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One of the primary goals of the Environmental Stress Pathway Project (ESPP)
is to map the response of the anaerobic sulfate reducing soil bacterium,
Desulfovibrio vulgaris Hildenborough to its environment. Two component
systems, comprised of Histidine Kinase and Response regulator proteins,
present the primary and ubiquitous mechanism in bacteria for initiating cellular
response towards a wide variety of environmental conditions. In D. vulgaris
Hildenborough, more than 70 such systems have been predicted, but remain
mostly uncharacterized. The ability of D. vulgaris to survive in its environment is
no doubt linked with the activity of genes modulated by these two component
signal transduction systems. To map the two component systems to the genes
they modulate, the availability of deletion mutants provides an important tool.
Here we present an overview of the predicted histidine kinases in D. vulgaris
and describe a strategy to create library of histidine kinase knock out mutants in
D. vulgaris. We use the OmniLog® workflow to conduct a wide phenotypic
characterization of the knock out mutants generated. To illustrate our strategy
we present results from our study of the histidine kinase in the predicted kdp
operon of D. vulgaris. The high-affinity potassium uptake Kdp complex is well
characterized in other bacteria where it facilitates K+ uptake in low K+ or high
Na+ conditions. Typically, the activity of the Kdp system is modulated by the
KdpD/E two-component signal transduction system, where KdpD is the sensor
histidine kinase and KdpE is the response regulator. The D. vulgaris kdp operon
contains a gene with predicted response regulator function and two separate
genes annotated for the sensor kinase function (kdpD and DVU3335).
Interestingly, only one of these two, DVU3335, contains a conserved histidine
kinase domain which is absent the D. vulgaris kdpD candidate. However,
DVU3335 does not encode the well-conserved motifs associated with KdpD. We
created a knock out mutant in the DVU3335 gene. The DVU3335 knock out
strain showed a growth deficiency in low K+ conditions and when exposed to
low K+ conditions was unable to upregulate genes in the kdp operon.
Phenotypic microarrays were used to obtain a broader comparison of the
mutant and wild type strains. Our results show that the major differences
between the wild type and the mutant are in response to salt stress and support
the role of DVU3335 in modulating K+ uptake during low K+ and high Na+
conditions.

Figure.1   Schematic representation of the proposed high-throughput method
to inactivate and barcode genes in D. vulgaris. ~ 750 bp internal sequence is
amplified for the target Histidine Kinase gene from the D. vulgaris genomic DNA.
Unique UP and DOWN barcodes are introduced during amplification and the
resulting fragment is cloned into a suicide vector (e.g. TOPO vector). The suicide
vector is transformed into D. vulgaris followed by selection on the antibiotic reporter
results in the incorporation of the entire plasmid at the locus of homologous
recombination causing gene deletion via gene disruption. Using this strategy a
library of knockout mutants have been generated for the Histidine Kinase genes in
D. vulgaris.
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Figure 3: (A, B) Growth curves of D. vulgaris wild type and DvAM88 with varying concentrations of K+ showed that the mutant strain required a higher level of K+

concentration in the defined LS medium for optimal growth. (C) Consistent with this growth defect, Q-PCR data showed that while kdp genes are highly upregulated in
D. vulgaris WT within an hour of growth in low K+ medium, such an upregulation was not observed in DvAM88. Very little expression was observed for the genes
downstream of the insertional locus. rpsU mRNA levels was constant across all conditions and time points and was used to normalize the data.

Figure 2: (A) The Kdp operon structure. In the D. vulgaris there are two sensor proteins in the Kdp operon, kdpD ; which contains all the K+ and N+ sensing domains
delineated in E. coli,  and a gene down stream, DVU3335, that contains the conserved histidine kinase domains. The hashed block represents the locus used to create
insertional mutant using the single cross-over strategy. (B) Growth curves of the D. vulgaris wild type and DvAM88 in defined Lactate sulfate medium show no difference
between the two strains. (C) mRNA expression of genes from the kdp operon were measured in the two strains under these conditions show that all genes in the kdp
operon upstream of the gene disruption locus have similar expression levels. This is are consistent with equivalent growth in the two strains.
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Figure 5  The LR strategy is being used to create an expression library
of D. vulgaris Histidine Kinases and Response regulators in E. coli.
Purified proteins will be used in phospho-transfer assays to confirm
histidine Kinase / response regulator pairs.
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Figure 5. Use of OmnilogTM strategy to obtain high
throughput phenotypic data: Prefabricated Biolog
Phenotype MicroAarrayTM plates can be used to
assess the phenotypic response of the WT and
mutant strain to multiple conditions. Each 100-µL
well of a 96-well PM plate contains a single
substrate, such that the 96-well plate can be used to
examine the growth of an organism on 96 different
substrates simultaneously or to test the phenotypic
response of a given selection of chemicals.

Shown here are PM plates 9, 13 and 15 used to
survey two D. vulgaris strains. Complete list of
conditions tested is available at the manufacturer’s
website, (biolog.com/pmMicrobialCells.html). Kinetic
plots are generated by the OmniLog® instrument, an
incubated chamber which measures growth as a
factor of light transmittance of the culture every
15min for up to 150 hours.  OmniLog® (OL) units is
as defined by the manufacturer.
(biolog.com/PM_FAQ.html).




