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Compiler-Based Code Generation and Autotuning for
Geometric Multigrid on GPU-Accelerated Supercomputers

Protonu Basua, Samuel Williamsa, Brian Van Straalena, Leonid Olikera,
Phillip Colellaa, Mary Hallb

aLawrence Berkeley National Laboratory, Berkeley CA 94721
bSchool of Computing, University of Utah, UT 84112

Abstract

GPUs, with their high bandwidths and computational capabilities are an
increasingly popular target for scientific computing. Unfortunately, to date,
harnessing the power of the GPU has required use of a GPU-specific pro-
gramming model like CUDA, OpenCL, or OpenACC. As such, in order to
deliver portability across CPU-based and GPU-accelerated supercomputers,
programmers are forced to write and maintain two versions of their applica-
tions or frameworks. In this paper, we explore the use of a compiler-based
autotuning framework based on CUDA-CHiLL to deliver not only porta-
bility, but also performance portability across CPU- and GPU-accelerated
platforms for the geometric multigrid linear solvers found in many scientific
applications. We show that with autotuning we can attain near Roofline (a
performance bound for a computation and target architecture) performance
across the key operations in the miniGMG benchmark for both CPU- and
GPU-based architectures as well as for a multiple stencil discretizations and
smoothers. We show that our technology is readily interoperable with MPI
resulting in performance at scale equal to that obtained via hand-optimized
MPI+CUDA implementation.

Keywords: GPU, Compiler, Autotuning, Multigrid

1. Introduction

Geometric multigrid (GMG) is an important family of algorithms used
by computational scientists to accelerate the convergence of iterative solvers
for linear systems. GMG execution time is dominated by stencil compu-
tations, which are discretizations of differential operators. In a stencil, an
output point is computed from a small set of neighboring input points in
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a 3-dimensional structured grid. Consequently, the performance of com-
mon stencil computations used in GMG is typically limited by the memory
bandwidth of modern architectures, as the ratio of floating point opera-
tions to data movement (i.e., flop-to-byte ratio) is usually well below the
machine balance. For this reason, much research has been devoted to reduc-
ing data movement for stencil computations using techniques such as cache
oblivious algorithms, time skewing, wavefront optimizations and overlapped
tiling [30, 22, 6, 7, 27, 35, 18, 29, 36, 8].

Among contemporary high-performance architectures, graphics process-
ing units (GPUs) are a popular hardware target due to their high degrees of
parallelism and high DRAM bandwidth. For these reasons, data movement
costs are potentially reduced, making GPUs an attractive target architecture
for stencils and GMG. GPUs expose parallelism via a hierarchy of parallel
threads; threads are grouped into warps, warps are grouped into cooperative
thread arrays (CTA), and the CTAs are arranged in a computational grid
or kernel. To date, harnessing the power of the GPU has required use of
a GPU-specific programming model like CUDA, OpenCL, or OpenACC, all
of which micromanage the organization and synchronization of threads and
CTAs, and explicitly orchestrate data movement into specialized portions of
the GPU’s memory hierarchy. Thus, a high-performance implementation of
GMG for GPUs requires a complete and extensive code rewrite even if a high-
performance multicore version of the code already exists. With OpenACC,
achieving performance portability will require atleast retuning of code for
each new target architecture. In practice for production codes, programmers
are forced to write and maintain two versions of their applications, which
has significant implications for programmer productivity and performance
portability in an era of rapidly-changing architectures.

We envision a scenario in which application developers express and main-
tain a single, portable implementation of their computation – legal code that
can be compiled and run using standard tools. In this paper, we describe
and demonstrate such an approach using autotuning based on the CHiLL
compiler framework. CHiLL transforms the baseline code into a collection
of highly-optimized implementations, customized for the target architecture.
Autotuning, which uses empirical measurement of executing these imple-
mentations, explores this search space to derive final implementations, thus
mitigating the need for extensive manual tuning. Using CHiLL [4], and
a lightweight GPU extension called CUDA-CHiLL [15, 9] , we can gener-
ate OpenMP or CUDA code from the same high-level sequential input and
thereby provide single source portability across CPU and GPU architectures.

In this paper, we apply CHiLL and CUDA-CHiLL to the operators of

2



the miniGMG benchmark, a distributed memory multigrid solver that was
developed to proxy multigrid solves in block-structured adaptive mesh refine-
ment (AMR) codes. We measure the performance of the resulting code for
two distinct supercomputing platforms: Edison, a multicore Cray XC30 su-
percomputer at NERSC, and Titan, a Cray XK7 supercomputer at ORNL,
whose multicore CPU nodes are augmented with NVIDIA Kepler GPUs.
The contributions of this paper are as follows: (1) we demonstrate that
architecture-specific code can be generated for either multicore CPUs or
GPU accelerators from the same sequential specification; and, (2) we achieve
performance close to the Roofline model, which bounds performance for a
computation and target architecture. This work is an important step to-
wards increasing programmer productivity in deriving performance-portable
high-performance applications.

2. Related Work

This section divides the related work into two broad categories: manually
optimized stencil codes and domain-specific languages and tools. These two
techniques are further divided into optimization efforts that only optimize
single grid sweeps, and those that use wavefront or temporal tiling (blocking)
optimizations to fuse multiple grid sweeps into one.

2.1. Manual Optimization of Stencils
Initial work on manual or semiautomatic optimizations for stencils was

done by Datta et al. [6]. They achieved an unprecedented 36 Gflops (Double
Precision) on a NVIDIA GTX 280 card. Their work optimized constant-
coefficient stencils, and did not use wavefront optimizations on the GPU.

Micikevicius [19] manually optimized higher-order stencil (orders 6 to 12)
in isolation and in a solver. This optimization effort used shared memory in
addition to the other optimizations presented in [6].

Nguyen et al. [22] explored using larger ghosts and temporal tiling in
an approach they termed 3.5D-tiling. They were not able to improve the
performance of 3D stencils using these approaches on GPUs. This was be-
cause their technique increased redundant computation, and the older GPUs
(GTX285) became compute bound easily.

Recent work from Maruyama and Aoki [17] manually optimizes a 3D,
7-point, constant-coefficient stencil. They used a number of optimization
techniques, including use of shared memory with warp specialization, and
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exploiting read-only caches using a compiler intrinsic. They also used tem-
poral tiling. In fact, this is the only research effort to date that has success-
fully used temporal tiling with 3D stencils. They ran their optimized code
on the NVIDIA Kepler K20x. On this architecture they achieve around 80%
of the Roofline performance. With temporal tiling, they are able to achieve
20% further improvement in performance. The CUDA code generated by
CUDA-CHiLL was run on a NVIDIA K20c GPU. The K20c and K20x are
very similar GPUs, with k20x being more powerful with an additional SMX
and higher memory bandwidth. On the K20c GPU, the generated code also
achieves 80% of the Roofline performance.

2.2. Compiler Optimizations, DSLs and Programming Models for stencils
There have been many domain-specific approaches to optimizing sten-

cils on GPU accelerators. These efforts can be classified as programming
language extensions to target GPUs, domain-specific languages that opti-
mize stencil computations for both GPUs and multicores, and finally, code
generators for stencils on GPU.

Mint [28] is a programming language extension for stencils on a GPU.
It lets the programmer optimize stencils on a GPU by decorating code with
pragmas. The generated code was slightly slower than hand-tuned code, and
did not explore temporal tiling.

Most domain-specific languages [13, 5, 25] for stencil computations target
both multicores and GPUs. Of these, [13, 5] do not support shared memory
or temporal tiling or large ghost zones on GPUs. Halide [25], as discussed
earlier, is a mature DSL which is designed primarily for image processing
pipeline. It has been used to optimize HPGMG on GPUs, but their details
have not been published.

Stencil-specific code generators have been used to generate and autotune
stencil code on GPUs [10, 37]. These techniques target shared memory.
Temporal tiling and overlapped tiling are used in [10], but these techniques
have been shown to work only with 2D-stencils.

2.3. Comparison to Prior Research
Our work on optimizing a solver on a GPU using a compiler-based tool

has a number of differences to prior research described above. Unlike DSL
approaches, we generate parallel CUDA code from sequential C input. This
improves programmer productivity, as application scientists do not have to
learn yet another language. In research presented here, we optimize Gauss-
Seidel Red-Black (GSRB) and Jacobi iterations, and variable-coefficient sten-
cil. With the exception of Halide and Mint, most other automation optimiza-
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tion efforts have focussed on constant-coefficient and Jacobi iterations only.
GSRB iterations and variable-coefficient stencils are common in scientific
applications and thus an important optimization target.

The most important difference between our work and prior research is
our focus on code generation and autotuning stencil computations in the
context of a solver. In addition to just a stencil computation, where a stencil
is applied to a grid, we generate code for multiple operations in Geometric
Multigrid – smooth, residual, and restriction. We present code generation
for these operations in the context of a solver, which instead of using a single
large grid work on a domain that is decomposed into a list of subdomains
(boxes). We show results for scaling, comparison across GPUS and CPUS,
and even versions of CUDA. In this article we do not consider a few com-
plex optimization techniques and targets such as higher-order stencils, time-
skewing on non-periodic boundary conditions. Our primary aim here is to
demonstrate the performance-portability achieved by using compiler-based
tools when optimizing an entire solver.

3. Multigrid and miniGMG Benchmark

Linear solvers arising from PDEs are ubiquitous in scientific computing.
Multigrid is a recursive technique for solving elliptic PDEs in which the
solution (or correction for the residual equation) for a large problem is re-
cursively approximated by the correction on a smaller (coarsened) problem.
This recursion continues until only a trivial problem remains. The resultant
coarse grid (or bottom) solve can be computed efficiently. Multigrid solvers
iterate on the resultant recursive V-Cycle shown in Figure 1. At each level of
the multigrid V-cycle, a number of linear operations are performed including
smooth, residual, restriction, and interpolation.

Geometric multigrid is a specialization in which data laid out on a regular
grid is used to specialize the implementation of the linear operator (sparse
matrices become stencils) as well as the transfer between coarse (φ2h) and
fine (φh) grid points.

In this paper, we use miniGMG, a compact, distributed memory bench-
mark for solving systems of linear equations using geometric multigrid, as
the basis for our experiments [20, 33]. miniGMG discretizes the 3D PDE
Lφ = aαφ − b∇ · β∇φ = f using a 2nd order, cell-centered, finite volume
method on a regular, cartesian grid. For spatially variable coefficients α and
β, this produces a variable coefficient 7-point stencil.

There are two publicly available distributed memory implementations
of miniGMG — one threaded with OpenMP and the other accelerated with
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progress within V-cycle

Figure 1: The Multigrid V-cycle for solving Lφh = fh. Note, superscripts denote geomet-
ric grid spacings.

CUDA (“miniGMG-cuda”). Each of these versions were heavily optimized by
the original developer for their respective targets. In this paper, we use these
highly-optimized implementations as a metric against which we measure the
performance of our productive and portable, compiler-based solution which
takes as input, a single, architecture-agnostic MPI implementation, and pro-
duces highly-optimized MPI with OpenMP or MPI with CUDA. Note, for ex-
pediency, we leverage miniGMG’s existing OpenMP and CUDA-accelerated
MPI routines that effect ghost zone exchanges and apply our technology to
the stencils – smooth, residual, restriction, and interpolation.

Collection of 
subdomains 
owned by an 
MPI process 

one subdomain 
of 643 elements 

Figure 2: Domain decomposition in miniGMG. Each red subdomain represents one “box”
for which there are 12 components and 4-8 grid spacings. OpenMP or CUDA parallelism
must be applied both within a box and across all boxes owned by the process in question
(blue).
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3.1. Data Structures in miniGMG
miniGMG solves linear systems on 3D structured (cubical) grids. To

affect MPI parallelism, the global 3D domain is decomposed into smaller
cubical boxes (Figure 2). As the basis for domain decomposition, each box
is self-contained and includes not only all 12 components (coefficients, right-
hand side, solution, etc...) for all points in its region of space, but also all
local geometric coarsenings of the box’s data. For second-order operators, a
one cell deep ghost zone encloses the box. Thus, for boxes that are 643 on the
finest level with a 1-deep ghost zone, level 0 of the box data structure can be
viewed as a 4D data structure grids[12][66][66][66]. As each process
contains one or more boxes, each with 4-8 levels, an additional data structure
subdomains[boxes].levels[8] is constructed to index the floating-point
data. miniGMG-cuda uses a similar data structure. However, as it was
written in CUDA 4.0 prior to the introduction of CUDA Unified Memory, a
shadow copy of this data structure is created on the GPU with a few changes
to the pointers within the data structure. For example a pointer on the CPU
could point to either data on the CPU or data on the GPU.

For this paper, we modified miniGMG’s data structure slightly. In the
original miniGMG benchmark, each subdomain has a list of components,
and each component within a subdomain is contiguous in memory. How-
ever, the component memory layout is not contiguous across subdomains.
miniGMG was modified to allocate each component as a contiguous chunk
of memory. This means, that each component in a subdomain is contiguous
and components are also contiguous across subdomains.

This data layout allows us to effectively parallelize the computation in-
side each box and across boxes. As shown in Listing 1, our input code
to CUDA-CHiLL has a four-deep loop nest. The outermost loop iterates
through all the boxes in the domain. Furthermore, our arrays (grids) are
four-dimensional, reflecting the outermost box loop. To correctly accom-
modate four-dimensional array references, the grid creation and allocation
routines in miniGMG benchmark had to be modified. Each 643 subdomain
(box) has a number of associated 663 grids. Thus for the entire domain
(2563), each grid : phi, beta_i, beta_j, beta_k, rhs, lambda, alpha, is
a list of 663 grids. In the miniGMG benchmark, each 663 grid is allocated
a contiguous chunk of memory, but consecutive grids for a component, e.g.,
phi, are not contiguous in memory.

3.2. Operations in miniGMG
There are four basic operations in miniGMG — smooth, residual, restric-

tion, and interpolation — all of which are stencil operations on regular grids.
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In this paper, we explore two different types of smoothing Gauss-Seidel Red-
Black (GSRB) and Jacobi. Whereas Jacobi smoothers simply iterate over all
grid points in parallel performing the operation φn+1 = φn + cD−1(f −Lφ),
GSRB colors the grid cells in a red-black checkerboard in 3D and applies
the smoother φ = φ+D−1(f − Lφ) to one color of cell at a time. Although
Jacobi is often used for computer science research, GSRB is far more com-
mon in scientific computing and much more challenging for compilers. In
order to further highlight the value of our autotuning compiler technology,
we evaluate performance for two different versions of the linear operator L.
The first is a variable coefficient finite volume operator found in many real-
world codes while the second is the ubiquitous 7-point constant coefficient
stencil found in many papers.

1 #define PR_SIZE 64
2 #define NUM_BOXS 64
3 void smooth_GSRB(double a, double b, double h, int sweep){
4
5 double _phi[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
6 double _rhs[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
7 double _alpha[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
8 double _beta_i[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
9 double _beta_j[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];

10 double _beta_k[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
11 double _lambda[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
12 double h2inv = 1.0/(h*h);
13 int i,j,k; int box;
14 int color = sweep; double _t;
15
16 for(box=0; box<NUM_BOXS; box++){
17 for(k=1; k<=PR_SIZE; k++){
18 for(j=1; j<=PR_SIZE; j++){
19 for(i=1; i<=PR_SIZE; i++){
20 if(( i+ j + k + (color) ) % 2 == 1 ) {
21 _t = b*h2inv*(
22 + _beta_i[box][k][j][i+1]*( _phi[box][k][j][i+1]-_phi[box][k][j][i ] )
23 - _beta_i[box][k][j][i ]*( _phi[box][k][j][i ]-_phi[box][k][j][i-1] )
24 + _beta_j[box][k][j+1][i]*( _phi[box][k][j+1][i]-_phi[box][k][j ][i] )
25 - _beta_j[box][k][j ][i]*( _phi[box][k][j ][i]-_phi[box][k][j-1][i] )
26 + _beta_k[box][k+1][j][i]*( _phi[box][k+1][j][i]-_phi[box][k ][j][i] )
27 - _beta_k[box][k ][j][i]*( _phi[box][k ][j][i]-_phi[box][k-1][j][i] ));
28 _t = a*_alpha[box][k][j][i]*_phi[box][k][j][i] - _t;
29 _phi[box][k][j][i] = _phi[box][k][j][i] -
30 _lambda[box][k][j][i]*(_t -_rhs[box][k][j][i]);
31 }}}}}
32 }

Listing 1: Input C code for GSRB smooth with 4D arrays
Listing 1 shows the code for the variable coefficient GSRB smoother that

is input to CUDA-CHiLL. The arrays defined in the function do not have
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assignments as this code is intended to be consumed by CUDA-CHiLL. The
code generated by CUDA-CHiLL is post-processed by a python script which
replaced these array definitions with appropriate assignment and pointer
casting. This is shown in generated code in Listing 6. The GSRB code
performs a single sweep (red or black) on all boxes and all matching points
in the box. At each point (excluding ghost zones), the variable-coefficient
operator is applied to _phi with the result being stored in _t. Note, although
an in-place update would nominally cause a data hazard, the red-black nature
of the update ( i+ j + k + (color) ) % 2 eliminates the data hazard
by ensuring (aside from the point itself) only “black” data is read on a “red”
update. As residual calculations are very similar to Jacobi smoothers, taking
the form r = f − Lφ, all 6 combinations of smoother/residual and operator
show very similar implementations and challenges.

Listing 2 shows miniGMG’s third major operator, restriction which per-
forms the operation u2h = R2h

h u
h and is used to create a coarse grid right-

hand side from a fine-grid residual. Unlike many conventional stencil oper-
ations, the linear operator R2h

h is not square. Rather it must geometrically
restrict a fine grid of size N2 to another (disjoint) coarse grid of size (N/2)2

by averaging fine grid cells. Like miniGMG’s smoothers, this routine iter-
ates over all boxes, but unlike conventional stencils, the fine grid indices are
linearly scaled by 2 from the loop indices creating something akin to a stride
two memory access pattern.

1 #define PR_SIZE 64
2 #define NUM_BOXS 64
3 void restriction( int fine_id, int coarse_id, int fine_level){
4 int i,j,k; int box;
5 double _fine[NUM_BOXS][ PR_SIZE + 2][ PR_SIZE + 2][ PR_SIZE + 2];
6 double _coarse[NUM_BOXS][(PR_SIZE/2) + 2][(PR_SIZE/2) + 2][(PR_SIZE/2) + 2];
7 for(box=0; box<NUM_BOXS; box++){
8 for(k=0; k< PR_SIZE/2; k++){
9 for(j=0; j< PR_SIZE/2; j++){

10 for(i=0; i< PR_SIZE/2; i++){
11 _coarse[box][k][j][i] = 0.125 *
12 ( _fine[box][2*k ][2*j ][2*i] + _fine[box][2*k ][2*j ][2*i+1] +
13 _fine[box][2*k ][2*j+1][2*i] + _fine[box][2*k ][2*j+1][2*i+1] +
14 _fine[box][2*k+1][2*j ][2*i] + _fine[box][2*k+1][2*j ][2*i+1] +
15 _fine[box][2*k+1][2*j+1][2*i] + _fine[box][2*k+1][2*j+1][2*i+1]) ;
16 }}}}
17 }

Listing 2: Input C code for restriction.

Listing 3 shows miniGMG’s fourth major operator, interpolation which
can be thought of as the inverse of restriction. That is, interpolation, uh =
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Ih2hu
2h, maps a coarse grid of size (N/2)3 onto a fine grid of size N3. As

it is almost invariably used in the V-Cycle to correct a fine-grid solution,
we have merged the increment operation to form uh = uh + Ih2hu

2h. For
a second-order accurate solver, piecewise constant interpolation will suffice.
Here, a coarse grid cell value is used to increment the 8 enclosing fine grid
cell values. Once again, the operator presents a challenge to compilers as
one must either divide loop indices by two to map to the coarse grid (stride
one-half) or scale them by two to map to the fine grid (stride-2). We choose
the latter.

1 #define PR_SIZE 64
2 #define NUM_BOXS 64
3 void interpolation( int fine_id, int coarse_id, int fine_level){
4 int i,j,k; int box;
5 double _fine[NUM_BOXS][ PR_SIZE + 2][ PR_SIZE + 2][ PR_SIZE + 2];
6 double _coarse[NUM_BOXS][(PR_SIZE/2) + 2][(PR_SIZE/2) + 2][(PR_SIZE/2) + 2];
7 for(box=0; box<NUM_BOXS box++){
8 for(k=0; k< PR_SIZE/2; k++){
9 for(j=0; j< PR_SIZE/2; j++){

10 for(i=0; i< PR_SIZE/2; i++){
11 _fine[box][2*k ][2*j ][2*i ] += _coarse[box][k][j][i];
12 _fine[box][2*k ][2*j ][2*i+1] += _coarse[box][k][j][i];
13 _fine[box][2*k ][2*j+1][2*i ] += _coarse[box][k][j][i];
14 _fine[box][2*k ][2*j+1][2*i+1] += _coarse[box][k][j][i];
15 _fine[box][2*k+1][2*j ][2*i ] += _coarse[box][k][j][i];
16 _fine[box][2*k+1][2*j ][2*i+1] += _coarse[box][k][j][i];
17 _fine[box][2*k+1][2*j+1][2*i ] += _coarse[box][k][j][i];
18 _fine[box][2*k+1][2*j+1][2*i+1] += _coarse[box][k][j][i];
19 }}}}
20 }

Listing 3: Input C code for interpolation.

4. Code generation with CUDA-CHiLL

The research presented in this paper uses the loop transformation and
code generation tool CUDA-CHILL. CUDA-CHiLL is a thin layer built on
top of CHILL and extends the code generation capabilities of CHiLL to
target GPUs via the CUDA programming model.

4.1. CHiLL Background
CHiLL is a loop transformation and code generation framework with a

scripting language interface. CHiLL was designed to support autotuning by
allowing sequences of transformations to be composed and applied. CHiLL
also exposes parameters of the transformations for autotuning. The input
to CHiLL is a source code written in C (or Fortran), and a transformation
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script. The script describes the set of transformations to be composed to
optimize the provided source [9]. After applying optimizations specified in
the script, CHiLL generates optimized C (or Fortran) code. Recently CHiLL
has been extended to generate OpenMP code [2].

At the heart of CHiLL is a polyhedral framework that composes com-
plex transformation sequences. Internally CHiLL uses Omega+, an enhanced
version of Omega [24], and Codegen+ [3]. A polyhedral model represents
each statement’s execution in the loop nest as a lattice point in the space
constrained by loop bounds, known as the iteration space. Then a loop trans-
formation can be simply viewed as a mapping from one iteration space to
another. CHiLL manipulates iteration spaces derived from the original pro-
gram based on the transformation in the input script and uses a dependence
graph as an abstraction to reason about the safety of the transformations
under consideration [1]. In CHiLL, iteration spaces are represented as integer
sets, and loop transformations are linear mappings applied to these integer
sets. Omega+ is used to represent the integer sets as linear mappings, apply
the mappings to the integer sets which results in transforming the iteration
spaces of the loops, and compute data dependences. CHiLL uses mapping
iteration spaces of loop nests to implement a number of well-known loop
transformations such as loop tiling, skewing such permutation. Once the
transformations have been applied, and iteration spaces have been modified,
Codegen+ scans the new iteration spaces to generate code [3]. As mentioned
earlier, CHiLL generates C (serial and with OpenMP) and Fortran code.

4.2. CUDA-CHiLL Background
CUDA-CHiLL has a scripting language (Lua programming language) in-

terface and uses the loop tiling and iteration space or polyhedral scanning in
CHiLL to generate parallel CUDA code.GPUs are a tiled architecture where
each streaming multiprocessor (SM) represents a separate tile. Parallel code
should be partitioned across SMs so that each thread operates on mostly in-
dependent, localized data. This is done by using CUDA-CHiLL’s loop tiling
capabilities. Subdividing the iteration space of a loop into blocks or tiles
with a fixed maximum size has been widely used when constructing parallel
computations [34, 12, 14]. By varying the parameters to the tiling command
in the CUDA-CHiLL Lua scripts, the shape and size of the tile in the gen-
erated code can be chosen to take advantage of the target parallel hardware
and memory architecture.
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Figure 3: Organization of CUDA threads into a 3D (2,4,64) grid with 2D (32,16) thread
blocks. Each 2D (X,Y) plane in the 3D grid has 8 2D thread blocks of dimension (32,16).
Each 2D plane in the 3D grid works on a single subdomain (box) in miniGMG, and there
are 64 such planes to process 64 subdomains.
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Figure 4: Illustration of work done by each thread block. Figure (a) shows 8, (32,16)
thread blocks working on a 643 subdomain (box), with each thread computing a column
of 64 output points. The blue column in figure (b) represents the 32*16*64 = 32,768
output grid points computed by each thread block.
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4.3. Parallel Decomposition of GMG
Before discussing how CUDA-CHiLL is used to generate CUDA code for

the key operations in miniGMG, we present how the parallelism in the GMG
operations – smooth, residual, restriction and interpolation are mapped to
GPUs. Code for GPUs has to effectively use the two-level parallelism hier-
archy in CUDA, which is expressed in terms of a grid of thread blocks. As
illustrated in Figure 3, GPU kernels are implemented in miniGMG using a
3D grid of 2D thread blocks.

The rationale behind 2D thread blocks is that the 2D blocks are used to
tile the i and j dimensions of each box (i is the dimension of unit stride),
and the k dimension is not tiled (k dimension has the largest stride). Not
tiling the dimension of maximum stride is known as Rivera Tiling [26], and
has been shown to improve the performance of 3D scientific codes. A di-
mension of the 3D grid is used to map to each box or subdomain, the other
two dimensions of the 3D grid control the number of thread blocks working
on each box. Using a 3D grid allows exploring a larger space of parallel
decompositions, as the 3D grid can easily be reduced to a 2D grid by setting
one of the two dimensions of the grid to unity (the third dimension of the
grid is always set to the number of boxes).

The 3D grid of CUDA thread blocks is of dimension {BX,BY,BZ}. Each
2D CUDA thread block is of dimension{TX,TY}. To make the explanation
concrete, we use an example thread decomposition of a 2563 domain which
is split into a list of 64 × 643 subdomains. The 3D CUDA grid of thread
blocks has dimensions {BX=2, BY= 4, BZ=64 (number of boxes)}. Each
2D thread block in this grid has dimensions {TX=32, TY= 16}. The BZ
dimension of the grid maps to boxes (subdomains), each plane {BX=2, BY=
4} of thread blocks in the grids is assigned to a single 643 box or subdomain.
Thus, there are eight thread blocks working inside a box, and 64 {BZ=64}
planes of 2D thread blocks, with each plane working on box. This block and
grid arrangement is shown in Figure 3.

Figure 4 illustrates how the 2D CUDA thread blocks process each 643

box. The thread blocks encompass the ij-planes of the box, but not the k-
dimension. In terms of memory layout, i is the fastest-changing dimension
and k the slowest. As mentioned earlier, in this decomposition, the dimension
k is not tiled. Thus, each CUDA thread computes 64 output grid points (in
the k dimension), and each thread block computes 32(TX)*16(TY)*64 =
32,768 output points. The optimized smooth in miniGMG uses a 3D grid of
dimension {BX=2, BY= 16, BZ=64}, and 2D thread blocks {TX=32, TY=
4} [32].
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4.4. CUDA-CHiLL Scripts for miniGMG Operators
The parallelization strategy described in the previous section is used by

expert programmers and also used to generate CUDA code with CUDA-
CHiLL. CUDA-CHiLL is used to tile the input four-deep loop nests in the
input sequential code for smooths, residuals, restriction and interpolation to
create two more loop levels. To create a 3D grid with 2D thread blocks,
three out of these six loops are then mapped to blocks in the 3D grid, and
two loop levels are mapped to threads in a 2D block.

Listing 4 illustrates the script that drives CUDA-CHiLL to generate a
CUDA kernel for GSRB. The tile commands in line 12 of the script tile
the loops in the input loop nest. The first argument to tile is the statement
number (CUDA-CHiLL treats the entire loop body as a single statement).
The next argument is the set of input loops to be tiled. This is followed by
the tile sizes, the names of the tile controlling loops, and the final order of
resulting tiled and tile controlling loops.

Listing 5 shows the structure of the loop nest after tiling. The tile con-
trolling loop bb and kk have a single iteration and are not generated by
CUDA-CHiLL. This effectively means that loops box, and k have not been
tiled. The cudaize command in line 17 of Listing 4 then marks the can-
didate loops for block and thread dimensions. Loops box, jj and ii are
marked as dimensions of the 3D grid. Loops i, and j are marked as the di-
mensions of the 2D thread blocks. During CUDA code generation the loops
marked as dimensions for grids and blocks are removed, and array references
to those loop indices are replaced with block indices (bx, by, bz) or thread
indices (tx, ty).
1 init("gsrb.cu", "gsrb",0,0)
2 dofile("cudaize.lua")
3 --tile sizes
4 N=64
5 TI=32
6 TJ=16
7 TK=64
8 TZ=64
9 --end tile sizes

10 tile_by_index(0,
11 {"box","k","j", "i"},{TZ,TK, TJ, TI},
12 {l1_control="bb", l2_control="kk", l3_control="jj", l4_control="ii"},
13 {"bb","box","kk","k","jj","j","ii","i"})
14
15 cudaize(0, "kernel_GPU",{},
16 {block={"ii","jj","box"},
17 thread={"i","j"}},{})

Listing 4: CUDA-CHiLL Lua script for GSRB smooth.
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4.5. Space of Generated Code Variants
Simple autotuners were written in Python to generate CUDA-CHiLL

scripts to generate CUDA variants of smooths, residuals, restriction and
interpolations. In this discussion we will focus on variants for the GSRB
smoother, variants for other operations were generated similarly. The gen-
erated code variants were then run in the miniGMG framework.

Code variants were created by varying the dimensions of the 2D thread
block. If the size of a thread block is <TX,TY>, the dimension of the 3D
grid for the finest grids is <64/TX, 64/TY, 64>, where each subdomain is
643. For the finest grids the variants were created by varying TX from 8 to
64, and TY from 4 to 64 such that TX*TY is at least 32 (warp size), and
TX*TY ≤ 1024 (maximum number of threads per block).

Code variants for the other operators in miniGMG and for other levels
of the V-cycle (from 323 down to 43) was generated using CUDA-CHiLL
scripts generated by python scripts. The maximum size of any dimension
of the 2D thread blocks were the size of the box/grid at the level of the
V-cycle for smooth and residual operators. For restriction and interpolation,
the maximum size of any dimension of the thread block was the size of the
smaller/coarser grid.
1 // ~cuda~ preferredIdx: bz
2 for(box = 0; box <= 63; box++) {
3 // ~cuda~ preferredIdx: k
4 for(k = 1; k <= 64; k++) {
5 // ~cuda~ preferredIdx: by
6 for(jj = 0; jj <= 3; jj++) {
7 // ~cuda~ preferredIdx: ty
8 for(j = 0; j <= 15; j++) {
9 // ~cuda~ threadLoop preferredIdx: bx

10 for(ii = 0; ii <= 1; ii++) {
11 // ~cuda~ preferredIdx: tx
12 for(i = intMod(-j-k-color-1,2); i <= 31; i += 2) {
13 S0();
14 }}}}}}

Listing 5: Tiled code with candidate loops for CUDA blocks and threads.
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1 __global__ void __smooth_GSRB( double a, double b, double h, int sweep){
2
3 double * phi = gpu_subdomains[0].levels[level].grids[ phi_id];
4 double * rhs = gpu_subdomains[0].levels[level].grids[ rhs_id];
5 double * alpha = gpu_subdomains[0].levels[level].grids[ __alpha];
6 double * beta_i = gpu_subdomains[0].levels[level].grids[__beta_i];
7 double * beta_j = gpu_subdomains[0].levels[level].grids[__beta_j];
8 double * beta_k = gpu_subdomains[0].levels[level].grids[__beta_k];
9 double * lambda = gpu_subdomains[0].levels[level].grids[__lambda];

10 double (*_phi)[PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
11 double (*_rhs)[PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
12 double (*_alpha)[PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
13 double (*_beta_i)[PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
14 double (*_beta_j)[PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
15 double (*_beta_k)[PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
16 double (*_lambda)[PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
17 _phi = ((double (*)[PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2])phi);
18 _rhs = ((double (*)[PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2])rhs);
19 _alpha = ((double (*)[PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2])alpha);
20 _beta_i = ((double (*)[PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2])beta_i);
21 _beta_j = ((double (*)[PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2])beta_j);
22 _beta_k = ((double (*)[PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2])beta_k);
23 _lambda = ((double (*)[PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2])lambda);
24 int color = sweep; double h2inv = 1.0/(h*h);
25 int k; int by; by = blockIdx.y;
26 int bz; bz = blockIdx.z; int tx; tx = threadIdx.x; int ty; ty = threadIdx.y;
27
28 for (k = 1; k <= 64; k += 1)
29 if ((tx - (-ty - k - color - 1)) % 2 == 0) {
30 _t = b * h2inv * (_beta_i[bz][k][ty + 16 * by + 1][tx + 1 + 1] *
31 (_phi[bz][k][ty + 16 * by + 1][tx + 1 + 1]
32 -_phi[bz][k][ty + 16 * by + 1][tx + 1])
33 - _beta_i[bz][k][ty + 16 * by + 1][tx + 1]
34 * (_phi[bz][k][ty + 16 * by + 1][tx + 1]
35 - _phi[bz][k][ty + 16 * by + 1][tx + 1 - 1])
36 + _beta_j[bz][k][ty + 16 * by + 1 + 1][tx + 1]
37 *(_phi[bz][k][ty + 16 * by + 1 + 1][tx + 1]
38 - _phi[bz][k][ty + 16 * by + 1][tx + 1])
39 - _beta_j[bz][k][ty + 16 * by + 1][tx + 1]
40 * _phi[bz][k][ty + 16 * by + 1][tx + 1]
41 - _phi[bz][k][ty + 16 * by + 1 - 1][tx + 1])
42 + _beta_k[bz][k + 1][ty + 16 * by + 1][tx + 1]
43 *(_phi[bz][k + 1][ty + 16 * by + 1][tx + 1]
44 - _phi[bz][k][ty + 16 * by + 1][tx + 1])
45 - _beta_k[bz][k][ty + 16 * by + 1][tx + 1]
46 * (_phi[bz][k][ty + 16 * by + 1][tx + 1]
47 - _phi[bz][k - 1][ty + 16 * by + 1][tx + 1]));
48 _t = a * _alpha[bz][k][ty + 16 * by + 1][tx + 1]
49 * _phi[bz][k][ty + 16 * by + 1][tx + 1] - _t;
50 _phi[bz][k][ty + 16 * by + 1][tx + 1] = _phi[bz][k][ty + 16 * by + 1][tx + 1]
51 - _lambda[bz][k][ty + 16 * by + 1][tx + 1]
52 * (_t - _rhs[bz][k][ty + 16 * by + 1][tx + 1]);}
53 }

Listing 6: Generated CUDA code for GSRB smooth. The generated code is for 2D
thread blocks (TX=64, TY=16) and 3D grid (BX=1, BY=4,BZ=64).
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4.6. Extensions to CUDA-CHiLL Code Generation
CUDA-CHiLL was built on top of CHiLL to generate CUDA code. It

uses CHiLL to apply loop transformations (such as tiling), and then leverages
the code generation capabilities of Codegen+. Once Codegen+ scans the
polyhedra representing the iteration space of the loop nest, it creates an
intermediate representation or abstract syntax tree (AST) representation
of the output code. CUDA-CHiLL works on this AST and modifies it to
generate CUDA code by mapping loops to thread and block indices. In the
current implementation, only normalized loops can be mapped to a thread
block index, which means candidate loops must have a lower bound of 0, and
a unit stride.

The complex if-condition involving a modulo operation in GSRB presents
a code generation challenge to CUDA-CHiLL. This is because the if-condition
which guards the statement in GSRB gets fused into the innermost for-
loop once Codegen+ creates an output. This can be seen in the innermost
loop in Listing 5, which has a complex conditional with a modulo condition
as a lower bound, and the loop has strided access. Thus, the loop is not
normalized, and cannot be mapped to a thread or block index. To remedy
the situation, CUDA-CHiLL was extended to handle such strided loops. The
modulo condition will be removed from the lower bounds of the loop, and
the loop stride will be reduced to one. The if-condition with the modulo
would be pushed back into the loop body by creating a new AST node for
the if-condition and wrapping the statement in the loop inside the AST node.
This change checks to see if the stride of the loop matches the right hand
side of the modulo in the if-condition. The output CUDA code in Listing 6
illustrates how the if-condition gets pushed back into the body of the loop.

The CUDA variants generated by CUDA-CHiLL are post-processed by
a Python script to make the code generated usable in the miniGMG bench-
mark. The code generated by CUDA-CHiLL has the array declaration with-
out assignments as shown in Listing 1. The post-processing python script
replaces these array declaration with declarations and assignments shown in
Listing 6.

5. Performance Portability Results

5.1. Experimental Setup
In this paper, we use both CPU-based and GPU-accelerated systems

to demonstrate CHiLL affords performance portability across diverse archi-
tectures. The relevant performance characteristics of the two systems are
presented in Table 1.
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Edison Titan
Processor Intel Ivy Bridge AMD Interlagos NVIDIA Kepler

Clock 2.4GHz 2.2GHz 0.733GHz
NUMA×Cores 2×12 2×8 1×14

DP GFlop/s per node 461 140 1314
STREAM per node 97 31 1603

Data caches per core 32+256KB 16+2048KB1 64+48KB2

Last-level cache per NUMA 30MB 8MB 1.5MB
System and System Software
Nodes 5,576 18,688

Interconnect Dragonfly 3D torus + local PCIe
Complier Intel 16 Intel 15 nvcc 7.0

Table 1: Systems used in this study. 1Pairs of cores share a L2 cache and FPU. 2L1 data
cache + read-only (texture) cache. 3Obtained via the Empirical Roofline Toolkit [16]

Edison is a Cray XC30 located at NERSC [21] and accepted in 2013.
Each node contains two high-performance, massively out-of-order, 12-core
Ivy Bridge processors each capable of 230 GFlop/s and 50 GB/s of DRAM
bandwidth. Nodes are interconnected with a high-performance, low radix
Aries dragonfly network designed for scalability.

In contrast to Edison’s conventional and homogeneous CPU architecture,
Titan is a GPU-accelerated Cray XK7 [23] installed in 2012. Each of Titan’s
18,688 nodes contain two 8-core CPU chips and one PCIe-attached NVIDIA
Kepler GPU. Although the CPUs provide a moderate 140 GFlops/s and
31 GB/s of bandwidth, the bulk of the node’s performance comes from the
GPU which provides 1.3 TFlop/s of performance and 160 GB/s of bandwidth
to local memory. As GPU caches are relatively small and difficult to exploit,
we expect tuning for locality to play a larger role on the GPU. Titan’s
nodes are interconnected using Cray’s Gemini 3D torus. Compared to the
newer Dragonfly, a 3D torus will likely show limited scalability. Note, for
codes amenable and optimized for on-device data locality, the limited PCIe
bandwidth will not substantially impede performance.

In all our experiments, we use a per-node problem size of 2563 decom-
posed into 643 boxes. We run one process per NUMA node. Thus on Edison
and Titan(CPU-only), each process receives 32×643 boxes while each Titan
GPU receives 64×643. In order to ensure consistent algorithmic comparison,
no communication-avoiding optimizations were employed on either platform.
We use 4-pre and 4-post smooths per level and a total of 10 V-Cycles. For
a coarse grid solver, we use 48 smooths for single node experiments, and
BiCGStab for multinode experiments.
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5.2. Performance Bounds
In order to qualify our results, we can create performance bounds for

the two stencil discretizations used in this paper. The first is the general
variable coefficient implementation Lφ = aαφ − b∇ · β∇φ where α is a
cell-centered coefficient, there are three face-centered β coefficients, and two
scalar coefficients a and b. The second is a specialized constant-coefficient
operator Lφ = aφ− b∇2φ derived by setting α == β == 1 for all points in
space.

In both cases, the discretized operators are 3D 7-point stencils in φ.
Although they both must read 7 values of u from memory, the cache, with
proper blocking, will filter all but one reference from reaching main memory.
Similarly, although the variable coefficient operator must read 6 values of
β (one per cell face), all but three are filtered by the cache. As a result,
the variable coefficient operator will read on average at least 5 doubles from
memory per stencil while the constant coefficient operator only one.

In the optimized miniGMG solvers, the linear operator Lφ rarely ap-
pears in isolation. Rather, the bulk of the applications of the stencil appear
in the smoothers. In this paper, we examined CHiLL’s ability to optimize
two different stencils — Red-Black Gauss Seidel (GSRB) and Jacobi. Al-
though both stencils take the form φn+1 = φn+cD−1(f−Lφ), their iteration
spaces are somewhat different with Red-Black striding through memory and
aliasing φn+1 to φn (in-place updates). Interestingly, for conventional data
layouts of φ and α, this striding through memory does not affect data move-
ment, but only the requisite number of floating-point operations. Assuming
a write-allocate cache architecture (perhaps untrue on GPUs), we can cal-
culate the compulsory data movement as 64, 72, 32, and 40 bytes per stencil
for GSRB variable coefficient, Jacobi variable coefficient, GSRB constant co-
efficient, Jacobi constant coefficient respectively. In terms of floating-point
operations, these smoothers require about 12, 24, 6, and 13 flops per cell (not
stencil) respectively. With arithmetic intensities less than 0.33, performance
is expected to be memory-bound and we can bound run time based on the
data movements from this section coupled with the stream bandwidths in
Table 1. As such, we can easily construct a Roofline performance bound for
each machine for each benchmark [31].

5.3. Performance Portability Across Diverse Node Architectures
In order to demonstrate performance portability, we run the miniGMG

solver on Edison, Titan(CPU-only), and Titan(GPU-only) using CHiLL to
generate the key computational kernels discussed above.
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Figure 5 shows the time spent per fine grid smooth (a 2563 domain per
node decomposed into 64×643 boxes on the finest multigrid level) on our
three machines as a function of smoother (GSRB vs. Jacobi) and discretiza-
tion of the Laplacian (variable vs. constant coefficient). In all cases, we
use a single compute node with 2 MPI processes per node on the CPU-only
results (OpenMP auto-generated/autotuned with CHiLL) and one for the
GPU-only results (CUDA auto-generated/autotuned with CUDA-CHiLL).
To provide a performance reference across widely ranging architectural ca-
pabilities and differing stencils, we use a Roofline performance bound (blue
circles).

0.000 
0.005 
0.010 
0.015 
0.020 
0.025 
0.030 
0.035 
0.040 
0.045 
0.050 

G
S

R
B

 

Ja
co

bi
 

G
S

R
B

 

Ja
co

bi
 

G
S

R
B

 

Ja
co

bi
 

G
S

R
B

 

Ja
co

bi
 

G
S

R
B

 

Ja
co

bi
 

G
S

R
B

 

Ja
co

bi
 

Variable Constant Variable Constant Variable Constant 

Edison (CPU) Titan (CPU-only) Titan (GPU-only) 

Ti
m

e 
pe

r S
m

oo
th

 (s
ec

on
ds

) 

miniGMG Smooth on Finest Level 

OpenMP by hand 
CUDA-CHiLL 
Roofline Bound 

Figure 5: Performance of CUDA-CHiLL generated smooths on the finest level(643 boxes).
The GPU code is generated by CUDA-CHiLL. The code for CPUs are handwritten code
from the miniGMG benchmark. The CPU code uses MPI+OpenMP for parallelization,
but does not used optimizations such as wavefronts or explicit SIMDization.

We observe that CHiLL, with auto-generated/tuned OpenMP and/or
CUDA, delivers exceptional performance across all machines and stencils.
On the GPU, CUDA-CHiLL exploits 85% of the machine’s potential 160 GB/s
of bandwidth while on Edison, CHiLL can actually exceed the Roofline
bound. This is not to say it exceeds the DRAM pin bandwidth, but rather
STREAM Triad does not fully exploit the DRAM bandwidth of the Ivy
Bridge processor. Generally, speaking, GPUs show substantial performance
boosts over CPUs on the same machine (Titan’s GPUs vs. Titan’s CPUs).
However, more recent CPUs (Edison) have substantially narrowed the per-
formance gap.
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5.4. Performance Portability Across Problem Size
Multigrid’s performance is premised on the theory that time is directly

proportional to problem size. With exponentially smaller boxes in the V-
Cycle, one must realize exponentially lower run time per level in order for
O(N) computational complexity to turn into O(N) run time. Figure 6 shows
the time per smooth by level in the CUDA-CHiLL autotuned miniGMG-
cuda. For visualization purposes, we add a perfect scaling reference line
based on fine-grid variable coefficient GSRB ignoring ghost zones. Generally
speaking, we see no performance differences between smoother or discretiza-
tion indicating that CUDA-CHiLL has delivered consistent performance on
each level independent of the underlying stencil. Although the first three
levels generally track the perfect scaling trend line, the coarsest two levels
(64×83 and 64×43) quickly depart and saturate at about 20us — a time
roughly equal to the CUDA kernel launch time on PCIe attached GPUs. Es-
sentially, the time to launch work on the GPU swamps any execution time on
the GPU and thus time saturates. It should be noted that NVIDIA avoids
this issues in their HPGMG-CUDA implementation by running the coarse
grid operations on the CPU using OpenMP [11]. Future work will move
towards unifying CHiLL and CUDA-CHiLL so that it can generate both
CPU(OpenMP) and GPU(CUDA) code and select the appropriate variant
at run time.

At each level of the multigrid V-Cycle, CUDA-CHiLL autotuned its gen-
erated kernels to decide the appropriate thread block size. Smaller thread
blocks reduce cache and register pressure and tend to increase occupancy.
Unfortunately, progressively smaller thread blocks must load disproportion-
ally more inter thread block ghost zone data and thus can increase data move-
ment and actually increase total cache pressure per SM. The upper bound on
thread block size is actually dictated by CUDA itself at 1K threads. Note,
for this problem, there are always 64 boxes per level per node. As such,
kernels aways have a z-dimension of 64 and x- and y-dimensions equal to 256
divided by the thread block x-and y-dimensions. Moreover, thread blocks
are 2D and sweep through all elements in the z dimension within a box.

Table 2 shows the best performing thread block dimensions as determined
by CUDA-CHiLL’s autotuning. Generally speaking, we observe that the best
configurations did not tile any box 643 or smaller in the x-dimension. Inter-
estingly, constant coefficient discretizations, which nominally have reduced
cache and register pressure, preferred smaller y-dimensions, while GSRB
further reduced the y-dimension. The ability for CUDA-CHiLL to indepen-
dently tune the thread block size not only for each machine, but for each
operator and each problem size, greatly facilitates performance portability.
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Figure 6: Performance of CUDA-CHiLL generated smooths at each level of the V-cycle.
Observe near linear performance until run time falls below the CUDA kernel launch time.

Smooth 64× 643 64× 323 64× 163 64× 83 64× 43

VC GSRB <64,8,1> <32,8,1> <16,4,1> <8,8,1> <4,4,1>
VC Jacobi <64,16,1> <32,4,1> <16,16,1> <8,8,1> <4,4,1>
CC GSRB <64,4,1> <32,8,1> <16,4,1> <8,4,1> <4,4,1>
CC Jacobi <64,8,1> <32,4,1> <16,16,1> <8,8,1> <4,4,1>

Table 2: Best-performing thread block configurations for generated smooths at different
levels of the V-cycle. CUDA-CHiLL’s autotuning approach found the best performing
implementation on each level for each smoother for each stencil.

5.5. Interoperability with MPI and Scalability
In order to demonstrate that CHiLL and CUDA-CHiLL are interopera-

ble with MPI without performance penalties, we conducted a series of ex-
periments on Edison(CPU-only), Titan(CPU-only), and Titan(GPU-only)
in which we weak scale with the same 2563 problem per node but with a
BiCGStab bottom solver. Figure 7(left) shows performance generally scales
well on all platforms with the Edison’s Aries Dragonfly generally delivering
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superior scalability. Performance at 8 nodes clearly shows the moderate per-
formance penalties associated with PCIe-attached GPUs. Generally speak-
ing, CUDA-CHiLL delivers both performance and scalability comparable
to the hand-optimized miniGMG-cuda — a testament to the productivity
advantage of auto-generating and autotuning CUDA kernels rather than im-
plementing/optimizing them by hand.

Careful observation shows that while the both GPU implementations do
not scale as well as the CPU version. This is a confluence of several factors.
First, Figure 7(right) shows “smooth” and “other” (residual, interpolation,
restriction, etc...) times remain constant across scales while the bottom
solve and communication time rapidly increase. Second, as discussed ear-
lier, GPUs deliver poor performance on the very coarse grids associated
with a bottom solver. Third, ghost zone exchanges on the GPU now re-
quire transiting PCIe (note, CUDA direct implementations generally further
underperformed).
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Figure 7: (left) Weak scaling of miniGMG-cuda with kernels auto-generated/tuned with
CUDA-CHiLL running on Titan’s GPUs compared to the hand-optimized miniGMG-cuda
and miniGMG. (right) breakdown of CUDA-CHiLL time on Titan showing the lack of
scalability is an artifact of the BiCGStab algorithm and communication. CUDA-CHiLL
does not impede scalability.

5.6. Insulating Programmers from Changes in Underlying Compilers
The idea that optimization for a processor today will show benefits on

that same processor tomorrow has been ingrained in programmers. miniGMG-
cuda was written in 2012-13 in CUDA 4 and initially optimized for Fermi and
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subsequently the Kepler GPUs in Titan. Early evaluations on Titan showed
substantial manual optimization including placing certain data structures
and temporary buffers in shared memory and even restructuring the tiling
into non-rectangular tiles (flatten the i-j iteration space and strip mine) in
order to ensure aligned access and minimal load imbalance within a thread
blocks (in shared memory implementations, threads on the boarder of a
thread block have the additional task of loading the implicit ghost zone
into shared memory) was required to maximize performance. As such, it
was extremely unexpected that in 2016 CUDA-CHiLL substantially out-
performed the hand-optimized miniGMG-cuda. As of mid 2016, multiple
versions of CUDA were available on Titan ranging from the CUDA 5.0 to
CUDA 7.5. To that end, we decided to evaluate miniGMG-cuda and CUDA-
CHiLL performance as a function of CUDA compiler version. Figure 8 shows
the surprising result that while progressive hand optimization had a gener-
ally positive benefit in CUDA 5.0, it had a substantially negative benefit in
CUDA 7.0 resulting in performance that was not only 14% slower than a
straightforward tiled implementation, but was 23% slower with CUDA 7.0
than with CUDA 5.0. Conversely, CUDA-CHiLL delivered consistent perfor-
mance across implementations simply choosing different code variants and
tilings. With a richer set of optimizations, CUDA-CHiLL still would se-
lect the best performing implementation for the machine and compiler on
hand. The value of CUDA-CHiLL to shield programmers from wasting time
optimizing for artifacts in today’s compilers that will be rectified in the fu-
ture greatly enhances its ability to deliver enduring performance across both
compiler versions and multiple platforms.

6. Conclusions and Future Work

For the last decade, performance portability across CPUs and GPUs has
remained elusive as GPUs have required architecture-specific programming
models like CUDA, OpenCL, and OpenACC. Although there is extensive
optimization of stencil codes for GPUs, efficient geometric multigrid linear
solvers demand stencil functions deliver performance for a range of config-
urations within the same executable. In this paper we demonstrate that
the CHiLL and CUDA-CHiLL autotuning compiler frameworks can auto-
matically thread (via OpenMP) or accelerate (via CUDA) the sequential
stencil functional descriptions within the miniGMG benchmark. We show
that it can attain performance near the Roofline bound for a variety of
smoothers and stencil discretizations across a variety of CPU- and GPU-
accelerated platforms. With CHiLL’s autotuning capabilities applied across
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Figure 8: miniGMG-cuda smooth time as a function of both implementation and compiler.
Observe that CUDA-CHiLL delivered consistent performance while the best performing
hand-optimized implementation compiled with CUDA 5.0 was the worst performing im-
plementation with CUDA 7.0.

all-levels within the multigrid V-Cycle we show that a CUDA-CHiLL gen-
erated implementation can deliver performance equal to or exceeding the
hand-optimized miniGMG-cuda through 512 nodes of the Titan supercom-
puter. Although miniGMG’s performance was dominated by operations on
the finest few levels of the multigrid V-Cycle, at larger concurrencies, more
efficient multigrid algorithms demand high performance on the smaller coarse
grids. Unfortunately, we showed that such small problems run inefficiently
on PCIe-attached GPUs. To that end, future work will investigate generat-
ing both CPU and GPU code and selecting the appropriate version at run
time. Finally, a number of GPU-optimized stencil implementations leverage
a “register pipeline” in which data is kept and shuffled in the very large reg-
ister file rather than the relatively small caches. Although CUDA-CHiLL
does not currently implement this optimization, we will investigate its im-
plementation in order to reduce cache pressure and fully leverage the GPU
architecture. Furthermore we would like to continue working on CUDA-
CHiLL to move beyond mini-apps to target larger structured grid codes,
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and also look at code-generation techniques for unstructured codes while
still using the CHiLL and CUDA-CHiLL compiler framework.
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