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Abstract—A fast distributed approach is developed for the market
clearing with large-scale demand response in electric power networks. In
addition to conventional supply bids, demand offers from aggregators
serving large numbers of residential smart appliances withdifferent
energy constraints are incorporated. Leveraging the Lagrangian relax-
ation based dual decomposition, the resulting optimization problem is
decomposed into separate subproblems, and then solved in a distributed
fashion by the market operator and each aggregator aided by the end-
user smart meters. A disaggregated bundle method is adaptedfor solving
the dual problem with a separable structure. Compared with the con-
ventional dual update algorithms, the proposed approach exhibits faster
convergence speed, which results in reduced communicationoverhead.
Numerical results corroborate the effectiveness of the novel approach.

Index Terms—Aggregators, decomposition algorithms, demand re-
sponse, disaggregated bundle method, market clearing.

I. I NTRODUCTION

Demand response (DR) has been identified as an important re-
source management task in modern power networks promising to
enable end-user interaction with the grid. DR aggregators serving
large numbers of residential users will be able to participate in
the market clearing by offering bids depending on the elasticity for
power consumption of their end users. Bidirectional communication
between aggregators and users is provided by the Advanced Metering
Infrastructure (AMI) [1], with smart meters used as the end-users’
terminals.

The principal challenge for large-scale incorporation of DR from
residential end-users is to account for the user schedulingpreferences
and intertemporal flexibility in a way that also protects user privacy.
The advantages of intertemporal load scheduling flexibility are for
instance demonstrated in [2], [3], but without consideringsmall-scale
users and pertinent distributed algorithms. Aggregation of small-scale
user loads into the system scheduling has been the theme of [4],
[5], but an array of issues ranging from incorporation of user utility
functions and user privacy to algorithm convergence, are not fully
addressed. Algorithms for market clearing with large-scale integration
of DR from small loads with different utility functions are developed
in [6] based on Lagrangian dual decomposition. The disaggregated
cutting plane method (CPM) is proposed therein for updatingthe
Lagrange multipliers.

This paper proposes a market clearing approach distributedamong
the market operator, aggregators, and the user smart metersby
building upon the earlier work in [6]. Each end-user has preferences
for smart appliance scheduling captured by utility functions and
intertemporal constraints. The objective is to minimize the social
net cost for day-ahead market clearing, while transmissionnetwork
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constraints are included in the form of DC power flows. To copewith
the challenges of respecting end-user privacy and large-scale DR,
dual decomposition is applied to the resulting optimization problem.
Leveraging Lagrangian relaxation of the coupling constraints, the
large-scale optimization decomposes into manageable small problems
solved by the market operator (MO) and the aggregators in con-
junction with the residential smart meters. Exploiting theseparable
structure of the problem at hand, a disaggregated bundle method is
introduced for solving the dual problem with guaranteed convergence
of the Lagrange multipliers. The developed solver yields faster
convergence than its CPM counterpart, implying less communication
overhead between the MO and the aggregators.

The remainder of this paper is organized as follows. SectionII
presents the market clearing problem involving large-scale DR. The
decomposition algorithm along with the disaggregated bundle method
solver is developed in Section III. Numerical tests are in Section IV,
while conclusions and future directions are offered in Section V.

II. M ARKET CLEARING FORMULATION

Consider a power network comprisingNg generators,Nb buses,
Nl lines, andNa aggregators, each serving a large number of resi-
dential end-users with controllable smart appliances. Thescheduling
horizon of interest isT := {1, 2, . . . , T} (e.g., one day ahead). Let
pt
G := [P t

G1
, . . . , P t

GNg
]′ and pt

DRA := [P t
DRA1

, . . . , P t
DRANa

]′

denote the generator power outputs, and the power consumption
of the aggregators at slott, respectively.1 Define further the sets
Na := {1, 2, . . . , Na} andNg := {1, 2, . . . , Ng}. Each aggregator
j ∈ Na serves a setRj of residential users, and each userr ∈ Rj

has a setSrj of controllable smart appliances. Letpjrs be the
power consumption of smart appliances and userr corresponding
to aggregatorj across the horizon. The power consumptionpjrs

of each smart appliance across the horizon must typically satisfy
operating constraints captured by a setPjrs, and may also give
rise to user satisfaction represented by a concave utility function
Bjrs(pjrs). Moreover, the generation cost is captured by convex
functions {Ci(·)}i, and the fixed base load demands across the
network buses at slott is denoted by the vectorpt

BL.
For brevity, vectorp0 is used to collect allptGi

, P t
DRAj

, and
network nodal anglesθtn; while vector pj (j ∈ Na) collects all
smart appliance consumptions corresponding to aggregatorj. With
the goal of minimizing the system net cost, the DC optimal power
flow (OPF) based market clearing stands as follows:

f
∗ = min

{pj}
Na
j=0

T
∑

t=1

Ng
∑

i=1

Ci(P
t
Gi

)−
Na
∑

j=1

∑

r∈Rj

∑

s∈Sjr

Bjrs(pjrs) (1a)

1
x
′ denotes transpose of the vectorx.
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s. t. Agp
t
G −Aap

t
DRA − p

t
BL = Bθ

t
, t ∈ T (1b)

P
min
Gi

≤ P
t
Gi

≤ P
max
Gi

, i ∈ Ng , t ∈ T (1c)

− R
down
i ≤ P

t
Gi

− P
t−1
Gi

≤ R
up
i , i ∈ Ng, t ∈ T (1d)

f
min ≤ Hθ

t ≤ f
max

, t ∈ T (1e)

θ
t
1 = 0, t ∈ T (1f)

0 ≤ P
t
DRAj

≤ P
max
DRAj

, j ∈ Na, t ∈ T (1g)

P
t
DRAj

=
∑

r∈Rj, s∈Sjr

p
t
jrs, j ∈ Na, t ∈ T (1h)

pjrs ∈ Pjrs, r ∈ Rj , s ∈ Sjr, j ∈ Na. (1i)

Linear equality (1b) represents thenodal balance constraint. Limits of
generator outputs and ramping rates are specified in constraints (1c)
and (1d). Network line flow constraints are accounted for in (1e).
Without loss of generality, the first bus can be set as the reference bus
with zero phase (1f). Constraint (1g) captures the lower andupper
bounds on the energy consumed by the aggregators. Equality (1h)
amounts to theaggregator-users power balance equation; finally, (1i)
gives the smart appliance constraints.

A smart appliance example is charging a PHEV battery, which
typically amounts to consuming a prescribed total energyEjrs over
a specific horizon from a start timeT st

jrs to a termination timeT end
jrs .

The consumption must remain within a range betweenpmin
jrs andpmax

jrs

per period. WithTE := {T st
jrs, . . . , T

end
jrs }, setPjrs takes the form

Pjrs =

{

pjrs

∣

∣

∣

∣

∣

∑

t∈TE

p
t
jrs = Ejrs; p

t
jrs ∈ [pmin

jrs , p
max
jrs ], ∀ t ∈ TE ;

p
t
jrs = 0, ∀ t ∈ T \ TE

}

. (2)

Further examples ofPjrs andBjrs(pjrs) can be found in [6], where
it is argued thatPjrs is a convex set for several appliance types of
interest.

MatricesB andH are defined as follows. WithXmn denoting the
reactance of line(m,n), the bus admittance matrixB ∈ R

Nb×Nb

has elements

[B]mn = −X
−1
mn, if m 6= n; [B]mm =

Nb
∑

n=1

X
−1
mn

whereX−1
mn := 0 if line (m,n) does not exist. MatrixH ∈ R

Nl×Nb

has entries so that if lineq = 1, . . . , Nl connects busesn and n′,
then

[H]qm =











X−1

nn′ , if m = n

−X−1

nn′ , if m = n′

0, otherwise.

Finally, examples detailing the entries of matricesAg and Aa

in (1b) can be found in [6].
Problem (1) can be principally solved at the MO in a central

fashion. However, there are two major challenges when it comes
to solving (1) with large-scale DR: i) functionsBjrs(pjrs) and sets
Pjrs are private, and cannot be revealed to the MO; ii) including
the sheer number of variablespjrs would render the overall problem
intractable for the MO, regardless of the privacy issue. Theaggregator
plays a critical role in successfully addressing these two challenges
through decomposing the optimization tasks that arises, asdetailed
in the ensuing section.

III. D ECOMPOSITIONALGORITHM

A. Dual Decomposition

Leveraging the dual decomposition technique, problem (1) can
be decoupled into simpler subproblems tackled by the MO and
the aggregators. Specifically, consider dualizing the linear coupling
constraint (1h) with corresponding Lagrange multiplierµt

j . Upon
straightforward re-arrangements, the partial Lagrangiancan be writ-
ten as

L({pj}
Na
j=0,µ) = L0(p0,µ) +

Na
∑

j=1

Lj(pj ,µ) (3)

where

L0(p0,µ) :=
T
∑

t=1





Ng
∑

i=1

Ci(P
t
Gi

)−
Na
∑

j=1

µ
t
jP

t
DRAj



 (4)

Lj(pj ,µ) :=
∑

r∈Rj

∑

s∈Sjr

[

T
∑

t=1

µ
t
jp

t
jrs −Bjrs(pjrs)

]

. (5)

The dual function is thus obtained by minimizing the partial
Lagrangian over the primal variables{pj}

Na
j=0 as

D(µ) : = D0(µ) +

Na
∑

j=1

Dj(µ) (6a)

= min
s.t. (1b)–(1g)

L0(p0,µ) +

Na
∑

j=1

min
s.t. (1i)

Lj(pj ,µ). (6b)

The dual decomposition essentially iterates between two steps: S1)
Lagrangian minimization with respect to{pj}

Na
j=0 given the current

multipliers, and S2) multiplier update, using the obtainedprimal
minimizers. It is clear from (3) that the Lagrangian minimization can
be decoupled into1+Na minimizations, where one is performed by
the MO, and the rest by the corresponding aggregators.

Specifically, letk = 1, 2, . . . index iterations. Given the multipliers
µ(k), the subproblems at iterationk solved by the MO and each
residential end-user are given as follows

p0(k) = argmin
p0, s.t. (1b)–(1g)

L0(p0,µ(k)) (7a)

{pjrs(k)}s = argmin
{pjrs∈Pjrs}s

∑

s∈Sjr

[

T
∑

t=1

µ
t
j(k)p

t
jrs −Bjrs(pjrs)

]

.

(7b)

Note that subproblem (7a) is a standard DC-OPF while the convex
subproblem (7b) can be handled efficiently by the smart meters. In
fact, with the feasible set in (2) and upon settingBjrs(pjrs) ≡
0, (7b) boils down to thefractional knapsack problem, which can be
solved in closed form. To this end, the multipliersµt

j(k) needed can
be transmitted to the user’s smart meter via the AMI.

With the obtained quantities ofp0(k), {pjrs(k)}s, and
{Dj(µ(k))}

Na
j=0, the ensuing section develops the approach to up-

dating the multipliers{µt
j}j,t using the so-termed bundle methods.

B. Multiplier Update via Bundle Methods

The choice of the multiplier update method is crucial, because
fewer update steps imply less communication between the CPM
and the aggregators. A popular method of choice in the context of
dual decomposition is the subgradient method, which is veryslow
typically. In this paper, the bundle method with disaggregated cuts is
proposed for the multiplier update. It is better suited to the problem



of interest yielding faster convergence, because it exploits the special
structure of the dual function which can be written as a sum of
separate terms [cf. (6)], while it overcomes the drawbacks of the
cutting plane one developed in [6]. Numerical tests in Section IV
illustrate differences in terms of convergence speed.

The following overview of the disaggregated bundle method in
a general form is useful to grasp its role in the present context;
see e.g., [7, Ch. 6] for detailed discussions. Consider the following
separable convex minimization problem withnc linear constraints:

f
∗ = min

{xj∈Xj}
Na
j=0

Na
∑

j=0

fj(xj) (8a)

s. t.
Na
∑

j=0

Ajxj = 0. (8b)

For problem (1), constraint (8b) corresponds to (1h). SetX0 captures
constraints (1b)–(1g), whileXj , j ∈ Na, corresponds to (1i).

The dual functionD(µ) =
∑Na

j=0
Dj(µ) can be obtained by

dualizing constraint (8b) with the multiplier vectorµ. Thus, the dual
problem is to maximize the dual objective as

max
µ∈Rnc

Na
∑

j=0

Dj(µ) = max
µ∈Rnc

Na
∑

j=0

[

min
xj

{fj(xj) + µ
′
Ajxj}

]

(9)

where strong duality holds here due to the polyhedral feasible set (8b).
The basic idea of bundle methods (also CPM) is to approximatethe

epigraph of a convex (possibly non-smooth) objective function as the
intersection of a number of supporting hyperplanes (also called cuts
in this context). The approximation is gradually refined by generating
additional cuts based on subgradients of the objective function.

Specifically, suppose that the method has so far generated the
iterates{µ(ℓ)}kℓ=1 after k steps. Letxj(ℓ) be the primal minimizer
corresponding toµ(ℓ). Observe that the vectorgj(ℓ) := Ajxj(ℓ) is
a subgradient of functionDj(µ) at pointµ(ℓ), and it thus holds for
all µ such that

Dj(µ) ≤ Dj(µ(ℓ)) + (µ− µ(ℓ))′gj(ℓ). (10)

Clearly, the minimum of the right-hand side of (10) overℓ = 1, . . . , k
is a polyhedral approximation ofDj(µ), and is essentially a concave
and piecewise linear overestimator of the dual function.

The bundle method with disaggregated cuts generates a sequence
{µ(k)} with guaranteed convergence to an optimal solution. Specif-
ically, the iterateµ(k+1) is obtained by maximizing the polyhedral
approximations of{Dj(µ)}j with a proximal regularization

Dap(µ(k + 1)) := max
µ,{vj}

Na
j=1

Na
∑

j=0

vj −
ρ(k)

2
‖µ− µ̌(k)‖22 (11a)

s. t. vj ≤ Dj(µ(ℓ)) + (µ− µ(ℓ))′gj(ℓ),

j = 0, . . . , Na, ℓ = 1, . . . , k (11b)

where the proximity weightρ(k) > 0 is to control stability of the
iterates; and the proximal centerµ̌(k) is updated according to a query
for ascent

µ̌(k + 1) =

{

µ(k + 1), if D(µ(k + 1)) −D(µ̌(k)) ≥ βη(k)
µ̌(k), otherwise

whereη(k) = Dap(µ(k + 1)) −D(µ̌(k)), andβ ∈ (0, 1). Finally,
the bundle algorithm can be terminated whenη(k) < ǫ holds for a
prescribed toleranceǫ (cf. [7, Ch. 6]).

Remark 1. (Bundle methods versus CPM). Whenρ(k) ≡ 0, prob-
lem (11) boils down to the CPM with disaggregated cuts for solving
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Fig. 1. Power system example featuring 6 buses, 3 generators, 4 aggregators,
and base loads at three of the buses.

the dual, which is however known to be unstable and converges
slowly on some practical instances [8]. The proximal regularization
in the bundle methods is thus introduced to improve stability of the
iterates, while thesmart prox-center updating rule enhances further
the convergence speed compared with the proximal CPM. A further
limitation of CPM is that a compact set containing the optimal
solution has to be included, as is the case withµ ∈ [µmin,µmax]
in [6]. The CPM convergence performance depends on the choice of
this set, while there is no such issue for the bundle methods.Note
further that the dual problem of (11) is a quadratic program (QP)
over a probability simplex. Such a special structure can be exploited
by off-the-shelf QP solvers, and hence it is efficiently solvable. As a
result, solving (11) does not require much more computational work
than solving a linear program (LP), which is the case for the CPM.
Finally, it is worth stressing that the disaggregated bundle method
takes advantage of theseparability of (8). In a nutshell, offering
state-of-the-art algorithms for solving non-smooth convex programs,
the stable and fast convergent bundle methods are well motivated
here for clearing the market distributedly.

Specifically, applying the disaggregated bundle method to prob-
lem (9) at hand, the multiplier update at iterationk amounts to solving
the following problem:

max
{µt

j
,vj}j,t

Na
∑

j=0

vj −
ρ(k)

2

Na
∑

j=1

T
∑

t=1

(µt
j − µ̌

t
j)

2 (12a)

s. t. v0 ≤ D0(µ(ℓ))−
Na
∑

j=1

T
∑

t=1

P
t
DRAj

(ℓ)[µt
j − µ

t
j(ℓ)]

ℓ = 1, . . . , k (12b)

vj ≤ Dj(µ(ℓ)) +
T
∑

t=1

∑

r,s

p
t
jrs(ℓ)[µ

t
j − µ

t
j(ℓ)]

j ∈ Na, ℓ = 1, . . . , k. (12c)

Problem (12) that yields the updated multipliersµ(k+1) and the
approximate dual valueDap(µ(k + 1)) can be solved at the MO.
To this end, the quantities{Dj(µ(k)),

∑

r,s
ptjrs(k)}j are needed

from each aggregator per iterationk as the problem input. Note
that Dj(µ(k)) :=

∑

r∈Rj
Djr(µ(k)), where Djr(µ(k)) is the

optimal value of problem (7b). Thus, it is clear that all these required
quantities can be formed at the aggregator level as summations over
all end-users, and then transmitted to the MO. The highlighthere is
that the proposed decomposition scheme respectsuser privacy, since
Bjrs(pjrs) andPjrs are never revealed.



TABLE I
GENERATOR PARAMETERS. THE UNITS OFai AND bi ARE $/(MWH)2 AND

$/MWH, RESPECTIVELY. THE REST ARE INMW.

Gen. ai bi Pmax
Gi

Pmin
Gi

R
up,down
i

1 0.3 3 60 2.4 50
2 0.15 20 50 0 35
3 0.2 50 50 0 40

TABLE II
PARAMETERS OF RESIDENTIAL APPLIANCES. ALL LISTED HOURS ARE

THE ENDING ONES; W.P. MEANS WITH PROBABILITY.

EPHEV (kWh) Uniform on {10, 11, 12}
pmax
PHEV (kWh) Uniform on {2.1, 2.3, 2.5}

pmin
PHEV (kWh) 0

T st
jr1 1am

T end
jr1 6am w.p. 70%, 7am w.p. 30%

IV. N UMERICAL TESTS

In this section, simulation results are presented to verifythe merits
of the disaggregated bundle method. The power system testedfor
market clearing and large-scale DR is illustrated in Fig. 1,where
each of the 4 aggregators serves 1,000 residential end-users. The
scheduling horizon starts from 1am until 12am, for a total of24
hours.

Time-invariant generation cost functions are set to be quadratic
as Ci(P

t
Gi

) = ai(P
t
Gi

)2 + biP
t
Gi

for all i and t. Each end-
user has a PHEV to charge overnight. All detailed parameters
of the generators and loads are listed in Tables I and II. The
utility functions {Bjrs(·)} are set to be zero for simplicity. The
upper bound on each aggregator’s consumption isPmax

DRAj
= 50

MW while pt
BL = 5 MW. At a base of 100 MVA, the values

of the network reactances are{X16, X62, X25, X53, X34, X41} =
{0.2, 0.3, 0.25, 0.1, 0.3, 0.4} p.u. Finally, no flow limits are imposed
across the network. The resulting optimization problems (7a) and (12)
are modeled viaYALMIP [9], and solved byGurobi [10].

Figs. 2 and 3 illustrate the convergence performance of the
proposed disaggregated bundle method vis-à-vis the disaggregated
CPM. The pertinent parameters are set asǫ = 10−3, ρ(k) ≡ 0,
β = 0.5, andµmax,min = ±50 (cf. [6]). Fig. 2 depicts the evolution
of the objective values of the dualD(µ(k)) and the approximate dual
Dap(µ(k + 1)). It is clearly seen that the bundle method converges
much faster (more than three times) than its CPM counterpart. Note
that due to the effect of the proximal penalty (cf. (11a)), quantity
Dap(µ(k+1)) for the bundle may not always serve as an upper bound
of f∗ as the one for the CPM. Finally, convergence of the Lagrange
multiplier sequenceµ(k) is shown in Fig. 3, which also corroborates
the merit of the bundle method for its faster parameter convergence
over the CPM. It is interesting to observe that the distance-to-optimal
curve of the bundle method is quite smooth compared with the
CPM one. This again illustrates the effect of the proximal regulation
penalizing large deviations.

V. CONCLUSIONS ANDFUTURE DIRECTIONS

In this work, a fast convergent and scalable distributed solver is
developed for market clearing with large-scale residential DR. Lever-
aging the dual decomposition technique, only the aggregator-users
balance constraint is dualized in order to separate problems for the
MO and each aggregator, while respecting end-user privacy concerns.
Simulated tests highlight the merits of the proposed approach for
multiplier updates based on the disaggregated bundle method.
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Fig. 2. Convergence of the objective values of the dual and the approximated
one (denoted asD(k) andDap(k + 1) in the caption).

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

Iteration k
‖
µ
(k
)
−

µ
∗
‖

 

 

Disaggregated bundle method
Disaggregated CPM

Fig. 3. Convergence of the Lagrange multipliers.

A number of interesting research directions open up, including the
incorporation of load and renewable energy production uncertainty,
the issue of primal recovery, as well as cut aggregation techniques
for further computational speed up.
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