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Abstract—A fast distributed approach is developed for the market
clearing with large-scale demand response in electric powaetworks. In
addition to conventional supply bids, demand offers from agregators
serving large numbers of residential smart appliances withdifferent
energy constraints are incorporated. Leveraging the Lagragian relax-
ation based dual decomposition, the resulting optimizatio problem is
decomposed into separate subproblems, and then solved in gttibuted
fashion by the market operator and each aggregator aided byhe end-
user smart meters. A disaggregated bundle method is adaptefdr solving
the dual problem with a separable structure. Compared with he con-
ventional dual update algorithms, the proposed approach exbits faster
convergence speed, which results in reduced communicatiooverhead.
Numerical results corroborate the effectiveness of the nat approach.

Index Terms—Aggregators, decomposition algorithms, demand re-
sponse, disaggregated bundle method, market clearing.

|. INTRODUCTION

constraints are included in the form of DC power flows. To cojté
the challenges of respecting end-user privacy and largle-40R,
dual decomposition is applied to the resulting optimizagwoblem.
Leveraging Lagrangian relaxation of the coupling constsithe
large-scale optimization decomposes into manageabld proalems
solved by the market operator (MO) and the aggregators in con
junction with the residential smart meters. Exploiting #eparable
structure of the problem at hand, a disaggregated bundlaathés
introduced for solving the dual problem with guaranteedveogence
of the Lagrange multipliers. The developed solver yieldstea
convergence than its CPM counterpart, implying less conication
overhead between the MO and the aggregators.

The remainder of this paper is organized as follows. Sedfibn
presents the market clearing problem involving largees@R. The
decomposition algorithm along with the disaggregated tmingethod

Demand response (DR) .has been identified as an |mpor.ta.mt LBiver is developed in Sectiénllll. Numerical tests are inti®a[V]
source management task in modern power networks promising,fhiie conclusions and future directions are offered in Bedtl

enable end-user interaction with the grid. DR aggregatersirsg
large numbers of residential users will be able to partieipa
the market clearing by offering bids depending on the elagtfor
power consumption of their end users. Bidirectional comication
between aggregators and users is provided by the Advancestivg
Infrastructure (AMI) [1], with smart meters used as the eséss’
terminals.

The principal challenge for large-scale incorporation & Bom
residential end-users is to account for the user schedplefgrences
and intertemporal flexibility in a way that also protectsruggvacy.
The advantages of intertemporal load scheduling flexybdite for
instance demonstrated in [2]. [3], but without considersngall-scale
users and pertinent distributed algorithms. Aggregaticentall-scale

Il. MARKET CLEARING FORMULATION

Consider a power network comprisimy, generators/N, buses,
N; lines, andN,, aggregators, each serving a large number of resi-
dential end-users with controllable smart appliances. Sdteduling
horizon of interest is] := {1,2,...,T} (e.g., one day ahead). Let
pc = [PE,,- "7PéNg], and ppra = [PE)RAlv---7PE)RANa]I
denote the generator power outputs, and the power consampti
of the aggregators at slat respectivelﬂ Define further the sets
No :={1,2,...,N,} and N, := {1,2,..., N, }. Each aggregator
Jj € N, serves a seR; of residential users, and each usee R;
has a setS,; of controllable smart appliances. Let;.s be the
power consumption of smart applianeeand userr corresponding

user loads into the system scheduling has been the thenig],of [6 aggregatorj across the horizon. The power Consumptpns

[5], but an array of issues ranging from incorporation ofrusdity
functions and user privacy to algorithm convergence, atefulty
addressed. Algorithms for market clearing with large-sdafegration
of DR from small loads with different utility functions aredeloped
in [6] based on Lagrangian dual decomposition. The disaggeel
cutting plane method (CPM) is proposed therein for updatimg
Lagrange multipliers.

This paper proposes a market clearing approach distrilartezhg

of each smart appliance across the horizon must typicallisfga
operating constraints captured by a $2t.,, and may also give
rise to user satisfaction represented by a concave utilibctfon
Bjrs(pjrs). Moreover, the generation cost is captured by convex
functions {C;(-)}:, and the fixed base load demands across the
network buses at slatis denoted by the vectgsky..

For brevity, vectorpo is used to collect alpg,, Phra,, and

network nodal angle®},; while vectorp; (j € N,) collects all

the market operator, aggregators, and the user smart meyerssmart appliance consumptions corresponding to aggregatdith

building upon the earlier work iri_[6]. Each end-user has gnaices
for smart appliance scheduling captured by utility funesioand
intertemporal constraints. The objective is to minimize tocial
net cost for day-ahead market clearing, while transmissietwork

This work was supported by NSF-ECCS grant 1202135, andtutestof
Renewable Energy and the Environment (IREE) grant RL-QD&,0Jniversity
of Minnesota.

the goal of minimizing the system net cost, the DC optimal @ow
flow (OPF) based market clearing stands as follows:

T Ng

Na
fr= min 3TN TCUPE) = D0 D0 D Bire(pire) (12)

P35 t=1 i=1 j=1rER; s€S;y

1x’ denotes transpose of the vector
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S.t. A;p& — AuPbra — PR = B0, te T (1b) [1l. DECOMPOSITIONALGORITHM

PEM™ < PL < PE™, i€ Ny, teT (1c) A. Dual Decomposition
— Rown < péi —PLU<RP ieEN, teT (1d) Leveraging the dual decomposition technique, problEin @ c
£ < HO < FU p e T (le) be decoupled into simpler subproblems tackled by the MO and

the aggregators. Specifically, consider dualizing thealineoupling

t
0r=0,teT () constraint [(Th) with corresponding Lagrange multipligy. Upon
0< P]SRAJ. < PS‘{%XJ,, jENL,teET (1g) straightforward re-arrangements, the partial Lagrangtm be writ-
Phra, =Y s, JENu, tET (th) fenas Na
i LR H0 ) = LoPo, ) + 3 Lipinw) (@)
Pjrs € Pjrs, 7 € Rj,s € Sjr, j € Na. (1i) Pjsj=0: M o(Po, 2 3 (Pj, 1
Linear equality[(Ib) represents thedal balance constraint. Limits of Where
generator outputs and ramping rates are specified in contst{dd) T | Ng Na
and [Td). Network line flow constraints are accounted for[Tg)( Lo(po, pt) := Z Z@(Pct;i) - ZU;PE)RAJ- 4)
Without loss of generality, the first bus can be set as thearée bus t=1 | i=1 i=1

with zero phase[(1f). Constrairfi {1g) captures the lower apper T

bounds on the energy consumed by the aggregators. EquaR)y ( Li(pj, ) == > > D uiphs — Birs(Pjrs)| - (5)
amounts to theggregator-users power balance equation; finally,[(3i) rER; sE€S . Lt=1

gives the smart appliance constraints. The dual function is thus obtained by minimizing the partial

A smart appliance example is charging a PHEV battery, Whiq_fhgrangian over the primal variable{@j}jygo as
typically amounts to consuming a prescribed total endigy, over
a specific horizon from a start tirriéjﬁs to a termination timé(’f;‘;‘. o
The consumption must remain within a range betwgti andp};2* D(p) : = Do(p) + Z Di(k) (62)

per period. WithTg := {T},, ... ,Tf,f‘;‘}, setP;,, takes the form N
= gin o Lo(Po, ) + > min Li(py, ). (Bb)
st

. s.t.
Pjr's = {pj'rs Z p;’rs = Ej’r“s; p;"rs € [p?;‘l:vp;’;‘ix]a Vite TE; e
teTp The dual decomposition essentially iterates between tejussiS1)
. Lagrangian minimization with respect l@pj}j\’;o given the current
Pirs =0, VEE 7'\77‘3} (2)  multipliers, and S2) multiplier update, using the obtainaimal

minimizers. It is clear from[{3) that the Lagrangian miniatibn can
be decoupled intd + N, minimizations, where one is performed by
e MO, and the rest by the corresponding aggregators.
Specifically, letk = 1,2, ... index iterations. Given the multipliers
wn(k), the subproblems at iteratioh solved by the MO and each
residential end-user are given as follows

Further examples oP;,.; and Bj,s(p;rs) can be found in[6], where
it is argued thatP;,., is a convex set for several appliance types o
interest.

MatricesB andH are defined as follows. Witl,,,,, denoting the
reactance of lingm,n), the bus admittance matriB € R™>*N
has elements

po(k) = argmin Lo(po, p(k)) (7a)
po, st [B){ThH)

{Pjrs(k)}s = argmin )~ [Zuﬁ(k)pﬁm = Bjrs(pirs) |-

{Pjrs€Pjrsts s€8;, t=1

Ny
Blon = ~Xjuh, it m#n;  [Blom = Y Xoun
n=1

where X, := 0 if line (m,n) does not exist. Matrid ¢ RN *No (7b)

has entries so that if ling = 1,..., N; connects buses andn/,

then Note that subproblenfi(Va) is a standard DC-OPF while theeconv
X! ifm=n subproblem[{7b) can be handled efficiently by the smart metar

Hgm =< —X_ 1, if m=n
0, otherwise

fact, with the feasible set if(2) and upon settiBy.s(p;rs) =

0, (ZB) boils down to thdractional knapsack problem, which can be

solved in closed form. To this end, the multipligr$(k) needed can

be transmitted to the user’'s smart meter via the AMI.

. Finally, examples clzletailing the entries of matricAs, and A, With the obtained quantities ofpo(k), {pjrs(k)}s, and

in (IB) can be found ir[6]. {D;(u(k))} X2y, the ensuing section develops the approach to up-
Problem [(1) can be principally solved at the MO in a centrajating the multipliers{;.},,. using the so-termed bundle methods.

fashion. However, there are two major challenges when itesom

to solving [1) with large-scale DR: i) functionB;,(p;rs) and sets B- Multiplier Update via Bundle Methods

Pirs are private, and cannot be revealed to the MO; ii) including The choice of the multiplier update method is crucial, bseau
the sheer number of variablgs,.s would render the overall problem fewer update steps imply less communication between the CPM
intractable for the MO, regardless of the privacy issue. d¢ngregator and the aggregators. A popular method of choice in the comtex
plays a critical role in successfully addressing these thallenges dual decomposition is the subgradient method, which is wow
through decomposing the optimization tasks that arisesletailed typically. In this paper, the bundle method with disaggtedacuts is

in the ensuing section. proposed for the multiplier update. It is better suited te timoblem



of interest yielding faster convergence, because it etpthe special
structure of the dual function which can be written as a sum
separate terms [cf[{6)], while it overcomes the drawbadkshe
cutting plane one developed inl[6]. Numerical tests in SediV]
illustrate differences in terms of convergence speed.

The following overview of the disaggregated bundle method

a general form is useful to grasp its role in the present etnte

see e.g.,[[7, Ch. 6] for detailed discussions. Consider ¢Hewing
separable convex minimization problem with linear constraints:

min ZfJ (x5)

{x;€X; }J 0 j=0

Z A]‘X]‘ =0.
7=0

For problem[(1), constrainf(Bb) corresponds[td (1h). &etaptures
constraints[(Ib)F(dg), while;, j € Na, corresponds td (1Li).

The dual functionD(u) = Z %, Dj(n) can be obtained by
dualizing constrainf(8b) with the muIt|pI|er vectpr. Thus, the dual
problem is to maximize the dual objective as

fr= (8a)

(8b)

Nq

Ng
Dj(p) = max {mi_ﬂ{fj(xj)Jru'Aij} ©)
HERTC =0 X

max
pERC
Jj=0

where strong duality holds here due to the polyhedral féasitt [Sh).

The basic idea of bundle methods (also CPM) is to approxitinate
epigraph of a convex (possibly non-smooth) objective fiamcas the
intersection of a number of supporting hyperplanes (alfled¢&uts
in this context). The approximation is gradually refined leperating
additional cuts based on subgradients of the objectivetifomc

Specifically, suppose that the method has so far generatd
iterates{u(£) }5_, after k steps. Letx;(¢) be the primal minimizer
corresponding tq«(¢). Observe that the vect;(¢) := A x;(¢) is
a subgradient of functio®;(p) at point(¢), and it thus holds for
all p such that

Dj(p) < Dj(p(0)) + (1 — p(£)) g5 (£). (10)

Clearly, the minimum of the right-hand side bf{10) over 1,...,k
is a polyhedral approximation dp;(u), and is essentially a concav
and piecewise linear overestimator of the dual function.

The bundle method with disaggregated cuts generates arssqu
{n(k)} with guaranteed convergence to an optimal solution. Spe
ically, the iterateu(k + 1) is obtained by maximizing the polyhedra
approximations of D;(w)}; with a proximal regularization

max E v —

K, {UJ}J 15=0

s.t. v < Dj(p(0) + (1 — p(0))'g; (0),
j=0,...,Na,t=1,....k (l1b)

where the proximity weighp(k) > 0 is to control stability of the

Dap(p(k 4 1)) |Iu (k)3 (11a)

of

Fig. 1. Power system example featuring 6 buses, 3 generdtaggregators,
and base loads at three of the buses.

the dual, which is however known to be unstable and converges
slowly on some practical instances [8]. The proximal regméion

in the bundle methods is thus introduced to improve stgbiftthe
iterates, while thesmart prox-center updating rule enhances further
the convergence speed compared with the proximal CPM. Adurt
limitation of CPM is that a compact set containing the optima
solution has to be included, as is the case withe [p™®, p™2*]

in [6]. The CPM convergence performance depends on the elafic
this set, while there is no such issue for the bundle methNdse
further that the dual problem of (1) is a quadratic prograp®)
over a probability simplex. Such a special structure canxpéoéed

by off-the-shelf QP solvers, and hence it is efficiently able. As a
result, solving[(Il) does not require much more computatiaork
than solving a linear program (LP), which is the case for tfRMC
Finally, it is worth stressing that the disaggregated benukethod
tpkes advantage of thseparability of (8). In a nutshell, offering
state-of-the-art algorithms for solving non-smooth conpeograms,
the stable and fast convergent bundle methods are well atetlv
here for clearing the market distributedly.

Specifically, applying the disaggregated bundle method rab
lem (9) at hand, the multiplier update at iteratioamounts to solving
the following problem:

No T
k) ;
e max ZUJ _ plk) ZZ(uﬁ — ;1,;-)2 (12a)
H {M ikt 2 .
Cif 3°Y3Tat j=0 j=1t=1
N, T
S. t. Vo < DO Z PDRA Mj (Z)]
j=11t=1
{=1,...,k (12b)
T
'U] S D +Zzpjra [lLLJ (Z)]
t=1 nr,s
jEN, £=1,...,k. (12¢c)

iterates; and the proximal centg(k) is updated according to a query  Problem [IR) that yields the updated multipligék + 1) and the

for ascent

- _ | pwk+1), it D(p(k+1)) — D(a(k) = Bn(k)
plk+1) = { N[L(k’), ! otherwige !
wheren(k) = Dap(p(k+ 1)) — D((k)), and 5 € (0,1). Finally,

the bundle algorithm can be terminated whgt) < e holds for a
prescribed tolerance (cf. [7, Ch. 6]).

Remark 1. (Bundle methods versus CPM). When p(k) = 0, prob-
lem (I7) boils down to the CPM with disaggregated cuts fovigg|

approximate dual valud,,(u(k + 1)) can be solved at the MO.
To this end, the quantitie$Dj(u(k)),Zr,sp;m(k)}j are needed
from each aggregator per iteration as the problem input. Note
that D;(u(k)) = >, cr, Dir(n(k)), where D;,.(u(k)) is the
optimal value of problenﬂjb) Thus, it is clear that all thesquired
quantities can be formed at the aggregator level as sumnsaticer
all end-users, and then transmitted to the MO. The highlige is
that the proposed decomposition scheme respeetsprivacy, since
Bjrs(pjrs) andPj,, are never revealed.



TABLE |
GENERATOR PARAMETERS THE UNITS OFa; AND b; ARE $/(MWH)2 AND
$/MWH, RESPECTIVELY THE REST ARE INMW.

Gen.| a; | b; | Pgex | pmin | Rypdown
1 | 03] 3] 60 2.4 50
2 |015| 20| 50 0 35
3 | 02|50 50 0 40
TABLE II

PARAMETERS OF RESIDENTIAL APPLIANCESALL LISTED HOURS ARE
THE ENDING ONES W.P. MEANS WITH PROBABILITY.

Epupgv (KWh) Uniform on {10, 11, 12
PRy (KWh) Uniform on {2.1, 2.3, 2.5
ppapy (KWh) 0
) lam
Tend 6am w.p. 70%, 7am w.p. 30%

IV. NUMERICAL TESTS

In this section, simulation results are presented to vehiéymerits

of the disaggregated bundle method. The power system tésted

market clearing and large-scale DR is illustrated in [Eigwhere
each of the 4 aggregators serves 1,000 residential end-ufbe
scheduling horizon starts from lam until 12am, for a total2df
hours.

Time-invariant generation cost functions are set to be iad
as Ci(Ps,) = ai(P§,)? + biPg, for all i and t. Each end-

user has a PHEV to charge overnight. All detailed parameters
of the generators and loads are listed in Tallles | &hd Il. The
utility functions {B;-s(-)} are set to be zero for simplicity. The

upper bound on each aggregator’s consumptiorP]Kj;j = 50
MW while phi,
of the network reactances afeXis, Xo2, X25, Xs53, X34, X41} =

CPM Bundle method
11500
10500 9600
9500
8500 9400
7500
6500
5500 9200
4500
3500 9000
2500
1500
8800
500 D_ (k+1) ——D_ (k+1)
ap ap
500 — DK — DK
-1500 8600
0 50 100 150 200 0 20 40 60
Iteration k Iteration k

Fig. 2. Convergence of the objective values of the dual aadfiproximated
one (denoted a® (k) and Dap(k + 1) in the caption).

450

Disaggregated bundle method

400 Disaggregated CPM

350

300

250

200

k) = ]l

150

100
0

0 50

100 150 200
Iteration k

250
Fig. 3. Convergence of the Lagrange multipliers.

A number of interesting research directions open up, inotythe

5 MW. At a base of 100 MVA, the values incorporation of load and renewable energy production daigy,

the issue of primal recovery, as well as cut aggregationnigcies

{0.2,0.3,0.25,0.1,0.3,0.4} p.u. Finally, no flow limits are imposed for further computational speed up.

across the network. The resulting optimization problena énd [1P)
are modeled virALMIP [9], and solved byGurobi [10].

Figs. 2 and[B illustrate the convergence performance of th

proposed disaggregated bundle method vis-a-vis the glisggted
CPM. The pertinent parameters are setcas 1073, p(k) = 0,
B8 = 0.5, and p™>™" = 450 (cf. [6]). Fig.[2 depicts the evolution

of the objective values of the dul(u(k)) and the approximate dual
Dap(p(k + 1)). Itis clearly seen that the bundle method convergegs)

much faster (more than three times) than its CPM counterpinte
that due to the effect of the proximal penalty (df_{fL1a))amfity
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