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Abstract

Genomic information on tumors from 50 cancer types catalogued by The International Cancer 

Genome Consortium (ICGC) shows that only few well-studied driver genes are frequently 

mutated, in contrast to many infrequently mutated genes that may also contribute to tumor 

biology. Hence there has been large interest in developing pathway and network analysis methods 

that group genes and illuminate the processes involved. We provide an overview of these analysis 

techniques and show where they guide mechanistic and translational investigations.

Introduction

As sequencing costs continue to decrease, it is becoming common to assay genomic 

information from a cohort of cancer patients at the level of single nucleotide variants 

(SNVs) and copy number alterations (CNAs). Other alterations including structural changes, 

fusion transcripts and epigenetic reprogramming are also studied routinely. These genomic 

data are associated with rich clinical annotation, and some groups have begun to incorporate 

sequencing into standard clinical practice1. Recent studies have painted a portrait of the 

mutation landscape for multiple cancers2 including pancreatic3, lung4, breast5, brain6, and 

ovarian7. In each case, the distribution of somatic single nucleotide variants (SNVs) across 

the samples typically includes a few altered genes at frequencies higher than 10% and a 

“long tail” of many genes mutated at frequencies of 5% or lower2,8. Interestingly, some 

tumor types, including prostate cancer and some pediatric cancers, have relatively few SNVs 

or CNAs9; their biology is presumably driven by other types of somatic variation like DNA 

methylation10. Driver genes are mostly detected using signals of positive selection in the 

mutation patterns of individual genes across tumors11. However, this approach will miss less 

frequently mutated but functionally important genes that a typical cohort with hundreds of 

tumor samples is not statistically powered to detect12. Recent pan-cancer analyses have 

detected cancer genes using several thousand samples of different tumor types, however 

these studies still remain limited in power due to tissue-specific drivers such as APC in 

colorectal and ovarian cancers, VHL in renal cell carcinoma, and ERG fusion genes in 

prostate cancers. Alternatively, grouping of genetic alterations using prior knowledge about 

cellular mechanisms allows investigation of the full complement of mutations in a tumor and 

the determination of affected oncogenic pathways.
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In this Perspective, the term “pathway and network analysis” denotes any analytic technique 

that benefits from biological pathway or molecular network information to gain insight into 

a biological system. The fundamental aim is to reduce data involving thousands of altered 

genes and proteins to a smaller and more interpretable set of altered processes (see recent 

reviews13,14). This process-oriented view helps generate testable hypotheses, identify drug 

targets, find tumor subtypes with clinically distinct outcomes, and identify both cancer-

specific and cross-cancer pathways.

Pathways and networks are similar concepts with certain distinctions. Both comprise 

systems of interacting genes, proteins, and other biomolecules that carry out biological 

functions. Pathways are small-scale systems of well-studied processes where interactions 

comprise biochemical reactions and events of regulation and signaling. Pathways represent 

consensus systems based on decades of research and can be visualized in detailed linear 

diagrams. In contrast, networks comprise genome- or proteome-wide interactions derived 

from large-scale screens or integrative analyses of multiple datasets. Network interactions 

are simplified abstractions of complex cellular logic. For instance, physical protein-protein 

interactions may be represented as directionless edges and directed edges may stand for 

inhibitory or activating gene regulation. Networks are noisy and challenging to visualize and 

interpret, however they likely contain novel information not covered in well-defined 

pathways. A related concept to pathways and networks is a functionally annotated gene set 

that comprises all genes involved in a particular process or pathway without their 

interactions. Annotated gene sets of the Gene Ontology and other resources are based on 

multiple types of evidence and are broader in scope than pathways.

Pathway and network analysis has a number of benefits relative to analyzing genomics data 

at the level of individual genes. First, these techniques aggregate molecular events across 

multiple genes in the same pathway or network neighborhood, thus increasing the likelihood 

that the events will pass a statistical detection threshold and reducing the number of 

hypotheses tested15. Second, results are often easier to interpret as genomic alterations are 

related to familiar concepts such as cell cycle or apoptosis. Third, potential causal 

mechanisms can be identified, for instance by predicting a particular microRNA or 

transcription factor that explains expression differences between tumor samples and 

controls. Fourth, results obtained from related datasets may become more comparable since 

pathway information allows interpretation in a common feature space. Finally, the 

techniques facilitate integration of diverse inputs such as genomic, transcriptomic and 

proteomic data into a unified view of tumor biology, improving statistical and interpretative 

power.

Pathway and network analyses have been applied to cancer data sets to find driver genes and 

pathways16,17, to identify hidden tumor subtypes distinguished by common patterns of 

network alteration18, to propose cancer mechanisms and biomarkers17,18, and to identify key 

regulators of cancer-related gene networks19,20.

The Mutation Consequences and Pathway Analysis (MUCOPA) working group of the 

International Cancer Genome Consortium (ICGC)21 has developed standard operating 

procedures for the analysis of cancer genome data generated by the ICGC. In a recent 
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review11 we outlined our recommendations for prioritizing somatic mutations using gene-

level statistics, including criteria for the functional impact of mutations and positive 

selection for mutations in genes within the patient population. Here we describe diverse 

analytic techniques to prioritize altered gene sets, pathways, and networks consisting of 

multiple interacting genes. While we focus on somatic SNVs and altered RNA expression, 

the concepts are generally applicable to other oncogenic alterations such as CNAs, 

epigenetic changes, and genomic rearrangements, though the details of analysis, including 

data processing and confounding factor control, can be different for other data types.

Major Types of Pathway and Network Analysis Techniques

We consider three major approaches to network and pathway analyses to interpret somatic 

cancer mutations, listed from the simplest to the more complex (Fig. 1). The simplest 

analysis provides a high-level summary of pathways affected in the tumor, whereas more 

complex methods provide detailed hypotheses about affected cellular mechanisms. We 

recommend that approaches from each of these classes be applied to cancer genome 

sequencing projects wherever feasible.

All three approaches require two general resources. The first is a list of oncogenic alterations 

that affect protein-coding genes. The second is a database of gene sets, pathways, or network 

interactions22. Pathway databases represent biological processes as series of biochemical 

reactions and other physical events (e.g. complex formation, phosphorylation events, sub-

cellular localization, conformational changes), while network databases use a simpler data 

model that treats biological processes as sets of bimolecular interactions. A simplified 

version of the Epidermal Growth Factor pathway illustrates the essential difference between 

pathway and network interaction databases (Fig. 2). The first approach, fixed gene set 

enrichment analysis, analyses functionally annotated gene sets that can be extracted from 

either type of database. Network interaction databases provide inputs to the second 

approach, de novo network construction and clustering, while both types of databases are 

used in the most sophisticated approach, network-based modeling.

Approach 1: Fixed gene set enrichment analysis

The first approach treats pathways, biological processes, and networks simply as gene sets 

and discards information about their interactions. Fixed gene set enrichment analysis 

identifies genes in pathways (or any other functionally-related grouping) that are present in a 

gene list more frequently than expected by chance. The gene sets are usually collected from 

curated community databases or the gene annotation tables of the Gene Ontology23, but may 

also be experimentally derived (e.g. genes up-regulated in a cell line exposed to low oxygen 

levels). Several recommended software tools are available (Supplementary Table 1). The 

simplest input to such analysis is a list of genes that is most differentially expressed or 

frequently mutated in a dataset. A typical analysis workflow consists of two steps: (1) a gene 

list is defined by filtering experimental data for genes with significant gene-level statistics, 

and (2) enrichment analysis is performed to determine processes and pathways over-

represented in the gene list.
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A hypergeometric distribution (Fisher’s exact test) is commonly used to calculate the 

statistical significance of this over-representation, followed by a correction for multiple 

testing to estimate the proportion of enriched gene sets that would occur by chance given the 

number of tested gene sets. The basic form of this test is applied in many tools 

(Supplementary Table 1) including the widely used but no longer updated web service 

DAVID24. However, the key drawback of this approach is that an arbitrary threshold is used 

to select the input genes and potentially informative genes below the threshold are excluded. 

An alternative approach enables interpretation of a ranked list of genes in the experiment 

(e.g. by strength of differential expression) with the assumption that top-ranking genes are 

more important in terms of biological function. One recommended web service g:Profiler25 

applies a modified hypergeometric test to analyze increasingly complete ranked lists of input 

genes and determines a sub-list with the strongest level of enrichment. The GSEA method26 

is designed to work with continuous data and searches for gene sets that are enriched at the 

top (over-expressed vs. control) or bottom (under-expressed) of a ranked list of all genes. 

Both methods score each gene set separately and compute additional statistics to estimate p-

values and make multiple-testing corrections with false discovery rate (FDR).

Enhancements of these approaches allow enrichment analysis for each tumor sample, 

thereby enabling the discovery of distinct cancer subtypes from different enrichment 

patterns. Examples of methods that allow comparisons among samples include sample level 

enrichment analysis (SLEA)27, single-sample GSEA (ssGSEA)26, and gene set variation 

analysis (GSVA)28.

Rank-based enrichment methods do best when genes are easily ranked but may be 

suboptimal in scenarios such as cancer mutation analysis in which most genes are difficult to 

rank due to low mutation counts. A pathway association analysis may be helpful in case of a 

two-class experimental design (e.g. cases vs. controls). This resembles a genome-wide 

association analysis and uses pathways and other gene sets instead of genetic markers. For 

each experimental class and gene set, one counts all samples containing a mutation that may 

affect that gene set. A series of Fisher’s exact tests identify gene sets significantly mutated 

in cases versus controls, followed by multiple-testing correction.

Fixed gene set enrichment analysis generates a list of processes and pathways and provides a 

bird’s-eye view of affected biological systems. However, sometimes many related gene sets 

are enriched. The key functional themes in these large pathway lists can be identified using 

tools like Enrichment Map29 app of the Cytoscape network visualization software30. 

Another useful approach is to overlay the original genomics data on a detailed pathway 

diagram or high-level molecular interaction network. For example, the databases KEGG31, 

Reactome32, and HumanCyc33 enable diagrams of enriched pathways with colors 

highlighting the genes of interest. This may help researchers to move beyond asking what 

pathways are enriched among alterations towards understanding the functional consequences 

of the altered gene set.

This family of techniques is still evolving. For instance, most enrichment statistics assume 

that genes in the list occur independently, an assumption that does not hold true for co-

regulated genes in gene expression data, overlapping or shared exons in point mutation data, 
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or co-located paralogous genes with similar functions. The quality and coverage of gene sets 

can also affect interpretation of fixed gene set enrichment analysis, as databases report genes 

and their functions with variable levels of detail and confidence. Combined use of multiple 

databases, filtering, and visualization help overcome these problems. Another issue is that 

many annotated pathways represent normal physiology that may be altered in disease. New 

methods are developed to address these issues; for example CAMERA34 corrects gene set 

enrichment statistics for inter-gene correlations. A more fundamental limitation of this class 

of algorithms is their ignorance of interactions between genes and proteins, as neither 

network topology nor dynamics is taken into account. These limitations are addressed by the 

next two approaches.

Approach 2: de novo Network Construction and Clustering

Methods in this section construct cancer gene networks de novo by analyzing networks of 

molecular or functional interactions. These methods begin with a list of mutated or 

otherwise altered genes, and one or more databases of gene or protein interactions, such as 

those compiled by iRefIndex35, BioGRID36, IntAct37, STRING38, or GeneMANIA39 

(Supplementary Table 2). The altered genes and a subset of their neighbors are then 

extracted from the databases and reconstructed as an interaction network. The resulting 

network reveals interactions of input genes and helps discover additional related genes by 

“guilt by association”, highlighting non-mutated genes that likely participate in tumor 

biology due to their interactions. By clustering and annotating the discovered networks with 

the enrichment and colorization approaches described above, one may reveal similarities and 

differences among distinct tumors that would not be apparent at the gene level.

Examples of recommended network construction algorithms include GeneMANIA39, 

ReactomeFIViz40, STRING38, ResponseNet41, NetBox42, MEMo43, and EnrichNet44 

(Supplementary Table 2). GeneMANIA is an interactive web service and a Cytoscape app 

that uses a diverse set of interaction databases. It suggests genes that are related to those in 

the experimental data set using network analysis. ReactomeFIViz (previously called 

Reactome FI Plugin) runs in Cytoscape and features a number of algorithms for clustering 

and annotating sets of interacting genes, and relating these clusters to tumor phenotype and 

patient clinical characteristics. For example, ReactomeFIViz identified prognostic 

biomarkers in breast and ovarian cancer45. NetBox is conceptually similar to 

ReactomeFIViz and reports functional network modules by identifying clusters of altered 

genes on a background network derived from databases. MEMo studies mutual exclusivity 

of cancer alterations in groups of genes across tumor samples to discover sub-networks of 

synthetic lethality and other functional groupings. It nominates sets of oncogenic alterations 

that have a particularly strong selective effect, potentially pointing to therapeutic 

combinations where mutual exclusivity reflects synthetic lethality.

A key use of networks is to search for alteration patterns in interacting genes that correlate 

with clinical information46. The HyperModules method47 identifies subnetworks with 

cancer mutations that are maximally correlated with clinical characteristics such as patient 

survival, tumor stage, or relapse. This tool can also be used to study tumor subtypes by 

extracting subnetworks whose mutations are significantly enriched in a particular subtype. 
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HyperModules was applied to the kinase-signaling network in ovarian cancer and revealed 

network modules with mutations in phosphorylation sites and kinase domains that 

significantly correlated with patient survival48.

A drawback of de novo network construction and clustering techniques is their use of a 

simplified data model that discards much information known about biological networks. For 

example, an alteration may act at the DNA level by deleting a portion of a gene, at the 

transcriptional level by disrupting a promoter, or at the protein level by altering a catalytic 

site. The activating effect of a mutation in a transmembrane receptor can be masked by 

inactivation of a downstream effector of the same signaling pathway. These subtleties are 

not easily captured in a binary interaction network. In addition, the molecular interactions in 

databases are derived from specific experiments such as yeast-two-hybrid assays that may or 

may not matter for cancer biology. Thus it is advisable to consult the literature underlying 

the network interactions when forming hypotheses based on patterns observed in interaction 

networks; several text-mining tools are available to automate this task49.

Approach 3: Network-Based Modeling

The approaches discussed in this section infer how network states are disrupted in cancer. 

Network-based modeling approaches use qualitative and quantitative measurements to infer 

the activities and interactions of various genetic components in pathway or networks. These 

methods relate the activities of some components with their influences and consequences on 

other components. Such modeling approaches have been applied to infer the mechanisms of 

NRAS signaling in melanoma50 to map transcriptional regulatory networks in 

physiologically normal and diseased states19,20,51,52,53, to build maps of phosphorylation 

networks54, and to identify cancer drivers16. Below, we briefly describe several network 

modeling algorithms that are available as user installable software packages and have been 

applied to cancer (Supplementary Table 3).

The HotNet55 tool treats the gene network as a metallic lattice, and then uses the physics of 

heat diffusion to model the effects of gene alterations. Each gene in the query “heats up” its 

local region of the network, and the effect is then metaphorically propagated along metallic 

wires defined by gene-gene linkages, leading to “hot” (highly relevant) network 

neighborhoods. This approach mitigates some of the ascertainment biases in curated gene 

interaction networks. For example, because TP53 is exceedingly well studied, it is an 

artificially inflated “hub” of known linkages to other genes; but because of TP53’s high 

degree of connectedness, heat diffuses away from it rapidly, reducing its overall influence. 

The related method TieDIE56 extends the network diffusion concept to integrated analysis of 

multiple types of genomic alterations.

The Pathifier method57 transforms gene-level information to network-level information by 

quantifying molecular activities on a continuous sample-by-sample curve in the 

multidimensional space of gene expression values. It ranks cancer samples along a gradient 

of clinical or biological attributes such as tumor aggressiveness or patient survival. The 

method generates hypotheses and identifies testable markers to predict clinical outcomes.
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Signaling Pathway Impact Analysis (SPIA)58 applies a recursive algorithm similar to that 

used by Google to rank search results. SPIA scores a gene product as highly impactful if it 

points to other impactful gene products in the network diagram. By ranking the effects 

hierarchically, SPIA distinguishes primary changes in gene activity and secondary effects of 

the regulatory network.

Several methods use information theoretical principles to reconstruct regulatory networks 

from gene expression data. Application of these methods to cancer genomics has led to 

insights into tumor biology and identification of actionable drug treatments. ARACNe 

applies mutual information to discover regulatory networks of transcription factors and 

target genes59, while MARINa interrogates these networks to identify master regulators19,20. 

For example, application of these tools to the reconstruction of the gene regulatory network 

in glioblastoma and follow-up experimental validations revealed C/EBPβ and STAT3 to be 

master regulators of mesenchymal transformation20.

Other methods integrate gene expression and CNA data to identify cancer driver genes and 

downstream regulatory networks. For example, CONEXIC assumes that copy number gains 

and losses alter gene expression16. It employs a Bayesian Network algorithm to find 

significantly altered genes regulating modules of differentially expressed genes. The 

approach was applied to predict and experimentally validate multiple cancer driver genes in 

melanoma and glioblastoma16,60.

Several approaches have been developed to “fit” gene interactions to the data rather than 

taking the interactions as prior knowledge. Thus interactions are not interpreted as direct 

physical interactions but rather as measures of influence between network nodes. Functions 

of discrete logic were used to connect gene products through “gates”61 and to infer functions 

best capturing the observed dynamics in the data. This was extended to fuzzy logic62 that 

relaxes the rules of gene interactions and allows for biological noise and uncertainty. Similar 

approaches were developed for partial least squares regression (PLSR) models63 in which 

parameters are fit to dependent variables typically reflecting a cellular phenotype. These 

approaches were applied to interpret drug response in triple negative breast cancer and to 

suggest effective therapeutic treatments64. The DataRail package65 allows users to 

experiment with multiple similar model-fitting methods for gene networks.

Probabilistic graphical models (PGMs) have been applied to cancer network analysis. PGMs 

are widely used in machine learning and statistics for modeling complex dependencies 

among multiple variables. PathOlogist66 analyses pathways from curated databases to derive 

a set of network interactions. It then uses the inhibitory and excitatory regulatory 

connections in each pathway-derived network model to determine if 1) a given cancer gene 

expression dataset is consistent with the model and 2) if the pathway-derived network’s 

components are activated. Thus a collection of known gene interactions with details of co-

regulation helps interpret gene expression data. This family of algorithms was applied to 

develop predictors of drug sensitivity in cancer cell lines67.

PARADIGM68 extends the PGM framework of PathOlogist by formally modeling the 

“central dogma” of gene expression to represent pathway and network effects of alterations 
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at the DNA, RNA and protein levels. This method uses factor graphs to assign weights to 

each molecular interaction and to integrate the effects of multiple simultaneous alterations 

(e.g. copy number changes, simple somatic mutations, expression changes). The tool 

provides predicted pathway activity scores by integrating all observed variations to assess 

whether the activities of each pathway are increased, decreased, or unaffected. The 

algorithm was used to identify new tumor subtypes based on shared pathway activation 

patterns18. An extension called PARADIGM-SHIFT infers whether somatic mutations are 

neutral, loss-of-function, or gain-of-function69. This method has detected several well-

known examples of pathway alterations, including loss of function events in the tumor 

suppressor TP53 in breast cancer, and gain of function events in oncogene NFE2L2 in lung 

squamous cell tumors. More recent PGM approaches include the application of Dynamic 

Bayesian Networks to consider tumorigenesis as a temporally evolving system. The inferred 

network of breast cancer cell lines contributes an important proof-of-concept in this area70.

Higher-resolution modeling of cellular wiring in cancer requires quantitative data that is not 

yet readily available from patient tissue samples. Established cell lines, organoids, and 

xenograft models will enable collection of more data for integrative analysis. Time courses 

and perturbation experiments on such cancer models will contribute key data points that will 

help parameterize more realistic models such as systems of differential equations. Large 

interacting systems of differential equations such as full cell models71 also show promise 

but are in their infancy in their application to cancer.

Challenges and future perspectives

Pathway and network analysis can effectively uncover biological systems perturbed in tumor 

cells. However, our knowledge of pathways and networks both in normal cells and more 

acutely in cancer cells is far from complete. Many approaches, particularly the modeling 

techniques of the third section, require accurate, detailed, and comprehensive pathway 

descriptions with regulatory relationships, orthogonal data (DNA, RNA, protein), and deep 

quantitative data. Even among protein-coding genes, high-resolution data are only available 

for well-studied biological processes and are scarce for pathways involving many non-

coding genomic elements. This argues for an expanded effort in the development of pathway 

databases and the systematic reconstruction of regulatory and signaling networks.

A second challenge is the computationally expensive modeling of biological networks that 

can consume weeks of CPU time, particularly for permutation-based estimates of statistical 

significance. This problem will only grow as reference pathways and networks and 

experimental datasets increase in size. As cancer genomics data become available for 

progressively larger patient cohorts, fundamental computer science research is needed to 

optimize these algorithms to scale to thousands of samples72.

A third challenge arises from the abundant interdependencies in complex biological systems. 

It is well established that the role of a mutation, such as its functional impact or its role in 

suppressing or enabling a tumor, is not static. Instead it depends on cell state and the 

presence of other mutations73 and could have effects on multiple cellular processes. The 
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establishment of annotation standards that can encapsulate such dependencies also 

represents a major challenge for the field.

A final challenge is the evaluation of pathway and network methods in patient care. With a 

sufficient battery of pathway-specific therapeutics, one can envision the selection of 

therapies based on networks constructed from the molecular alterations present in individual 

tumors. It will be a major statistical challenge to devise adaptive clinical trials that leverage 

such information74. The difficulties of communicating genomic information to clinicians 

and patients will certainly be exacerbated by the complexity of network-level alterations75.

Our understanding of cancer biology through the lens of pathway and network analyses is 

nascent, but holds the potential to transform our thinking on disease etiology and treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Major approaches to pathway and network analysis of cancer data
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Figure 2. Pathway and network representation of EGF signaling
(A) In the simplified pathway representation, heterogeneous nodes and edges correspond to 

genes, proteins, small molecules, and their regulatory and catalytic relationships. Nodes do 

not interact directly but participate in reaction events designated by white squares. (B) In the 

network representation, all nodes correspond to the same type of biological entity (gene 

products). Edges derived from curated pathways are shown as bold arrows. Additional gene-

gene interactions derived from gene co-expression and physical protein interactions are 

shown as light lines.

Creixell et al. Page 16

Nat Methods. Author manuscript; available in PMC 2016 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript




