obvious 

reasons for this convergence.  

Variations in skeletal δ13C composition are dominated by a semi-annual cycle, 

synchronous with the semi-annual seasonal variations in light, regardless of mean δ13C 

composition or coral location. At all sites, heavier δ13C is associated with decreased light 

availability, or increased cloud cover (as described in Fairbanks and Dodge, 1979) is observed in 

the rainy seasons in April/May and October/November during the annual passage of the ITCZ 

(Appendix C., Figure C.1). While all sites experience the same atmospheric cloud conditions, it 

is possible that the enhanced mixing or turbidity within the reef could play a role in this 

seasonality at individual locations.  Increased nutrient supply from physical oceanographic 

forcing can also influence coral calcification by increasing rates of photosynthesis [Grottoli et al. 

2002]. Oceanographic flow around Palmyra could also be influential on this semi-annual signal; 

in particular, buoyancy driven flows from the inner lagoon, waves, and tides have been shown to 

be influential on the Palmyra reefs [Rogers et al. 2016]. 

No clear relationship between δ11B and δ13C is found in the Palmyra cores, despite the 

fact that both tracers should be influenced by the same set of processes. When considering the 

full network of Palmyra records, there is a weak positive correlation between δ11B and δ13C 

values (Figure 4.4A); however, the relationship between the two isotopes within in each 

individual coral core is much more complex (Figure 4.4B-D).  Furthermore, there is no clear 

relationship during the extreme minima in boron isotope concentration (as in Hemming et al. 

1998). The FR3 core is predominantly responsible for the positive relationship between δ11B and 

δ13C, and, to a lesser extent, the positive relationship is found in the RT4 (top) core. In the RT10 

core, no clear trend is found when considering all points; the least squares linear regression slope 
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between δ11B and δ13C is 0.00. However, two distinct trends are observed when identifying the 

points by the season of year using the oxygen isotopic composition (Figure 4.5). A positive slope 

is found during cooler, drier periods, accompanied with a higher oxygen isotopic composition, 

while a no trend to a very weak positive trend is observed during the warmer, wetter periods 

accompanied by a lower oxygen isotopic composition.  This bifurcation in the relationship 

between δ11B and δ13C is loosely supported when considering other previously published coral 

records (Figure 4.5). Further measurements are necessary to determine the validity (and 

statistical significance) of these possible trends. 

 
Figure 4.4 Relationship between δ13C and δ11B in the Palmyra cores, with the linear 

regression slope plotted in yellow. There are less points here than in Figure 5 due to data quality 
control checks. (A.) δ11B vs δ13C for all Palmyra coral records is plotted; (B.) δ11B vs δ13C in the RT4 
(top) core; (C.) δ11B vs δ13C in the RT10 core; δ11B vs δ13C in the FR3 core. 
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Figure 4.5. Potential role of temperature in relationship between δ13C and δ11B.  (A.) RT10 
δ13C and δ11B, as in 4.4C. Colors indicate oxygen isotopic composition of the same samples. (B.) Same as 
4.5A, but using multiple coral records, from this study, Pelejero et al. 2005, and Wei et al. 2009. Cores 
are indicated by the shape of the marker. 
 

4.4.3 Other Tracers 

 The longest record, RT10, is assessed for possible physical drivers influential on the 

observed geochemical variability. I take advantage of the suite of trace metal measurements to 

assess potential physical drivers influential to the RT10 coral (Figure 4.6 of RT10 with time). 

Perhaps the most obvious of physical drivers is the role of sea surface temperature. As previously 

mentioned, the δ11B record in RT10 features prominent minima during maximal SST rise over 

the two years of observation. Sea surface temperature has a pronounced influence on the RT10 

δ18O and Sr/Ca concentration. B/Ca also notably follows the trend of SST (as expected from Hart 

and Cohen 1996 and Sinclair et al. 1998). Surprisingly, Mg/Ca and Li/Mg do not track 

particularly well with SST; Mg/Ca concentrations include some extra variability which 

complicates the SST driven signal. 
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Figure 4.6 The suite of geochemical measurements in RT10 including (bottom to top) SST 
(OISST, grey), δ18O (dark red), Sr/Ca (red), B/Ca (orange), precipitation from CPC-CMAP (grey), Na/Ca 
(dark green), Li/Ca (turquoise), δ13C (light green), Ba/Ca (blue), U/Ca (pale pink), and δ11B (magenta). 
 
 

A strong semiannual cycle is notable in the trace metal data, particularly in the Na/Ca, 

Li/Ca, Ba/Ca. Due to the coherence with δ13C, it is possible that this periodicity reflects a 

biological response to the physical conditions related to the annual tracking of the ITCZ.   

Several trace elemental ratios do not appear to purely respond to any of these physical 

variables. Perhaps the most noticeable is that of U/Ca. U/Ca is interesting for several reasons. It 

is thought to respond to sea surface temperature and carbonate ion concentration ion 
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concentrations in seawater; however, the timeseries of RT10 U/Ca variability seems thoroughly 

independent of SST and other proxies for carbonate ion here.  

Despite uncertainty in the physical mechanisms responsible for all of the trace metal 

variability in the RT10 core, strong relationships in trace metal compositions between all 

collection sites are observed.  These relationships in coral geochemistry are likely the result of 

the local reef environment, coral metabolism, and/or kinetic effects. The mechanisms behind 

trace metal incorporation and differences in biomineralization processes is further investigated in 

the Palmyra corals by comparing the coral records from the three sites, RT10, RT4, FR3, and 

include a fourth core from RT4. This fourth core, RT4S, is distinct as it was drilled into the side 

of the core, perpendicular to the traditional “top to bottom” approach to coring, as represented in 

the traditional RT4 coral record. This core will have experienced the same seawater conditions as 

RT4, but possibly very different vital effects due to differences in the intensity of solar radiation. 

Figure 4.7A highlights the variety of trace element relationships between sites in a “trace 

element matrix,” including a Pearson correlation coefficient between all coral samples.  

Figure 4.7. Top Right: Relationship between trace metals, colors represent core analyzed 
(RT10 (blue), RT4(orange), RT4S(yellow), FR3(purple)), number in upper left is Pearson 
correlation coefficient (N=48).  Relationships between Li/Ca, B/Ca, Na/Ca, Mg/Ca, Sr/Ca, Ba/Ca, 
and U/Ca, δ13C, δ18O, δ11B are investigated. Bottom Left: Theoretical Rayleigh fractionation curve 
compared with raw data for Li/Ca, Na/Ca relationship using partition coefficients as in RoillonBard et al. 
2005 (Lisw  = 25*10-6,Nasw  = 0.459, DNa= 0.000384, DLi= 0.00198). Using established coefficients yield 
large offsets from the data, most noticeable at more enriched trace element concentrations. 
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Four distinct patterns stand out in the tracer-tracer plots, highlighted here. (1.) Some trace 

element relationships feature a linear correlation within each individual coral core, but a 

seemingly small correlation when all cores are plotted together (for example the Li/Ca and B/Ca 

slopes). (2.) In some trace element relationships, there is a significant linear correlation, despite a 

lack of obvious physical mechanism of causing the covariance (Ex. Li/Ca and Na/Ca).  (3.) For 

other trace element relationships, there is no intra-coral linear relationship, but strong inter-coral 

linear trends (Ex. Most elements plotted with U/Ca). (4.) Finally, there are some trace element 

relationships for which individual core values occupy a unique quadrant of the scatter plot, but 

no clear trend is discernible collectively (Ex. Mg/Ca vs B/Ca).  

Between the Palmyra corals, the δ13C composition has strong linear relationship with 

several trace metal variables; U/Ca, Mg/Ca, and Sr/U all exhibit a strongly linear relationship 

(Figure 4.7). This relationship is not observable within a single core, but rather observable when 

assessing multiple cores. The reason for this relationship not presently known. Coral U/Ca is 

thought to be influenced by SST (Min et al. 1995) and carbonate ion concentration [DeCarlo et 

al. 2015, Inoue et al. 2011]. Mg/Ca has been used as an SST proxy in corals [Mitsuguchi et al. 

1996], but it is recognized that there are strong biological controls on Mg incorporation in the 

coral skeleton [Reynaud et al. 2007, Inoue et al. 2007].  In the Palmyra cores, Mg/Ca is not 

purely driven by SST (Figure 4.6). Additionally, Sr/U has gained attention as an SST proxy that 

minimizes the influence of Rayleigh fractionation on coral Sr/Ca composition [DeCarlo et al. 

2016], however this proxy is not purely influenced by SST in the Palmyra corals.  It is perhaps 

enlightening that this relationship would be maintained with δ13C, which is strongly influenced 

by kinetic effects. 
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4.5 Discussion 
 
 
Boron isotopic and trace metal composition were measured in a network of Porites corals 

from multiple monitored reef sites during a period of anomalously high sea surface temperatures 

and pronounced bleaching. Coral boron isotopic composition was found to be independent of 

local seawater pH, but rather dependent upon the pH of the coral’s internal calcifying fluid. This 

work suggests that corals are capable of different kinds of biomineralization processes, 

especially during periods of environmental stress. This work is not the first to suggest that the pH 

of the calcifying fluid does not strictly respond to variations in the pH of seawater [Georgiou et 

al. 2015, Wall et al. 2015, Comeau et al. 2017, McCulloch et al. 2016, Wu et al. 2017]. However, 

this study is the first to document natural δ11B variability at multiple reef sites monitored with 

pH sensors. This work uniquely investigates means in which geochemical records might differ 

between reef systems in response to environmental stressors. 

 

4.5.1 Coral bleaching of 2015 

Over the 2014-2016 analysis period, the coral samples captured the growth and 

deterioration of one of the largest El Nino events, and subsequent global bleaching events. Both 

the NOAA Coral Reef Watch Satellite Virtual Station’s bleaching metrics (Degree Heating 

Weeks and Hotspot Indices) and ecological transect characterization (Adi Khen, in prep) 

document contemporaneous mass bleaching at Palmyra, where bleaching peaked in September 

2015. During this period of widespread documented bleaching, a negative spike in δ11B is 

observed at two of the Palmyra sites; RT4 and FR3 (Figure 4.3). Site surveys during September 

2015 document the RT4 and FR3 sites to have 16% and 20% bleached coral cover, respectively, 
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(Adi Khen, personal communication). The coral geochemistry from the third site, RT10, does not 

document any sharp decline in δ11B at this time.  

To date, no reliable paleo-bleaching proxy has been discovered, but abrupt declines in 

coral boron isotopic composition are thought to be related to coral bleaching. Depletions of 2.2-

3.7‰ were observed in Porites sp. corals during bleaching in Dishon et al. 2015, and depletions 

of up to 5.1‰ were observed in Stylophora pistillata in Nir et al 2014. However, δ11B is not a 

reliable bleaching proxy in corals; Schoepf et al. 2014 demonstrated that coral bleaching is not 

necessarily accompanied by a characteristic drop in δ11B. Furthermore, work by D’Olivo and 

McCulloch et al. 2017 documents a variety of responses of δ11B to coral bleaching, even within 

the same coral.  The study suggested that corals were capable of highly heterogeneous and 

individualized responses to stress.   

Coral bleaching is primarily driven by extreme anomalous sea surface temperatures 

[Glynn, 1993; Brown, 1997; Hoegh-Guldberg, 1999], but other influential variables have been 

noted, as well as differences in sensitivity of individual coral species [Williams et al. 2010].  At 

Palmyra, bleaching susceptibility has been found to primarily respond to mean immediate 

temperature anomalies, and, to a lesser extent turbidity, sand cover, and depth [Williams et al. 

2010]. The relatively stable δ11B concentration at RT10 could possibly be due to its relatively 

protected environment and/or ability to maintain a much higher δ11B of calcifying fluid.  

 

4.5.2 Paired carbon and boron isotopes 

 Other geochemical clues indicate that the RT10 core could be capable of more 

homeostatic regulation of calcifying fluid chemistry. The RT10 core not only has a less variable, 

higher δ11B concentration, it also has a distinctly higher B/Ca concentration, a proxy for 
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carbonate ion concentration [D’Olivo and McCulloch et al. 2017].  The largest variations in the 

δ11B of the RT10 core seems to be due to a seasonal cycle. This work indicates that this coral 

from the clearer (less turbid) RT10 site has more control over its internal calcifying fluid 

chemistry.  If this is the case, this implies that coral geochemistry could be used to assess the 

health and resilience of individual colonies. 

Another proxy commonly used when assessing the influences on the coral calcification 

process is carbon isotopes.  The interpretation of carbon isotopes in tropical, zooxanthellae 

bearing corals is notoriously complex as the calcification process is subject to both physical and 

biological interactions. However, the relationship between δ13C and other tracers may help 

illuminate the mechanisms behind the coral calcification process.  Skeletal carbon isotopic 

composition within the coral can reflect metabolic and diffusive carbon incorporation processes 

such as a direct leak from seawater activity of an ion transporter, or coral feeding. Skeletal δ13C 

has been thought to be influenced the δ13C of the ambient seawater [Swart et al. 2005], δ13C of 

metabolic CO2 via zooxanthellae photosynthesis [Dodge and Fairbanks 1979, Erez et al. 1978] 

or food source [Grottoli et al. 2002], SST (ex. [Zhang et al. 1995]), non-equilibrium fractionation 

[McConnaughey (1989a, 2003)], and calcification site pH [Adkins et al. 2003].   

The RT10 coral maintains distinction amongst the network of Palmyra corals when 

considering carbon isotopic composition. The mean carbon isotopic composition of RT10 is 

higher than the other cores. Additionally, the RT10 coral records a seasonal cycle in δ13C, as do 

the other cores, yet the variability has a much diminished magnitude (Appendix C., Figure C.1). 

Finally, the RT10 core appears to display a distinctly different relationship between δ11B and 

δ13C.  
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Measurements of δ13C in conjunction with measurements of calcifying fluid pH could 

offer valuable insight into the coral calcification process.  Perhaps not surprisingly, the Palmyra 

cores suggest a complicated relationship between δ11B and δ13C. The complexity of this 

relationship is likely due to multiple factors such as 1.) reef processes, 2.) organismal processes, 

3.) kinetic effects.  The likelihood of each of these factors influencing the δ11B and δ13C 

relationship in the Palmyra corals is addressed here. 

At interannual to decadal timescales, seawater pH and seawater δ13C could be influenced 

by variations in bulk seawater chemistry due to variations in local physical oceanography and 

variations in Community Net Ecosystem Production (NEP = gross primary production – 

autotrophic and heterotrophic respiration) and Net Ecosystem Calcification ((NEC = gross 

calcification – gross CaCO3 dissolution) [Fowell et al. 2018, DeCarlo et al. 2017, Yeakel et al. 

2015]. These reef scale processes could influence the skeletal δ13C and δ11B in the Palmyra 

cores, however if such a process was dominant, it would likely result in a similar relationship in 

δ13C and δ11B in all the sampled corals. This is not observed. 

In Porites, positive correlations between δ13C and δ11B have been observed due to coral 

primary productivity [Hemming et al. 1998, Dissard et al. 2012, Reynaud et al. 2004]. According 

to this hypothesis, during periods of enhanced primary productivity and CO2 fixation, δ12C is 

preferentially utilized.  This process leaves behind an enriched δ13C, and high pH, or elevated 

δ11B in the extracellular calcifying fluid. In direct contradiction, other studies have documented 

no relationship between δ13C and δ11B has been found, particularly in situations where δ13C is 

principally driven by variations in the δ13C composition of metabolic CO2 rather than by the 

abundance of metabolic CO2 [Allison and Finch 2012].  Further work has shown that boron 

isotopes did not vary with light intensity or feeding in laboratory experiment [Honisch et al. 
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2004]. The Palmyra corals document both behaviors; RT4 and FR3 are associated with positive 

correlations, while the RT10 core shows no constant correlation between δ13C and δ11B. The 

RT10 samples appear to have two distinct relationships between δ13C and δ11B related to SSTs. 

A high correlation between δ13C and δ11B is observed during higher SSTs, while a weaker 

correlation is found in association with cooler SSTs.  It is unclear if this trend would be 

observable in the FR3 and RT4 cores with additional measurements.  

Kinetic fractionation could also influence trends between δ13C and δ11B [McConneaughy 

et al. 1989a, Allison and Finch 2010, etc], but δ13C and δ18O are uncorrelated in the Palmyra 

corals, suggesting that they do not vary in response to a single factor. This lack of correlation 

suggests that δ13C is not controlled by the photosynthetic fractionation, or fractionation due to 

the relative rate of CO2 hydration and hydroxylation, which would also influence δ18O 

[McConnaughey 1989a, McConnaughey, 2003]). Furthermore, δ13C has no clear relationship 

with the previously validated temperature proxies (eg. Sr/Ca, or δ18O). 

Taken together, the results from the Palmyra cores indicate a complex relationship 

between δ11B and δ13C, dependent on multiple influences.  One of the most intriguing aspects of 

this relationship is distinctly different relationships between δ11B and δ13C by sampling site. The 

difference in the relationship between δ11B and δ13C in the cores might be merely due to the 

limited measurements of the RT4 and FR3 cores, or it could be due to the potentially enhanced 

degree of internal upregulation in the RT10 coral. If the former is correct, this would suggest that 

the relationship between skeletal δ11B and δ13C varies throughout the year, and would be 

apparent with longer records from the RT4 and FR3 cores. This result suggests that the 

relationship between δ11B and δ13C varies in synchrony with temperature, or even perhaps reef 

scale NEP and NEC. Warmer temperatures would be associated with enhanced primary 
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productivity (using δ12C) and CO2 fixation.  If the difference in the relationship between δ11B 

and δ13C is due entirely to the enhanced regulation of the calcifying fluid in the RT10 core, this 

would suggest that corals with less internal upregulation can experience greater variations in the 

abundance of metabolic CO2 within their calcifying fluid.  This could account for different 

relationship between δ11B and δ13C between the different cores.  

 

4.5.3 Environmental clues from aggregated tracers 

Despite differences in reef environments of the sampled sites, the full network of Palmyra 

cores still has many consistencies that can be used to assess environmental change. For example, 

the δ18O in all coral records is still in excellent agreement with SST. Additionally, strong 

correlations between various trace metal concentrations are observed at all sites. Several studies 

have addressed the occurrence of surprisingly high correlations between various trace elements 

and have cited a variety of potential mechanisms as the source of variability [Sinclair et al. 2005, 

Rollion Bard et al. 2015]. A variety of kinetic and metabolic processes may be responsible for 

the strong correlations in the trace metal data; mechanisms include Rayleigh fractionation 

[Cohen et al. 2006, Gagnon et al. 2007], temperature [Sinclair et al. 2005], pH of the calcifying 

fluid [Adkins et al., 2003; Holcomb et al., 2009], and the influence of specific ion pumps vs 

direct seawater transport [Gagnon et al., 2012].  As illustrated in Figure 4.6, many of the trace 

metals express similar variability within the RT10 core.  These results suggest that Rayleigh 

distillation cannot be the cause of variability in the Li/Ca and Na/Ca relationship (Figure 4.7B). 

Additionally, temperature cannot be responsible for such agreement as many of these elements 

have clear biannual cycles, while temperature maintains a well-defined annual cycle. I also 

discard variations in the pH of the calcifying fluid as a potential mechanism as extremes in boron 
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isotope composition are not associated with significant extremes in the trace metal material in all 

corals. The potential role of specific ion pumps or an undescribed mechanism cannot be 

discounted. The mechanism(s) behind these strong correlations and offsets is unknown, but again 

highlights the important role of unique local environmental features on the coral calcification 

process.  

The multi-site approach allows this work to emphasize the importance of spatial 

heterogeneity in small scale environmental features that might otherwise be overlooked in a 

coarsely resolved, global modelling analysis. Despite the close proximity of the Palmyra sites, 

there are important differences at much smaller spatial scales such as propensity for seawater 

turbidity, temperature variability, benthic cover, sedimentation, algae cover, currents, and 

relative protection from external forcing [Williams et al. 2010, Rogers et al. 2016]. These small 

scale features could have profound impacts on coral resilience and that these differences might 

manifest themselves in the geochemistry of the coral skeleton. This work provides a new 

assessment of coral geochemical proxies and their ability to address coral resilience in 

paleoclimate studies.  

This work highlights wide variability in the community response to extreme 

environmental stressors.  Regions that are reasonably well protected might be more resilient in 

the face of extreme events like the 2015-2016 El Nino. Management plans should consider that 

the ecosystem response could be moderated average level of background stressors. Within the 

Palmyra sites, the RT10 coral seemingly had the ability to upregulate internal chemistry over the 

length of the analysis, and did not record a shock associated with the 2015 bleaching event. The 

combination of greenhouse induced warming and progressive acidification of the ocean poses an 
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ominous threat coral reefs, but advances in damage mitigation might be made by understanding 

the factors that give rise to the reduced sensitivity exhibited by the RT10 coral. 
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APPENDIX 
 
 
Appendix A. Supplementary Materials for Chapter 2. Two centuries of 

coherent decadal climate variability across the Pacific North American 

region 

A.1 Introduction  

This appendix contains supplementary information for (1.) a more complete comparison 

with published data (Figure A.1); (2.) the analysis and interpretation of the coral oxygen isotopic 

record (Figure A.2); and (3.) additional regressions of the NADA PDSI anomalies with useful 

indices (Figure A.3); (4.) cross spectral analysis of the paleorecords used in this analysis (Figure 

A.4); (5.) 500mb geopotential height anomalies associated with the NPGO (Figure A.5). 

 

A.2 Known modes of variability  

Hartman 2015 discusses two modes of primarily decadal variability in the Pacific: EOF2 

and EOF3 (using NOAA ERSST v3b SST domains from 30S to 65N, from 1900 to the present).  

EOF3 was dubbed the “North Pacific Mode” in light of its similarity to the mode described in 

Deser et al. 1995. The link between this EOF3 mode and the seasonal footprinting mechanism 

[Vimont et al. 2001, Vimont et al. 2003] was made in contrast to the link between EOF2 and an 

atmospheric bridge-type mechanism [Lau 1996, Alexander et al. 2002].  Most traditional modes 

of Pacific decadal climate variability are described within the confines of 20N to 60N, and thus 

are not explicitly identical to the modes in the Hartman paper. Here, however, EOF3 bears strong 
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similarity to the North Pacific Gyre Oscillation, while EOF2 greatly resembles the Pacific 

Decadal Oscillation.  The NPGO is the oceanic component of the North Pacific Oscillation 

[DiLorenzo et al. 2008, DiLorenzo et al. 2010, Furtado et al. 2012]. The NPGO is defined as the 

second most dominant mode of sea surface height in the North Pacific, and physically represents 

the strengthening and weakening of the subtropical gyre ([DiLorenzo et al. 2008], Figure A.1A). 

The NPGO is very important for ecosystem function as this mode best explains salinity and 

nutrient variability along the eastern Pacific [DiLorenzo et al. 2009]. While the relative power of 

the NPGO is less than the Pacific Decadal Oscillation (PDO), the NPGO has been strengthening 

in the last several decades to the oscillation’s relationship with central Pacific warming events 

[DiLorenzo et al. 2008, DiLorenzo et al. 2010]. Figure A.1A shows the spatial representation of 

the Hartman EOF3 (directly comparable with the spatial expression of the NPGO in Figure 1), 

Figure 1B compares the timeseries of the NPGO and the principal component of EOF 3. The 

strong similarities in the spatial representation, and timeseries coherence suggest that these 

different indices represent the different faces (SSH and SST) of the same physical oscillation.  
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Figure A.1 Relationship between NPGO, Clarion coral δ18O, and Hartmann 2015 index. 
(A.) Linear regression of monthly mean SST anomalies (ERSST v3b) with the 1900-present 
principal component of EOF3 of Pacific sea surface temperatures, from 20S to 60N, as described 
by Hartmann 2015; locations of Palmyra and Clarion are indicated with a black circle. 
(B.) Time series from 1950-2013 of the normalized principal component of EOF (blue) with 
normalized Clarion coral δ18O (black) and NPGO index (green) 
 

A.3 Interpreting the Clarion coral oxygen isotopic composition 

In corals, the isotopic fractionation of oxygen reflects a linear combination of sea surface 

temperatures and the oxygen isotopic composition of seawater (δ 18Osw, representing local 

precipitation- evaporation, which relates directly to salinity).  This combination can be utilized as 

a proxy for sea surface height, making Clarion Island a particularly effective region to 

reconstruct North Pacific Gyre Oscillation dynamics (Figure A.2). The relationship between 

temperature, salinity, and oxygen isotopes can be written as: 

∆δ18Ocoral=a1∆SST+a2∆SSS+ noise     (1) 
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Using a1=-0.22**‰/°C, a2=0.44‰/PSU, typical values for Porites genus corals in the 

Northeastern Pacific [Evans et al. 2000, Lough 2004, Legrande and Schmidt 2006, Thompson et 

al. 2011, Brown et al. 2006]. The relative role of sea surface temperature and salinity in the coral 

δ18O can be estimated with a known SST or SSS variable. SST measurements are fairly 

ubiquitous throughout the latter half of the twentieth century, although large, gridded products 

may differ from micro-scale reef variability possibly recorded in the coral skeleton. Thus, 

another coral derived geochemical tool at our disposal is the ratio of strontium to calcium (Sr/Ca) 

in the coral skeleton; this ratio corresponds linearly with ambient sea surface temperature. The 

exact magnitude of the relationship is found by linearly regressing the Sr/Ca signal with known 

SST. The relationship between previously analyzed Sr/Ca variability (by JDC and JAV) and SST 

was found using least squares linear regression to be (Sr/Ca= -0.0295(SSTA) + 9.19, R= -0.63 on 

using annual timescales anomalies from 1900-1998; slightly improved relative to the relationship 

at seasonal timescales (Sr/Ca=-.024*SSTA+ 9.19, R=-0.43) using ERSSTv3b data from 1900- 

1998 with the annual cycle removed.  The Kaplan and Hadley products provided similar results. 

While the Sr/Ca- SST regression coefficient is less than a typical Porites (0.04-0.08 mmol/mol 

per 1°C, [Gagan et al. 2012]); this could be due to the slow 4-6mm/year growth rate of the 

Clarion coral.  Converting SST to δ18O on annual timescales from 1900-1998 yields the 

following relationship: δ18O = SSTA*-0.22-4.1, R=-0.5423.  Gagan et al. 2012 ascribe standard 

regression coefficients for Porites corals of SST-Sr/Ca:-0.084 mmol/mol per 1°C, and for SST- 

δ18O: -0.23 ‰ per 1°C; this difference suggests that our temperature conversions might amplify 

the expected role of temperature on the coral geochemistry. 

The pseudo-coral analysis is limited by complicated oceanic dynamics and a lack of 

continuous salinity records from this region. Kessler 2006, Figure 5b highlights the regions 
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where the interconnections between the prevailing patterns of oceanic circulation remain 

unknown, including the termination of the California Current System.  Advection of salinity 

anomalies from the California Current System, Gulf of California, or the inner gyre all have the 

potential to alter salinity in the Clarion region [Roden 1972]. Additionally, alterations in 

precipitation-evaporation, likely due to shifts in the ITCZ, or changes in upwelling can also have 

a strong imprint on the salinity of waters surrounding the Revillagigedos Archipelago (Roden 

1972). Long, continuous salinity datasets are sparse in the Eastern Tropical North Pacific; data 

products from the NASA Aquarius satellite, or the ARGO surface drifters [Roemmich et al. 

2011] are still too brief to capture decadal variations prior to the mid 2000s. Other reanalysis 

products, such as SODA[Carton and Giese 2008], or Delcroix [Delcroix et al. 2011] suffer from 

sparse sampling. Regional Ocean Model (ROMs) hindcasts are used in many of the papers 

describing the effects of the NPGO, yet this analysis is limited to the North Pacific and does not 

extend into the tropics, or even the Revillagigedos Island region. Figure A.2 illustrates the 

difficulties in using instrumental data from this region: while there is good instrumental 

agreement of temperature variability (Figure A. 2A, poor instrumental salinity agreement (Figure  

A.2B) creates large uncertainties when creating a pseudocoral record using Equation 1 (Figure  

A.2C). 

Because of the complications with the salinity measurements in the period overlapping 

the coral geochemical record, I rely on the Sr/Ca measurements and the estimated influence of 

temperature on oxygen isotopes to interpret the variability of the oxygen isotopes of seawater.  I 

transform both temperature indicators (both the coral Sr/Ca and NOAA’s Extended 

Reconstruction SST Version 3b) into a pseudo-coral δ18O record to show the δ18O variability 

expected if the values depended only on sea surface temperature.  
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 Figure A.2D scales all temperature metrics to an expected oxygen isotopic anomaly.  The 

figure shows that while the true oxygen isotopic signal from Clarion Island coral displays strong 

decadal variability, the expected influence of temperature on oxygen isotopes provides weak 

decadal variability, though still in phase with the observed oxygen isotopic signal.  The strong 

decadal variability seen in the coral record is interpreted to be strongly influenced by changes in 

the δ18O of seawater. When using the standard regression coefficients from Gagan et al. 2012, 

the estimated influence of salinity at decadal timescales is further amplified. This interpretation 

is reasonable as the North Pacific Gyre Oscillation is the dominant control over salinity 

variations in the California Current System on decadal timescales ([DiLorenzo et al. 2008, 

Chhak et al. 2009, DiLorenzo et al. 2009], roughly +/-0.2 PSU).  
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Figure A.2 Forward modeling of Clarion coral δ18O. 
Clarion location temperature indices converted to expected oxygen isotopic anomalies where positive 
values indicate cooler, drier/more saline conditions, while lower values indicate warmer, wetter/fresher 
conditions. (A.) Clarion location combined temperature and salinity indices converted to expected oxygen 
isotopic anomalies where positive values indicate cooler, drier/more saline conditions, while lower values 
indicate warmer, wetter/fresher conditions. Using equation and the regression coefficients of: ∆δ18Ocoral 
=0.22 δ18O /C *SST+ 0.44 δ18O /PSU *SSS for monthly anomalies. Clarion coral δ18O (black), NOAA’s 
ERSST v3b and SODA SSS (E-S, turquoise), NOAA’s ERSST v3b and Delcroix SSS (E-D, green, the 
Delcroix salinity reconstruction was filtered for periods with at least 40% confidence in the observations), 
NOAA’s ERSST v3b and ARGO SSS (E-A, red), ARGO SST and ARGO SSS (A-A, magenta). (B.) 
Annual anomalies of Clarion coral δ18O (black) and expected anomalies derived from available SST and 
SSS products. from ERSST v3b(blue) multiplied by the regression coefficient of -0.22 δ18O /C (C.) 
Clarion location gridbox’s salinity timeseries, monthly means removed. SODA (turquoise), 
Delcroix(green), ARGO SSS (magenta). (D.) Seasonal anomalies of Clarion coral δ18O (black) and coral 
Sr/Ca (blue) multiplied by the regression coefficient of -0.22 δ18O /C *-0.0295 C/Sr/Ca. (E.) Clarion coral 
δ18O (black) and estimated coral δ18O from SST(turquoise, SST from ERSST v3b(blue) multiplied by the 
regression coefficient of -0.22 δ18O /C) and Sr/Ca (blue) with an eight year lowpass filter. Note the actual 
coral oxygen isotopic record has much larger magnitude decadal variation than expected from sea surface 
temperatures alone.  
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A.4 North American Drought Atlas: proxy time series comparisons 

Figure A.3A shows the regression the NADA PDSI [Cook et al. 1999, Cook et al. 2004] with the 

MacDonald Case Index [MacDonald Case 2005] over the years 1800-2005.  Stippling indicates a 

95% statistical significance using a student’s two-sided t-test accounting for autocorrelation by 

changing the number of effective degrees of freedom [Bretherton et al. 1999] and multiple 

hypothesis testing through a control using the False Discovery Rate [Wilks 2016]. Figure A.3B 

shows the regression the NADA PDSI with the NPGO index from 1950-2005.   

 

 

Figure A.3 Linear regression of the NADA- PDSI data (Cook et al. 1999, Cook et al. 2004). 
Regression of the NADA- PDSI data with (A.) Annual anomalies of the NPGO index (1950-2006) 
(negative NPGO, so that dry-warm conditions (red) are associated with warm sea surface temperatures in 
the eastern tropical north Pacific).  Stippling indicates significance at 95% using a two-sided student’s t-
test. Annual anomalies were calculated over the May-April ENSO year. (B.) Griffin and Anchukaitis tree 
ring series (1800-1996) (1790-1990) monitoring PDSI in south central California. 
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Figure A.4 Squared wavelet coherence between the standardized paleo timeseries, as in 
Grinstead et al. 2004. The thick black line denotes a 5% significance level against red noise. The 
relative phase relationship is shown in arrows (in-phase points right, anti-phase left, and Clarion leading 
the series by 90 degrees pointing up). (A.) Clarion coral δ18O and MacDonald-Case Pacific Decadal 
Variability reconstruction over years 1820-1998, antiphased where significant. (B.) Clarion coral δ18O 
and Palmyra coral δ18O over years 1886-1998, in phase where significant. (C.) Clarion coral δ18O and 
Griffin Anchukaitis NADA PDSI compilation over years 1820-1998, antiphased where significant. (D.) 
Multi-taper coherence estimate using eight windows in the Matlab routine of Peter Huybers 
(http://www.people.fas.harvard.edu/~phuybers/Mfiles/). Dashed line shows 95% confidence interval 
highlighting the coherence at 10-17 years band throughout the length of the Clarion coral δ18O record.  
The analysis highlights the coherency found throughout the last two centuries in the 9-26 year band. In 
both tree ring reconstructions, a statistically significant relationship is found with Clarion Island prior to 
1860. 
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Figure A.5 Regression of NDJFM field of 500mb geopotential height (NCEP NCAR 
Reanalysis (S20)) with negative NDJFM NPGO Index.  
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APPENDIX 
 
 
Appendix B. Supplementary Materials for Chapter 3. Pacific Meridional 
Mode over the last millennium 

B.1 Introduction  

 This appendix contains supplementary information for (1.) An evaluation of the role of 

the Samalas eruption on the average moving standard deviation of the Pacific Meridional Mode 

(Figure B.1); (2.) composites of the extremes in the Pacific Meridional Mode variance (Figure 

B.1); (3.) an evaluation of the diversity in the response to volcanic eruptions within single 

ensemble members (Figure B.3). 
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Figure B.1 Evaluation of 30 year moving standard deviation of PMM index (using the SST 
expansion coefficient) over the Samalas Volcanic eruption. Figure (A.) shows that when the 
three eruption response years (1261-1263) are replaced with random values within one sigma of the mean, 
there is no notable increase in variance during the 1230 to 1290 period. (B.), same as A, but calculated 
using all years highlights that the Samalas Volcanic eruption of 1258 creates an extremely short-lived 
anomaly that overwhelms the 30 year moving standard deviation methodology.  
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Figure B.2 We composite the highest 10% and lowest 10% of PMM variance years in each 
of the 12 “All Forcing” ensemble members (12 ensemble members of 1156 years. Similar and 
physically consistent patterns emerge between this and the linear regression approach in Figure 3.4. It 
should also be noted that the middle 80% of events from the composites average out to roughly zero 
anomaly. (A.) SST and wind vector composites (B.) Precipitation composites (C.) Mixed layer depth 
composites. (D.) 200mb zonal wind composites. 
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Figure B.3. Illustration of the diversity within ensemble members in response to volcanic 
eruptions. (A). The first portion features the timeseries of the 30 year moving standard deviation of the 
control run (black, single ensemble member), the all forcing experiment (blue, 12 ensemble members), 
the volcanic forcing only experiments (green, 5 ensemble members), and the all forcing experiment, 
excluding the 3 years of extreme variance post Samalas eruption (orange, 12 ensemble members) . The Y 
axis of this plot is slightly different from Figure 3. To convert the previous plots into this scale, merely 
subtract 1 and multiply by 100% to get a change in variance relative to the control. (B). The middle plot 
shows the relative increase or decrease in variance (relative to the control run) in each ensemble member. 
18 Ensemble members are shown here; the Control at the top, the 12 All Forcing experiments, and 5 
volcanic- forcing only experiments. (C). The bottom plot shows the volcanic eruptions used in this model 
from the Gao 2008 study. With the exception of the enormous Samalas eruption, no consistent PMM 
response to volcanoes is observed in the LME. 
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APPENDIX 

 
 
Appendix C. Supplementary Materials for Chapter 4. Constraining 

paleo carbonate chemistry: new insights from δ11B and B/Ca 

measurements in monitored corals from Palmyra Atoll 

 
 

C.1 Introduction  

This appendix contains supplementary information for 1.) the seasonality of carbon 

isotopic composition and precipitation at Palmyra (Figure C.1). 
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Figure C.1 Seasonality of carbon isotopic composition and precipitation. (A). precipitation 
(from CPC CMAP, in mm/day) carbon isotope variability and in (B). carbon isotopes using the annual 
average calculated over the length of each respective record. Colors represent core analyzed (RT10 (blue), 
RT4(orange), RT4S(yellow), FR3(purple)). (C). RT10 is plotted with a different Y axis to better observe 
the seasonal cycle.  
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APPENDIX 
 
 

Appendix D. Coral collection and analysis 

 

Coral Collection 

Porites cores were collected using SCUBA and a hand-held, reversible pneumatic drill 

(Ingersoll-Rand 7803RA) following specifications from Dr. Jessica Carilli. Two different drilling 

configurations were employed throughout this dissertation: 1) a medium-sized drill (2.25in 

diameter, 6ft length), powered off of an air compressor and 2). a smaller (1.5 in diameter drill, 14 

in length) powered off of scuba tanks. 

Prior to each use, the coral drill was cleaned, and the drill bit was sterilized with a 10% 

bleach solution, and tested for mechanical problems before loading into the boat. Upon arrival 

the dive site, the dive team would identify both a sizeable Porites lobata and a safe place to store 

the equipment during the drilling process. In general, cores were collected by a single dive buddy 

team, using a handheld pneumatic drill. The drilling setup was compact enough to be able to fit 

all equipment into a single dive bag, plus a scuba tank (with a weight belt). The drill setup would 

be handed down from the boat to the dive team and then carefully placed in the identified spot to 

not disturb any of the surrounding coral. Short cores required roughly 30-45 minutes to drill (~1-

2 tanks of air), but the longer cores could take several hours.  In all but a single case, cores were 

drilled vertically to sample along the maximum growth axis. The RT4S core is the exception. In 

this instance, the core was drilled horizontally, 90 degrees off of normal, to assess vital effects. 

All core holes were filled in with a nontoxic marine epoxy (Aquamend) to prevent damage 
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via infiltration by boring organisms and easily facilitate regrowth on the coral head.  All 

equipment and samples were carefully returned to the boat.  

After collection, coral samples were air dried and packed away to prepare for laboratory 

analysis once back in California.  In Scripps Institution of Oceanography, the cores were slabbed 

using a doubled bladed table saw, or a hand saw (depending on the diameter of the coral). Cores 

were cleaned in de-ionized water and air-dried. Afterwards, the flat coral slabs were subject to 

X-ray scans at the Thornton Hospital and UV scans through the Avaatech X-Ray Flourescence at 

the Deep Sea Drilling lab’s x-ray facility.  

 

Coral analysis  

 

The δ18O and δ13C stable isotopes of the coral carbonate samples were analyzed in the 

Charles lab at Scripps Institution of Oceanography. Roughly 0.4-0.7mg of carbonate powder was 

collected along the coral’s primary growth axis using a microdrill press for stable isotope (δ18O 

and δ13C ) analysis.  Samples were run on a Finnegan MAT253 gas source mass spectrometer 

with a Kiel IV carbonate device. Sample δ18O and δ13C are reported in delta notation, a standard 

format used to document the isotopic composition of a substance. Delta notation uses units of 

permil (‰) referenced against an international standard, here the Vienna Peedee belemnite 

standard(VPDB): 

𝛿 𝑋 = ( (𝑅𝑥)𝑠𝑎𝑚𝑝𝑙𝑒(𝑅𝑥)𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 − 1) ∗ 1000𝐻  

where X is the element of interest, the superscript H refers to the mass of the heavy isotope and 

RX is the ratio of the heavy to light isotopes in either the sample or standard such that:  
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𝑅𝑥 = 𝑋𝐻𝑋𝐿  

 where L refers to “light” and H “heavy. As an example using δ18O:  

 

 

Samples were run for every millimeter down the primary growth axis. The data presented in 

Appendices E-I has been fit to a seasonal or monthly cycle using linear interpolation.  
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APPENDIX 
 
 
Appendix E. Tabulated Clarion δ18O isotopic data 
 
Metadata for Clarion Island core 
The Porites core was collected at 18.4°N, -114.8°W, 26ft depth in July, 1998 by Dr. Jose 
Carriquiry. The record spans one hundred seventy-eight years.  Data can also be found online at 
https://www.ncdc.noaa.gov/paleo-search/study/21310 
 
 
Table E.1 Clarion Island δ18O 
 

Year Clarion 
δ18O‰ 

1819.50 -3.70 
1819.75 -3.11 
1820.00 -3.24 
1820.25 -3.60 
1820.50 -4.07 
1820.75 -4.04 
1821.00 -3.93 
1821.25 -4.00 
1821.50 -4.03 
1821.75 -3.73 
1822.00 -3.50 
1822.25 -3.73 
1822.50 -3.80 
1822.75 -3.50 
1823.00 -3.24 
1823.25 -3.14 
1823.50 -3.37 
1823.75 -3.33 
1824.00 -3.25 
1824.25 -3.41 
1824.50 -3.60 
1824.75 -3.56 
1825.00 -3.52 
1825.25 -3.71 
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Year 
Clarion 
δ18O‰ 
(continued) 

1825.50 -3.82 
1825.75 -3.61 
1826.00 -3.62 
1826.25 -4.15 
1826.50 -4.08 
1826.75 -3.68 
1827.00 -3.62 
1827.25 -3.92 
1827.50 -4.01 
1827.75 -3.79 
1828.00 -3.74 
1828.25 -4.26 
1828.50 -4.58 
1828.75 -4.50 
1829.00 -4.23 
1829.25 -4.29 
1829.50 -4.43 
1829.75 -4.27 
1830.00 -3.87 
1830.25 -3.95 
1830.50 -4.56 
1830.75 -4.49 
1831.00 -3.79 
1831.25 -4.21 
1831.50 -4.39 
1831.75 -4.02 
1832.00 -3.84 
1832.25 -4.10 
1832.50 -4.25 
1832.75 -3.94 
1833.00 -3.46 
1833.25 -3.49 
1833.50 -3.70 
1833.75 -3.63 
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Year 
Clarion 
δ18O‰ 
(continued) 

1834.00 -3.49 
1834.25 -3.63 
1834.50 -3.83 
1834.75 -3.45 
1835.00 -3.22 
1835.25 -3.83 
1835.50 -4.33 
1835.75 -4.02 
1836.00 -3.76 
1836.25 -4.07 
1836.50 -4.19 
1836.75 -3.90 
1837.00 -3.90 
1837.25 -4.32 
1837.50 -4.24 
1837.75 -3.88 
1838.00 -3.63 
1838.25 -3.52 
1838.50 -3.81 
1838.75 -3.80 
1839.00 -3.71 
1839.25 -4.03 
1839.50 -4.02 
1839.75 -3.74 
1840.00 -3.37 
1840.25 -3.45 
1840.50 -3.66 
1840.75 -3.62 
1841.00 -3.28 
1841.25 -3.46 
1841.50 -3.70 
1841.75 -3.47 
1842.00 -3.43 
1842.25 -3.56 
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Year 
Clarion 
δ18O‰ 
(continued) 

1842.50 -3.84 
1842.75 -3.82 
1843.00 -3.64 
1843.25 -3.74 
1843.50 -3.95 
1843.75 -3.91 
1844.00 -3.80 
1844.25 -3.89 
1844.50 -4.61 
1844.75 -4.54 
1845.00 -3.83 
1845.25 -3.97 
1845.50 -4.16 
1845.75 -3.65 
1846.00 -3.65 
1846.25 -3.99 
1846.50 -4.74 
1846.75 -4.30 
1847.00 -3.71 
1847.25 -4.18 
1847.50 -4.52 
1847.75 -4.39 
1848.00 -4.35 
1848.25 -4.59 
1848.50 -4.73 
1848.75 -4.55 
1849.00 -4.39 
1849.25 -4.53 
1849.50 -4.58 
1849.75 -4.25 
1850.00 -3.82 
1850.25 -4.11 
1850.50 -4.35 
1850.75 -3.93 
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Year 
Clarion 
δ18O‰ 
(continued) 

1851.00 -3.92 
1851.25 -4.16 
1851.50 -4.31 
1851.75 -4.24 
1852.00 -4.22 
1852.25 -4.40 
1852.50 -4.29 
1852.75 -3.81 
1853.00 -3.68 
1853.25 -3.76 
1853.50 -4.04 
1853.75 -3.61 
1854.00 -3.41 
1854.25 -3.57 
1854.50 -3.65 
1854.75 -3.43 
1855.00 -3.38 
1855.25 -3.79 
1855.50 -4.05 
1855.75 -4.02 
1856.00 -3.97 
1856.25 -4.11 
1856.50 -4.04 
1856.75 -3.62 
1857.00 -3.47 
1857.25 -3.72 
1857.50 -3.94 
1857.75 -3.74 
1858.00 -3.69 
1858.25 -4.20 
1858.50 -3.88 
1858.75 -3.70 
1859.00 -3.54 
1859.25 -3.78 
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Year 
Clarion 
δ18O‰ 
(continued) 

1859.50 -4.03 
1859.75 -3.76 
1860.00 -3.45 
1860.25 -3.96 
1860.50 -4.84 
1860.75 -4.35 
1861.00 -4.12 
1861.25 -4.16 
1861.50 -4.27 
1861.75 -4.14 
1862.00 -4.07 
1862.25 -4.30 
1862.50 -4.32 
1862.75 -3.99 
1863.00 -3.90 
1863.25 -4.16 
1863.50 -4.38 
1863.75 -4.20 
1864.00 -4.25 
1864.25 -4.46 
1864.50 -4.72 
1864.75 -4.23 
1865.00 -4.38 
1865.25 -4.46 
1865.50 -4.63 
1865.75 -4.29 
1866.00 -4.09 
1866.25 -4.33 
1866.50 -4.43 
1866.75 -4.26 
1867.00 -4.14 
1867.25 -4.23 
1867.50 -4.34 
1867.75 -4.03 
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Year 
Clarion 
δ18O‰ 
(continued) 

1868.00 -3.78 
1868.25 -3.83 
1868.50 -3.90 
1868.75 -3.67 
1869.00 -3.71 
1869.25 -4.01 
1869.50 -4.27 
1869.75 -4.38 
1870.00 -4.25 
1870.25 -3.98 
1870.50 -4.08 
1870.75 -4.30 
1871.00 -4.10 
1871.25 -4.08 
1871.50 -4.23 
1871.75 -3.83 
1872.00 -3.77 
1872.25 -4.11 
1872.50 -4.15 
1872.75 -4.05 
1873.00 -3.82 
1873.25 -3.83 
1873.50 -4.01 
1873.75 -3.92 
1874.00 -3.78 
1874.25 -3.89 
1874.50 -4.03 
1874.75 -3.93 
1875.00 -3.73 
1875.25 -3.78 
1875.50 -3.93 
1875.75 -3.84 
1876.00 -3.81 
1876.25 -4.12 
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Year 
Clarion 
δ18O‰ 
(continued) 

1876.50 -4.30 
1876.75 -4.02 
1877.00 -3.74 
1877.25 -3.81 
1877.50 -3.87 
1877.75 -3.64 
1878.00 -3.42 
1878.25 -3.60 
1878.50 -4.03 
1878.75 -4.03 
1879.00 -3.87 
1879.25 -4.06 
1879.50 -4.54 
1879.75 -4.36 
1880.00 -4.02 
1880.25 -4.05 
1880.50 -4.16 
1880.75 -4.08 
1881.00 -4.02 
1881.25 -4.15 
1881.50 -4.11 
1881.75 -3.82 
1882.00 -4.14 
1882.25 -4.54 
1882.50 -4.70 
1882.75 -3.70 
1883.00 -3.46 
1883.25 -4.09 
1883.50 -3.81 
1883.75 -3.46 
1884.00 -3.72 
1884.25 -4.15 
1884.50 -4.22 
1884.75 -4.06 
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Year 
Clarion 
δ18O‰ 
(continued) 

1885.00 -3.89 
1885.25 -4.02 
1885.50 -4.32 
1885.75 -4.27 
1886.00 -3.88 
1886.25 -3.99 
1886.50 -4.28 
1886.75 -4.22 
1887.00 -3.87 
1887.25 -4.10 
1887.50 -4.15 
1887.75 -3.85 
1888.00 -3.74 
1888.25 -3.55 
1888.50 -4.31 
1888.75 -3.84 
1889.00 -3.82 
1889.25 -3.99 
1889.50 -4.30 
1889.75 -4.14 
1890.00 -3.83 
1890.25 -4.36 
1890.50 -4.26 
1890.75 -3.79 
1891.00 -3.97 
1891.25 -4.06 
1891.50 -4.75 
1891.75 -4.13 
1892.00 -3.84 
1892.25 -4.10 
1892.50 -4.41 
1892.75 -3.96 
1893.00 -3.49 
1893.25 -3.67 
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Year 
Clarion 
δ18O‰ 
(continued) 

1893.50 -3.89 
1893.75 -3.72 
1894.00 -3.71 
1894.25 -3.87 
1894.50 -3.91 
1894.75 -3.77 
1895.00 -3.70 
1895.25 -3.97 
1895.50 -4.12 
1895.75 -3.94 
1896.00 -4.15 
1896.25 -4.23 
1896.50 -4.30 
1896.75 -3.75 
1897.00 -3.98 
1897.25 -4.06 
1897.50 -4.38 
1897.75 -4.23 
1898.00 -3.98 
1898.25 -4.10 
1898.50 -4.20 
1898.75 -3.80 
1899.00 -3.76 
1899.25 -4.03 
1899.50 -4.60 
1899.75 -4.35 
1900.00 -4.08 
1900.25 -4.09 
1900.50 -4.07 
1900.75 -3.79 
1901.00 -3.80 
1901.25 -3.95 
1901.50 -4.29 
1901.75 -3.65 
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Year 
Clarion 
δ18O‰ 
(continued) 

1902.00 -3.47 
1902.25 -3.96 
1902.50 -4.06 
1902.75 -3.92 
1903.00 -4.10 
1903.25 -4.21 
1903.50 -4.11 
1903.75 -3.93 
1904.00 -3.49 
1904.25 -3.99 
1904.50 -4.31 
1904.75 -4.24 
1905.00 -4.25 
1905.25 -4.55 
1905.50 -4.49 
1905.75 -4.12 
1906.00 -4.31 
1906.25 -4.45 
1906.50 -4.51 
1906.75 -4.18 
1907.00 -3.90 
1907.25 -4.03 
1907.50 -4.34 
1907.75 -4.15 
1908.00 -4.03 
1908.25 -3.79 
1908.50 -3.79 
1908.75 -4.02 
1909.00 -3.94 
1909.25 -4.05 
1909.50 -4.08 
1909.75 -3.72 
1910.00 -3.48 
1910.25 -3.74 
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Year 
Clarion 
δ18O‰ 
(continued) 

1910.50 -4.02 
1910.75 -3.95 
1911.00 -3.89 
1911.25 -4.20 
1911.50 -4.36 
1911.75 -4.05 
1912.00 -3.78 
1912.25 -3.92 
1912.50 -4.04 
1912.75 -3.82 
1913.00 -3.69 
1913.25 -3.92 
1913.50 -4.03 
1913.75 -3.85 
1914.00 -4.03 
1914.25 -4.11 
1914.50 -4.06 
1914.75 -3.76 
1915.00 -3.88 
1915.25 -3.98 
1915.50 -4.00 
1915.75 -3.87 
1916.00 -3.89 
1916.25 -4.13 
1916.50 -4.24 
1916.75 -3.98 
1917.00 -3.84 
1917.25 -3.86 
1917.50 -4.02 
1917.75 -3.80 
1918.00 -3.90 
1918.25 -4.25 
1918.50 -4.08 
1918.75 -3.93 
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Year 
Clarion 
δ18O‰ 
(continued) 

1919.00 -4.13 
1919.25 -4.43 
1919.50 -4.35 
1919.75 -4.27 
1920.00 -3.94 
1920.25 -4.35 
1920.50 -4.40 
1920.75 -4.02 
1921.00 -3.90 
1921.25 -3.81 
1921.50 -4.43 
1921.75 -4.00 
1922.00 -3.68 
1922.25 -3.88 
1922.50 -3.86 
1922.75 -3.51 
1923.00 -3.36 
1923.25 -3.49 
1923.50 -3.54 
1923.75 -3.34 
1924.00 -3.45 
1924.25 -4.07 
1924.50 -4.17 
1924.75 -3.78 
1925.00 -3.77 
1925.25 -3.92 
1925.50 -4.29 
1925.75 -4.14 
1926.00 -4.13 
1926.25 -4.30 
1926.50 -4.25 
1926.75 -4.00 
1927.00 -3.62 
1927.25 -4.18 
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Year 
Clarion 
δ18O‰ 
(continued) 

1927.50 -4.33 
1927.75 -4.14 
1928.00 -4.07 
1928.25 -4.17 
1928.50 -4.13 
1928.75 -3.89 
1929.00 -3.91 
1929.25 -4.54 
1929.50 -5.10 
1929.75 -4.59 
1930.00 -4.26 
1930.25 -4.28 
1930.50 -4.42 
1930.75 -4.49 
1931.00 -4.39 
1931.25 -4.54 
1931.50 -4.65 
1931.75 -4.44 
1932.00 -3.98 
1932.25 -4.09 
1932.50 -4.53 
1932.75 -4.65 
1933.00 -4.50 
1933.25 -4.38 
1933.50 -4.52 
1933.75 -4.13 
1934.00 -4.43 
1934.25 -4.49 
1934.50 -4.55 
1934.75 -4.38 
1935.00 -4.25 
1935.25 -4.72 
1935.50 -4.80 
1935.75 -4.57 
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Year 
Clarion 
δ18O‰ 
(continued) 

1936.00 -4.40 
1936.25 -4.38 
1936.50 -4.62 
1936.75 -4.14 
1937.00 -4.21 
1937.25 -4.58 
1937.50 -4.91 
1937.75 -4.89 
1938.00 -4.15 
1938.25 -4.44 
1938.50 -4.67 
1938.75 -4.48 
1939.00 -4.61 
1939.25 -5.13 
1939.50 -4.84 
1939.75 -3.87 
1940.00 -3.96 
1940.25 -4.55 
1940.50 -4.66 
1940.75 -4.33 
1941.00 -4.18 
1941.25 -4.20 
1941.50 -4.35 
1941.75 -4.22 
1942.00 -4.08 
1942.25 -4.14 
1942.50 -4.18 
1942.75 -4.09 
1943.00 -4.12 
1943.25 -4.27 
1943.50 -4.26 
1943.75 -3.95 
1944.00 -3.84 
1944.25 -4.34 
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Year 
Clarion 
δ18O‰ 
(continued) 

1944.50 -4.24 
1944.75 -4.09 
1945.00 -3.94 
1945.25 -4.06 
1945.50 -4.18 
1945.75 -3.91 
1946.00 -3.88 
1946.25 -4.10 
1946.50 -4.30 
1946.75 -4.01 
1947.00 -3.70 
1947.25 -4.09 
1947.50 -4.61 
1947.75 -4.10 
1948.00 -4.19 
1948.25 -4.50 
1948.50 -4.82 
1948.75 -4.21 
1949.00 -3.85 
1949.25 -4.16 
1949.50 -4.42 
1949.75 -3.98 
1950.00 -3.72 
1950.25 -3.99 
1950.50 -4.34 
1950.75 -4.25 
1951.00 -4.20 
1951.25 -4.43 
1951.50 -4.60 
1951.75 -4.36 
1952.00 -4.23 
1952.25 -4.51 
1952.50 -4.52 
1952.75 -4.14 
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Year 
Clarion 
δ18O‰ 
(continued) 

1953.00 -4.14 
1953.25 -4.31 
1953.50 -4.25 
1953.75 -3.71 
1954.00 -3.70 
1954.25 -4.00 
1954.50 -4.14 
1954.75 -4.14 
1955.00 -4.04 
1955.25 -3.86 
1955.50 -4.04 
1955.75 -3.95 
1956.00 -4.11 
1956.25 -4.37 
1956.50 -4.35 
1956.75 -4.16 
1957.00 -3.93 
1957.25 -4.17 
1957.50 -4.07 
1957.75 -3.56 
1958.00 -3.79 
1958.25 -4.27 
1958.50 -4.27 
1958.75 -3.87 
1959.00 -3.66 
1959.25 -3.87 
1959.50 -3.92 
1959.75 -3.82 
1960.00 -3.96 
1960.25 -4.16 
1960.50 -4.19 
1960.75 -4.01 
1961.00 -3.89 
1961.25 -4.00 
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Year 
Clarion 
δ18O‰ 
(continued) 

1961.50 -4.12 
1961.75 -4.09 
1962.00 -4.06 
1962.25 -4.10 
1962.50 -4.03 
1962.75 -3.84 
1963.00 -3.84 
1963.25 -4.08 
1963.50 -4.14 
1963.75 -4.08 
1964.00 -3.99 
1964.25 -4.14 
1964.50 -4.33 
1964.75 -4.19 
1965.00 -4.24 
1965.25 -4.45 
1965.50 -4.43 
1965.75 -4.17 
1966.00 -4.21 
1966.25 -4.35 
1966.50 -4.32 
1966.75 -4.21 
1967.00 -4.18 
1967.25 -4.33 
1967.50 -4.43 
1967.75 -4.28 
1968.00 -4.24 
1968.25 -4.40 
1968.50 -4.53 
1968.75 -4.30 
1969.00 -4.04 
1969.25 -4.10 
1969.50 -4.18 
1969.75 -3.98 
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Year 
Clarion 
δ18O‰ 
(continued) 

1970.00 -3.99 
1970.25 -4.15 
1970.50 -4.18 
1970.75 -4.07 
1971.00 -4.02 
1971.25 -4.05 
1971.50 -4.03 
1971.75 -3.89 
1972.00 -3.85 
1972.25 -3.99 
1972.50 -4.00 
1972.75 -3.84 
1973.00 -3.87 
1973.25 -3.96 
1973.50 -3.92 
1973.75 -3.78 
1974.00 -3.76 
1974.25 -3.92 
1974.50 -4.04 
1974.75 -3.89 
1975.00 -3.80 
1975.25 -3.97 
1975.50 -4.19 
1975.75 -4.06 
1976.00 -3.78 
1976.25 -3.78 
1976.50 -3.99 
1976.75 -3.91 
1977.00 -3.70 
1977.25 -3.99 
1977.50 -4.13 
1977.75 -4.01 
1978.00 -3.97 
1978.25 -4.11 
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Year 
Clarion 
δ18O‰ 
(continued) 

1978.50 -4.13 
1978.75 -3.76 
1979.00 -3.51 
1979.25 -3.98 
1979.50 -4.31 
1979.75 -4.14 
1980.00 -4.22 
1980.25 -3.99 
1980.50 -4.28 
1980.75 -4.22 
1981.00 -4.14 
1981.25 -4.37 
1981.50 -4.41 
1981.75 -4.29 
1982.00 -4.19 
1982.25 -4.38 
1982.50 -4.43 
1982.75 -4.23 
1983.00 -4.19 
1983.25 -4.48 
1983.50 -4.78 
1983.75 -4.48 
1984.00 -4.19 
1984.25 -4.31 
1984.50 -4.41 
1984.75 -4.31 
1985.00 -4.27 
1985.25 -4.20 
1985.50 -4.29 
1985.75 -4.29 
1986.00 -4.20 
1986.25 -4.34 
1986.50 -4.58 
1986.75 -4.17 
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Year 
Clarion 
δ18O‰ 
(continued) 

1987.00 -4.15 
1987.25 -4.23 
1987.50 -4.18 
1987.75 -4.24 
1988.00 -4.01 
1988.25 -3.90 
1988.50 -4.05 
1988.75 -4.09 
1989.00 -4.07 
1989.25 -4.11 
1989.50 -4.32 
1989.75 -4.54 
1990.00 -4.38 
1990.25 -4.27 
1990.50 -4.21 
1990.75 -4.21 
1991.00 -4.17 
1991.25 -4.43 
1991.50 -4.54 
1991.75 -4.46 
1992.00 -4.47 
1992.25 -4.62 
1992.50 -4.63 
1992.75 -4.43 
1993.00 -4.39 
1993.25 -4.49 
1993.50 -4.50 
1993.75 -4.34 
1994.00 -4.24 
1994.25 -4.41 
1994.50 -4.55 
1994.75 -4.36 
1995.00 -4.29 
1995.25 -4.39 
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Year 
Clarion 
δ18O‰ 
(continued) 

1995.50 -4.42 
1995.75 -4.24 
1996.00 -4.28 
1996.25 -4.37 
1996.50 -4.43 
1996.75 -4.30 
1997.00 -4.51 
1997.25 -4.65 
1997.50 -4.74 
1997.75 -4.42 
1998.00 -4.08 
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Appendix F. Tabulated Palmyra RT10 δ18O isotopic data 
 
 
Metadata for Palmyra RT10 
The Porites core was collected at 5.89°N, -162.12°W, 18ft depth in September, 2016 by the 
dissertation author. The record spans twenty-one years.  All data will be posted on NOAA 
NCDC after publication. 
Table F.1 Palmyra RT10 δ18O 

Year RT10 
δ18O‰ 

1995.75 -5.00 
1995.83 -4.98 
1995.92 -5.12 
1996.00 -5.01 
1996.08 -5.07 
1996.17 -4.81 
1996.25 -5.20 
1996.33 -5.41 
1996.42 -5.47 
1996.50 -5.31 
1996.58 -5.36 
1996.67 -5.42 
1996.75 -5.35 
1996.83 -5.05 
1996.92 -5.11 
1997.00 -5.12 
1997.08 -5.13 
1997.17 -5.14 
1997.25 -5.25 
1997.33 -5.50 
1997.42 -5.51 
1997.50 -5.57 
1997.58 -5.68 
1997.67 -5.72 
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Year RT10 δ18O‰ 
(continued) 

1997.75 -5.76 
1997.83 -5.69 
1997.92 -5.35 
1998.00 -5.25 
1998.08 -5.32 
1998.17 -5.37 
1998.25 -5.29 
1998.33 -5.24 
1998.42 -5.22 
1998.50 -5.28 
1998.58 -5.41 
1998.67 -5.27 
1998.75 -5.24 
1998.83 -5.23 
1998.92 -5.05 
1999.00 -4.99 
1999.08 -5.04 
1999.17 -5.02 
1999.25 -4.97 
1999.33 -5.04 
1999.42 -5.00 
1999.50 -5.00 
1999.58 -5.05 
1999.67 -5.07 
1999.75 -5.06 
1999.83 -5.03 
1999.92 -4.95 
2000.00 -4.88 
2000.08 -4.82 
2000.17 -4.78 
2000.25 -4.94 
2000.33 -4.86 
2000.42 -4.99 
2000.50 -5.04 
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Year RT10 δ18O‰ 
(continued) 

2000.58 -5.11 
2000.67 -5.09 
2000.75 -5.12 
2000.83 -5.18 
2000.92 -5.20 
2001.00 -5.08 
2001.08 -4.96 
2001.17 -4.96 
2001.25 -4.87 
2001.33 -4.89 
2001.42 -5.03 
2001.50 -5.18 
2001.58 -5.22 
2001.67 -5.31 
2001.75 -5.36 
2001.83 -5.25 
2001.92 -5.19 
2002.00 -5.27 
2002.08 -5.19 
2002.17 -5.08 
2002.25 -5.32 
2002.33 -5.53 
2002.42 -5.64 
2002.50 -5.53 
2002.58 -5.58 
2002.67 -5.64 
2002.75 -5.55 
2002.83 -5.46 
2002.92 -5.40 
2003.00 -5.29 
2003.08 -5.41 
2003.17 -5.40 
2003.25 -5.31 
2003.33 -5.31 
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Year RT10 δ18O‰ 
(continued) 

2003.42 -5.34 
2003.50 -5.49 
2003.58 -5.52 
2003.67 -5.49 
2003.75 -5.58 
2003.83 -5.47 
2003.92 -5.35 
2004.00 -5.28 
2004.08 -5.23 
2004.17 -5.23 
2004.25 -5.20 
2004.33 -5.21 
2004.42 -5.31 
2004.50 -5.39 
2004.58 -5.30 
2004.67 -5.44 
2004.75 -5.61 
2004.83 -5.67 
2004.92 -5.62 
2005.00 -5.55 
2005.08 -5.48 
2005.17 -5.42 
2005.25 -5.35 
2005.33 -5.24 
2005.42 -5.10 
2005.50 -5.11 
2005.58 -5.21 
2005.67 -5.22 
2005.75 -5.30 
2005.83 -5.37 
2005.92 -5.17 
2006.00 -5.16 
2006.08 -5.08 
2006.17 -4.95 
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Year RT10 δ18O‰ 
(continued) 

2006.25 -4.98 
2006.33 -5.07 
2006.42 -5.17 
2006.50 -5.26 
2006.58 -5.36 
2006.67 -5.34 
2006.75 -5.35 
2006.83 -5.42 
2006.92 -5.16 
2007.00 -5.01 
2007.08 -5.02 
2007.17 -4.96 
2007.25 -4.86 
2007.33 -4.83 
2007.42 -4.95 
2007.50 -4.98 
2007.58 -5.07 
2007.67 -5.07 
2007.75 -5.00 
2007.83 -4.90 
2007.92 -4.77 
2008.00 -4.76 
2008.08 -4.80 
2008.17 -4.75 
2008.25 -4.94 
2008.33 -4.95 
2008.42 -4.73 
2008.50 -4.98 
2008.58 -5.15 
2008.67 -5.18 
2008.75 -5.25 
2008.83 -5.34 
2008.92 -5.37 
2009.00 -5.25 
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Year RT10 δ18O‰ 
(continued) 

2009.08 -4.98 
2009.17 -4.77 
2009.25 -4.75 
2009.33 -4.80 
2009.42 -4.85 
2009.50 -4.90 
2009.58 -5.02 
2009.67 -5.16 
2009.75 -5.21 
2009.83 -5.34 
2009.92 -5.41 
2010.00 -5.37 
2010.08 -5.33 
2010.17 -5.28 
2010.25 -5.25 
2010.33 -5.22 
2010.42 -5.19 
2010.50 -5.17 
2010.58 -5.15 
2010.67 -5.17 
2010.75 -5.20 
2010.83 -5.13 
2010.92 -4.95 
2011.00 -4.84 
2011.08 -4.83 
2011.17 -4.99 
2011.25 -5.01 
2011.33 -4.86 
2011.42 -5.00 
2011.50 -5.09 
2011.58 -5.26 
2011.67 -5.29 
2011.75 -5.14 
2011.83 -5.05 
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Year RT10 δ18O‰ 
(continued) 

2011.92 -5.08 
2012.00 -5.13 
2012.08 -4.93 
2012.17 -4.83 
2012.25 -4.82 
2012.33 -4.90 
2012.42 -4.99 
2012.50 -5.04 
2012.58 -5.03 
2012.67 -5.01 
2012.75 -5.10 
2012.83 -5.32 
2012.92 -5.18 
2013.00 -5.09 
2013.08 -5.17 
2013.17 -5.22 
2013.25 -5.21 
2013.33 -5.16 
2013.42 -5.11 
2013.50 -5.05 
2013.58 -5.06 
2013.67 -5.34 
2013.75 -5.33 
2013.83 -5.15 
2013.92 -5.18 
2014.00 -5.17 
2014.08 -5.16 
2014.17 -5.13 
2014.25 -5.07 
2014.33 -5.16 
2014.42 -5.31 
2014.50 -5.62 
2014.58 -5.68 
2014.67 -5.63 
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Year RT10 δ18O‰ 
(continued) 

2014.75 -5.72 
2014.83 -5.71 
2014.92 -5.66 
2015.00 -5.34 
2015.08 -5.38 
2015.17 -5.44 
2015.25 -5.55 
2015.33 -5.59 
2015.42 -5.72 
2015.50 -5.83 
2015.58 -5.78 
2015.67 -5.83 
2015.75 -5.86 
2015.83 -5.79 
2015.92 -5.71 
2016.00 -5.65 
2016.08 -5.58 
2016.17 -5.51 
2016.25 -5.48 
2016.33 -5.48 
2016.42 -5.47 
2016.50 -5.40 
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Appendix G. Tabulated Palmyra RT4 δ18O isotopic data 
 
Metadata for Palmyra RT4 
The Porites core was collected at 5.88°N, -162.12°W, 18ft depth in September, 2016 by the 
dissertation author. The record spans seventeen years.  All data will be posted on NOAA NCDC 
after publication. 
Table G.1 Palmyra RT4 δ18O 
Year RT4 δ18O‰ 

1999.42 -4.82 
1999.50 -5.02 
1999.58 -5.05 
1999.67 -5.25 
1999.75 -5.02 
1999.83 -4.90 
1999.92 -4.82 
2000.00 -4.76 
2000.08 -4.85 
2000.17 -4.77 
2000.25 -4.75 
2000.33 -4.96 
2000.42 -5.08 
2000.50 -5.15 
2000.58 -5.17 
2000.67 -5.10 
2000.75 -5.12 
2000.83 -4.95 
2000.92 -5.05 
2001.00 -4.99 
2001.08 -4.83 
2001.17 -4.94 
2001.25 -5.05 
2001.33 -4.93 
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Year RT4 δ18O‰ 
(continued) 

2001.42 -5.01 
2001.50 -5.15 
2001.58 -5.21 
2001.67 -5.25 
2001.75 -5.30 
2001.83 -5.27 
2001.92 -5.19 
2002.00 -5.14 
2002.08 -5.17 
2002.17 -5.07 
2002.25 -4.98 
2002.33 -4.84 
2002.42 -4.90 
2002.50 -4.79 
2002.58 -4.86 
2002.67 -4.87 
2002.75 -5.12 
2002.83 -5.34 
2002.92 -5.09 
2003.00 -5.03 
2003.08 -4.96 
2003.17 -4.92 
2003.25 -4.99 
2003.33 -4.87 
2003.42 -5.11 
2003.50 -5.13 
2003.58 -5.27 
2003.67 -5.27 
2003.75 -5.32 
2003.83 -5.15 
2003.92 -5.13 
2004.00 -5.00 
2004.08 -4.86 
2004.17 -4.66 
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Year RT4 δ18O‰ 
(continued) 

2004.25 -4.81 
2004.33 -5.00 
2004.42 -5.07 
2004.50 -5.18 
2004.58 -5.14 
2004.67 -5.27 
2004.75 -5.23 
2004.83 -5.32 
2004.92 -5.17 
2005.00 -5.25 
2005.08 -5.29 
2005.17 -5.01 
2005.25 -4.87 
2005.33 -4.84 
2005.42 -4.92 
2005.50 -5.13 
2005.58 -5.13 
2005.67 -5.02 
2005.75 -4.92 
2005.83 -4.84 
2005.92 -4.85 
2006.00 -4.82 
2006.08 -4.84 
2006.17 -4.88 
2006.25 -4.75 
2006.33 -4.93 
2006.42 -4.94 
2006.50 -4.83 
2006.58 -5.18 
2006.67 -5.36 
2006.75 -5.53 
2006.83 -5.42 
2006.92 -5.44 
2007.00 -5.29 
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Year RT4 δ18O‰ 
(continued) 

2007.08 -5.05 
2007.17 -5.06 
2007.25 -5.17 
2007.33 -5.22 
2007.42 -5.08 
2007.50 -4.95 
2007.58 -5.05 
2007.67 -5.33 
2007.75 -5.31 
2007.83 -5.11 
2007.92 -5.02 
2008.00 -4.88 
2008.08 -4.83 
2008.17 -4.88 
2008.25 -4.95 
2008.33 -4.97 
2008.42 -4.92 
2008.50 -4.93 
2008.58 -5.01 
2008.67 -5.09 
2008.75 -5.07 
2008.83 -5.02 
2008.92 -5.04 
2009.00 -5.00 
2009.08 -4.95 
2009.17 -4.94 
2009.25 -4.93 
2009.33 -4.99 
2009.42 -5.03 
2009.50 -5.07 
2009.58 -5.13 
2009.67 -5.29 
2009.75 -5.46 
2009.83 -5.46 
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Year RT4 δ18O‰ 
(continued) 

2009.92 -5.40 
2010.00 -5.34 
2010.08 -5.19 
2010.17 -5.21 
2010.25 -5.16 
2010.33 -5.13 
2010.42 -5.07 
2010.50 -5.05 
2010.58 -5.09 
2010.67 -5.09 
2010.75 -5.16 
2010.83 -5.18 
2010.92 -5.22 
2011.00 -5.09 
2011.08 -4.95 
2011.17 -5.02 
2011.25 -5.02 
2011.33 -5.02 
2011.42 -5.06 
2011.50 -5.13 
2011.58 -5.21 
2011.67 -5.23 
2011.75 -5.28 
2011.83 -5.37 
2011.92 -5.40 
2012.00 -5.24 
2012.08 -5.20 
2012.17 -5.21 
2012.25 -5.03 
2012.33 -5.06 
2012.42 -5.08 
2012.50 -5.13 
2012.58 -5.15 
2012.67 -5.17 
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Year RT4 δ18O‰ 
(continued) 

2012.75 -5.23 
2012.83 -5.29 
2012.92 -5.29 
2013.00 -5.15 
2013.08 -5.10 
2013.17 -5.05 
2013.25 -5.16 
2013.33 -5.23 
2013.42 -5.20 
2013.50 -5.27 
2013.58 -5.26 
2013.67 -5.32 
2013.75 -5.36 
2013.83 -5.33 
2013.92 -5.28 
2014.00 -5.21 
2014.08 -5.21 
2014.17 -5.22 
2014.25 -5.28 
2014.33 -5.27 
2014.42 -5.30 
2014.50 -5.37 
2014.58 -5.53 
2014.67 -5.58 
2014.75 -5.57 
2014.83 -5.65 
2014.92 -5.74 
2015.00 -5.60 
2015.08 -5.49 
2015.17 -5.40 
2015.25 -5.42 
2015.33 -5.44 
2015.42 -5.49 
2015.50 -5.55 



 182 

Year RT4 δ18O‰ 
(continued) 

2015.58 -5.69 
2015.67 -5.80 
2015.75 -5.74 
2015.83 -5.60 
2015.92 -5.64 
2016.00 -5.67 
2016.08 -5.59 
2016.17 -5.64 
2016.25 -5.70 
2016.33 -5.54 
2016.42 -5.54 
2016.50 -5.62 
2016.58 -5.51 
2016.67 -5.50 
2016.75 -5.57 
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Appendix H. Tabulated Palmyra FR3 δ18O isotopic data 
 
Metadata for Palmyra FR3 
The Porites core was collected at 5.87°N, -162.11°W, 42ft depth in September, 2016 by the 
dissertation author. The record spans two years.  All data will be posted on NOAA NCDC after 
publication. 
 
Table H.1 Palmyra FR3 δ18O 
Year δ18O‰ 

2014.83 -5.33 
2014.92 -5.28 
2015.00 -5.29 
2015.08 -5.27 
2015.17 -5.40 
2015.25 -5.43 
2015.33 -5.52 
2015.42 -5.62 
2015.50 -5.56 
2015.58 -5.63 
2015.67 -5.63 
2015.75 -5.60 
2015.83 -5.58 
2015.92 -5.55 
2016.00 -5.48 
2016.08 -5.46 
2016.17 -5.43 
2016.25 -5.48 
2016.33 -5.27 
2016.42 -5.37 
2016.50 -5.41 
2016.58 -5.42 
2016.67 -5.42 
2016.75 -5.51 
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Appendix I. Tabulated Palmyra RT4S δ18O isotopic data 
 
Metadata for Palmyra RT4S 
The Porites core was collected at 5.88°N, -162.12°W, 18ft depth in September, 2016 by the 
dissertation author. Notably, this core was drilled horizontally into the coral; 90 degrees off of 
the standard drilling configuration. The record spans thirteen years.  All data will be posted on 
NOAA NCDC after publication. 
 
Table I.1 Palmyra RT4S δ18O 

Year RT4TS 
δ18O‰ 

2003.00 -5.00 
2003.08 -4.91 
2003.17 -4.91 
2003.25 -5.09 
2003.33 -4.94 
2003.42 -5.09 
2003.50 -5.27 
2003.58 -5.30 
2003.67 -5.21 
2003.75 -5.25 
2003.83 -5.35 
2003.92 -5.29 
2004.00 -5.30 
2004.08 -5.30 
2004.17 -5.32 
2004.25 -5.35 
2004.33 -5.18 
2004.42 -5.16 
2004.50 -5.31 
2004.58 -5.34 
2004.67 -5.56 
2004.75 -5.57 
2004.83 -5.63 
2004.92 -5.54 
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Year RT4S δ18O‰ 
(continued) 

2005.00 -5.48 
2005.08 -5.41 
2005.17 -5.36 
2005.25 -5.20 
2005.33 -5.19 
2005.42 -5.20 
2005.50 -5.11 
2005.58 -5.14 
2005.67 -5.27 
2005.75 -5.47 
2005.83 -5.35 
2005.92 -5.27 
2006.00 -5.19 
2006.08 -5.05 
2006.17 -4.99 
2006.25 -5.04 
2006.33 -5.15 
2006.42 -5.20 
2006.50 -5.26 
2006.58 -5.32 
2006.67 -5.39 
2006.75 -5.40 
2006.83 -5.38 
2006.92 -5.37 
2007.00 -5.37 
2007.08 -5.23 
2007.17 -5.10 
2007.25 -4.97 
2007.33 -4.99 
2007.42 -4.99 
2007.50 -4.84 
2007.58 -5.17 
2007.67 -5.26 
2007.75 -5.21 
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Year RT4S δ18O‰ 
(continued) 

2007.83 -5.12 
2007.92 -5.04 
2008.00 -4.92 
2008.08 -4.77 
2008.17 -4.90 
2008.25 -4.93 
2008.33 -4.95 
2008.42 -4.82 
2008.50 -4.83 
2008.58 -5.05 
2008.67 -5.32 
2008.75 -5.41 
2008.83 -5.21 
2008.92 -5.29 
2009.00 -5.16 
2009.08 -4.98 
2009.17 -5.02 
2009.25 -4.89 
2009.33 -4.83 
2009.42 -4.82 
2009.50 -5.08 
2009.58 -5.02 
2009.67 -5.04 
2009.75 -5.39 
2009.83 -5.45 
2009.92 -5.45 
2010.00 -5.44 
2010.08 -5.42 
2010.17 -5.33 
2010.25 -5.26 
2010.33 -5.18 
2010.42 -5.10 
2010.50 -5.15 
2010.58 -5.12 
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Year RT4S δ18O‰ 
(continued) 

2010.67 -5.23 
2010.75 -5.30 
2010.83 -5.08 
2010.92 -5.08 
2011.00 -5.01 
2011.08 -4.90 
2011.17 -4.91 
2011.25 -4.96 
2011.33 -4.93 
2011.42 -5.00 
2011.50 -5.08 
2011.58 -5.12 
2011.67 -5.05 
2011.75 -5.02 
2011.83 -5.00 
2011.92 -4.94 
2012.00 -5.05 
2012.08 -5.13 
2012.17 -5.14 
2012.25 -5.12 
2012.33 -5.01 
2012.42 -5.13 
2012.50 -5.15 
2012.58 -5.10 
2012.67 -5.33 
2012.75 -5.24 
2012.83 -5.19 
2012.92 -5.11 
2013.00 -4.99 
2013.08 -4.99 
2013.17 -4.98 
2013.25 -5.00 
2013.33 -5.05 
2013.42 -5.15 
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Year RT4S δ18O‰ 
(continued) 

2013.50 -5.28 
2013.58 -5.22 
2013.67 -5.21 
2013.75 -5.29 
2013.83 -5.37 
2013.92 -5.29 
2014.00 -5.19 
2014.08 -5.10 
2014.17 -5.03 
2014.25 -5.13 
2014.33 -5.27 
2014.42 -5.20 
2014.50 -5.21 
2014.58 -5.35 
2014.67 -5.50 
2014.75 -5.64 
2014.83 -5.75 
2014.92 -5.75 
2015.00 -5.67 
2015.08 -5.45 
2015.17 -5.30 
2015.25 -5.41 
2015.33 -5.49 
2015.42 -5.35 
2015.50 -5.62 
2015.58 -5.76 
2015.67 -5.69 
2015.75 -5.77 
2015.83 -5.71 
2015.92 -5.81 
2016.00 -5.70 
2016.08 -5.66 
2016.17 -5.75 
2016.25 -5.72 
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Year RT4S δ18O‰ 
(continued) 

2016.33 -5.56 
2016.42 -5.38 
2016.50 -5.44 
2016.58 -5.50 
2016.67 -5.55 
2016.75 -5.61 
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