
UCLA
UCLA Electronic Theses and Dissertations

Title
End-to-End Machine Learning Frameworks for Medicine: Data Imputation, Model
Interpretation and Synthetic Data Generation

Permalink
https://escholarship.org/uc/item/2q51g25p

Author
Yoon, Jinsung

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2q51g25p
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

End-to-End Machine Learning Frameworks for Medicine:

Data Imputation, Model Interpretation and Synthetic Data Generation

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Jinsung Yoon

2020

c© Copyright by

Jinsung Yoon

2020

ABSTRACT OF THE DISSERTATION

End-to-End Machine Learning Frameworks for Medicine:

Data Imputation, Model Interpretation and Synthetic Data Generation

by

Jinsung Yoon

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2020

Professor Mihaela van der Schaar, Chair

Tremendous successes in machine learning have been achieved in a variety of applications such

as image classification and language translation via supervised learning frameworks. Recently,

with the rapid increase of electronic health records (EHR), machine learning researchers got

immense opportunities to adopt the successful supervised learning frameworks to diverse

clinical applications. To properly employ machine learning frameworks for medicine, we need

to handle the special properties of the EHR and clinical applications: (1) extensive missing

data, (2) model interpretation, (3) privacy of the data. This dissertation addresses those

specialties to construct end-to-end machine learning frameworks for clinical decision support.

We focus on the following three problems: (1) how to deal with incomplete data (data

imputation), (2) how to explain the decisions of the trained model (model interpretation),

(3) how to generate synthetic data for better sharing private clinical data (synthetic data

generation). To appropriately handle those problems, we propose novel machine learning

algorithms for both static and longitudinal settings. For data imputation, we propose modified

Generative Adversarial Networks and Recurrent Neural Networks to accurately impute the

missing values and return the complete data for applying state-of-the-art supervised learning

models. For model interpretation, we utilize the actor-critic framework to estimate feature

importance of the trained model’s decision in an instance level. We expand this algorithm

to active sensing framework that recommends which observations should we measure and

ii

when. For synthetic data generation, we extend well-known Generative Adversarial Network

frameworks from static setting to longitudinal setting, and propose a novel differentially

private synthetic data generation framework.

To demonstrate the utilities of the proposed models, we evaluate those models on various

real-world medical datasets including cohorts in the intensive care units, wards, and primary

care hospitals. We show that the proposed algorithms consistently outperform state-of-the-art

for handling missing data, understanding the trained model, and generating private synthetic

data that are critical for building end-to-end machine learning frameworks for medicine.

iii

The dissertation of Jinsung Yoon is approved.

Gregory J. Pottie

Jonathan Chau-Yan Kao

William Hsu

Mihaela van der Schaar, Committee Chair

University of California, Los Angeles

2020

iv

To my parents, my brother’s family, and my love

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 End-to-end machine learning pipeline for medicine 2

1.1.1 Data imputation . 3

1.1.2 Model interpretation . 4

1.2 Synthetic data generation for private data sharing 4

1.3 Summary of contributions . 5

1.3.1 Chapter 2 contributions . 6

1.3.2 Chapter 3 contributions . 6

1.3.3 Chapter 4 contributions . 6

1.3.4 Chapter 5 contributions . 7

1.3.5 Chapter 6 contributions . 7

1.3.6 Chapter 7 contributions . 8

2 GAIN: Missing Data Imputation using Generative Adversarial Nets . . 9

2.1 Background: Three types of missing data - MCAR, MAR, and MNAR . . . 10

2.2 Problem formulation . 11

2.2.1 Imputation . 12

2.3 GAIN: Generative Adversarial Imputation Nets 12

2.3.1 Generator . 12

2.3.2 Discriminator . 14

2.3.3 Hint . 14

2.3.4 Objective . 15

2.4 Theoretical analysis . 15

vi

2.5 GAIN algorithm . 18

2.6 Experiments . 20

2.6.1 Source of gain . 22

2.6.2 Quantitative analysis of GAIN . 23

2.6.3 GAIN in different settings . 23

2.6.4 GAIN in MAR and MNAR settings 24

2.6.5 Prediction performance . 26

2.6.6 Congeniality of GAIN . 28

2.7 Conclusion . 29

3 Estimating Missing Data in Temporal Data Streams Using Multi-directional

Recurrent Neural Networks . 30

3.1 Related works . 33

3.2 Problem formulation . 34

3.3 Multi-directional Recurrent Neural Networks (M-RNN) 36

3.3.1 Error/Loss . 37

3.3.2 Interpolation block . 38

3.3.3 Imputation block . 39

3.3.4 Multiple imputations . 40

3.3.5 Overall structure and computation complexity 41

3.4 Results and discussions . 41

3.4.1 Datasets . 41

3.4.2 Imputation accuracy on the given datasets 41

3.4.3 Source of gains . 46

3.4.4 Additional experiments . 46

vii

3.4.5 Prediction accuracy . 49

3.4.6 Prediction accuracy with various missing rates 50

3.4.7 The importance of specific features 52

3.4.8 Congeniality of the model . 53

3.4.9 M-RNN when data is missing at random 54

3.5 Conclusion . 55

4 INVASE: Instance-wise Variable Selection using Neural Networks 56

4.1 Related works . 57

4.2 Problem formulation . 59

4.2.1 Optimization problem . 60

4.3 Proposed model . 61

4.3.1 Loss estimation . 61

4.3.2 Selector function optimization . 62

4.4 Experiments . 64

4.4.1 Synthetic data experiments . 66

4.4.2 Real-world data experiments . 71

4.5 Conclusion . 74

5 ASAC: Active Sensing using Actor-Critic models 75

5.1 Related works . 78

5.2 Problem formulation . 79

5.2.1 Static setting . 80

5.2.2 Time-series setting . 81

5.2.3 Optimization problem . 82

5.3 Proposed model . 83

viii

5.3.1 Predictor function . 85

5.3.2 Selector function . 86

5.3.3 Training the networks . 87

5.4 Experiments . 90

5.4.1 Data description . 90

5.4.2 Experimental results . 90

5.4.3 Analysis on ASAC with synthetic datasets 92

5.5 Conclusion . 96

6 Time-series Generative Adversarial Networks 97

6.1 Related works . 99

6.2 Problem formulation . 100

6.3 Proposed model: Time-series GAN (TimeGAN) 103

6.3.1 Embedding and recovery functions 103

6.3.2 Sequence generator and discriminator 104

6.3.3 Jointly learning to encode, generate, and iterate 105

6.4 Experiments . 107

6.4.1 Illustrative example: Autoregressive Gaussian models 110

6.4.2 Experiments on different types of time series data 110

6.4.3 Sources of gain . 113

6.5 Conclusion . 114

7 PATE-GAN: Generating Synthetic Data with Differential Privacy Guar-

antees . 115

7.1 Related works . 117

7.2 Background . 118

ix

7.2.1 Differential privacy . 118

7.2.2 Private Aggregation of Teacher Ensembles (PATE) 119

7.3 Proposed method: PATE-GAN . 121

7.3.1 Generator . 121

7.3.2 Discriminator . 121

7.4 Experiments . 125

7.4.1 Experimental settings . 127

7.4.2 Data summary and Setting A performance 128

7.4.3 Results with Setting B . 129

7.4.4 Varying the privacy constraint (ε) . 130

7.4.5 Setting A vs Setting C: Preserving the ranking of predictive models . 131

7.4.6 Quantitative analysis on the number of teachers 133

7.5 Conclusion . 133

References . 134

x

LIST OF FIGURES

1.1 End-to-end machine learning pipeline in longitudinal setting. (1) Data preprocess-

ing (including imputation), (2) Model training, (3) Model interpretation. 3

1.2 Synthetic data generation for sharing the private medical data to machine learning

community for developing machine learning tools easier. 5

2.1 The architecture of GAIN with exemplar samples. 13

2.2 RMSE performance in different settings: (a) Various missing rates, (b) Various

number of samples, (c) Various feature dimensions 24

2.3 The AUROC performance with various missing rates with Credit dataset 28

3.1 Block diagram of missing data estimation process. X: missing measurements; red

lines: connections between observed values and missing values in each layer; blue

lines: connections between interpolated values; dashed lines: dropout 31

3.2 M-RNN Architecture. (a) Architecture in the time domain section; (b) Architec-

ture in the feature domain section (Dropout is used for multiple imputations).

Note that both x̃ (the output of interpolation block) and x are inputs to the

imputation block to construct x̂ (the output of imputation block). 40

3.3 Box-plot comparisons between M-RNN (MI), M-RNN (SI) and the best benchmark.

(a) RMSE comparison using MIMIC-III dataset, (b) AUROC comparison using

MIMIC-III dataset. Red crosses represents outliers. 45

3.4 Imputation accuracy for the MIMIC-III dataset with various settings (a) Additional

data missing at random, (b) Feature dimensions chosen at random, (c) Samples

chosen at random, (d) Measurements chosen at random 47

3.5 (a) The AUROC performance with various missing rates, (b) The AUROC gain

over the two most competitive benchmarks . 51

3.6 AUROC comparisons in Settings A and B using MIMIC-III dataset 52

xi

4.1 Block diagram of INVASE. Instances are fed into the selector network which

outputs a vector of selection probabilities. The selection vector is then sampled

according to these probabilities. The predictor network then receives the selected

features and makes a prediction and the baseline network is given the entire

feature vector and makes a prediction. Each of these networks are trained using

backpropagation using the real label. The loss of the baseline network is then

subtracted from the prediction network’s loss and this is used to update the

selector network. 63

4.2 Left: The feature importance for each of 20 randomly selected patients in the

MAGGIC dataset. Right: The average feature importance for different binary

splits in the MAGGIC dataset. 72

5.1 Comparison of active sensing and instance-wise variable selection in the static

setting. 76

5.2 Comparison of active sensing and instance-wise variable selection in the time-series

setting. 77

5.3 Block diagram of ASAC. 84

5.4 Block diagram of ASAC in a time-series setting. 88

5.5 Results on risk predictions on both ADNI and MIMIC-III dataset with various

cost constraints in terms of AUROC and AUPRC. X-axis is cost constraints (rate

of selected measurements). Y-axis is predictive performance. 91

6.1 (a) Block diagram of component functions and objectives. (b) Training scheme;

solid lines indicate forward propagation of data, and dashed lines indicate back-

propagation of gradients. 102

6.2 (a) TimeGAN instantiated with RNNs, (b) C-RNN-GAN, and (c) RCGAN. Solid

lines denote function application, dashed lines denote recurrence, and orange lines

indicate loss computation. 105

xii

6.3 t-SNE visualization on Sines (1st row) and Stocks (2nd row). Each column provides

the visualization for each of the 7 benchmarks. Red denotes original data, and

blue denotes synthetic. 112

7.1 Block diagram of the training procedure for the teacher-discriminator during a

single generator iteration. Teacher-discriminators are trained to minimize the

classification loss when classifying samples as real samples or generated samples.

During this step only the parameters of the teachers are updates (and not the

generator). 124

7.2 Block diagram of the training procedure for the student-discriminator and the

generator. The student-discriminator is trained using noisy teacher-labelled

generated samples (the noise provides the DP guarantees). The student is trained

to minimize classification loss on this noisily labelled dataset, while the generator

is trained to maximize the student loss. Note that the teachers are not updated

during this step, only the student and the generator. 125

7.3 Average AUROC performance across 12 different predictive models trained on

the synthetic dataset generated by PATE-GAN and DPGAN with various ε (with

δ = 10−5) (Setting B). 131

xiii

LIST OF TABLES

2.1 Source of gains in GAIN algorithm (Mean ± Std of RMSE (Gain (%))) 22

2.2 Statistics of the datasets. Scont: the number of continuous variables, Scat: the

number of categorical variables . 23

2.3 Imputation performance in terms of RMSE (Average ± Std of RMSE) 24

2.4 Imputation performance with uniform and non-uniform pm(i) on MCAR, MAR,

and MNAR (Average ± Std of RMSE) settings. 26

2.5 Prediction performance comparison . 27

2.6 Congeniality performances of imputation models 29

3.1 Summary of the datasets (Cont: Continuous, Cat: Categorical, Avg: Average, #:

Number, Corr: Correlation, Freq: Frequency) 42

3.2 Performance comparison for missing data estimation 43

3.3 Performance comparison for joint interpolation/imputation algorithms 45

3.4 Source of Gain of M-RNN. (Performance degradation from original M-RNN) . . 46

3.5 Performance comparison for patient state prediction with a 1-layer RNN (Perfor-

mance gain is computed in terms of 1-AUROC) 50

3.6 Congeniality of imputation models . 54

3.7 Performance comparison for missing data estimation for MCAR and MAR settings

on the Biobank dataset . 55

4.1 Relevant feature discovery results for Synthetic datasets with 11 features 67

4.2 Detailed comparison of INVASE with L2X in Syn4 and Syn5, highlighting the

capability of INVASE to select a flexible number of features for each sample.

Group 1: X11 < 0, Group 2: X11 ≥ 0 . 68

4.3 Relevant feature discovery for synthetic datasets with 100 features 69

xiv

4.4 Prediction performance comparison with and without feature selection methods

(L2X, LASSO, Tree, INVASE, and Global). Global is using ground-truth globally

relevant features for each dataset . 70

4.5 Selection probability of overall and patient subgroups by INVASE in MAGGIC

dataset. (Mean ± Std) . 72

4.6 Prediction performance for MAGGIC and PLCO dataset. 73

4.7 Predictive Performance Comparison on two real-world datasets (MAGGIC and

PLCO) in terms of AUROC and AUPRC . 74

5.1 Comparison of related works. Causal refers to whether or not a selection depends

on future selections or not. 80

5.2 Measurement rate of each feature when each feature has a different auto-regressive

coefficient. 93

5.3 Measurement rate based on different cost and noise parameter γ for original

feature (Xt) and noisy feature (X̂t). 94

5.4 Measurement rate when the cost is different for Yt = 1 and Yt = 0. 95

6.1 Summary of Related Work. (Open-loop: Previous outputs are used as conditioning

information for generation at each step; Mixed-variables: Accommodates static &

temporal variables). 101

6.2 Results on autoregressive multivariate Gaussian data (Bold indicates best perfor-

mance). 111

6.3 Dataset statistics . 111

6.4 Results on multiple time-series datasets (Bold indicates best performance). . . . 113

6.5 Source-of-gain analysis on multiple datasets (via discriminative and predictive

scores). 114

xv

7.1 No of samples, No of features, Average AUROC and AUPRC performance across

12 different predictive models trained and tested on the real data (Setting A) for

the 6 datasets: Kaggle Credit, MAGGIC, UNOS, Kaggle Cervical Cancer, UCI

ISOLET, UCI Epileptic Seizure Recognition. 128

7.2 Performance comparison of 12 different predictive models in Setting B (trained

on synthetic, tested on real) in terms of AUROC and AUPRC (the generators of

PATE-GAN and DPGAN are (1, 10−5)-differentially private). 129

7.3 Performance comparison of 12 different predictive models in Setting B (trained

on synthetic, tested on real) in terms of AUROC and AUPRC (the generators

of PATE-GAN and DPGAN are (1, 10−5)-differentially private) over 6 different

datasets. GAN is (∞,∞)-differentially private and is given to indicate an upper

bound of PATE-GAN and DPGAN. 130

7.4 Synthetic Ranking Probability of PATE-GAN and the benchmark when comparing

Setting A and Setting C for various ε (with δ = 10−5) in terms of AUROC. The

Synthetic Ranking Agreement of Original GAN is 0.9091, which is also attained

by both PATE-GAN and DPGAN for ε = 50. 132

7.5 Agreed ranking probability of PATE-GAN and the benchmark to order the features

by variable importance in terms of absolute Pearson correlation coefficient . . . 133

7.6 Trade-off between the number of teachers and the performances (AUROC, AUPRC)133

xvi

ACKNOWLEDGMENTS

It would not have been possible to complete this doctoral dissertation without the help and

support of the kind people around me. I am deeply grateful.

First, I would like to express the deepest appreciation to my advisor, Professor Mihaela

van der Schaar, for her expertise, assistance, and patience throughout my entire PhD research.

Her unwavering enthusiasm for research kept me constantly engaged with my research on

developing diverse machine learning algorithms for medicine. Without her devoted guidance,

persistent help, and insightful research directions, this dissertation would not have been

possible. I would also thank my dissertation committee members, Professor Gregory Pottie,

Professor Jonathan Kao, and Professor William Hsu for their thoughtful suggestions and

considerate comments.

My sincere thanks also goes to all of my colleagues. I have been lucky to spend some

time in Europe as a recognized student at University of Oxford; thus, my colleagues are

spread around the globe. I would like to thank all of my co-authors; Professor William Zame,

Professor Cem Tekin, Dr. Ahmed Alaa, Changhee Lee, and Kyeong Ho Kenneth Moon at

UCLA; James Jordon at University of Oxford; Daniel Jarrett, Yao Zhang, and Dr. Lydia

Drumright at University of Cambridge. It has been a great honor to collaborate with such

brilliant people. I would also like to thank all of my lab mates; Dr. William Whoiles, Dr.

Kartik Ahuja, and Trent Kyono at UCLA; Ioana Bica at University of Oxford; Alexis Bellot,

Alihan Huyuk, and Zhaozhi Qian at University of Cambridge for their critical comments and

passionate research discussions.

I was fortunate to collaborate with many clinicians who tremendously help transforming

my research into real-world clinical applications. I would like to thank Professor Raffaele

Bugiardini (University of Bologna, Italy) for providing precious clinical datasets across the

entire Europe, guiding to come up with the vital clinical discovery, and publishing high-impact

clinical journals such as JAMA Internal Medicine. I would also like to thank other clinical

collaborators; Dr. Scott Hu, Dr. Camelia Davtyan, Dr. Martin Cadeiras, and Dr. Mindy

Ross at UCLA; Dr. Lydia Drumright and Dr. Ari Ercole at University of Cambridge for

xvii

their sympathetic clinical comments and suggestions on my research.

Finally, and most importantly, I wish to thank my parents, my brother’s family, and

my love, for their endless support. I have no valuable words to express my thanks for their

spiritual supports throughout my entire graduate education.

xviii

VITA

2014 Bachelor in Electrical Engineering and Computer Engineering Department,

Seoul National University, Seoul, Korea

2016 Master of Science in Electrical and Computer Engineering Department,

University of California, Los Angeles, United States

2015–2020 Graduate Student Researcher in Electrical and Computer Engineering

Department, University of California, Los Angeles, United States.

2015–2016 Teaching Assistant, Electrical and Computer Engineering Department,

University of California, Los Angeles, United States.

2016 Outstanding Master Thesis, Electrical and Computer Engineering Depart-

ment, University of California, Los Angeles, United States.

2017–2018 Recognized Student, Engineering Science Department, University of Oxford,

Oxfordshire, United Kingdom.

2019 Research Intern, Google Cloud AI, California, United States.

PUBLICATIONS

J. Yoon, L. N. Drumright, M. van der Schaar, “ Anonymization through Data Synthesis using

Generative Adversarial Networks (ADS-GAN),” IEEE J. Biomedical and Health Informatics

(JBHI), 2020.

J. Yoon, D. Jarrett, M. van der Schaar, “Time-series Generative Adversarial Networks,”

Neural Information Processing Systems (NeurIPS), 2019.

J. Yoon, J. Jordon, M. van der Schaar, “INVASE: Instance-wise Variable Selection using

Neural Networks,” International Conference on Learning Representations (ICLR), 2019.

xix

J. Yoon, J. Jordon, M. van der Schaar, “PATE-GAN: Generating Synthetic Data with

Differential Privacy Guarantees,” International Conference on Learning Representations

(ICLR), 2019.

J. Yoon, J. Jordon, M. van der Schaar, “GAIN: Missing Data Imputation using Generative

Adversarial Nets,” International Conference on Machine Learning (ICML), 2018.

J. Yoon, J. Jordon, M. van der Schaar, “RadialGAN: Leveraging Multiple Datasets to

Improve Target-specific Predictive Models using Generative Adversarial Networks,” Interna-

tional Conference on Machine Learning (ICML), 2018.

J. Yoon, J. Jordon, M. van der Schaar, “GANITE: Estimation of Individualized Treatment

Effects using Generative Adversarial nets,” International Conference on Learning Represen-

tations (ICLR), 2018.

J. Yoon, W. R. Zame, M. van der Schaar, “Deep Sensing: Active Sensing using Multi-

directional Recurrent Neural Networks,” International Conference on Learning Representa-

tions (ICLR), 2018.

J. Yoon, W. R. Zame, A. Banerjee, M. Cadeiras, A. M. Alaa, M. van der Schaar, “Personal-

ized Survival Predictions via Trees of Predictors: An Application to Cardiac Transplantation,”

PloS One, 2018.

J. Yoon, W. R. Zame, M. van der Schaar, “Estimating Missing Data in Temporal Data

Streams using Multi-directional Recurrent Neural Networks,” IEEE Transactions on Biomed-

ical Engineering (TBME), 2018.

J. Yoon, W. R. Zame, M. van der Schaar, “ToPs: Ensemble Learning with Trees of Predic-

tors,” IEEE Transactions on Signal Processing (TSP), 2018.

J. Yoon, A. M. Alaa, M. Cadeiras, M. van der Schaar, “Personalized Donor-Recipient

Matching for Organ Transplantation,” AAAI, 2017.

J. Yoon, A. M. Alaa, S. Hu, M. van der Schaar, “ForecastICU: A Prognostic Decision

Support System for Timely Prediction of Intensive Care Unit Admission,” International

Conference on Machine Learning (ICML), 2016.

J. Yoon, C. Davtyan, M. van der Schaar, “Discovery and Clinical Decision Support for

Personalized Healthcare,” IEEE Journal of Biomedical and Health Informatics (JBHI), 2015.

xx

CHAPTER 1

Introduction

With the advent of electronic health records (EHR), the collections of clinical data are rapidly

increased for numerous patients across the entire world. Simultaneously, data-driven machine

learning frameworks have been achieved enormous successes in a variety of applications (such

as image classification [HZR16], object detection [HGD17], and language translation [VSP17])

with deep learning models via supervised learning frameworks.

The availability of various medical datasets and high performing machine learning frame-

works results in extensive opportunities for developing diverse data-driven clinical decision

support such as early warning systems [YAH16] and clinical risk scoring systems [AS18a].

However, unlike image and language domains, medical domain has its own characteristics

that machine learning researchers must consider to constructing end-to-end machine learning

frameworks for medicine.

First, missing data is ubiquitous in medical data. The missing data problem is especially

challenging in medical domains which present time-series containing many streams of mea-

surements that are sampled at different and irregular times [YZS18a]. This is significantly

important because accurate estimation of these missing measurements is often critical for

accurate diagnosis, prognosis [AS18b] and treatment, as well as for accurate modeling and

statistical analyses [AYH18].

Second, clinical decision support should provide proper interpretations for its decisions.

Medicine is more conservative field than computer vision and natural language. Without

proper understanding of the trained models and explanations of their decisions, it is difficult

to widely apply those models to real-world clinical decision support. Clinicians expect to get

not only patient outcome predictions but also how those predictions are derived from clinical

1

decision support.

Third, medical data is usually private. Medical and machine learning communities are

relying on the promise of artificial intelligence (AI) to transform medicine through enabling

more accurate decisions and personalized treatment. However, progress is slow. Legal and

ethical issues around unconsented patient data and privacy is one of the limiting factors

in data sharing, resulting in a significant barrier in accessing routinely collected EHR by

the machine learning community. To alleviate this difficulty, generating synthetic data that

closely approximates the joint distribution of variables in an original EHR dataset can provide

a readily accessible, legally and ethically appropriate solution to support more open data

sharing, and enable the development of AI solutions.

In this Chapter, we illustrate the end-to-end machine learning pipeline for healthcare

application, and synthetic data generation framework for private medical data sharing. Then,

we summarize the contributions of the following chapters in this dissertation.

1.1 End-to-end machine learning pipeline for medicine

High-level end-to-end machine learning pipeline is made up of three stages: (1) Data prepro-

cessing, (2) Model training, (3) Model interpretation. Most machine learning researchers focus

on stage (2) - model training via supervised learning frameworks. For instance, popular image

classification models such as ResNet [HZR16] and InceptionV3 [SVI16] are convolutional

neural networks based supervised learning model for stage (2). On the other hand, stage (1)

and stage (3) are under-explored even though those stages are critical in medicine. In this

dissertation, we focus on developing novel and high-performing machine learning algorithms

for stage (1) and (3). Fig. 1.1 illustrate the high-level abstractions of the end-to-end machine

learning pipeline in longitudinal setting.

2

Raw dataset

Temporal data
(e.g., vital signs)

Static data
(e.g., gender, age)

Trained
predictive

model

Main outputs

Prediction results

Model
interpretation

INVASE

Explanations

Feature importance

Temporal importance

Preprocess

Normalization

Encoding / Embedding

Outlier detection
95% or 99% Confidence

interval

Time-series model training

Time-series predictive models

RNN, LSTM, GRU Temporal CNN

Transformer

Options for the predictive model

Handle static features Weighted loss

Attention mechanism

Handle irregular sampling Masking

Performance metrics

Imputation

Temporal
Interpolation

Masking

MRNN

Static
Mean / Median

Masking

GAIN

T-GAIN

MICE

Figure 1.1: End-to-end machine learning pipeline in longitudinal setting. (1) Data prepro-
cessing (including imputation), (2) Model training, (3) Model interpretation.

1.1.1 Data imputation

Missing data is a pervasive problem. Data may be missing for many reasons. For instance,

in the medical domain, the respiratory rate of a patient may not have been measured

(perhaps because it was deemed unnecessary/unimportant) or accidentally not recorded

[YDS17, AYH18]. It may also be the case that certain pieces of information are difficult or

even dangerous to acquire (such as information gathered from a biopsy), and so these were not

gathered for those reasons [YZB18]. The critical part of the medical data preprocessing stage

is how to deal with those missing values. Accurate estimation of the missing measurements

is important for many reasons, including diagnosis, prognosis and treatment. Furthermore,

most state-of-the-art machine learning models are only applicable when the input data is

complete; thus, without proper handling of the missing data, we cannot move on to the next

stage (training machine learning models) of the machine learning pipeline.

In Chapter 2 and 3, we propose state-of-the-art imputation models for static and lon-

gitudinal settings. In Chapter 2, we propose a novel imputation method using modified

Generative Adversarial Networks in static setting. In Chapter 3, we modified Recurrent

Neural Networks for imputing missing data in longitudinal setting.

3

1.1.2 Model interpretation

State-of-the-art prediction performance is not the only expectation for clinical decision

support. Reasonable explanations of the decisions are mandatory for doctors and patients to

trust the clinical decision support. Moreover, understanding data-driven machine learning

models for medicine can provide new insights on medicine which may result in the vital

clinical discovery.

Defining the model interpretability is not straightforward, and there are various definitions

of model interpretability such as symbolic modeling [AS19] and concept-based modeling

[KWG17]. In this dissertation, we define the model interpretability as discovering instance-

wise feature importance which is widely used interpretation definition [SGK17, CSW18].

In Chapter 4, we proposed an instance-wise feature selection method for interpreting the

trained model using a novel actor-critic framework. This can provide an explanation (i.e.

evidence or support) of the trained model’s individual decision.

In Chapter 5, we extend the instance-wise feature selection method to active sensing

problem. In many medical settings, making observations is costly [WRG96]. For example,

performing lab tests on a patient incurs a cost, both financially as well as causing fatigue

to the patient [KBR09, KNS08]. In such settings, the decision to observe is important and

should be an active choice. We propose a novel actor-critic model of recommending which

measurements should we measure and when.

1.2 Synthetic data generation for private data sharing

The adoption of EHR has dramatically increased in high-income countries over the last

decade [HPS17, KJP17, GH16] with corresponding interest to do so in low and middle income

countries worldwide [LB15]. Evidence from both small scale studies and other disciplines

suggests that machine learning could support significant advances in healthcare delivery

[RFP19, TP18], however, appropriate legal and ethical management of routinely collected

EHR can create obstacles to open sharing of sensitive health data.

4

Important Use CaseImportant Use Case

• Enable to share the private (identifiable) data (by sharing de-
identified synthetic data) to machine learning community to
develop machine learning tools easier.

3

Synthetic data
generation

Private
medical data

Synthetic
medical data

Deidentified

ML Community

Machine Learning Tools

Hospitals

Figure 1.2: Synthetic data generation for sharing the private medical data to machine learning
community for developing machine learning tools easier.

Given the complicated dynamics around protecting, anonymizing and sharing routinely

collected health data, we decided to address the problem in a new way. We developed a model

to create entirely synthetic datasets of individuals that are fictious and yet could be drawn

from the same population as the real dataset. Fig. 1.2 illustrates the simple block diagram

of synthetic data generation for private data sharing between machine learning community

and clinical data providers.

In Chapter 6, we extends well-known Generative Adversarial Networks for synthetic

data generation from static setting to longitudinal setting. In Chapter 7, we proposed

a differentially private synthetic data generation framework where differential privacy is

well-defined mathematical notion of the privacy [DR14].

1.3 Summary of contributions

In this section, we summarize the contributions of the following chapters in this dissertation.

5

1.3.1 Chapter 2 contributions

In Chapter 2, we consider the missing data imputation problem in static setting. We propose

a novel method for imputing missing data by adapting the well-known Generative Adversarial

Nets (GAN) framework. The generator observes some components of a real data vector,

imputes the missing components conditioned on what is actually observed, and outputs

a completed vector. The discriminator then takes a completed vector and attempts to

determine which components were actually observed and which were imputed. To ensure

that the discriminator forces the generator to learn the desired distribution, we provide the

discriminator with some additional information in the form of a hint vector. The hint reveals

to the discriminator partial information about the missingness of the original sample, which

is used by the discriminator to focus its attention on the imputation quality of particular

components. This hint ensures that the generator does in fact learn to generate according to

the true data distribution.

1.3.2 Chapter 3 contributions

In Chapter 3, we address the missing data imputation problem in longitudinal setting.

Existing methods address this estimation problem by interpolating within data streams

or imputing across data streams (both of which ignore important information) or ignoring

the temporal aspect of the data and imposing strong assumptions about the nature of the

data-generating process and/or the pattern of missing data (both of which are especially

problematic for medical data). We propose a new approach, based on a novel deep learning

architecture that interpolates within data streams and imputes across data streams.

1.3.3 Chapter 4 contributions

In Chapter 4, we tackle the model interpretation problem in static setting where we define

the interpretation as estimating instance-wise feature importance for individual prediction.

We propose a new instance-wise feature selection method. The proposed model consists of 3

neural networks, a selector network, a predictor network and a baseline network which are

6

used to train the selector network using the actor-critic framework. Using this methodology,

the proposed model is capable of flexibly discovering feature subsets of a different size for

each instance, which is a key limitation of existing state-of-the-art methods.

1.3.4 Chapter 5 contributions

In Chapter 5, we extend the instance-wise feature selection methodology to active sensing

problem in the longitudinal setting. Deciding what and when to observe is critical when making

observations is costly. In a medical setting where observations can be made sequentially,

making these observations (or not) should be an active choice. We propose a novel deep

learning framework to address this problem. The proposed model consists of two networks:

a selector network and a predictor network. The selector network uses previously selected

observations to determine what should be observed in the future. The predictor network uses

the observations selected by the selector network to predict a label, providing feedback to the

selector network (well-selected variables should be predictive of the label). The goal of the

selector network is then to select variables that balance the cost of observing the selected

variables with their predictive power.

1.3.5 Chapter 6 contributions

In Chapter 6, we study the synthetic data generation problem in longitudinal setting. A

good generative model for time-series data should preserve temporal dynamics, in the sense

that new sequences respect the original relationships between variables across time. Existing

methods that bring GANs into the sequential setting do not adequately attend to the temporal

correlations unique to time-series data. At the same time, supervised models for sequence

prediction - which allow finer control over network dynamics - are inherently deterministic.

We propose a novel framework for generating realistic time-series data that combines the

flexibility of the unsupervised paradigm with the control afforded by supervised training.

Through a learned embedding space jointly optimized with both supervised and adversarial

objectives, we encourage the network to adhere to the dynamics of the training data during

7

sampling.

1.3.6 Chapter 7 contributions

In Chapter 7, we focus on the private synthetic data generation problem in static setting. We

investigate a method for ensuring differential privacy of the generator of the GAN framework.

The resulting model can be used for generating synthetic data on which algorithms can be

trained and validated, and on which competitions can be conducted, without compromising

the privacy of the original dataset. Our method modifies the Private Aggregation of Teacher

Ensembles framework and applies it to GANs. We also look at measuring the quality of

synthetic data from a new angle; we assert that for the synthetic data to be useful for machine

learning researchers, the relative performance of two algorithms (trained and tested) on the

synthetic dataset should be the same as their relative performance (when trained and tested)

on the original dataset.

8

CHAPTER 2

GAIN: Missing Data Imputation using Generative

Adversarial Nets

Missing values are prevalent in medical data. Data may be missing because it was never

collected, records were lost or for many other reasons. An imputation algorithm can be used to

estimate missing values based on data that was observed/measured, such as the systolic blood

pressure and heart rate of the patient [YZS18a]. A substantial amount of research has been

dedicated to developing imputation algorithms for medical data [BM99, Mac10, SWC09, PS15].

Imputation algorithms are also used in many other applications such as image concealment,

data compression, and counterfactual estimation [Rub04, KL12, YJS18].

State-of-the-art imputation methods can be categorized as either discriminative or gen-

erative. Discriminative methods include MICE [WRW11, BG11], MissForest [SB11], and

matrix completion [CR09, YRD16, SSS16]; generative methods include algorithms based on

Expectation Maximization [GSF10] and algorithms based on deep learning (e.g. denoising

autoencoders (DAE) and generative adversarial nets (GAN)) [VLB08, GW18, AL16]. How-

ever, current generative methods for imputation have various drawbacks. For instance, the

approach for data imputation based on [GSF10] makes assumptions about the underlying

distribution and fails to generalize well when datasets contain mixed categorical and continu-

ous variables. In contrast, the approaches based on DAE [VLB08] have been shown to work

well in practice but require complete data during training. In many circumstances, missing

values are part of the inherent structure of the problem so obtaining a complete dataset is

impossible. Another approach with DAE [GW18] allows for an incomplete dataset; however,

it only utilizes the observed components to learn the representations of the data. [AL16] uses

Deep Convolutional GANs for image completion; however, it also requires complete data for

9

training the discriminator.

In this chapter, we propose a novel imputation method, which we call Generative Adver-

sarial Imputation Nets (GAIN), that generalizes the well-known GAN [GPM14] and is able

to operate successfully even when complete data is unavailable. In GAIN, the generator’s

goal is to accurately impute missing data, and the discriminator’s goal is to distinguish

between observed and imputed components. The discriminator is trained to minimize the

classification loss (when classifying which components were observed and which have been

imputed), and the generator is trained to maximize the discriminator’s misclassification rate.

Thus, these two networks are trained using an adversarial process. To achieve this goal,

GAIN builds on and adapts the standard GAN architecture. To ensure that the result of this

adversarial process is the desired target, the GAIN architecture provides the discriminator

with additional information in the form of “hints”. This hinting ensures that the generator

generates samples according to the true underlying data distribution.

2.1 Background: Three types of missing data - MCAR, MAR,

and MNAR

Missing data can be categorized into three types: (1) the data is missing completely at

random (MCAR) if the missingness occurs entirely at random (there is no dependency on any

of the variables), (2) the data is missing at random (MAR) if the missingness depends only

on the observed variables, (3) the data is missing not at random (MNAR) if the missingness

is neither MCAR nor MAR (more specifically, the data is MNAR if the missingness depends

on both observed variables and the unobserved variables; thus, missingness cannot be fully

accounted for by the observed variables). A formal definition of MCAR, MAR, and MNAR

can be found in the subsequent subsection. In this chapter we provide theoretical results for

our algorithm under the MCAR assumption, and empirically compare to other state-of-the-art

methods in all three settings (MCAR, MAR, and MNAR). Here we recall the definition of

the first two, and formalize the other.

10

MCAR: Data is said to be Missing Completely at Random (MCAR) if:

X ⊥⊥M (2.1)

MAR: Data is said to be Missing at Random (MAR) if:

∀x1,x2 ∈ X ,m ∈ {0, 1}d s.t. x̃1 = x̃2 (w.r.t. m)

P(M = m|X = x1) = P(M = m|X = x2) (2.2)

MNAR: Data is said to be Missing Not at Random (MNAR) if it is neither MCAR or

MAR (in particular, the missingness can depend on the values of the unobserved data points).

2.2 Problem formulation

Consider a d-dimensional space X = X1× ...×Xd. Suppose that X = (X1, ..., Xd) is a random

variable (either continuous or binary) taking values in X , whose distribution we will denote

P (X). Suppose that M = (M1, ...,Md) is a random variable taking values in {0, 1}d. We will

call X the data vector, and M the mask vector.

For each i ∈ {1, ..., d}, we define a new space X̃i = Xi ∪ {∗} where ∗ is simply a point

not in any Xi, representing an unobserved value. Let X̃ = X̃1 × ...× X̃d. We define a new

random variable X̃ = (X̃1, ..., X̃d) ∈ X̃ in the following way:

X̃i =

Xi, if Mi = 1

∗, otherwise

(2.3)

so that M indicates which components of X are observed. Note that we can recover M from

X̃.

Throughout the remainder of the chapter, we will often use lower-case letters to denote

realizations of a random variable and use the notation 1 to denote a vector of 1s, whose

dimension will be clear from the context (most often, d).

11

2.2.1 Imputation

In the imputation setting, n i.i.d. copies of X̃ are realized, denoted x̃1, ..., x̃n and we define the

dataset D = {(x̃i,mi)}ni=1, where mi is simply the recovered realization of M corresponding

to x̃i.

Our goal is to impute the unobserved values in each x̃i. Formally, we want to generate

samples according to P (X|X̃ = x̃i), the conditional distribution of X given X̃ = x̃i, for each

i, to fill in the missing data points in D. By attempting to model the distribution of the

data rather than just the expectation, we are able to make multiple draws and therefore

make multiple imputations allowing us to capture the uncertainty of the imputed values

[WRW11, BG11, Rub04].

2.3 GAIN: Generative Adversarial Imputation Nets

In this section we describe our approach for simulating P (X|X̃ = x̃i) which is motivated

by GANs. We highlight key similarities and differences to a standard (conditional) GAN

throughout. Fig. 2.1 depicts the overall architecture of GAIN.

2.3.1 Generator

The generator, G, takes (realizations of) X̃, M and a noise variable, Z, as input and outputs

X̄, a vector of imputed values. Let G : X̃ × {0, 1}d × [0, 1]d → X be a function, and

Z = (Z1, ..., Zd) be d-dimensional noise (independent of all other variables).

Then we define the random variables X̄, X̂ ∈ X by

X̄ = G(X̃,M, (1−M)� Z) (2.4)

X̂ = M� X̃ + (1−M)� X̄ (2.5)

where � denotes element-wise multiplication. X̄ corresponds to the vector of imputed values

(note that G outputs a value for every component, even if its value was observed) and X̂

12

𝑥ଵଵ X 𝑥ଵଷ 𝑥ଵସ X

X 𝑥ଶଶ X 𝑥ଶସ 𝑥ଶହ

𝑥ଷଵ X 𝑥ଷଷ X 𝑥ଷହ

Original data

𝑥ଵଵ 0 𝑥ଵଷ 𝑥ଵସ 0

0 𝑥ଶଶ 0 𝑥ଶସ 𝑥ଶହ

𝑥ଷଵ 0 𝑥ଷଷ 0 𝑥ଷହ

1 0 1 1 0

0 1 0 1 1

1 0 1 0 1

Data matrix Mask matrix

𝑥ଵଵ �̅�ଵଶ 𝑥ଵଷ 𝑥ଵସ �̅�ଵହ

�̅�ଶଵ 𝑥ଶଶ �̅�ଶଷ 𝑥ଶସ 𝑥ଶହ

𝑥ଷଵ �̅�ଷଶ 𝑥ଷଷ �̅�ଷସ 𝑥ଷହ

Generator

Imputed Matrix

Discriminator

𝑝ଵଵ 𝑝ଵଶ 𝑝ଵଷ 𝑝ଵସ 𝑝ଵହ

𝑝ଶଵ 𝑝ଶଶ 𝑝ଶଷ 𝑝ଶସ 𝑝ଶହ

𝑝ଷଵ 𝑝ଷଶ 𝑝ଷଷ 𝑝ଷସ 𝑝ଷହ

Loss
(Cross Entropy)

Estimated mask matrix

Back
propagate

1 0.5 1 1 0

0 1 0 1 0.5

1 0 1 0.5 1

Hint Matrix

Back
propagate

Loss
(MSE)

Hint Generator

+

0 𝑧ଵଶ 0 0 𝑧ଵହ

𝑧ଶଵ 0 𝑧ଶଷ 0 0

0 𝑧ଷଶ 0 𝑧ଷସ 0

Random matrix

Figure 2.1: The architecture of GAIN with exemplar samples.

corresponds to the completed data vector, that is, the vector obtained by taking the partial

observation X̃ and replacing each ∗ with the corresponding value of X̄.

This setup is very similar to a standard GAN, with Z being analogous to the noise

variables introduced in that framework. Note, though, that in this framework, the target

distribution, P (X|X̃), is essentially ||1−M||1-dimensional and so the noise we pass into the

generator is (1−M)� Z, rather than simply Z, so that its dimension matches that of the

targeted distribution.

13

2.3.2 Discriminator

As in the GAN framework, we introduce a discriminator, D, that will be used as an adversary

to train G. However, unlike in a standard GAN where the output of the generator is either

completely real or completely fake, in this setting the output is comprised of some components

that are real and some that are fake. Rather than identifying that an entire vector is real or

fake, the discriminator attempts to distinguish which components are real (observed) or fake

(imputed) - this amounts to predicting the mask vector, m. Note that the mask vector M is

pre-determined by the dataset.

Formally, the discriminator is a function D : X → [0, 1]d with the i-th component of D(x̂)

corresponding to the probability that the i-th component of x̂ was observed.

2.3.3 Hint

As will be seen in the theoretical results that follow, it is necessary to introduce what we

call a hint mechanism. A hint mechanism is a random variable, H, taking values in a space

H, both of which we define. We allow H to depend on M and for each (imputed) sample

(x̂,m), we draw h according to the distribution H|M = m. We pass h as an additional

input to the discriminator and so it becomes a function D : X ×H → [0, 1]d, where now the

i-th component of D(x̂,h) corresponds to the probability that the i-th component of x̂ was

observed conditional on X̂ = x̂ and H = h.

By defining H in different ways, we control the amount of information contained in H

about M and in particular we show (in Proposition 1) that if we do not provide “enough”

information about M to D (such as if we simply did not have a hinting mechanism), then

there are several distributions that G could reproduce that would all be optimal with respect

to D.

14

2.3.4 Objective

We train D to maximize the probability of correctly predicting M. We train G to minimize

the probability of D predicting M. We define the quantity V (D,G) to be

V (D,G) = EX̂,M,H

[
MT logD(X̂,H) + (1−M)T log

(
1−D(X̂,H)

)]
, (2.6)

where log is element-wise logarithm and dependence on G is through X̂.

Then, as with the standard GAN, we define the objective of GAIN to be the minimax

problem given by

min
G

max
D

V (D,G). (2.7)

We define the loss function L : {0, 1}d × [0, 1]d → R by

L(a,b) =
d∑

i=1

[
ai log(bi) + (1− ai) log(1− bi)

]
. (2.8)

Writing M̂ = D(X̂,H), we can then rewrite (2.7) as

min
G

max
D

E
[
L(M, M̂)

]
. (2.9)

2.4 Theoretical analysis

In this section we provide a theoretical analysis of Equation (2.7). Given a d-dimensional

space Z = Z1 × ... × Zd, a (probability) density1 p over Z corresponding to a random

variable Z, and a vector b ∈ {0, 1}d we define the set Ab = {i : bi = 1}, the projection

φb : Z → Πi∈Ab
Zi by φb(z) = (zi)i∈A and the density pb to be the density of φb(Z).

Throughout this section, we make the assumption that M is independent of X, i.e. that

the data is MCAR.

We will write p(x,m,h) to denote the density of the random variable (X̂,M,H) and we

1For ease of exposition, we use the term density even when referring to a probability mass function.

15

will write p̂, pm and ph to denote the marginal densities (of p) corresponding to X̂, M and

H, respectively. When referring to the joint density of two of the three variables (potentially

conditioned on the third), we will simply use p, abusing notation slightly.

It is more intuitive to think of this density through its decomposition into densities

corresponding to the true data generating process, and to the generator defined by Equation

(2.4),

p(x,m,h) = pm(m)p̂m(φm(x|m))× p̂1−m(φ1−m(x)|m, φm(x))ph(h|m). (2.10)

The first two terms in Equation (2.10) are both defined by the data, where p̂m(φm(x)|m)

is the density of φm(X̂)|M = m which corresponds to the density of φm(X) (i.e. the true

data distribution), since conditional on M = m, φm(X̂) = φm(X) (see Equations (2.3) and

(2.5)). The third term, p̂1−m(φ1−m(x)|m, φm(x)), is determined by the generator, G, and is

the density of the random variable φ1−m(G(x̃,m,Z)) = φ1−m(X̄)|X̃ = x̃,M = m where x̃ is

determined by m and φm(x). The final term is the conditional density of the hint, which we

are free to define (its selection will be motivated by the following analysis).

Using this decomposition, one can think of drawing a sample from p̂ as first sampling m

according to pm(·), then sampling the “observed” components, xobs, according to p̂m(·) (we

can then construct x̃ from xobs and m), then generating the imputed values, ximp, from the

generator according to p̂1−m(·|m,xobs) and finally sampling the hint according to ph(·|m).

Lemma 1. Let x ∈ X . Let ph be a fixed density over the hint space H and let h ∈ H be

such that p(x,h) > 0. Then for a fixed generator, G, the i-th component of the optimal

discriminator, D∗(x,h) is given by

D∗(x,h)i =
p(x,h,mi = 1)

p(x,h,mi = 1) + p(x,h,mi = 0)
= pm(mi = 1|x,h) (2.11)

for each i ∈ {1, ..., d}.

We now rewrite Equation (2.6), substituting for D∗, to obtain the following minimization

16

criterion for G:

C(G) = EX̂,M,H

(∑

i:Mi=1

log pm(mi = 1|X̂,H) +
∑

i:Mi=0

log pm(mi = 0|X̂,H)
)
, (2.12)

where dependence on G is through pm(·|X̂).

Theorem 1. A global minimum for C(G) is achieved if and only if the density p̂ satisfies

p̂(x|h,mi = t) = p̂(x|h) (2.13)

for each i ∈ {1, ..., d}, x ∈ X and h ∈ H such that ph(h|mi = t) > 0.

The following proposition asserts that if H does not contain “enough” information about

M, we cannot guarantee that G learns the desired distribution (the one uniquely defined by

the (underlying) data).

Proposition 1. There exist distributions of X, M and H for which solutions to Equation

(2.13) are not unique. In fact, if H is independent of M, then Equation (2.13) does not

define a unique density, in general.

Let the random variable B = (B1, ..., Bd) ∈ {0, 1}d be defined by first sampling k from

{1, ..., d} uniformly at random and then setting

Bj =

1 if j 6= k

0 if j = k.

(2.14)

Let H = {0, 0.5, 1}d and, given M, define

H = B�M + 0.5(1−B). (2.15)

Observe first that H is such that Hi = t =⇒ Mi = t for t ∈ {0, 1} but that Hi = 0.5 implies

nothing about Mi. In other words, H reveals all but one of the components of M to D. Note,

17

however, that H does contain some information about Mi since Mi is not assumed to be

independent of the other components of M.

The following lemma confirms that the discriminator behaves as we expect with respect

to this hint mechanism.

Lemma 2. Suppose H is defined as above. Then for h such that hi = 0 we have D∗(x,h)i = 0

and for h such that hi = 1 we have D∗(x,h)i = 1, for all x ∈ X , i ∈ {1, ..., d}.

The final proposition we state tells us that H as specified above ensures the generator

learns to replicate the desired distribution.

Proposition 2. Suppose H is defined as above. Then the solution to Equation (2.13) is

unique and satisfies

p̂(x|m1) = p̂(x|m2) (2.16)

for all m1,m2 ∈ {0, 1}d. In particular, p̂(x|m) = p̂(x|1) and since M is independent of X,

p̂(x|1) is the density of X. The distribution of X̂ is therefore the same as the distribution of

X.

For the remainder of the chapter, B and H will be defined as in Equations (2.14) and

(2.15).

2.5 GAIN algorithm

Using an approach similar to that in [GPM14], we solve the minimax optimization problem

(Equation (2.7)) in an iterative manner. Both G and D are modeled as fully connected neural

nets.

We first optimize the discriminator D with a fixed generator G using mini-batches of size

kD. For each sample in the mini-batch2, (x̃(j),m(j)), we draw kD independent samples, z(j)

and b(j), of Z and B and compute x̂(j) and h(j) accordingly. Lemma 2 then tells us that

2The index j now corresponds to the j-th sample of the mini-batch, rather than the j-th sample of the
entire dataset.

18

the only outputs of D that depend on G are the ones corresponding to bi = 0 for each sample.

We therefore only train D to give us these outputs (if we also trained D to match the outputs

specified in Lemma 2 we would gain no information about G, but D would overfit to the hint

vector). We define LD : {0, 1}d × [0, 1]d × {0, 1}d → R by

LD(m, m̂,b) =
∑

i:bi=0

[
mi log(m̂i) + (1−mi) log(1− m̂i)

]
. (2.17)

D is then trained according to

min
D
−

kD∑

j=1

LD(m(j), m̂(j),b(j)) (2.18)

recalling that m̂(j) = D(x̂(j),m(j)).

Second, we optimize the generator G using the newly updated discriminator D with

mini-batches of size kG. We first note that G in fact outputs a value for the entire data

vector (including values for the components we observed). Therefore, in training G, we not

only ensure that the imputed values for missing components (mj = 0) successfully fool the

discriminator (as defined by the minimax game), we also ensure that the values outputted by

G for observed components (mj = 1) are close to those actually observed. This is justified by

noting that the conditional distribution of X given X̃ = x̃ obviously fixes the components of

X corresponding to Mi = 1 to be X̃i. This also ensures that the representations learned in the

hidden layers of X̃ suitably capture the information contained in X̃ (as in an auto-encoder).

To achieve this, we define two different loss functions. The first, LG : {0, 1}d × [0, 1]d ×
{0, 1}d → R, is given by

LG(m, m̂,b) = −
∑

i:bi=0

(1−mi) log(m̂i), (2.19)

19

and the second, LM : Rd × Rd → R, by

LM(x,x′) =
d∑

i=1

miLM(xi, x
′
i), (2.20)

where

LM(xi, x
′
i) =

(x′i − xi)2, if xi is continuous,

−xi log(x′i), if xi is binary.

As can be seen from their definitions, LG will apply to the missing components (mi = 0) and

LM will apply to the observed components (mi = 1).

LG(m, m̂) is smaller when m̂i is closer to 1 for i such that mi = 0. That is, LG(m, m̂)

is smaller when D is less able to identify the imputed values as being imputed (it falsely

categorizes them as observed). LM(x, x̃) is minimized when the reconstructed features (i.e.

the values G outputs for features that were observed) are close to the actually observed

features.

G is then trained to minimize the weighted sum of the two losses as follows:

min
G

kG∑

j=1

LG(m(j), m̂(j),b(j)) + αLM(x̃(j), x̂(j)),

where α is a hyper-parameter.

The pseudo-code of GAIN is presented in Algorithm 1.

2.6 Experiments

In this section, we validate the performance of GAIN using multiple real-world datasets. In

the first set of experiments we qualitatively analyze the properties of GAIN. In the second

we quantitatively evaluate the imputation performance of GAIN using various UCI datasets

[Lic13], giving comparisons with state-of-the-art imputation methods. In the third we evaluate

the performance of GAIN in various settings (such as on datasets with different missing

20

Algorithm 1 Pseudo-code of GAIN

while training loss has not converged do
(1) Discriminator optimization
Draw kD samples from the dataset {(x̃(j),m(j))}kDj=1

Draw kD i.i.d. samples, {z(j)}kDj=1, of Z

Draw kD i.i.d. samples, {b(j)}kDj=1, of B
for j = 1, ..., kD do

x̄(j)← G(x̃(j),m(j), z(j))
x̂(j)←m(j)� x̃(j) + (1−m(j))� x̄(j)
h(j) = b(j)�m(j) + 0.5(1− b(j))

end for
Update D using stochastic gradient descent (SGD)

∇D −
kD∑

j=1

LD(m(j), D(x̂(j),h(j)),b(j))

(2) Generator optimization
Draw kG samples from the dataset {(x̃(j),m(j))}kGj=1

Draw kG i.i.d. samples, {z(j)}kGj=1 of Z
Draw kG i.i.d. samples, {b(j)}j=1 of B
for j = 1, ..., kG do

h(j) = b(j)�m(j) + 0.5(1− b(j))
end for
Update G using SGD (for fixed D)

∇G

kG∑

j=1

LG(m(j), m̂(j),b(j)) + αLM(x(j), x̃(j))

end while=0

rates). In the final set of experiments we evaluate GAIN against other imputation algorithms

when the goal is to perform prediction on the imputed dataset.

We conduct each experiment 10 times and within each experiment we use 5-cross vali-

dations. We report either RMSE or AUROC as the performance metric along with their

standard deviations across the 10 experiments. Unless otherwise stated, missingness is applied

to the datasets by randomly removing 20% of all data points (MCAR).

In all experiments, the depth of the generator and discriminator in both GAIN and

auto-encoder is set to 3. The number of hidden nodes in each layer is d, d/2 and d,

21

Algorithm Breast Spam Credit News

GAIN .0546 ± .0006 .0513± .0016 .1858 ± .0010 .1441 ± .0007

GAIN w/o .0701 ± .0021 .0676 ± .0029 .2436 ± .0012 .1612 ± .0024

LG (22.1%) (24.1%) (23.7%) (10.6%)

GAIN w/o .0767 ± .0015 .0672 ± .0036 .2533 ± .0048 .2522 ± .0042

LM (28.9%) (23.7%) (26.7%) (42.9%)

GAIN w/o .0639 ± .0018 .0582 ± .0008 .2173 ± .0052 .1521 ± .0008

Hint (14.6%) (11.9%) (14.5%) (5.3%)

GAIN w/o .0782 ± .0016 .0700 ± .0064 .2789 ± .0071 .2527 ± .0052

Hint & LM (30.1%) (26.7%) (33.4%) (43.0%)

Table 2.1: Source of gains in GAIN algorithm (Mean ± Std of RMSE (Gain (%)))

respectively. We use tanh as the activation functions of each layer except for the output

layer where we use the sigmoid activation function and the number of batches is 64 for

both the generator and discriminator. For the GAIN algorithm, we use cross-validation

to select α among {0.1, 0.5, 1, 2, 10}. Implementation of GAIN can be found at https:

//github.com/jsyoon0823/GAIN.

2.6.1 Source of gain

The potential sources of gain for the GAIN framework are: the use of a GAN-like architecture

(through LG), the use of reconstruction error in the loss (LM), and the use of the hint (H).

In order to understand how each of these affects the performance of GAIN, we exclude one

or two of them and compare the performances of the resulting architectures against the full

GAIN architecture.

Table 2.1 shows that the performance of GAIN is improved when all three components are

included. More specifically, the full GAIN framework has a 15% improvement over the simple

auto-encoder model (i.e. GAIN w/o LG). Furthermore, utilizing the hint vector additionally

gives improvements of 10%.

22

https://github.com/jsyoon0823/GAIN
https://github.com/jsyoon0823/GAIN

2.6.2 Quantitative analysis of GAIN

We use four real-world datasets from UCI Machine Learning Repository [Lic13] (Breast,

Spam, Credit, and News) to quantitatively evaluate the imputation performance of GAIN.

Details of each dataset are reported in Table 2.2.

Dataset N Scont Scat Average Correlations

Breast 569 30 0 0.3949

Spam 4,601 57 0 0.0608

Credit 30,000 14 9 0.1633

News 39,797 44 14 0.0688

Table 2.2: Statistics of the datasets. Scont: the number of continuous variables, Scat: the
number of categorical variables

In Table 2.3 we report the RMSE (and its standard deviation) for GAIN and 5 other

state-of-the-art imputation methods: MICE [WRW11, BG11], MissForest [SB11], Matrix

completion (Matrix) [CR09], Auto-encoder [GW18] and Expectation-maximization (EM)

[GSF10]. As can be seen from the table, GAIN significantly outperforms each benchmark

across all 4 datasets

2.6.3 GAIN in different settings

To better understand GAIN, we conduct several experiments in which we vary the missing

rate, the number of samples, and the number of dimensions using Credit dataset. Fig. 2.2

shows the performance (RMSE) of GAIN within these different settings in comparison to the

two most competitive benchmarks (MissForest and Auto-encoder). Fig. 2.2 (a) shows that,

even though the performance of each algorithm decreases as missing rates increase, GAIN

consistently outperforms the benchmarks across the entire range of missing rates.

Fig. 2.2 (b) shows that as the number of samples increases, the performance improvements

of GAIN over the benchmarks also increases. This is due to the large number of parameters in

GAIN that need to be optimized, however, as demonstrated on the Breast dataset (in Table

2.3), GAIN is still able to outperform the benchmarks even when the number of samples is

23

Algorithm Breast Spam Credit News

GAIN .0546 ± .0006 .0513± .0016 .1858 ± .0010 .1441 ± .0007

MICE .0646 ± .0028 .0699 ± .0010 .2585 ± .0011 .1763 ± .0007

MissForest .0608 ± .0013 .0553 ± .0013 .1976 ± .0015 .1623 ± 0.012

Matrix .0946 ± .0020 .0542 ± .0006 .2602 ± .0073 .2282 ± .0005

Auto-encoder .0697 ± .0018 .0670 ± .0030 .2388 ± .0005 .1667 ± .0014

EM .0634 ± .0021 .0712 ± .0012 .2604 ± .0015 .1912 ± .0011

Table 2.3: Imputation performance in terms of RMSE (Average ± Std of RMSE)

(a) Missing Rate (%)
0 20 40 60 80

R
M

S
E

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

(b) The number of samples ×104
0 1 2 3 4

R
M

S
E

0.18

0.2

0.22

0.24

0.26

0.28

0.3
GAIN
MissForest
Autoencoder

(c) The number of feature dimensions
0 5 10 15 20 25

R
M

S
E

0.15

0.2

0.25

0.3

0.35

0.4

Figure 2.2: RMSE performance in different settings: (a) Various missing rates, (b) Various
number of samples, (c) Various feature dimensions

relatively small (less than 600).

Fig. 2.2 (c) shows that GAIN is also robust to the number of feature dimensions. On the

other hand, the discriminative model (MissForest) cannot as easily cope when the number of

feature dimensions is small.

2.6.4 GAIN in MAR and MNAR settings

In the previous subsections, we only evaluate GAIN on MCAR setting. In this subsection,

we demonstrate the outperformance of GAIN on MAR and MNAR settings as well. The

following explains how we constructed datasets that satisfy MAR and MNAR settings.

Missing at random (MAR): To create an MAR dataset, we sequentially define the

probability that the ith component of the nth sample is observed conditional on the missingness

24

and values (if observed) of the previous i− 1 components to be

Pm
i (n) =

pm(i) ·N · e−
∑
j<i wjmj(n)xj(n)+bj(1−mj(n))

∑N
l=1 e

−
∑
j<i wjmj(l)xj(l)+bj(1−mj(l))

where pm(i) corresponds to the average missing rate of the ith feature, and wj, bj are sampled

from U(0, 1) (but are only sampled once for the entire dataset). We sequentially sample

m1, ...,md for each feature vector.

Missing not at random (MNAR): To create an MNAR dataset, we define the

probability that the ith component of the nth sample is observed (Pm
i (n)) to be

Pm
i (n) =

pm(i) ·N · e−wixi(n)∑N
l=1 e

−wixi(l)

where again pm(i) corresponds to the average missing rate of the ith feature and wi is sampled

from U(0, 1). In particular, the missingness of a data point is directly dependent on its value

(with dependence determined by the weight wi).

We compare the RMSE of GAIN against other imputation algorithms on both an MAR

and MNAR version of the Credit dataset. To make a fair comparison, we pass the mask matrix

to all the benchmarks as an additional input so that they can also utilize the informative

missingness captured by it.

Different missing rates for different features: In order to also explore the effect of

different missing rates across features on the imputation performance of GAIN, we compare

the MCAR, MAR and MNAR settings when pm(i) = 0.2 ∀i ∈ {1, ..., d} (uniform) and when

pm(i) = 0.4× p̂m(i) where p̂m(i) ∼ U(0, 1) (non-uniform). The average missing rate in both

cases is 0.2.

As can be seen in Table 2.4, GAIN outperforms other state-of-the-art imputation methods

in all three missingness settings (both when feature missingness is uniform and non-uniform)

and shows significantly better performance in the MNAR setting.

As can also be seen from the bottom side of Table 2.4, GAIN still outperforms all bench-

marks in the non-uniform setting, although the performance of both GAIN and MissForest

25

Setting
Uniform

MCAR MAR MNAR

GAIN .1858 ± .0010 .1974 ± .0006 .4046 ± .0053

MICE .2585 ± .0011 .2574 ± .0035 .5310 ± .0207

MissForest .1976 ± .0015 .2194 ± .0065 .4286 ± .0087

Matrix .2602 ± .0073 .2473 ± .0070 .4328 ± .0036

Auto-encoder .2388 ± .0005 .2405 ± .0070 .4876 ± .0097

EM .2604 ± .0015 .2755 ± .0063 .5157 ± .0039

Setting
Non-uniform

MCAR MAR MNAR

GAIN .2114 ± .0007 .2245 ± .0008 .4672 ± .0066

MICE .2574 ± .0014 .2344 ± .0068 .5355 ± .0036

MissForest .2496 ± .0065 .2537 ± .0097 .4784 ± .0102

Matrix .2356 ± .0022 .2440 ± .0122 .5216 ± .0084

Auto-encoder .2444 ± .0037 .2498 ± .0129 .5017 ± .0078

EM .2620 ± .0010 .3339 ± .0024 .4998 ± .0053

Table 2.4: Imputation performance with uniform and non-uniform pm(i) on MCAR, MAR,
and MNAR (Average ± Std of RMSE) settings.

(its closest competitor in the uniform setting) both decrease similarly, while MICE and Matrix

completion both show improvements for the non-uniform setting.

Note that the standard deviation of the total number of missing points is higher for

non-uniform pm(i) than uniform pm(i). As consistent with Fig. 2.2 (a), higher/lower missing

rates yield higher/lower imputation errors; and so, due to the increased standard deviation,

there is a greater variance in the performance in the non-uniform setting.

2.6.5 Prediction performance

We now compare GAIN against the same benchmarks with respect to the accuracy of

post-imputation prediction. For this purpose, we use Area Under the Receiver Operating

26

Characteristic Curve (AUROC) as the measure of performance. To be fair to all methods,

we use the same predictive model (logistic regression) in all cases. Comparisons are made on

all datasets and the results are reported in Table 2.5.

Algorithm
AUROC (Average ± Std)

Breast Spam Credit News

GAIN .9930 ± .0073 .9529 ± .0023 .7527 ± .0031 .9711 ± .0027

MICE .9914 ± .0034 .9495 ± .0031 .7427 ± .0026 .9451 ± .0037

MissForest .9860 ± .0112 .9520 ± .0061 .7498 ± .0047 .9597 ± .0043

Matrix .9897 ± .0042 .8639 ± .0055 .7059 ± .0150 .8578 ± .0125

Auto-encoder .9916 ± .0059 .9403 ± .0051 .7485 ± .0031 .9321 ± .0058

EM .9899 ± .0147 .9217 ± .0093 .7390 ± .0079 .8987 ± .0157

Table 2.5: Prediction performance comparison

As Table 2.5 shows, GAIN, which we have already shown to achieve the best imputation

accuracy (in Table 2.3), yields the best post-imputation prediction accuracy. However, even in

cases where the improvement in imputation accuracy is large, the improvements in prediction

accuracy are not always significant. This is probably due to the fact that there is sufficient

information in the (80%) observed data to predict the label.

Prediction accuracy with various missing rates: In this experiment, we evaluate

the post-imputation prediction performance when the missing rate of the dataset is varied.

Note that every dataset has their own binary label.

The results of this experiment (for GAIN and the two most competitive benchmarks) are

shown in Fig. 2.3. In particular, the performance of GAIN is significantly better than the

other two for higher missing rates, this is due to the fact that as the information contained

in the observed data decreases (due to more values being missing), the imputation quality

becomes more important, and GAIN has already been shown to provide (significantly) better

quality imputations.

27

Missing Rate (%)
10 20 30 40 50 60 70 80 90

A
U

R
O

C

0.55

0.6

0.65

0.7

0.75

0.8
GAIN
Autoencoder
MissForest

Figure 2.3: The AUROC performance with various missing rates with Credit dataset

2.6.6 Congeniality of GAIN

The congeniality of an imputation model is its ability to impute values that respect the feature-

label relationship [Men94, BWR13, DCI16]. The congeniality of an imputation model can be

evaluated by measuring the effects on the feature-label relationships after the imputation.

We compare the logistic regression parameters, w, learned from the complete Credit dataset

with the parameters, ŵ, learned from an incomplete Credit dataset by first imputing and

then performing logistic regression.

We report the mean and standard deviation of both the mean bias (||w − ŵ||1) and the

mean square error (||w − ŵ||2) for each method in Table 2.6. These quantities being lower

indicates that the imputation algorithm better respects the relationship between feature

and label. As can be seen in the table, GAIN achieves significantly lower mean bias and

mean square error than other state-of-the-art imputation algorithms (from 8.9% to 79.2%

performance improvements).

28

Algorithm Mean Bias (||w − ŵ||1) MSE (||w − ŵ||2)

GAIN 0.3163± 0.0887 0.5078± 0.1137

MICE 0.8315 ± 0.2293 0.9467 ± 0.2083

MissForest 0.6730 ± 0.1937 0.7081 ± 0.1625

Matrix 1.5321 ± 0.0017 1.6660 ± 0.0015

Auto-encoder 0.3500 ± 0.1503 0.5608 ±0.1697

EM 0.8418 ± 0.2675 0.9369 ± 0.2296

Table 2.6: Congeniality performances of imputation models

2.7 Conclusion

In this chapter, we propose a generative model for missing data imputation, GAIN. This

novel architecture generalizes the well-known GAN such that it can deal with the unique

characteristics of the imputation problem. Various experiments with real-world datasets show

that GAIN significantly outperforms state-of-the-art imputation techniques. The development

of a new, state-of-the-art technique for imputation can have transformative impacts; most

datasets in medicine as well as in other domains have missing data.

29

CHAPTER 3

Estimating Missing Data in Temporal Data Streams

Using Multi-directional Recurrent Neural Networks

Missing data/measurements present a ubiquitous problem. The problem is especially challeng-

ing in medical settings which present time series containing many streams of measurements

that are sampled at different and irregular times [YZS18a], and is especially important in

these settings because accurate estimation of these missing measurements is often critical

for accurate diagnosis, prognosis [AS18b] and treatment, as well as for accurate modeling

and statistical analyses [YAH16]. This chapter presents a new method for estimating missing

measurements in time series data, based on a novel deep learning architecture. By comparing

our method with current state-of-the-art benchmarks on a variety of real-world medical

datasets, we demonstrate that our method is much more accurate in estimating missing

measurements, and that this accuracy is reflected in improved prediction of outcomes.

The most familiar methods for estimating missing data follow one of three approaches,

usually called interpolation, imputation and matrix completion. Interpolation methods such

as [KL12, MP10] exploit the correlation among measurements at different times within each

stream but ignore the correlation across streams. Imputation methods such as [Rub04,

GSF10, WRW11, SB11] exploit the correlation among measurements at the same time across

different streams but ignore the correlation within streams. Because medical measurements

are frequently correlated both within streams and across streams (e.g., blood pressure at a

given time is correlated both with blood pressure at other times and with heart rate), each

of these approaches loses potentially important information. Matrix completion methods

such as [CR09, YRD16, SSS16] do exploit correlations within and across streams, but assume

that the data is static – hence ignore the temporal component of the data – or that the

30

X X

X X X

X X

Time
S

tr
ea

m
s

X X

X X X

X X

X X

X X X

X X

Temporal data streams
Interpolation (within streams)

-Bi-RNN-

Imputation (across streams)
-Fully Connected layer with dropout-

M-RNN

Imputed
temporal

data streams

Figure 3.1: Block diagram of missing data estimation process. X: missing measurements;
red lines: connections between observed values and missing values in each layer; blue lines:
connections between interpolated values; dashed lines: dropout

data is perfectly synchronized – an assumption that is routinely violated in medical time

series data. Some of these methods also make modeling assumptions about the nature of the

data-generating process or of the pattern of missing data. Our approach is expressly designed

to exploit both the correlation within streams and the correlation across streams and to

take into account the temporal and non-synchronous character of the data; our approach

makes no modeling assumptions about the data-generating process or the pattern of missing

data. (We do assume – as is standard in most of the literature – that the data is missing at

random [KL12]. Dealing with data that is not missing at random [AHS17] presents additional

challenges.)

Our method relies on a novel neural network architecture that we call a Multi-directional

Recurrent Neural Network (M-RNN). Our M-RNN contains both an interpolation block and

an imputation block and it trains these blocks simultaneously, rather than separately (See

Fig. 3.1 and 3.2). Like a bi-directional RNN (Bi-RNN) [GS05], an M-RNN operates forward

and backward within each data stream – in the intra-stream directions. An M-RNN also

operates across different data streams – in the inter-stream directions. Unlike a Bi-RNN,

the timing of inputs into the hidden layers of our M-RNN is lagged in the forward direction

and advanced in the backward direction. As illustrated in Fig. 3.2, our M-RNN architecture

exploits the 3-dimensional nature of the dataset.

An important aspect of medical data is that there is often enormous uncertainty in the

measured data. As is well-known, although single imputation (SI) methods may yield the

31

most plausible/most likely estimate for each missing data point [DHS06], they do not capture

the uncertainty in the imputed data [Rub04]. Multiple imputation (MI) methods capture

this uncertainty by sampling imputed values several times in order to form multiple complete

imputed datasets, analyzing each imputed dataset separately and combining the results via

Rubin’s rule [Rub04, Pat02, BWR13]. Capturing the uncertainty in the dataset is especially

important in the medical setting, in which diagnostic, prognostic and treatment decisions

must be made on the basis of the imputed values [Mac10, SWC09]. In our setting, we use

dropout [SHK14] to produce multiple imputations; see Section 3.3.4.

To demonstrate the power of our method, we apply it to five different public real-world

medical datasets: the MIMIC-III [JPS16] dataset, the clinical deterioration dataset used in

[AYH18], the UNOS dataset for heart transplantation, the UNOS dataset for lung trans-

plantation (both available at https://www.unos.org/data/), and the UK Biobank dataset

[Pal07]. We show that our method yields large and statistically significant improvements

in estimation accuracy over previous methods, including interpolation methods such as

[KL12, MP10], imputation methods such as [Rub04, GSF10, WRW11, SB11], RNN-based

imputation methods such as [CBS16, LKW16, CPC18] and matrix completion methods such

as [CR09]. For the MIMIC-III and clinical deterioration datasets the patient measurements

were made frequently (hourly basis), and our method provides Root Mean Squared Error

(RMSE) improvement of more than 50% over all 11 benchmarks. For the UNOS heart and

lung transplantation datasets and the Biobank dataset, the patient measurements were made

much less frequently (yearly basis), but our method still provides RMSE improvement of

more than 40% in most cases, and significant improvements in the other cases. We also

show that this improvement in estimation yields (smaller) improvements in the predictions of

outcomes (patients’ future states). A number of experiments based on these same datasets

show that the extent to which our method improves on outcomes depends on the method

used for prediction, on the way in which our model is optimized in training, on the amount

of data available (both in terms of the number of patients for whom we have data and on

the amount of data available for each patient), and on the nature and extent of missing

data. These results illustrate the important point that, as mentioned earlier, there are many

32

https://www.unos.org/data/

reasons for imputing missing data [BWR13, DCI16] – for the estimation of parameters (e.g.

means or regression coefficients), for determination of confidence intervals and significance,

as well as for prediction – and that no single method for imputing data can be expected to

be superior on all datasets or for all reasons.

As [Men94] has emphasized, an extremely desirable aspect of any imputation method is

that it be congenial; i.e. that it should produce imputed values in a manner that preserves

the original relationships between features and labels. As we demonstrate using the complete

Biobank dataset, our method is also more congenial than the best competing benchmarks;

see Section 3.4.8.

3.1 Related works

As we have noted, there are three standard and very widely-used methods for dealing with

missing data: interpolation, imputation and matrix completion. Interpolation methods

[KL12, MP10] attempt to reconstruct missing data by capturing the temporal relationship

within each data stream but not the relationships across streams. Imputation methods

[Rub04, GSF10, WRW11, SB11] attempt to reconstruct missing data by capturing the

synchronous relationships across data streams but not the temporal relationships within

streams. Matrix completion methods [CR09, YRD16, SSS16] treat the data as static –

ignoring the temporal aspect – or perfectly synchronized and assume a specific model of the

data-generating process and/or the pattern of missing data.

There is also a substantial literature that uses Recurrent Neural Networks (RNNs) for

prediction on the basis of time series with missing data. For example, [GB96] first replaces

all the missing values with a mean value, then uses the feedback loop from the hidden states

to update the imputed values and finally uses the reconstructed data streams as inputs to a

standard RNN for prediction. [TB98] uses the Expectation-Maximization (EM) algorithm

to impute the missing values and again uses the reconstructed data streams as inputs to a

standard RNN for prediction. [PG02] uses a linear model to estimate missing values from

the latest measurement and the hidden state within each stream followed by a standard

33

RNN for prediction. In the first two of these papers, missing values are imputed by using

only the synchronous relationships across data streams but not the temporal relationships

within streams; in the third paper, missing values are interpolated by using only the temporal

relationships within each stream but not on the relationships across streams.

A more recent literature extends these methods to deal with both missing data and

irregularly sampled data [CBS16, LKW16, CPC18, KJC17]. All of these papers use the

sampling times to capture the informative missingness and time interval information to deal

with irregular sampling, using the measurements, sampling information and time intervals

as the inputs of an RNN. However, they differ in the replacements they use for missing

values. [CBS16, LKW16, KJC17] replace the missing values with 0, mean values or latest

measurements – all of which are independent of either the intra-stream or inter-stream

relationships or both. [CPC18] imputes the missing values using only the most recent

measurements, the mean value of each stream, and the time interval.

3.2 Problem formulation

Our formulation and method are applicable to a wide variety of settings with missing data.

However, for ease of exposition – and to facilitate the discussion of our application to medical

datasets – it is convenient to adopt medical terminology throughout.

We consider a dataset consisting of N patients. For each patient, we have a multivariate

time series data stream of length T (the length T and the other components of the dataset

may depend on the patient n but for the moment we suppress the dependence on n) that

consists of time stamps S, measurements X , and labels Y, sampled from an (unknown)

underlying distribution F : (S,X ,Y) ∼ F .

For each t the time stamp st ∈ R represents the actual time at which the measurements

xt were taken. For convenience we normalize so that s1 = 0 (so that we are measuring actual

times for each patient beginning from the first observation for that patient); we assume actual

times are strictly increasing: st+1 > st where 0 ≤ t < T . Note that the measurements may

not be sampled regularly, so that the interval st+1 − st between successive measurements

34

need not be constant.

There are D streams of measurements. We view each measurement as a real number,

but it will typically be the case that not every stream is actually observed/measured at st.

Hence we adopt notation in which the set of possible measurements at the t-th time stamp

st is R∗ = R ∪ {∗}. We interpret xdt = ∗ to mean that the stream d was not measured at

st; otherwise xdt ∈ R is the actual measurement of stream d at st. (In computations with

neural networks, we set xdt = 0 when the measurement xdt is missing. This guarantees that

the missing measurement has no effect on the architecture.) For convenience, we scale all

measurements to lie in the interval [0, 1].

It is convenient to introduce some additional notation. For each t, define the index mt
d to

equal 0 if xdt = ∗ (i.e. the stream d was not measured at st) and to equal 1 if xdt ∈ [0, 1] (the

stream d was measured at st). We define δdt to be the actual amount of time that has elapsed

from st since the stream d was measured previously; δdt can be defined by setting δd1 = 0 and

then proceeding recursively as follows:

δdt =

st − st−1 + δdt−1 if t > 1,md

t−1 = 0.

st − st−1 if t > 1,md
t−1 = 1

Write δt for the vector of elapsed times at time stamp t and ∆ = {δ1, δ2, ..., δT}.

The label yt represents the outcome realized at time stamp t (actual time st) such as

discharge, clinical deterioration, death. Y is the vector of outcomes for this patient. Again,

we scale so the labels (and eventually predictions) lie in the interval [0, 1]. Frequently the

outcome is binary in which case yt = 0 or yt = 1.

The information available for a particular patient n is therefore a triple consisting of a

sequence of time stamps, an array of measurements at each time stamp (with the above

convention about missing measurements), and an array of labels at each time stamp. It is

convenient to use functional notation to identify information about a particular patient, so

xdt (n) is the measurement of stream d at time stamp t for patient n, etc. The entire dataset

consists of all the triples for all the patients D = {(S(n),X (n),Y(n)}Nn=1.

35

Our objective is to find a function f that provides the best estimate of missing values;

i.e. the estimate that minimizes the estimation loss. As is usually done, we measure loss as

the squared error, so if xdt is an (unobserved) actual measurement (sampled from F) and

x̂dt = fdt (S,X) is the estimate formed on the basis of observed data, then the squared loss

for this particular measurement is L(x̂dt , x
d
t) = (x̂dt − xdt)2. Hence the formal optimization

problem is to find a function f to solve:

min
f

EF
[T∑

t=1

D∑

d=1

(1−md
t)L(x̂dt , x

d
t)
]

= min
f

EF
[T∑

t=1

D∑

d=1

(1−md
t)(f

d
t (S,X ,Y)− xdt)2

]
. (3.1)

Note that the function f we seek depends on the particular d and t, and on the entire array

of time stamps and measurements – but not on labels (which may not be observed). Also

note that the formal problem asks to find an f that minimizes the loss with respect to the

true distribution. Of course we do not observe the true distribution and cannot compute the

true loss, so we will minimize the empirical loss.

3.3 Multi-directional Recurrent Neural Networks (M-RNN)

Suppose that stream d was not measured at time stamp t, so that xdt = ∗. We would

like to form an estimate x̂dt of what the actual measurement would have been. As we

have noted, familiar interpolation methods use only the measurements xdt′ of the fixed data

stream d for other time stamps t′ 6= t (perhaps both before and after t) – but ignore the

information contained in other data streams d′ 6= d; familiar imputation methods use only

the measurements xd
′
t at the fixed time t for other data streams d′ 6= d – but ignores the

information contained at other times t′ 6= t. Because information is often correlated both

within and across data streams, each of these familiar approaches throws away potentially

useful information. Our approach forms an estimate x̂dt using measurements both within

the given data stream and across other data streams. In principle, we could try to form the

estimate x̂dt by using all the information in D. However, this would be impractical because it

would require learning a number of parameters that is on the order of the square of the number

36

of data streams, and also because it would create a serious danger of over-fitting. Instead,

we propose an efficient hierarchical learning framework using a novel RNN architecture that

effectively allows us to capture the correlations both within streams and across streams. Our

approach limits the number of parameters to be learned to be of the linear order of the

number data streams and avoids over-fitting. See Fig. 3.1.

Our basic single-imputation M-RNN consists of 2 blocks: an Interpolation block and

an Imputation block; see Fig. 3.2. (Our construction puts the Imputation block after the

Interpolation block in order to use the outputs of the Interpolation block to improve the

accuracy of the Imputation block; as we discuss later, it would not be useful to put the

Interpolation block after the Imputation block.) To produce multiple imputations, we adjoin

an additional dropout layer to the basic single-imputation M-RNN. (We defer the details

until Section 3.3.4.) The entire source codes of M-RNN implementation are publicly available

in the following link: http://github.com/jsyoon0823/MRNN/.

3.3.1 Error/Loss

As formalized above in Equation (3.1), our overall objective is to minimize the error that

would be made in estimating missing measurements. Evidently, we cannot estimate the error

of a measurement that was not made and hence is truly missing in the dataset. Instead we

fix a measurement xdt that was made and is present in the dataset, form an estimate x̂dt for xdt

using only the dataset with xdt removed (which we denote by D − xdt), and then compute the

error between the estimate x̂dt and the actual measurement xdt . As above, we use the squared

error (x̂dt − xdt)2 as the loss for this particular estimate; as the total loss/error for the entire

dataset D we use the mean squared error (MSE):

L(x̂,x) =
N∑

n=1

[∑Tn
t=1

∑D
d=1m

d
t (n)× (x̂dt (n)− xdt (n))2∑Tn

t=1

∑D
d=1m

d
t (n)

]

Note that this is the empirical error, which only utilized actually achievable variables.

37

http://github.com/jsyoon0823/MRNN/

3.3.2 Interpolation block

The Interpolation block constructs an interpolation function Φd that operates within the d-th

stream. To emphasize that the output x̃dt of the interpolation block depends only on the d-th

data stream with xdt removed, we write x̃dt = Φd(Dd − xdt), where Dd is the d-th stream of

the entire dataset D, and the notation Dd − xdt emphasizes that we have removed xdt . It is

important to keep in mind that the construction uses only the data from stream d, not the

data from other streams. We construct Φd using a bi-directional recurrent neural network

(Bi-RNN). However, unlike a conventional Bi-RNN [GS05], the timing of inputs into the

hidden layer is lagged in the forward direction and advanced in the backward direction: at t,

inputs of forward hidden states come from t− 1 and inputs of backward hidden states come

from t+ 1. (This procedure ensures that the actual value xdt is not used in the estimation of

x̃dt .) Note that each data stream uses its own Bi-RNN architecture (Φd). The inputs of the

Interpolation block consist of the feature vector x, the mask vector m, and the elapsed time

vector δ (defined in Section 3.2, and extracted from the original data streams). If we write

zdt = [xdt ,m
d
t , δ

d
t] (note that we explicitly include δdt as the additional input to deal with the

irregular sampling procedures) then a more mathematical description is:

x̃dt = g(Ud[
−→
h d
t ;
←−
h d
t] + cdo) = g(

−→
U d−→h d

t +
←−
U d←−h d

t + cdo)

−→
h d
t = (1−−→u d

t) ◦
−→
h d
t−1 +−→u d

t ◦ q(
−→
W d

h(
−→r d

t ◦
−→
h d
t−1) +

−→
V d
hz

d
t−1 +−→c d

h)

−→u d
t = γ(

−→
W d

u

−→
h d
t−1 +

−→
V d
uz

d
t−1 +−→c d

u)

−→r d
t = γ(

−→
W d

r

−→
h d
t−1 +

−→
V d
rz
d
t−1 +−→c d

r)

←−
h d
t = (1−←−u d

t) ◦
←−
h d
t+1 +←−u d

t ◦ q(
←−
W d

h(
←−r d

t ◦
←−
h d
t+1) +

←−
V d
hz

d
t+1 +←−c d

h)

←−u d
t = γ(

←−
W d

u

←−
h d
t+1 +

←−
V d
uz

d
t+1 +←−c d

u)

←−r d
t = γ(

←−
W d

r

←−
h d
t+1 +

←−
V d
rz
d
t+1 +←−c d

r)

(As can be seen from these equations, we are using a bidirectional GRU.) Here, g, q, γ are

activation functions. (In principle, any activation functions, such as Rectified Linear Unit

(ReLU), tanh, etc., could be used; here we use ReLU.) The arrows indicate forward/backward

38

direction and ◦ indicates element-wise multiplication. As we have emphasized, in this

interpolation block, we are only using/capturing the temporal correlation within each data

stream. In particular, the parameters for each data stream are learned separately, and the

number of parameters that must be learned is linear in the number of streams D. Note that

x̃dt is not the final output of our M-RNN architecture and is not necessarily an estimate of xdt .

3.3.3 Imputation block

The Imputation blocks constructs an imputation function Ψ that operates across streams.

To again emphasize that the estimate x̂dt for xdt depends on the data with xdt removed, we

write x̂dt = Ψ(Dt − xdt); again, keep in mind that now we are using only data at time stamp

st, not data from other time stamps. (Dt represents the t-th time stamp of the entire dataset

D.) We construct the function Ψ to be independent of t, so we use fully connected layers;

see the Imputation component of Fig 3.2. If we write zt = [x̃t,mt] then a more mathematical

description is:

x̂t = σ(Wht + α) ht = φ(Uxt + V zt + β)

where σ, φ are activation functions. It is important to keep in mind that the diagonal entries

of U are zero and the off-diagonal entries of W are zero (i.e. W is diagonal) so that we do

not use xdt in the estimation of x̂dt .

We learn the functions {Φd}Dd=1 and Ψ jointly using the stacked networks of Bi-RNN and

Fully Connected (FC) layers, using MSE as the objective function.

Ψ∗, {Φ∗d}Dd=1 = arg min
Φd,Ψ
L({Ψ

(
{xdt ,Φd

(
{xdτ ,md

τ , δ
d
τ}Tτ=1

)
,md

t }Dd=1

)
}Tt=1,x) (3.2)

Note that x̃t is the output of the interpolation block, and x̂t is the final output of the

entire M-RNN architecture.

39

𝒙௧ିଵ 𝒙௧ 𝒙௧ାଵ

FC
Layers

FC
Layers

FC
Layers

𝒙ෝ௧ିଵ 𝒙ෝ௧ 𝒙ෝ௧ାଵ 𝑥ො௧
ௗ

𝑥௧
ௗିଵ 𝑥௧

ௗ 𝑥௧
ௗାଵ

Bi-
RNN

Bi-
RNN

Bi-
RNN

𝑡

In
te

rp
ol

at
io

n
Im

pu
ta

ti
on

Interpolation
Im

putation

(𝐛)(𝐚)

𝑥ො௧
ௗିଵ 𝑥ො௧

ௗାଵ

Dropout

𝒙௧ିଵ 𝒙௧ 𝒙௧ାଵ

𝒙௧ିଵ 𝒙௧ 𝒙௧ାଵ

𝑥௧
ௗ𝑥௧

ௗିଵ 𝑥௧
ௗାଵ

𝑥௧
ௗିଵ 𝑥௧

ௗ 𝑥௧
ௗାଵ

Figure 3.2: M-RNN Architecture. (a) Architecture in the time domain section; (b) Architec-
ture in the feature domain section (Dropout is used for multiple imputations). Note that both
x̃ (the output of interpolation block) and x are inputs to the imputation block to construct
x̂ (the output of imputation block).

3.3.4 Multiple imputations

It is well-understood that to account for the uncertainty in estimating missing values, it is

useful to produce multiple estimates and generate multiple imputed datasets. These multiple

imputed datasets can each be analyzed using standard methods and the results can be

combined using Rubin’s rule [Rub04]. In our case, we generate multiple imputed datasets

using the well-known Dropout [SHK14] approach driven from the Bayesian Neural Network

framework [GG16]: we randomly select neurons in the fully connected layers and delete those

neurons and all their connections. (The dropout probability p ∈ (0, 1) is a hyper-parameter to

40

be chosen; the neurons to be dropped are chosen according to the Bernoulli distribution with

parameter p.) In the training stage, we conduct joint optimization (Equation (3.2)) using the

dropout process. We then generate multiple outputs ot by sampling different dropout vectors

R from the Bernoulli distributions. This yields multiple imputations (MI). (To construct a

single imputation (SI) we proceed in precisely the same way but set the dropout probability

to 0. For comparisons, we normalize the final output by multiplying by p.)

3.3.5 Overall structure and computation complexity

We refer to the entire structure above as a Multi-directional Recurrent Neural Network

(M-RNN). We use the notations M-RNN (MI) and M-RNN (SI) to clarify whether we are

producing multiple or single imputations. The entire training times for both M-RNN (MI)

and M-RNN (SI) are less than 2 hours for all 6 datasets (described in Section 3.4.1) on a

computer with Intel Core i7-4770 (3.4GHz) CPU with 32 GB RAM. With the same machine,

the entire training time for Multiple Imputation with Chained Equation (MICE) [WRW11]

is around 11 hours for all 6 datasets.

3.4 Results and discussions

3.4.1 Datasets

To evaluate the proposed M-RNN, we use five medical datasets: (1) MIMIC-III [JPS16],

(2) Deterioration [AYH18], (3, 4) UNOS-Heart and UNOS-Lung from the UNOS (United

Network for Organ Transplantation) dataset (available at https://www.unos.org/data/),

(5) UK Biobank [Pal07]. The characteristics of which are summarized in Table 3.1.

3.4.2 Imputation accuracy on the given datasets

We begin by comparing the performance of our method (using both multiple imputations

and single imputation) on the given datasets against 11 benchmarks with respect to the

accuracy of imputing missing values. The benchmarks against which we compare are: the

41

https://www.unos.org/data/

Datasets MIMIC-III Deterioration UNOS-Heart UNOS-Lung Biobank

of Patients 23,160 6,094 69,205 32,986 3,902

of Dimensions 40 (31, 9) 38 (16, 22) 34 (10, 24) 34 (10, 24) 113 (67, 46)
(Cont, Cat)

Label (y = 1) 1,320 (5.7%) 306 (5.3%) 4,844 (7.0%) 2,276 (6.9%) 195 (5.0%)

Avg # of samples 24.3 34.3 6.2 4.0 3.0

Avg missing rate 75.0% 61.4% 59.1% 58.5% 0.0%

Avg measure Freq. 1 hr / 12 hrs 4 hrs / 24 hrs 1 year 1 year 2.3 years

Avg Corr within 0.4122 0.3436 0.1213 0.1157 0.2424
streams

Avg Corr across 0.3127 0.3454 0.0875 0.0897 0.0506
streams

Table 3.1: Summary of the datasets (Cont: Continuous, Cat: Categorical, Avg: Average, #:
Number, Corr: Correlation, Freq: Frequency)

algorithms proposed in [CBS16, LKW16, CPC18]; Spline and Cubic Interpolation [KL12];

MICE [WRW11]; MissForest [SB11]; EM [GSF10]; the matrix completion algorithm of

[CR09]; the Auto-Encoder algorithm proposed in [GW18]; and the Markov chain Monte

Carlo (MCMC) method [Sch08]. As is common, we use root mean squared error (RMSE) as

the measure of performance. In each experiment, we use 5-fold cross-validation.

In all of our experiments, we set the depth of the networks for M-RNN and for other

neural network benchmarks (including RNN-based benchmarks and auto-encoder) to 4. (In

the case of M-RNN, the interpolation block uses 2 layers and the imputation block uses 2

layers.) For M-RNN, there are 4 hidden nodes in each layer in the interpolation block and D

hidden nodes in each layer in the imputation block. For the benchmarks, in order to make a

fair comparison, we adjusted the number of hidden nodes in each layer to match the model

capacity (the number of parameters for all models) of M-RNN. The number of batches is 64

for both M-RNN and benchmarks.

Table 3.2 shows the mean RMSE for our method and benchmarks, and the percentage

improvement of RMSE for M-RNN (MI) over the benchmarks. (Note that we are unable to

provide results for the EM algorithm on the UNOS-Heart and UNOS-Lung datasets because

– at least for the implementation we use – the EM algorithm requires at least one patient for

42

Algorithm
Mean RMSE (% Gain of M-RNN (Multiple Imputations))

MIMIC-III Deterioration UNOS-Heart UNOS-Lung Biobank

M-RNN (MI) 0.0141 (-) 0.0105 (-) 0.0479 (-) 0.0606 (-) 0.0637 (-)
M-RNN (SI) 0.0144 (-) 0.0108 (-) 0.0477 (-) 0.0609 (-) 0.0629 (-)

[CBS16] 0.0337 (58.2%) 0.0258 (59.3%) 0.1352 (64.6%) 0.1343 (54.9%) 0.0812 (21.6%)
[LKW16] 0.0295 (52.2%) 0.0241 (56.4%) 0.1179 (59.4%) 0.1264 (52.1%) 0.0801 (20.5%)
[CPC18] 0.0292 (51.7%) 0.0233 (54.9%) 0.1057 (54.7%) 0.1172 (48.3%) 0.0778 (18.1%)

Spline 0.0735 (80.8%) 0.0215 (51.2%) 0.1102 (56.5%) 0.1199 (49.5%) 0.0845 (24.6%)
Cubic 0.0279 (49.5%) 0.0223 (52.9%) 0.1072 (55.3%) 0.1177 (48.5%) 0.0887 (28.2%)

MICE 0.0611 (76.9%) 0.0319 (67.1%) 0.1147 (58.2%) 0.1151 (47.4%) 0.0915 (30.4%)
MissForest 0.0293 (51.9%) 0.0264 (60.2%) 0.0489 (2.0%) 0.0652 (7.1%) 0.0892 (28.6%)

EM 0.0467 (69.8%) 0.0355 (70.4%) - - 0.0978 (34.9%)

Matrix Completion 0.0311 (54.7%) 0.0264 (60.2%) 0.0974 (50.8%) 0.0942 (35.7%) 0.0886 (28.1%)
Auto-encoder 0.0412 (66.0%) 0.0309 (65.0%) 0.0589 (18.7%) 0.0712 (14.9%) 0.0805 (20.9%)

MCMC 0.0437 (67.7%) 0.0364 (71.2%) 0.1091 (56.1%) 0.1124 (46.1%) 0.0936 (31.9%)

Table 3.2: Performance comparison for missing data estimation

whom data is complete, and the UNOS-Heart and UNOS-Lung datasets do not contain any

such patient.)

As can be seen in Table 3.2, M-RNN achieves better performance (smaller RMSE) than

all of the benchmarks on all of the datasets (for all comparisons are possible). With a single

exception (the comparison with MissForest on the UNOS-Lung dataset) the performance

improvements are statistically significant at the 95% level (i.e., p < 0.05), and many of the

improvements are very large. For instance, for the Deterioration dataset, M-RNN using

multiple imputations achieves RMSE of 0.0105 (95% CI: 0.0071-0.0138), while the best

benchmark (Spline interpolation) achieves RMSE of 0.0215 (95% CI: 0.0178-0.0255); this

represents an improvement of 51.2%.

The performance comparisons across datasets are revealing, if not necessarily surprising.

The interpolation benchmarks (such as Spline, Cubic and RNN-based methods) work best on

datasets, such as MIMIC-III and Deterioration, for which measurements were more frequent

(and more highly correlated within each stream (see Table 3.1)); the imputation benchmarks

work best on datasets, such as UNOS-Heart and UNOS-Lung, for which measurements

were less frequent but for which there were many streams of data (many dimensions). The

improvement of our method over all benchmarks is larger for the MIMIC-III and Deterioration

43

datasets because those datasets have many streams of frequently sampled data, so that our

method gains a great deal from exploiting both the correlations within each data stream

and the correlations across data streams. Conversely, the improvement of our method is

smaller for the UNOS-Heart and UNOS-Lung datasets, because streams in those datasets are

infrequently sampled to that there is less to be gained by exploiting the correlations within

data streams. (The performances of the benchmarks for the Biobank dataset are mixed, and

don’t quite fit this same pattern, perhaps because Biobank is a small dataset (less than 4,000

patients with complete temporal data streams).)

3.4.2.1 Multiple imputations vs. Single imputation

As we have noted, the purpose of conducting multiple imputations is to reduce uncer-

tainty/shrink confidence intervals (rather than to improve average performance). As is

illustrated in the box-plot in Fig. 3.3(a) which shows the comparison of M-RNN with multi-

ple imputations and M-RNN with a single imputation against the best benchmark (Cubic

interpolation) on the MIMIC-III dataset, our multiple imputations do achieve this purpose.

(For discussion of Fig. 3.3(b), which illustrates the corresponding reduction in uncertainty

for prediction, see below.)

3.4.2.2 Combining models of interpolation and imputation

As we have already discussed, standard interpolation algorithms cannot capture the patterns

across streams and standard imputation algorithms cannot capture the patterns within the

streams. However, it is possible to combine a standard interpolation algorithm and standard

imputation algorithm in an attempt to capture both patterns, and it might be thought that

such a combination would be a fairer benchmark against which to compare our method. To

put this idea to the test, we create a family of “joint algorithms” by first using an interpolation

algorithm to interpolate the missing values, and then using the interpolated values as the

initial points of an imputation algorithm to provide final imputed values. For this exercise,

we use two standard interpolation methods (Cubic and Spline), and two standard imputation

44

M-RNN (MI) M-RNN (SI) Cubic

R
M

S
E

0.005

0.01

0.015

0.02

0.025

0.03

0.035

M-RNN (MI) M-RNN (SI) Che et al

A
U

R
O

C

0.825

0.83

0.835

0.84

0.845

0.85

0.855

0.86

0.865

(a) (b)

Figure 3.3: Box-plot comparisons between M-RNN (MI), M-RNN (SI) and the best benchmark.
(a) RMSE comparison using MIMIC-III dataset, (b) AUROC comparison using MIMIC-III
dataset. Red crosses represents outliers.

methods (MICE and MissForest) so that we have 4 interpolation-imputation combination

models: Cubic + MICE, Cubic + MissForest, Spline + MICE, and Spline + MissForest.

Algorithm
Mean RMSE (% Gain from Imputation Algorithm)

MIMIC-III Deterioration UNOS-Heart UNOS-Lung Biobank

Spline + MICE 0.0602 (1.5%) 0.0320 (-0.3%) 0.1141 (0.5%) 0.1133 (1.7%) 0.0895 (2.2%)
Spline + MissForest 0.0291 (0.7%) 0.0259 (1.9%) 0.0491 (-0.4%) 0.0641 (1.4%) 0.0879 (4.1%)

Cubic + MICE 0.0605 (1.0%) 0.0315 (1.3%) 0.1137 (0.9%) 0.1138 (1.1%) 0.0901 (1.6%)
Cubic + MissForest 0.0289 (1.4%) 0.0261 (1.1%) 0.0493 (-0.8%) 0.0643 (1.4%) 0.0887 (3.2%)

Table 3.3: Performance comparison for joint interpolation/imputation algorithms

As Table 3.3 shows, however, the performances of these interpolation-imputation combi-

nation models are very similar to those of the performance of the simple imputation model

that is used. Indeed, the largest RMSE performance improvement is only 0.0018. The

reason for this is that imputation methods use algorithms that operate iteratively until they

converge, so that their performance is rather robust to the initialization. Hence, although

the interpolation part of the joint models captures some of the inter-stream information, the

iterative imputation part ignores most of what is captured.

45

3.4.3 Source of gains

As illustrated in Fig. 3.2, our M-RNN consists of an Interpolation block and an Imputation

block. To understand where the gains of our approach come from, we compare the performance

of that is achieved when we use only the Interpolation block or only the Imputation block;

the results are shown in Table 3.4.

Datasets
M-RNN (Mean RMSE; % Gain)

Only Interp Only Impute Interp + Impute

MIMIC-III 0.0191 (26.2 %) 0.0312 (54.8 %) 0.0141 (-)

Deterioration 0.0133 (21.1 %) 0.0295 (64.4 %) 0.0105 (-)

UNOS-Heart 0.0897 (46.6 %) 0.0531 (9.8 %) 0.0479 (-)

UNOS-Lung 0.0998 (39.3 %) 0.0734 (17.4 %) 0.0606 (-)

Biobank 0.0794 (19.8 %) 0.0778 (18.1 %) 0.0637 (-)

Table 3.4: Source of Gain of M-RNN. (Performance degradation from original M-RNN)

The Interpolation block is intended to exploit the correlations within each data stream

and the Imputation block is intended to exploit the correlations across streams, so it is to be

expected that the largest gains of our M-RNN method should come from the Interpolation

block for the datasets (MIMIC-III and Deterioration) which are frequently sampled and have

large temporal correlations, and should come from the Imputation block for the datasets

(UNOS-Heart and UNOS-Lung) which are infrequently sampled but have many data streams.

As shown in Table 3.4, these intuitions are indeed supported by the experiments.

3.4.4 Additional experiments

The experiments we have described above demonstrate that our method significantly out-

performs a wide variety of benchmarks for the imputation of missing data on five somewhat

representative datasets. However it is natural to ask how our method would compare in other

circumstances. To get some understanding of this, we conducted four sets of experiments

based on the MIMIC-III dataset: increasing the amount of missing data, reducing the number

of data streams, reducing the number of samples, and reducing the number of measurements

46

Figure 3.4: Imputation accuracy for the MIMIC-III dataset with various settings (a) Additional
data missing at random, (b) Feature dimensions chosen at random, (c) Samples chosen at
random, (d) Measurements chosen at random

per patient. Within each set of experiments, we conducted 10 trials for each value of the

parameter being studied (e.g. amount of missing data), and we report the average over these

10 trials. The results are described below and in Fig. 3.4. Although the results of these

experiments are extremely suggestive, we caution the reader that these are only a specific set

of experiments and that one should be careful about drawing general conclusions.

3.4.4.1 Amount of missing data (Fig. 3.4 (a))

To evaluate the performance of M-RNN in comparison to benchmarks in settings with more

missing data, we constructed sub-samples of the MIMIC-III dataset by randomly removing

10%, 20%, 30%, 40%, 50% of the actual data and carrying out the same estimation exercise

as above on the smaller datasets that remain. (Recall that in the original MIMIC-III dataset,

75% of the data is already missing; hence removing 50% of the data present leads to an

artificial dataset in which 87.5% of the data is missing.) The graph in Fig. 3.4(a) shows the

performance of M-RNN against the best benchmarks of each type for these smaller datasets.

As can be seen, M-RNN continues to substantially outperform the benchmarks. Note that

as the amount of missing data increases the improvement of M-RNN over the imputation

47

benchmark(s) increases, but the improvement over the interpolation benchmarks decreases.

3.4.4.2 Number of data streams (Fig. 3.4 (b))

As we have noted, typical medical datasets contain many data streams (many feature

dimensions). To evaluate the performance of M-RNN in comparison to benchmarks in

settings with fewer data streams, we conducted experiments in which we reduced the number

of data streams (feature dimensions) of MIMIC-III. In the original MIMIC-III dataset the

number of data streams is D = 40; we conducted experiments with D = 3, 5, 7, 10, 15, 20 data

streams. (In each case, we conducted 10 trials in which we selected data streams at random;

we report the average of these 10 trials.) As expected, the performance of M-RNN degrades

when there are fewer data streams, but as Fig. 3.4(b) shows, M-RNN still outperforms the

benchmarks. (Note that interpolation methods are insensitive to the number of data streams

because they operate only within each data stream separately.)

3.4.4.3 Number of samples (Fig. 3.4 (c))

The original MIMIC-III dataset has N = 23, 160 samples (patients). To understand the

performance of M-RNN in comparison to benchmarks in settings with fewer samples, we

conducted experiments in which we used only subsets of all patients (samples) of sizes

N = 500, 1000, 2000, 4000, 8000, 16000. Because M-RNN has to learn many parameters, it

should come as no surprise that, as Fig. 3.4(c) shows, the performance of M-RNN degrades

badly – and indeed is worse than that of (some) other benchmarks – when the number of

samples is too small, but M-RNN outperforms all the benchmarks as soon as the number of

training samples exceeds N = 7, 000. (However, one should not necessarily take the figure

N = 7, 000 as representing a cut-off below which M-RNN should not be applied, because

M-RNN outperforms the benchmarks on the Deterioration and Biobank datasets, which

contain only 6,094 samples and 3,902 samples, respectively.)

48

3.4.4.4 Number of measurements per patient (Fig. 3.4 (d))

We have already noted that, in our datasets, MIMIC-III and Deterioration have many

(relatively frequent) measurements per patient, while the other datasets have only a few (and

infrequent) measurements per patient and that this leads to differences in performance of

M-RNN. To further explore this effect, we created subsets of the MIMIC-III dataset with

T = 1, 3, 5, 10, 20, 30 measurements per patient. As might be expected, and as Fig. 3.4(d)

shows, having fewer measurements per patient degrades the performance of interpolation-

based algorithms but has little effect on pure imputation-based methods; the performance of

M-RNN is also degraded, but to a much lesser extent.

3.4.5 Prediction accuracy

As we have noted, there are many reasons for imputing missing data; one such is to improve

predictive performance. We therefore compare our method against the same 11 benchmarks

with respect to the accuracy of predicting labels. (See the description of the datasets in

Section 3.4.1 for labeling in each case.) For this purpose, we use Area Under the Receiver

Operating Characteristic Curve (AUROC) as the measure of performance. To be fair to

all methods of imputing missing values, we use the same predictive model (a simple 1-layer

RNN) in all cases.

3.4.5.1 Prediction accuracy on the original datasets

In this subsection, we evaluate the effects of the imputations on the prediction of labels

(outcomes), which in the cases at hand correspond to prognoses.

Table 3.5 shows the mean and percentage performance gain of M-RNN (MI) in comparison

with the benchmarks on all the datasets. M-RNN – which we have already shown to achieve

the best imputation accuracy – also yields the best prediction accuracy. However, even in

cases where the improvement in imputation accuracy is large and statistically significant,

the improvements in prediction accuracy are sometimes smaller and not always statistically

49

Algorithm
AUROC (Gain of M-RNN (MI) as % improvement in 1-AUROC)

MIMIC-III Deterioration UNOS-Heart UNOS-Lung Biobank

M-RNN (MI) 0.8531 (-) 0.7779 (-) 0.6855 (-) 0.6762 (-) 0.8955 (-)
M-RNN (SI) 0.8530 (-) 0.7783 (-) 0.6858 (-) 0.6759 (-) 0.8948 (-)

[CBS16] 0.8381 (9.3%) 0.7558 (9.0%) 0.6505 (10.0%) 0.6557 (6.0%) 0.8802 (12.8%)
[LKW16] 0.8402 (8.1%) 0.7551 (9.3%) 0.6574 (8.2%) 0.6561 (5.8%) 0.8748 (16.5%)
[CPC18] 0.8410 (7.6%) 0.7593 (7.7%) 0.6583 (8.0%) 0.6520 (7.0%) 0.8826 (11.0%)

Spline 0.8407 (7.8%) 0.7542 (9.6%) 0.6477 (10.7%) 0.6520 (7.0%) 0.8731 (17.7%)
Cubic 0.8397 (8.4%) 0.7569 (8.6%) 0.6468 (11.0%) 0.6517 (7.0%) 0.8643 (23.0%)

MICE 0.8377 (9.5%) 0.7571 (8.6%) 0.6397 (12.7%) 0.6509 (7.2%) 0.8850 (9.1%)
MissForest 0.8368 (10.0%) 0.7578 (8.3%) 0.6740 (3.5%) 0.6587 (5.1%) 0.8767 (15.2%)

EM 0.8312 (13.0%) 0.7531 (10.0%) - - 0.8794 (13.3%)

Matrix Completion 0.8401 (8.1%) 0.7551 (9.3%) 0.6712 (4.3%) 0.6579 (5.3%) 0.8865 (7.9%)
Auto-encoder 0.8399 (8.2%) 0.7488 (11.6%) 0.6633 (6.6%) 0.6574 (5.5%) 0.8785 (14.0%)

MCMC 0.8298 (13.7%) 0.7512 (10.7%) 0.6417 (12.2%) 0.6512 (7.2%) 0.8667 (21.6%)

Table 3.5: Performance comparison for patient state prediction with a 1-layer RNN (Perfor-
mance gain is computed in terms of 1-AUROC)

significant. For instance, on the Deterioration dataset, the AUROC of M-RNN (MI) is 0.7779

(95% CI: 0.7678-0.7868); the best benchmark is [CPC18] with AUROC of 0.7593 (95% CI:

0.7478-0.7702). Similarly, on the UNOS-Heart dataset, the AUROC of M-RNN (MI) is 0.6855

(95% CI: 0.6781-0.6913); the best benchmark is MissForest, with AUROC of 0.6740 (95% CI:

0.6651-0.6817).

It should be noted that, by using mean squared error as the loss function, we have

deliberately optimized M-RNN for imputation accuracy. If we want to optimize M-RNN for

prediction accuracy we might do better by using a different loss function, such as cross-entropy.

3.4.6 Prediction accuracy with various missing rates

As discussed above, we carried out experiments with increased rates of missing data in

order to understand the implications for the accuracy of imputation. We also carried out

experiments with increased rates of missing data in order to understand the implications

for the accuracy of prediction. To explore the predictive performance for a wide range of

missing rates (from 0% to 90%), we begin with the Biobank dataset, which is a complete

dataset. We randomly remove 10% to 90% of the measurements (with increments of 10%)

50

(a) Missing Rates (%)
0 10 20 30 40 50 60 70 80 90

A
U

R
O

C

0.6

0.7

0.8

0.9

M-RNN (MI)
Che et al. 2016
MICE
MissForest
Matrix Completion

(b) Missing Rates (%)
0 10 20 30 40 50 60 70 80 90

A
U

R
O

C
 G

ai
n

0

0.02

0.04

0.06

0.08
Gain over Che et al. 2016
Gain over MissForest

Figure 3.5: (a) The AUROC performance with various missing rates, (b) The AUROC gain
over the two most competitive benchmarks

to create multiple datasets with different missing rates. (In each case we use 80% of the

data for training and 20% for testing.) As before, we use M-RNN and various benchmarks

for imputing missing data and a 1-layer RNN as the predictive model. (In this setting we

are predicting a clinical diagnosis of diabetes.) In each setting, we conducted 10 trials, and

report the performance in terms of AUROC.

Fig. 3.5 (a) illustrates the impact (in terms of AUROC) of increasing amounts of missing

data for M-RNN and various benchmarks. As Fig. 3.5 (a) shows, for M-RNN and all

benchmarks, the prediction performance decreases as the amount of missing data increases.

However, as Fig. 3.5 (b) shows, M-RNN continues to outperform the benchmarks; indeed, the

performance gap between M-RNN and the benchmarks widens when more data is missing.

That is: the importance of accurate imputation is greater when more data is missing.

51

Missing Rates (%)
74 76 78 80 82 84 86 88

A
U

R
O

C

0.78

0.8

0.82

0.84

0.86

M-RNN (MI) - Setting A
M-RNN (MI) - Setting B
Che et al. 2016 - Setting A
Che et al. 2016 - Setting B

Figure 3.6: AUROC comparisons in Settings A and B using MIMIC-III dataset

3.4.7 The importance of specific features

To this point, we have treated all missing data as equally important and given the same

weight to all errors. However, this is not always the right thing to do. In particular, it

is clear that not all missing data is equally important for prediction. To understand the

importance of missing data for purposes of prediction we conduct two experiments in parallel.

For the first experiment (which we call Setting A: Purely Random Removal), we construct 5

sub-samples of the MIMIC-III dataset by randomly removing an additional 10%, 20%, 30%,

40%, 50% of the measurements for randomly chosen features. For the second experiment

(which we call Setting B: Correlated Random Removal) we first identify the four features

that are most highly correlated with the mortality label; those are anion gap, bicarbonate,

systolic blood pressure, and potassium. We then construct 5 sub-samples of the MIMIC-III

dataset by removing an additional 10%, 20%, 30%, 40%, 50% of the measurements for these

specific features. In both cases we repeat the exercise 10 times and report average results.

We then compare the prediction performance of M-RNN (MI) with the best benchmarks; the

results are shown visually in Fig. 3.6.

Fig. 3.6 shows that M-RNN outperforms the best benchmarks for every sub-sample

and the improvement in performance is greater for the sub-samples for which more data is

missing. The improvement in performance is statistically significant (p-value < 0.05) when

52

an additional 30% or more of the measurements - i.e. a total of 82.5% of the measurements -

(or of the most important features for Setting B) - are missing. In particular, the prediction

performance of M-RNN is much less sensitive to the amount of data that is missing and to

which data is missing.

3.4.8 Congeniality of the model

As [Men94] has emphasized, an extremely desirable aspect of any imputation method is

that it produce imputed values in a manner that is consistent and preserves the original

relationships between features and labels; [Men94] refers to this as congeniality. Congeniality

of an imputation model can be evaluated with respect to a particular model of the feature-

label relationships by computing the model parameters for the true complete data and the

imputed data and measuring the difference between parameters according to some specified

metric. Of course no imputation method can be expected to be perfectly congenial, but we

argue that our method is more congenial – i.e. better preserves the relationships between

features and labels – than benchmarks. To see this, we exploit the Biobank dataset; this

is a complete dataset, so that it is possible to compare the relationship between the actual

(original) data and labels and the relationship between the the imputed data and labels.

In our particular experiment, we delete 20% of the data and impute the missing data

using our M-RNN and the 4 best benchmarks (the method of [CPC18], Cubic Interpolation,

MissForest and Matrix Completion). As a model of the feature-label relationship, we use a

logistic regression. As a metric of the difference between the logistic regression parameters w

for the actual data and ŵ for the imputed data (which can be interpreted as a measure of

the uncongeniality of the imputation) we report both the mean bias ‖w − ŵ‖1 and the root

mean squared error ‖w − ŵ‖2.

As can be seen in Table 3.6, in comparison with the 4 best benchmarks, M-RNN achieves

both smaller mean bias and small root mean squared error between the original and imputed

representations of feature-label relationship. (With the exception of MissForest, all the

performance improvements of M-RNN are statistically significant at the 95% level.) Thus

53

Algorithm Mean Bias (||w − ŵ||1) Root Mean Squared Error(||w − ŵ||2)
M-RNN (MI) 0.0814 ± 0.0098 0.1229 ±0.0151

[CPC18] 0.1097 ± 0.0104 0.1649 ± 0.0212

Cubic Interpolation 0.1169 ± 0.01075 0.1816 ± 0.0201

MissForest 0.0842 ±0.0103 0.1312 ± 0.0139

Matrix Completion 0.1001 ± 0.0125 0.1551 ± 0.0230

Table 3.6: Congeniality of imputation models

our method is more congenial (to the logistic regression model) than the benchmarks.

3.4.9 M-RNN when data is missing at random

The experiments above are designed to demonstrate the superiority of the M-RNN framework

in comparison to the benchmarks in settings where data is Missing Completely at Random

(MCAR) [Rub04] but it is important to understand the comparison in the settings where data

is Missing at Random (MAR) - but not Missing Completely at Random. In this subsection,

we show that M-RNN also outperforms the benchmarks when data is Missing at Random

(MAR). (The assumption that data is Missing at Random is standard in the medical setting.)

To accomplish this, we again begin with the complete Biobank dataset and remove 20%

of the data. However in this case we do not remove data completely at random; rather, we

use the following procedure.1 Using induction, we define the probability that the component

i of sample n at time t is observed, conditional on the missingness and values (if observed) of

the previous i− 1 components at time t [Rub04] to be

P t
i (n) =

pm ·N · e−
∑
j<i wjm

t
j(n)x

t
j(n)+bj(1−mtj(n))

∑N
l=1 e

−
∑
j<i wjm

t
j(l)x

t
j(l)+bj(1−mtj(l))

where pm corresponds to the average missing rate (in our experiment, pm = 0.2), and wj, bj

are sampled from U(0, 1) (but are only sampled once for the entire dataset). We sequentially

sample mt
1, ...,m

t
D for each feature vector.

1Other procedures are certainly possible.

54

Algorithm
RMSE (% Gain of M-RNN (MI))

MCAR MAR

M-RNN (MI) 0.0637 (-) 0.1135 (-)

[CPC18] 0.0778 (18.1%) 0.1243 (8.7%)

Cubic Interpolation 0.0887 (28.2%) 0.1278 (11.2%)

MissForest 0.0892 (28.6%) 0.1359 (16.5%)

Matrix Completion 0.0886 (28.1%) 0.1331 (14.7%)

Table 3.7: Performance comparison for missing data estimation for MCAR and MAR settings
on the Biobank dataset

We compare the RMSE of M-RNN architecture against four competitive benchmarks:

[CPC18], Cubic Interpolation, MissForest, and Matrix Completion in both MCAR and MAR

settings. As can be seen in Table 3.7, M-RNN outperforms other state-of-the-art imputation

methods in both MCAR and MAR settings.

3.5 Conclusion

The problem of reconstructing/estimating missing data is ubiquitous in many settings –

especially in longitudinal medical datasets – and is of enormous importance for many rea-

sons, including statistical analysis, diagnosis, prognosis and treatment. In this chapter we

have presented a new method, based on a novel deep learning architecture, for reconstruct-

ing/estimating missing data that exploits both the correlation within data streams and the

correlation across data streams. We have demonstrated on the basis of a variety of real-world

medical datasets that our method makes large and statistically significant improvements in

comparison with state-of-the-art benchmarks.

55

CHAPTER 4

INVASE: Instance-wise Variable Selection using

Neural Networks

High-dimensional data is becoming more readily available, and it brings with it a growing

need to be able to efficiently select which features to use for a variety of problems. When

doing predictions, it is well known that using too many variables with too few samples can

lead to overfitting, which can significantly hinder the performance of predictive models. In the

realm of interpretability, the large dimensionality of the data is often too much information

to present to a human who may be using the machine learning model as a support system.

Understanding which features are most relevant to an outcome or to a model output is an

important first step in improving predictions and interpretability and many works exist that

tackle feature selection on a global level. However, in the heterogeneous data we typically

encounter, the prediction made by a model (and indeed the true label) may rely on a different

subset of the features for different subgroups within the data [KLA15]. In this chapter we

propose a novel instance-wise feature selection method, INVASE (INstance-wise VAriable

SElection), which attempts to learn which subset of the features is relevant for each sample,

allowing us to display the minimal information required to explain each prediction and also

to reduce overfitting of predictive models.

Discovering a global subset of relevant features for a particular task is a well-studied

problem and there are several existing methods for solving it such as Sequential Correlation

Feature Selection [Hal99], Mutual Information Feature Selection [PLD05], Knockoff models

[CFJ16], and more [GE03, KR92]. However, global feature selection suffers from a key

limitation - the features discovered by global feature selection are the same for all samples.

In many cases, in particular when populations are highly heterogeneous, the relevant features

56

may differ across samples [YZS18b, YZB18]. For instance, different patient subgroups have

different relevant features for predicting heart failure [KLA15]. Instance-wise feature selection

methods such as [CSW18, SGK17] instead try to discover the features that are relevant for

each sample. When the goal is to provide an interpretable explanation of the predictions

made, a key challenge is in ensuring that we do not over-explain by providing too much

information (i.e. choosing too many features). Naturally, by performing feature selection

on an individualized level we are able to select features that are more relevant to each

sample, rather than having to choose the top k features globally, which may not explain the

predictions for some samples very well, but simply perform well on average across all samples.

In this chapter, we propose a novel instance-wise feature selection method which we

term INVASE. We draw influence from actor-critic models [PS08] to solve the problem of

backpropagating through subset sampling. Our model consists of 3 neural networks: a selector

network, a predictor network and a baseline network. During training, each of these are

trained iteratively, with the selector network being trained to minimize a Kullback-Leibler

(KL) divergence between the full conditional distribution and the selected-features-only

conditional distribution of the outcome. Our model is capable of discovering a different

number of relevant variables for each sample which is a key limitation in existing instance-wise

approaches (such as [CSW18]). We show significant improvements over the state-of-the-art

in both synthetic data and real-word data in terms of true positive rates, false discovery

rates, and show better predictive performance with respect to several prediction metrics.

Our model can also be easily extended to handle both continuous and discrete outputs and

time-series inputs.

4.1 Related works

There are many existing works on global variable selection (see [GE03] for a good summary

paper). [PLD05] and [Hal99] use max-dependency min-redundancy criteria [LHL15] with

mutual information and Pearson correlation, respectively. [CFJ16] uses multiple hypothesis

testing for global variable selection. As noted above, these global selection methods are not

57

capable of learning sample-specific relevance.

Instance-wise variable selection is also closely related to model interpretation methods.

Some previous works are based on backpropagation from the output of the predictive model

to the input variables [SVZ13]. DeepLIFT [SGK17] decomposes the output of the neural

network on a reference input to compute the contribution of each input variable. However,

both methods need white-box access to the pre-trained predictive models to compute the

gradient and decomposition. [BSH10] approximates the predictive models using a Parzen

window approximator when there is only black-box access to the predictive models. Some

other works are based on input perturbation such as [BBM15], [KSM16], [SK14] and [DSZ16].

[LL17] uses Shapley values to compute the variable importance, and [RSG16] uses locally

linear models to explain the linear dependency for each sample. [LEL18] tries to interpret

tree ensemble models using Shapley values but cannot generalize to other predictive models

such as neural networks.

Our work is most closely related to L2X (Learning to Explain) [CSW18]. However, there

are 3 key differences between our work and theirs. In L2X, they try to maximize a lower

bound of the mutual information between the target Y and the selected input variables XS.

In contrast, we try to minimize the KL divergence between the conditional distributions

Y |X and Y |XS. In order to be able to backpropagate through subset sampling, L2X use

the Gumbel-softmax trick [JGP16] to approximately discretize the continuous outputs of

the neural network. In our work, we use methods from actor-critic models [PS08] to bypass

backpropagation through the sampling and instead use the predictor network to provide a

reward to the selector network. Finally, due to the Gumbel-softmax used in L2X, the number

of variables to be detected must be fixed in advance and is necessarily the same for every

sample. The actor-critic methodology used in our model has no such limitations and so we

are able to flexibly select a different number of relevant variables for each sample and instead

induce sparsity using an l0 penalty term. In fact, using the actor-critic methodology allows

us to directly use the l0 penalty term (which is not differentiable and therefore not practical

to use in general).

58

4.2 Problem formulation

Let X = X1 × ...×Xd be a d-dimensional feature space and Y = {1, ..., c} be a discrete label

space. Let X = (X1, ..., Xd) ∈ X and Y ∈ Y be random variables with joint density (or mass)

p and marginal densities (or masses) pX and pY respectively. We will refer to s ∈ {0, 1}d as

the selection vector, where si = 1 will indicate that variable i is selected, and si = 0 will

indicate that variable i is not selected. Let ∗ be any point not in any of the spaces X1, ...,Xd
and define X ∗i = Xi ∪ {∗} and X ∗ = X ∗1 × ...×X ∗d . Given x ∈ X we will write x(s) to denote

the suppressed feature vector defined by

x
(s)
i =

xi if si = 1

∗ if si = 0

so that ∗ represents that a feature is not selected.

In the global feature selection literature, the goal is to find the smallest s (i.e. the one

with fewest 1s) such that E(Y |X(s)) = E(Y |X), or equivalently such that the conditional

distribution of Y given X(s) is the same as Y given all of X. Note that this definition is given

fully in terms of random variables, rather than realizations of those random variables.

In contrast, our problem necessarily needs to be defined in terms of realizations since we

are aiming to select features for a given realization. We will write x to denote realizations of

the random variable X. Then we formalize our problem as one of finding a selector function,

S : X → {0, 1}d such that for almost every x ∈ X (w.r.t. pX) we have

(Y |X(S(x)) = x(S(x)))
d.
= (Y |X = x) (4.1)

where
d.
= denotes equality in distribution and S(x) is minimal (i.e. fewest 1s) such that the

constraint (4.1) holds.

We suppose that we have a dataset D = {(xj, yj)}nj=1 consisting of n i.i.d. realizations

59

of the pair (X, Y).1 Note that Y can be viewed as having either come from a dataset, in

which case the problem is of selecting predictive features, or as having come from a predictive

model, in which case the problem is of explaining the model’s predictions.

4.2.1 Optimization problem

In order to learn a suitable selector function, we transform the constraint (4.1) into a soft

constraint using the Kullback-Leibler (KL) divergence which, for random variables W and V

with densities pW and pV is defined as

KL(W ||V) = E
[
log

(
pW (W)

pV (W)

)]
.

We define the following loss for our selector function S

L(S) = Ex∼pX
[
KL(Y |X = x||Y |X(S(x)) = x(S(x))) + λ||S(x)||

]
(4.2)

where || · || simply denotes the number of non-zero entries of a vector (or equivalently in this

case, the number of 1s) and λ is a hyper-parameter that trades off between the constraint in

Equation (4.1) and the number of selected features. The KL divergence in Equation (4.2)

can be rewritten as

KL(Y |X = x||Y |X(S(x)) = x(S(x))) = Ey∼Y |X=x

[
log

(
pY (y|x)

pY (y|x(S(x)))

)]

= Ey∼Y |X=x

[
log(pY (y|x))− log(pY (y|x(S(x))))

]

=

∫

Y
pY (y|x)

[
log(pY (y|x))− log(pY (y|x(S(x))))

]
dy

where pY (·|·) denotes the appropriate conditional densities of Y . We will write

l(x, s) =

∫

Y
pY (y|x)

[
log(pY (y|x))− log(pY (y|x(s)))

]
dy (4.3)

1We will occasionally abuse notation and write yi to denote the ith element of the one-hot encoding of y,
though the context should make it clear when this is the case.

60

so that our final loss can be written as

L(S) = Ex∼pX [l(x, S(x)) + λ||S(x)||] (4.4)

where || · || denotes the l0 (pseudo-)norm.

4.3 Proposed model

There are two main challenges in minimizing the loss in Equation (4.4). First, the output

space of the selector function ({0, 1}d) is large - its size increases exponentially with the

dimension of the feature space; thus a complete search is impractical in high dimensional

settings (and it should be noted that it is in high dimensional settings where feature selection

is most necessary). Second, we do not have access to the densities pY (·|x(S(x))) and pY (y|x)

required to compute Equation (4.4).

4.3.1 Loss estimation

To approximate the densities in Equation (4.3), we introduce a pair of functions fφ :

X ∗ × {0, 1}d → [0, 1]c parameterized by φ and fγ : X → [0, 1]c parameterized by γ that will

estimate pY (·|x(S(x))) and pY (·|x) respectively.

4.3.1.1 Predictor network

We refer to fφ as the predictor network. This will take as input a suppressed2 feature vector

x(s) and its corresponding selection vector s and will output a probability distribution (using

a softmax layer) over the c-dimensional output space.

fφ is trained to minimize the cross entropy loss given by

l1(φ) = −E(x,y)∼p,s∼πθ(x,·)

[c∑

i=1

yi log(fφi (x(s), s))
]

2When implemented we set ∗ = 0 and include the selection vector to differentiate this from the case xi = 0.

61

where yi is the ith component of the one-hot encoding of y and πθ is the distribution induced

by our selector network which will be defined in the following section. fφ is implemented as

a fully connected neural network3.

4.3.1.2 Baseline network

We refer to fγ as the baseline network, which is standard in the actor-critic literature for

variance reduction. fγ is implemented as a fully connected neural network and is trained to

minimize

l3(γ) = −E(x,y)∼p

[c∑

i=1

yi log(fγi (x))
]
.

For fixed φ, γ we define our loss estimator, l̂, by

l̂(x, s) = −
[

c∑

i=1

yi log(fφi (x(s), s))−
c∑

i=1

yi log(fγi (x))

]
. (4.5)

4.3.2 Selector function optimization

We approximate the selector function S : X → {0, 1}d by using a single neural network,

Ŝθ : X → [0, 1]d parameterized by weights θ, that outputs a probability for selecting each

feature (i.e. the ith component of Ŝθ(x) will denote the probability with which we select the

ith feature). The selector network induces a probability distribution over the selection space

({0, 1}d), with the probability of a given joint selection vector s ∈ {0, 1}d being given by4

πθ(x, s) = Πd
i=1Ŝ

θ
i (x)si(1− Ŝθi (x))1−si .

3fφ, fγ and Ŝθ could also be implemented as CNNs or RNNs, when appropriate.

4Note that, when d is large, this becomes vanishingly small, however, πθ appears in our loss only via its
log and so in practice this is not a problem.

62

Selector Network
𝑥ଵ

𝑥ଶ

𝑥ଷ

…

𝑥ௗ

Features
Selection

Probability

Random
Sampler

Predictor
Network

�̂�ଵ
௬

�̂�ଶ
௬

…

�̂�
௬

Predictor Loss
(Cross Entropy)⊚

Back-propagation

Baseline
Network

𝑝ଵ
௬

𝑝ଶ
௬

…

𝑝
௬

0

1

…

0

Loss
Difference

𝑝ଵ
௦

𝑝ଶ
௦

𝑝ଷ
௦

…

𝑝ௗ
௦

1

0

1

…

0

𝑥ଵ

𝑥ଶ

𝑥ଷ

…

𝑥ௗ
Selection

Selected
Features

Label

Baseline Loss
(Cross Entropy)

Label
estimation

Back-propagation

𝑥ଵ

𝑥ଶ

𝑥ଷ

…

𝑥ௗ

Features Label
estimation

Element-wise
product

Figure 4.1: Block diagram of INVASE. Instances are fed into the selector network which
outputs a vector of selection probabilities. The selection vector is then sampled according to
these probabilities. The predictor network then receives the selected features and makes a
prediction and the baseline network is given the entire feature vector and makes a prediction.
Each of these networks are trained using backpropagation using the real label. The loss of
the baseline network is then subtracted from the prediction network’s loss and this is used to
update the selector network.

Using this, we define the following loss for our selector network

l2(θ) = E(x,y)∼p

[
Es∼πθ(x,·)

[
l̂(x, s) + λ||s||0

]]

=

∫

X×Y
p(x, y)

 ∑

s∈{0,1}d
πθ(x, s)

(
l̂(x, s) + λ||s||0

)

 dxdy.

63

Taking the gradient of this loss with respect to θ gives us

∇θl2(θ) =

∫

X×Y
p(x, y)

 ∑

s∈{0,1}d
∇θπθ(x, s)

(
l̂(x, s) + λ||s||0

)

 dxdy

=

∫

X×Y
p(x, y)

 ∑

s∈{0,1}d

∇θπθ(x, s)

πθ(x, s)
πθ(x, s)

(
l̂(x, s) + λ||s||0

)

 dxdy

=

∫

X×Y
p(x, y)

 ∑

s∈{0,1}d
∇θ log πθ(x, s)πθ(x, s)

(
l̂(x, s) + λ||s||0

)

 dxdy

= E(x,y)∼p

[
Es∼πθ(x,·)

[(
l̂(x, s) + λ||s||0

)
∇θ log πθ(x, s)

]]
.

We update each of Ŝθ, fφ and fγ iteratively using stochastic gradient descent. Pseudo-

code of INVASE is given in Algorithm 2 and a block representation of INVASE can be found

in Fig. 4.1.

4.4 Experiments

In this section, we quantitatively evaluate INVASE against various state-of-the-art benchmarks

on both synthetic and real-world datasets. We evaluate our performance both at identifying

ground truth relevance and at enhancing predictions. We compare our model with 4 global

variable selection models: Knockoffs [CFJ16], Tree Ensembles (Tree) [GEW06], Sequential

Correlation Feature Selection (SCFS) [Hal99], and LASSO regularized linear model; and 3

instance-wise feature selection methods: L2X [CSW18], LIME [RSG16], and Shapley [LL17].

Implementation of INVASE can be found at https://github.com/jsyoon0823/INVASE.

64

https://github.com/jsyoon0823/INVASE

Algorithm 2 Pseudo-code of INVASE

Inputs: learning rates α, β > 0, mini-batch size nmb > 0, dataset D
Initialize parameters θ, φ, γ

while Converge do

Sample a mini-batch from the dataset (xj, yj)
nmb
j=1 ∼ D

for j = 1, ..., nmb do

Calculate selection probabilities

(pj1, ..., p
j
d)← Ŝθ(xj)

Sample selection vector

for i = 1, ..., d do
sji ∼ Ber(pji)

Calculate loss

l̂j(xj, sj)← −
[

c∑

i=1

yji log(fφi (x
(sj)
j , sj))−

c∑

i=1

yji log(fγi (xj))

]

Update the selector network parameters θ

θ ← θ − α 1

nmb

nmb∑

j=1

(
l̂j(xj, sj) + λ||sj||

)
∇θ log πθ(xj, sj)

Update the predictor network parameters φ

φ← φ− β 1

nmb

nmb∑

j=1

c∑

i=1

yji ×∇φ log(fφi (x
(sj)
j , sj))

Update the baseline network parameters γ

γ ← γ − β 1

nmb

nmb∑

j=1

c∑

i=1

yji ×∇γ log(fγi (xj))

65

4.4.1 Synthetic data experiments

4.4.1.1 Experimental settings

For our first set of experiments, we use the same synthetic data generation models as in L2X

[CSW18]. The input features are generated from an 11-dimensional 5 Gaussian distribution

with no correlations across the features (X ∼ N (0, I)). The label Y is sampled as a Bernoulli

random variable with P(Y = 1|X) = 1
1+logit(X)

, where logit(X) is varied to create 3 different

synthetic datasets:

• Syn1: exp(X1X2)

• Syn2: exp(
∑6

i=3X
2
i − 4)

• Syn3: −10× sin 2X7 + 2|X8|+X9 + exp(−X10)

In each of these datasets, the label depends on the same subset of features for every sample.

To highlight the capability of INVASE to detect instance-wise dependence, we generate 3

further synthetic datasets as follows:

• Syn4: If X11 < 0, logit follows Syn1, otherwise, logit follows Syn2.

• Syn5: If X11 < 0, logit follows Syn1, otherwise, logit follows Syn3.

• Syn6: If X11 < 0, logit follows Syn2, otherwise, logit follows Syn3.

Note that in Syn4 and Syn5, the number of relevant features is different for different samples.

For each of Syn1 to Syn6 we draw 20,000 samples from the data generation model and

separate each into training (Dtrain = (xi, yi)
10000
i=1) and testing (Dtest = (xj, yj)

10000
j=1) sets. For

each method we try to find the top k relevant features for each sample (we set k = 4 for

Syn1, Syn2, Syn3, Syn4, Syn5 and k = 5 for Syn6), note, however, that k is not given

as an input to INVASE (but is necessary for other methods). The performance metrics

we use are the true positive rate (TPR) (higher is better) and false discovery rate (FDR)

5We also perform experiments using 100 features to demonstrate the scalability of our method.

66

(lower is better) to measure the performance of the methods when the focus is on discovery

(i.e. discovering which features are relevant) and we use Area Under the Receiver Operating

Characteristic Curve (AUROC) and Area Under the Precision Recall Curve (AUPRC) when

the focus is on predictions.

4.4.1.2 Discovery

Dataset Syn1 Syn2 Syn3 Syn4 Syn5 Syn6

Metrics (%) TPR FDR TPR FDR TPR FDR TPR FDR TPR FDR TPR FDR

INVASE 100.0 0.0 100.0 0.0 92.0 0.0 99.8 10.3 84.8 1.1 90.1 7.4

L2X 100.0 0.0 100.0 0.0 69.4 30.6 79.5 21.8 74.8 26.3 83.3 16.7
LIME 13.8 86.2 100.0 0.0 98.1 1.9 40.7 49.4 41.1 50.6 50.5 49.5

Shapley 60.4 39.6 93.3 6.7 90.9 9.1 65.2 31.9 62.9 33.7 71.2 28.8

Knockoff 10.0 70.0 8.7 36.2 81.2 17.5 38.8 35.1 41.0 51.1 56.6 42.1
Tree 100.0 0.0 100.0 0.0 100.0 0.0 54.7 39.0 56.8 37.5 60.0 40.0

SCFS 23.5 76.5 39.5 60.5 78.3 22.0 48.9 52.4 42.4 51.2 56.1 43.9
LASSO 19.0 81.0 39.8 60.2 78.3 21.7 49.9 50.9 45.5 48.2 56.4 43.6

Table 4.1: Relevant feature discovery results for Synthetic datasets with 11 features

As demonstrated by Table 4.1, our method is capable of detecting relevant features on

a global level (Syn1, Syn2 and Syn3) as well as on an instance-wise level (Syn4, Syn5

and Syn6) outperforming all other methods in both cases (both global and instance-wise

methods). The particularly poor performance of some global feature selection methods in

Syn1, Syn2 and Syn3 (where there is no instance-wise relevance) is due to the non-linearity

of the relationship between features and labels.

The results for Syn4, Syn5 and Syn6 demonstrate that INVASE is capable of detecting

a different number of relevant features for each sample when necessary - the performance

improvement over L2X is greater in Syn4 and Syn5 than Syn6. In particular, in Syn4, L2X is

forced to overselect features when X11 < 0 and underselect when X11 ≥ 0 thus resulting in

higher FDR and lower TPR, respectively. To highlight this, in Table 4.2 we report the group

specific FDR and TPR on Syn4 and Syn5 when setting k = 3, 4, 5, where Group 1 refers to

samples with X11 < 0 and Group 2 to samples with X11 ≥ 0.

For k = 3 in Syn4, we see that INVASE and L2X have comparable FDR in Group 1,

67

Datasets Syn4 Syn5

Group 1 2 1 2

Metrics (%) TPR FDR TPR FDR TPR FDR TPR FDR

INVASE 99.5 24.6 100.0 0.4 69.2 1.6 99.8 0.6

L2X (k = 3) 71.1 28.9 57.2 4.6 65.5 34.5 55.4 7.7
L2X (k = 4) 81.0 39.2 74.9 6.3 76.2 42.9 72.4 9.4
L2X (k = 5) 89.9 46.0 84.6 15.4 87.5 47.5 82.1 17.9

Table 4.2: Detailed comparison of INVASE with L2X in Syn4 and Syn5, highlighting the
capability of INVASE to select a flexible number of features for each sample. Group 1:
X11 < 0, Group 2: X11 ≥ 0

since the total number of relevant features for each sample is 3 (X1, X2, X11). However, when

we increase k, we see that the FDR increases for L2X as it is forced to select more than 3

features, which necessarily means that the FDR must be at least 40% even if L2X was finding

the relevant features perfectly. On the other hand, for Group 2 we see that the TPR is low

for k = 3 since necessarily, L2X cannot possibly select all of the 5 relevant features. INVASE,

however, is able to select the correct number in both and hence enjoys low FDR and high

TPR.

Syn5 reinforces the conclusions we drew for L2X in Syn4. Interestingly, though, for

INVASE, we found that X11 was almost never selected for Group 1 in Syn5. We believe this

is because the lack of overlap between the relevant features for each group means that the

predictor network can essentially learn two separate networks - one for each group. This is

because it is possible to create two subnetworks with non-overlapping weights that each take

as input the features of a given group. X11 is therefore unnecessary for prediction. Note,

however, that X11 is highly relevant for the selector network in deciding which features to

pass on and so it is not true that X11 isn’t relevant, but simply that the selector network

does not need to “pass on” its relevance to the predictor network.

68

4.4.1.3 High dimensional discovery

To demonstrate the scalability of our method, we run an experiment in which we increase the

total number of features to 100. The features are generated as a 100-dimensional Gaussian

with no correlations (N (0, I)) and the relationships between features and label remains as in

Table 4.1 (i.e. we are adding 89 additional noisy signals that have no effect on the label).

Dataset Syn1 Syn2 Syn3 Syn4 Syn5 Syn6

Metrics (%) TPR FDR TPR FDR TPR FDR TPR FDR TPR FDR TPR FDR

INVASE 100.0 0.0 100.0 0.0 100.0 0.0 66.3 40.5 73.2 23.7 90.5 15.4

L2X 6.1 93.9 81.4 18.6 57.7 42.3 48.5 46.4 35.4 60.8 66.3 33.7
LIME 0.0 100.0 100.0 0.0 92.7 7.3 43.8 47.4 42.3 50.1 50.1 49.9

Shapley 4.4 95.6 95.1 4.9 88.8 11.2 50.2 43.4 49.9 44.2 62.5 37.5

Knock off 0.0 64.9 3.7 71.2 74.9 24.9 28.2 59.8 33.1 59.4 46.9 53.0
Tree 49.9 50.1 100.0 0.0 100.0 0.0 40.7 49.5 56.7 37.5 58.4 41.6

SCFS 2.5 97.5 5.3 94.7 74.9 25.1 27.0 74.6 30.6 62.1 38.3 61.7
LASSO 2.5 97.5 4.0 96.0 75.3 24.7 28.3 73.2 36.0 56.9 45.9 54.1

Table 4.3: Relevant feature discovery for synthetic datasets with 100 features

As can be seen in Table 4.3, INVASE also works consistently better than all other bench-

marks in all 6 synthetic datasets in this setting. In fact, we see a significant reduction in

performance (compared to the 11 feature setting) for L2X in Syn1, with the TPR dropping

more than 90% leading to an almost complete failure of the method to detect any rele-

vant features. In particular, we see that L2X does not scale as well as INVASE with the

dimensionality of the data, which is particularly limiting for a feature selection method.

4.4.1.4 Prediction

In this experiment we analyze the effect of using feature selection as a pre-processing step

for prediction. We first perform feature selection (either instance-wise or global) and then

train a 3-layer fully connected network with Batch Normalization [IS15] in every layer (to

avoid overfitting) to perform predictions on top of the (feature-selected) data. In this setting

we compare the two global feature selection methods (LASSO and Tree) and one instance-

wise feature selection method (L2X). Furthermore, we also compare with the predictive

69

model without any feature selections (w/o FS) and the predictive model with ground truth

globally relevant features6 (with Global). In particular, this allows us to demonstrate that

the improvements in prediction performance are not just because the global feature selection

performed implicitly by INVASE is better than the other global feature selection methods

but are also due to the fact that we select features on an instance-wise level. Experiments

here are conducted on synthetic data with 100 features but the same labelling procedures as

above.

Dataset
AUROC

w/o FS with Global with INVASE with Tree with L2X with LASSO

Syn1 .578±.004 .686±.005 .690±.006 .574±.101 .498±.005 .498±.006
Syn2 .789±.003 .873±.003 .877±.003 .872±.003 .823±.029 .555±.061
Syn3 .854±.004 .900±.003 .902±.003 .899±.001 .862±.009 .886±.003
Syn4 .558±.021 .774±.006 .787±.004 .684±.017 .678±.024 .514±.031
Syn5 .662±.013 .784±.005 .784±.005 .741±.004 .709±.008 .691±.024
Syn6 .692±.015 .858±.004 .877±.003 .771±.031 .827±.017 .727±.025

Dataset
AUPRC

w/o FS with Global with INVASE with Tree with L2X with LASSO

Syn1 .567±.007 .690±.006 .694±.006 .577±.102 .498±.007 .499±.008
Syn2 .799±.005 .878±.005 .886±.004 .878±.004 .817±.031 .591±.037
Syn3 .861±.003 .905±.002 .907±.003 .904±.002 .860±.012 .890±.002
Syn4 .572±.019 .794±.006 .804±.004 .681±.031 .672±.025 .536±.025
Syn5 .665±.019 .796±.005 .797±.006 .765±.003 .719±.011 .680±.040
Syn6 .709±.018 .870±.005 .886±.004 .779±.027 .835±.017 .757±.036

Table 4.4: Prediction performance comparison with and without feature selection methods
(L2X, LASSO, Tree, INVASE, and Global). Global is using ground-truth globally relevant
features for each dataset

As can be seen in Table 4.4, there is a significant performance improvement when

discarding all of the irrelevant features (with Global). However, neither of the global feature

selection methods (Tree and Lasso) are capable of achieving this improvement. On the other

hand, INVASE is capable of achieving (and beating - in Syn4 and Syn6) this improvement,

demonstrating its capability both at selecting features globally better than existing methods

6For example, in Syn1 the predictor network in the with Global setting is trained on only X1 and X2 and
in Syn4 it would be trained on X1, X2, X3, X4, X5, X6, X11.

70

but also at improving on global selection with instance-wise selection (where relevant), to

provide further improvements. On the other hand, L2X performs worse than the global

methods in Syn1-3, demonstrating an inability to perform even global feature selection in

this higher dimensional setting (this is supported by the high dimensional discovery results

in the previous subsection), and in Syn4-6 is performing worse than with Global (which now

is not even optimal).

Furthermore, even though we include Batch Normalization to avoid overfitting, with a

small number of samples and high number of dimensions, the 3-layer fully connected network

still suffers from overfitting as demonstrated by the significant difference in performance

between w/o FS and with Global. This demonstrates the necessity of feature selection as a

pre-processing step. Lastly, in comparison to with Global, with INVASE achieves performance

gains in Syn4 and Syn6. It quantitatively shows that instance-wise feature selection can

further improves the predictive model from ground truth global feature selection.

4.4.2 Real-world data experiments

4.4.2.1 Data description

In this section we use two real-world datasets to perform a series of further experiments. The

first, the Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) dataset [PAM12],

has 40,409 patients each with 31 measured features. The label is all-cause mortality. The

second, the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial in the

US and the European Randomized Study of Screening for Prostate Cancer (ERSPC) dataset

[GPH00, SHR09] contains 38,001 each with 106 measured features. The label in this dataset

is mortality due to prostate cancer. We refer to this as the PLCO dataset.

4.4.2.2 The discovered feature importance in MAGGIC dataset

In this next experiment, we visualize the ability of INVASE to select features on an indi-

vidualized level. Fig. 4.2(left) shows the selection probability (given by INVASE) of each

71

feature for 20 randomly selected patients in the MAGGIC dataset. Fig. 4.2(right) shows

the selection probability of each feature averaged over different binary splits of the data (i.e.

when split into Male and Female). In Table 4.5, we also report the mean and variance of the

number of selected features in each subgroup.

Figure 4.2: Left: The feature importance for each of 20 randomly selected patients in the
MAGGIC dataset. Right: The average feature importance for different binary splits in the
MAGGIC dataset.

Overall Male Diabetes Hypertension Smoker Heart Failure

43.5±10.7 53.2±10.8 46.6±9.3 41.0±12.1 51.8±11.1

42.5±18.4 Female Non-diabetes Non-hypertension Non-smoker No Heart Failure

40.8±15.6 39.3±8.0 40.0±9.3 43.2±7.0 39.6±6.9

Table 4.5: Selection probability of overall and patient subgroups by INVASE in MAGGIC
dataset. (Mean ± Std)

As can be seen, INVASE discovers significantly different features for both individuals and

for different subgroups of the dataset.

72

4.4.2.3 Results: Prediction using real data variables with real label

Evaluating the performance of feature selection methods on real data is difficult, since ground

truth relevance is often not known. We therefore cannot use TPR and FDR to evaluate the

performance on real data. In our final experiment, therefore, we instead focus on prediction

performance exactly as in Section 4.4.1.4 (except now both the features and label come from

real data).

Datasets Metrics AUROC AUPRC AUROC AUPRC

MAGGIC

Labels 3 year 5 year

INVASE .722±.005 .655±.010 .740±.005 .867±.006
Without INVASE .720±.006 .639±.009 .730±.006 .855±.004

PLCO

Labels 5 year 10 year

INVASE .637±.007 .329±.013 .673±.007 .506±.006
Without INVASE .629±.008 .324±.011 .657±.006 .485±.008

Table 4.6: Prediction performance for MAGGIC and PLCO dataset.

As can be seen in Table 4.6, INVASE consistently improves prediction performance in

each of the two settings (different time horizons) in each dataset.

4.4.2.4 Predictive performance comparison on real-world datasets

In this experiment, we evaluate the predictive performance gains of using each feature selection

method as a pre-processing step on the two real datasets, MAGGIC and PLCO (as was done

for synthetic data in Section 4.4.1.4). For each method, we first perform feature selection and

then train a predictive model on top of the feature-selected data, where the model has the

same architecture as the INVASE predictor network (to create a fair comparison of methods).

As can be seen in Table 4.7, INVASE significantly outperform the other approaches.

73

Datasets MAGGIC PLCO

Labels 3-year 5-year 5-year 10-year

Metrics AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

INVASE 0.722 0.655 0.740 0.867 0.637 0.329 0.673 0.506

L2X 0.609 0.529 0.607 0.794 0.558 0.170 0.583 0.365
LIME 0.637 0.5596 0.634 0.808 0.597 0.183 0.601 0.374

Shapley 0.641 0.557 0.617 0.797 0.614 0.194 0.615 0.381

Knockoff 0.686 0.614 0.711 0.853 0.619 0.230 0.658 0.475
Tree 0.678 0.604 0.708 0.850 0.632 0.269 0.655 0.469

SCFS 0.683 0.623 0.723 0.857 0.632 0.231 0.632 0.444
LASSO 0.692 0.615 0.709 0.847 0.623 0.218 0.656 0.467

Table 4.7: Predictive Performance Comparison on two real-world datasets (MAGGIC and
PLCO) in terms of AUROC and AUPRC

4.5 Conclusion

In this chapter, we propose a novel instance-wise feature selection method using the actor-critic

methodology, which we term INVASE. We demonstrate through a mixture of synthetic and

real data experiments that INVASE significantly outperforms state-of-the-art benchmarks.

74

CHAPTER 5

ASAC: Active Sensing using Actor-Critic models

In many medical settings, making observations is costly [WRG96]. For example, performing

lab tests on a patient incurs a cost, both financially as well as causing fatigue to the patient

[KBR09, KNS08]. In such settings, the decision to observe is important. This decision

involves a trade-off between the value of the information obtained from the observation

and the cost of making the observation. This problem presents itself when the data can be

observed sequentially, so that we can observe a particular measurement before deciding which

other measurements to observe. This problem presents itself in both static and in time-series

settings, with the key difference being that in the time-series setting, the values for a given

stream1 will change over time and thus we may wish to re-measure this, whereas in the static

setting we know that once we observe a stream, we know its (fixed) value.

Genetic tests, for example, will have the same outcome whether we perform them now or

later. As such, it may be advantageous to perform some tests, observe the results, and then

decide on further tests to perform based on the results of the first [BKD92]. Because the

outcome of the tests will not change over time (we are in a static setting), there is no need to

perform the tests we have already performed again and also no “worry” that we might miss

something by not measuring it now (we can always go back and measure it later).

On the other hand, in an Intensive Care Unit (ICU) setting [EAO07] where important

lab tests are being repeated and the results are always changing, we can no longer ignore

a stream once it has been measured (its value may have changed since the last time we

measured it) and moreover if we decide not to measure something, then we have missed our

1We use the term stream to refer to both the sequential values of a time-series variable and the single
value of a static variable interchangeably.

75

chance to measure it in that particular instant (we cannot go back and measure its value in

the past). We can, however, still use past observations in determining what to measure next.

We refer to the problem of deciding what to observe in the future based on the measure-

ments observed so far as active sensing [YKR09, AS16]. This problem presents itself in many

healthcare applications [AS16, SWR10]. We formalize the problem of active sensing as a

sequential decision making process in which, at each step, we select variables to measure

based on all previously selected variables. When selecting variables, we wish to select those

which are most predictive of the label, while also minimising cost.

? ? ? ? ?

Step 1
Active Sensing

(a) Active Sensing (b) Instance-wise Variable Selection

?

Feature
1

Feature
2

Feature
3

Feature
4

Feature
5

Feature
6

? ? ? ?

? ? ?

Step 2
Active Sensing

Step 3
Active Sensing

Measure 1 & 3

Measure 6

No more Measurements

Instance-wise
Variable Selection

Feature
1

Feature
2

Feature
3

Feature
4

Feature
5

Feature
6

Feature
1

Feature
2

Feature
3

Feature
4

Feature
5

Feature
6

Feature
1

Feature
2

Feature
3

Feature
4

Feature
5

Feature
6

? ? ? ? ??

Measure all
Measurement

Cost: 0

Select 1, 3 & 6

Measurement
Cost: 𝑐ଵ + 𝑐ଷ

Measurement
Cost: 𝑐

Measurement
Cost: 0

Total Cost:
𝑐ଵ + 𝑐ଷ + 𝑐

?Measured variables Unmeasured variables Not selected variables

Figure 5.1: Comparison of active sensing and instance-wise variable selection in the static
setting.

This formulation of active sensing is related to instance-wise variable selection frameworks

such as [YJS19a, CSW18]. In instance-wise variable selection, the goal is to find a minimal

subset of variables such that the conditional label distribution is preserved. However, in

instance-wise variable selection, all of the variables should be measured before making the

decision of which to select. In such settings, the goal is to efficiently summarize the information

present in the entire feature vector in a lower dimensional feature vector. This is typically

because the costly part there is not in observing the value of a variable but rather in presenting

the value of the variable. In the active sensing framework, the cost has been shifted from

presenting the information to measuring it and as such features that are not selected are not

measured. Moreover, in the static setting of instance-wise variable selection, only a single

selection is made, whereas for active sensing, both in the static and time-series settings, a

76

?

?

?

…

…

…

?

?

?C

B

A

Time
Stamps

1 2 … 𝑡 − 1 𝑡

Temporal
Features

?

?

?

…

…

…

?

?

?C

B

A

Time
Stamps

1 2 … 𝑡 − 1 𝑡

?

𝑡 + 1

𝑡 + 1

C

B

A

Temporal
Features

Active
Sensing

…

…

…C

B

A

Time
Stamps

1 2 … 𝑇 − 1 𝑇

Temporal
Features

…

…

…C

B

A

Time
Stamps

1 2 … 𝑇 − 1 𝑇

Time-series
Variable
Selection

(a) Active Sensing (b) Time-series Variable Selection

?Measured variables Unmeasured variables Not selected variables

Figure 5.2: Comparison of active sensing and instance-wise variable selection in the time-series
setting.

sequence of selections is made. Fig. 5.1 and 5.2 illustrates these differences between active

sensing and instance-wise variable selection in static and time-series settings.

In this chapter, we propose ASAC (Active Sensing using Actor-Critic models), an algorithm

capable of addressing active sensing in both static and time-series settings. ASAC consists

of two networks: a selector network and a predictor network. The selector network uses

previously selected features to determine which streams to observe next. The predictor

network uses the selected features to predict a label. The networks are trained to minimize

a Kullback-Leibler divergence between the conditional label distribution given all features

and the conditional label distribution given only the selected features (thus ensuring that

the selected features are as predictive of the label as all the features). Cost is introduced

by adding a penalty term to the loss. We draw on actor-critic methodology [KT00] to

allow “back-propagation” through the sampling process of the selector network. We model

each network using LSTMs [HS97] to deal with sequential inputs and outputs, though any

sequential model (e.g. temporal convolutions [ODZ16]) could be used.

In our experiments, we demonstrate the efficacy of ASAC in a variety of scenarios using

synthetic data. Then, using two real-world medical datasets (ADNI [PAB10] and MIMIC-III

[JPS16]) we show that ASAC significantly outperforms the existing state-of-the-art methods.

77

5.1 Related works

This chapter draws motivation from existing instance-wise variable selection frameworks such

as L2X [CSW18], LIME [RSG16], Shapley [LL17], DeepLIFT [SGK17] and in particular,

Instance-wise variable selection (INVASE) [YJS19a]. As noted above, a key difference between

instance-wise variable selection and active sensing is in what is measured before making the

selection. In addition, each of these works formalize the problem only in the static setting

(where there are no temporal features). The applications for this problem are restricted to

model interpretation and the models cannot be extended to the active sensing framework.

Deep Sensing [YZS18a] is the work most closely related to ours. Like ASAC, they attempt

to solve the active sensing problem using deep learning, especially RNNs. The Deep Sensing

framework involves learning 3 different networks: an interpolation network, a prediction

network and an error estimation network. Each network is separately optimized for its own

objective and then combined together after training to be used for active sensing. On the

other hand, ASAC jointly optimizes the selector and predictor networks, both for the objective

of active sensing, doing so by leveraging ideas from actor-critic methods [KT00]. Furthermore,

Deep Sensing treats each feature independently, deciding what to measure by looking at the

affect of a single feature on the label in isolation. ASAC, on the other hand, jointly estimates

the effect of multiple features on the label prediction. This is critical when the features

are highly correlated and also when the cost of measuring one feature differs significantly

from measuring another noisier correlated feature. In the experiments, we show that our

framework significantly outperforms the state-of-the-art in all settings.

Parallels can be drawn between active sensing and attention mechanisms [BCB14, VSP17],

though like instance-wise variable selection, attention observes the entire set of measurements

and then decides which time points to “focus on”. In contrast to instance-wise variable

selection, attention is typically applied over time. Attention was first introduced and has

been more thoroughly explored as “soft” attention [BCB14, VSP17] in which different time

points are weighted (and not hard-selected) according to their importance. Active sensing, on

the other hand, is only meaningful in a hard-selection setting (since weighting measurements

78

still requires them to be measured and therefore the cost is still incurred). Hard attention

mechanisms do exist [XBK15], but they share the characteristic found in both instance-wise

variable selection and soft attention in that all values must be observed before a selection is

made.

In [YKR09], they propose a solution for active sensing using a Bayesian approach with

Gaussian processes. Data stream are modelled as Gaussian processes and therefore, the

complexity of the algorithm increases quadratically in the dimensionality of the data and

estimation accuracy decreases quickly with the number of dimensions. [AS16] discuss the

active sensing problem for a single data stream observed over time, reducing the problem

from what and when to observe to just when to observe. In [AS16], they explicitly model the

stream as a given stochastic process and use the characteristics of the assumed process to

learn optimal sampling times. This work cannot be applied in the multi-stream setting we

investigate in this chapter.

The information bottleneck [TPB00] attempts to find a representation X̃ that is a

function of X trading off between maximizing the mutual information between X̃ and Y and

minimizing the mutual information between X̃ and X. The first contrast with the active

sensing framework is that when constructing X̃, the entire features are used, whereas in

active sensing, the decision of what to select is only based on previously selected features.

Moreover, X̃ does not necessarily correspond to a subset of the features, but can lie in an

entirely different representation space. In ASAC, the selected features are necessarily a subset

of the features, and cannot just be any arbitrary mapping of them. We also aim to minimize

the cost of the selection, which is not the same as minimizing the mutual information between

X̃ and X. Table 5.1 summarizes the comparison of related works.

5.2 Problem formulation

In this section, we first describe the active sensing problem in the static setting, and then

explain the differences in the time-series setting.

79

Active Sensing Time-series Multi-variate (Non-)Causal Optimization

ASAC X X X Causal Joint
[YZS18a] X X X Causal Individual
[QSC17] X X Non-causal Joint
[BCB14] X X Non-causal Joint
[VSP17] X X Non-causal Joint
[YJS19a] X Non-causal Joint
[AS16] X X Causal Joint

Table 5.1: Comparison of related works. Causal refers to whether or not a selection depends
on future selections or not.

5.2.1 Static setting

Let X = X 1 × ... × X d be a d-dimensional feature space and Y be a label space (either R

for regression problems or {1, 2, ..., C} for multi-class classification problems with C classes).

We consider random variables X ∈ X , Y ∈ Y with some joint distribution p (and marginal

distributions pX and pY). For each feature, we assume that there is some cost, ci, where

i = 1, ..., d, associated with measuring the i-th feature. The cost vector is denoted as

c = (c1, ..., cd).

A sensing decision is a vector s = (s1, ..., sd) ∈ {0, 1}d where si = 1 corresponds to

observing i-th feature. Let ∗ be any point not in X 1, ...,X d. For any sensing vector s and

any feature vector x = (x1, ..., xd) ∈ X let x(s) be the vector obtained by

x(s)i =

xi if si = 1

∗ if si = 0
(5.1)

We refer to x(s) as the observed feature vector. In the static setting, we define a sensing

decision sequence as (s1, ..., sm) where each sj sensing decision and we require that if sij−1 = 1,

then sij = 1 so that the sensing decisions form a nested sequence (this is simply so that sj

describes fully which features have already been measured at step j) and each sj = sj(x(sj−1))

is allowed to depend on x(sj−1).

Our goal, then, is to find a sensing decision sequence (s1, ..., sm) that minimizes the total

cost of measuring the chosen variables (i.e. cT sm =
∑d

i=1 c
i × sim) subject to the conditional

80

distribution of Y given X being equal to the conditional distribution of Y given X(sm). That

is, we wish to select variables that still allow us to predict Y as well as if we had measured

everything, and among the sets of variables that do this, we wish to find the set with minimal

measuring cost.

5.2.2 Time-series setting

In the time-series setting, a few modifications need to be made to the problem formulation

given in Section 5.2.1. Instead of considering simple random variables, we now consider an

indexed family (or sequence) of these random variables X = (Xt)t∈T and (Yt)t∈T where t is

an index in some time indexing set T with T being some bounded subset of either R or N. In

our case we focus on the discrete setting where T = {1, ..., T} ⊂ N where T is some random

stopping time (whose distribution we absorb into p), with our random processes assumed to

be regularly sampled.

In contrast to the static setting, a sensing decision sequence now no longer requires that

if sit−1 = 1, then sit = 1, since now the values for each component of the process may vary

between decisions and so will need to be remeasured if selected again (thus incurring a new

cost). In addition, each sensing decision is allowed to depend on all observations made so

far, that is st = st(x(s1), ...,x(st−1)).
2 We denote s≤t = (s1, ..., st), x≤t = (x1, ...,xt) and

x(s≤t) = (x1(s1), ...,xt(st)) to simplify notation.

In addition, we can extend this formulation further by allowing measurement delays to

be included. Now that we have incorporated a time element, it also becomes natural that

some features will take more or less time to measure than others (for example blood cultures

can take up to one week to perform). To incorporate this into our formulation, we define

a measurement time vector τ = (τ1, ..., τd) ∈ T d which indicates the length of time it takes

to measure each feature. Then in this setting, our “current” feature vector, xt(s≤t), now

2This is actually no different to the static setting where x(sj) contains all information found in
x(s1), ...,x(sj−1).

81

depends on all3 selections made in the past (i.e. on s≤t rather than just st) and is defined by

xt(s≤t)
i =

xit−τi if sit−τi = 1

∗ if sit−τi = 0

(5.2)

so that if feature i was selected τi steps ago, then its value appears now in the current set of

measured values. In this setting, we also write x(s≤t) = (x1(s≤1), ...,xt(s≤t)).

The goal here is as in the static setting, where the total cost is now
∑T

t=1 cT st =
∑T

t=1

∑d
i=1 c

i × sit and the conditional distribution constraint requires that Yt given X≤t has

the same distribution as Yt given X(s≤t) for all t ∈ {1, ..., T}.

A time-series dataset, which we denote by D, consists of N patient observations, as-

sumed i.i.d. according to p so that D = {(xt,i, yt,i)Tit=1}Ni=1 where (xt,i, yt,i)
Ti
t=1 is the stream

corresponding to patient i of (random) length Ti.

In the remainder of the chapter, the more general time-series setting will be used by

default. When reading the rest of the chapter, keep in mind that the discussion also applies

to the static setting.

5.2.3 Optimization problem

Based on the above problem formulations, the optimization problem can be determined as

follows.

min
s1,...,sT

T∑

t=1

Ex∼pX

[
cT st

]

s.t. (Yt|X≤t = x≤t)
d
= (Yt|X(s≤t) = x(s≤t)) for all t ∈ {1, 2, ..., T}

(5.3)

In order to find a suitable (tractable) sensing decision sequence, we transform the distributional

constraint into a soft constraint using the Kullback-Leibler (KL) divergence. To do this,

we consider the problem of minimizing the KL divergence between the two conditional

3In fact, it depends only on su for u ∈ {t−τi : i = 1, ..., d}, i.e. the times in the past in which measurements
were “started” and whose results would be reported now.

82

distributions with an added cost penalty term. The objective function we aim to minimize

(with respect to the sensing decision sequence) is then

T∑

t=1

Ex∼pX

[[
KL((Yt|X≤t = x≤t)||(Yt|X(s≤t) = x(s≤t)))

]
+ λcT st

]
(5.4)

where λ ≥ 0 is a hyper-parameter that trades-off between the constraint (KL term) and the

objective (cost term).

We can rewrite the KL divergence term as

KL((Yt|X≤t = x≤t)||(Yt|X(s≤t) = x(s≤t)))

=

∫

Y
pY (y|x≤t)

[
log(pY (y|x≤t))− log(pY (y|x(s≤t)))

]
dy

and we note that log(pY (y|x≤t)) is independent of the sensing decision sequence s≤t. We can

therefore define an equivalent loss, l(x≤t, s≤t), as follows

l(x≤t, s≤t) =

∫

Y
pY (y|x≤t)

[
− log(pY (y|x(s≤t)))

]
dy. (5.5)

Then, the new optimization problem is defined as

min
s1,...,sT

T∑

t=1

Ex∼pX

[
l(x≤t, s≤t) + λcT st

]
. (5.6)

5.3 Proposed model

In order to solve the optimization problem given in Equation (5.6), we first need to estimate

the unknown density function: pY (·|x(s≤t)). To do this, we introduce a predictor function

fφ :
∏t

i=1(X × {0, 1}d)→ Y parameterized by φ which will be trained to predict y given all

(selected) observations up until time t (i.e. x(s≤t) and s≤t).

In order to perform sensing decisions (which are binary), we introduce a selector function

fθ :
∏t

i=1(X × {0, 1}d) → [0, 1]d parameterized by θ that will output continuous values in

83

Selector
Network (𝒇𝜽)

RNN
Block

Predictor
Network (𝒇𝝓)

RNN
Block

Data (𝓓)

𝑿 𝒀

Loss
Block

Sampler
Block

𝒙𝒕ି𝟏(𝒔𝒕ି𝟏)

𝒙𝒕

𝒚𝒕

𝒚ෝ𝒕

𝒆𝒕 𝒔𝒕

Back-
propagation

Rewards
Feedback

Figure 5.3: Block diagram of ASAC.

[0, 1]d which will be treated as probabilities to then be sampled from to create an output

in {0, 1}d. The selection mechanism is therefore probabilistic in nature, and as such our

optimization problem in Equation (5.6) now needs to include an expectation over the sensing

decision sequence s≤T . This selector function fθ will take measurements up until time t as

input and then output probabilities from which the decision sequence for time t+ 1 will be

sampled. In order to “back-propagate” through the sampling process, we draw on actor-critic

models [KT00] to derive the gradient of our selector function loss in Section 5.3.2.

These two networks will be trained iteratively. This is important because both functions

influence each other. The predictor function directly determines the loss of the selector

function and thus has a direct impact on the training of the selector function. The selector

function, on the other hand, has the more subtle effect of changing the distribution over

which the predictor function needs to perform well. As the selector function is updated, the

input distribution for the predictor network changes, and it is important that the predictor

function performs well on the new distribution. As such, the predictor network needs to be

updated after each selector function update (and vice-versa).

84

5.3.1 Predictor function

The predictor function is trained to minimize a prediction loss

L(φ) =
T∑

t=1

Ex∼pX [lt(φ)] (5.7)

where for C-class classification we have the standard cross-entropy loss given by

lt(φ) = −
C∑

i=1

yit log(f iφ(x(s≤t), s≤t)) (5.8)

and for regression we have the standard mean-squared error loss given by

lt(φ) = (yt − fφ(x(s≤t), s≤t))
2. (5.9)

We then use lt(φ) as our estimate for l(x≤t, s≤t).

fφ can be implemented using any function approximator capable of dealing with time-series

inputs (though in the static setting it needs only to be able to deal with static inputs). In

this chapter, we model fφ as a Recurrent Neural Network (RNN) (in particular as an LSTM

[HS97]).

We explicitly model the predictor function fφ using the RNN structure as follows. At

time stamp t, we first define the hidden state Ht by

Ht = f1(Ht−1, st,x(st))

where f1 is some function parameterized as a fully connected network (the same network is

used for each time point). The output of the predictor network is then given by

fφ(x(s≤t), s≤t) = f2(Ht) = f2(f1(Ht−1, st,x(st)))

for another function f2 parameterized as a (different) fully connected network.

85

Note that Ht depends on Ht−1, st and x(st). Iterating this dependency we get that Ht

depends on s≤t and x(s≤t).

5.3.2 Selector function

The selector function, fθ :
∏t

i=1(X × {0, 1}d) → [0, 1]d, outputs probabilities from which

we sample independently to obtain a sensing decision. The probability of a given sensing

decision, s = (s1, ..., sd) given the observations and selections made until time t is given by

πθ(s|x(s≤t), s≤t) =
d∏

i=1

fθ(x(s≤t), s≤t)
si(1− fθ(x(s≤t), s≤t))

1−si

Using a slight abuse of notation, we will write s ∼ θ and st ∼ θ|s≤t−1 to denote the marginal

and conditional distribution of the sensing decision induced by the selector network (note that

both of these are conditional on x≤t−1). Using this, the objective function in Equation (5.6)

can be rewritten as follows (we omit the outer expectation (Ex∼pX) due to space limitation

and replace l(x≤t, s≤t) with lt(φ)):

L(θ) =
T∑

t=1

Es∼θ
[
lt(φ) + λcT st

]
(5.10)

=
T∑

t=1

Es1∼θ

[
· · ·Est∼θ|s≤t−1

[
lt(φ) + λcT st

]]

=
T∑

t=1

∑

s1∈{0,1}d
πθ(s1)

[∑

st∈{0,1}d
πθ(st|s≤t−1)×

[
lt(φ) + λcT st

]]

=
T∑

t=1

∑

s≤t∈{0,1}d×t
[
t∏

τ=1

πθ(sτ |s≤τ−1)]
[
lt(φ) + λcT st

]

Using ideas from actor-critic models [KT00], the gradient of this loss ∇θL(θ) can be shown

to be

∇θL(θ) =
T∑

t=1

t∑

j=1

Es∼θ
[
[lt(φ) + λcT st]∇θ log πθ(sj|s≤j−1)

]
(5.11)

86

where ∇θ log πθ(sj|s≤j−1) is

d∑

i=1

[
sij∇θ log f iθ(x(s≤j−1), s≤j−1)− (1− sij)∇θ log f iθ(x(s≤j−1), s≤j−1)

]
. (5.12)

which can be directly deduced from Equation (5.10).

We explicitly model the selector function fθ using the RNN structure as follows. At time

stamp t, we first define the hidden state ht by

ht = f3(ht−1, st,x(st))

where f3 is some function parameterized as a fully connected network (the same network is

used for each time point). The output of the selector network is then given by

fθ(x(s≤t), s≤t) = f4(ht) = f4(f3(ht−1, st,x(st)))

for another function f4 parameterized as a (different) fully connected network.

Note that ht depends on ht−1, st and x(st). Iterating this dependency we get that ht

depends on s≤t and x(s≤t).

Fig. 5.3 illustrates the entire structure of ASAC. Fig. 5.4 illustrates ASAC in the

time-series setting. The lower part of Fig. 5.4 depicts the selector network (et represents

the output of fθ at time stamp t) and the upper part of the Fig. 5.4 depicts the predictor

network.

5.3.3 Training the networks

The selector and predictor networks are jointly and iteratively trained. First, the predictor

network (fφ) is trained to minimize the predictor loss L(φ) given the sensing decisions made by

the selector network (fθ). We investigated the effect of sampling multiple sensing decisions for

the same time-step and sample but found that this had very little effect on the performance.

As such, when we create a mini-batch to train the predictor network with, we sample only 1

87

𝒉௧ 𝒉௧ାଵ𝒉௧ିଵ

𝒙௧ିଵ ∘ 𝒔௧ିଵ

𝒔௧ିଵ

𝒙௧ ∘ 𝒔௧

𝒔௧

𝒙௧ାଵ ∘ 𝒔௧ାଵ

𝒔௧ାଵ

𝒆௧

Random
Sampler

𝒔௧

𝒆௧ାଵ

Random
Sampler

𝒔௧ାଵ

𝒆௧ାଶ

Random
Sampler

𝒔௧ାଶ

𝑯௧ 𝑯௧ାଵ𝑯௧ିଵ

𝒙௧ିଵ ∘ 𝒔௧ିଵ

𝒔௧ିଵ

𝒙௧ ∘ 𝒔௧

𝒔௧

𝒙௧ାଵ ∘ 𝒔௧ାଵ

𝒔௧ାଵ

𝒚ෝ௧ିଵ

Loss

𝒚௧ିଵ

𝒚ෝ௧

Loss

𝒚௧

𝒚ෝ௧ାଵ

Loss

𝒚௧ାଵ

P
re

d
ic

to
r

N
et

w
or

k
Se

le
ct

or
 N

et
w

or
k

B
ack-propagation

R
ew

ards F
eedback

Figure 5.4: Block diagram of ASAC in a time-series setting.

sensing decision for each sample in the mini-batch.

The parameters of the predictor network are updated according to

φ← φ− β 1

nmb

nmb∑

i=1

Ti∑

t=1

(yt,i − fφ(x(s≤t,i), s≤t,i))
2

where nmb is the size of the mini-batch and β > 0 is the learning rate (specific to the predictor

network). Then, given a fixed predictor network, the selector network parameters are updated

88

according to

θ ← θ − α 1

nmb

nmb∑

i=1

Ti∑

t=1

t∑

τ=1

[[
lt,i(φ) + λcT st,i

]
×∇θ log fθ(x(s≤τ,i), s≤τ,i)

]

where α > 0 the learning rate (specific to the selector network). Pseudo-code of ASAC is

described in Algorithm 3.

Algorithm 3 Pseudo-code of ASAC

Inputs: learning rates α, β > 0, mini-batch nmb > 0, dataset D, hyperparameter λ ≥ 0
Initialize parameters θ, φ
while training loss has not converged do

Sample a mini-batch (x≤Ti,i,y≤Ti,i)
nmb
i=1 ∼ D

for i = 1, ..., nmb do
for t = 1, ..., Ti do

Calculate selection probability vector:et,i ← fθ(x(s≤t,i), s≤t,i)
Sample selection vector from et,i : st,i ∼ Ber(et,i)
Calculate loss lt,i(φ) : lt,i(φ)← (yt,i − fφ(x(s≤t,i), s≤t,i))

2

end for
end for
Update the predictor network parameters φ

φ← φ− β 1

nmb

nmb∑

i=1

Ti∑

t=1

(yt,i − fφ(x(s≤t,i), s≤t,i))
2

Update the selector network parameters θ

θ ← θ − α 1

nmb

nmb∑

i=1

Ti∑

t=1

t∑

τ=1

[[
lt,i(φ) + λcT st,i

]
×∇θ log fθ(x(s≤τ,i), s≤τ,i)

]

end while=0

5.3.3.1 Missing data during training

The loss we have derived lends itself naturally to missing data in the training set. By

inspecting Equations (5.11) and (5.12), we see that the gradient is made up of a sum over

each feature. During training, when “back-propagating” to the selector network, for features

that were selected by the network but were missing (and so their measurement can’t be

given), we do not back-propagate their loss. The selector network only back-propagates for

89

both not-selected features and selected-and-not-missing features.

5.4 Experiments

5.4.1 Data description

We use two real-world medical datasets to evaluate the performance of ASAC against Deep

Sensing [YZS18a] and other baselines for various cost constraints.

ADNI dataset: The Alzheimer’s Disease Neuro-imaging Initiative (ADNI) study data

is a longitudinal survival dataset of per-visit measurements for 1,737 patients [PAB10]. The

data tracks disease progression through clinical measurements at 1/2-year intervals, including

quantitative biomarkers, cognitive tests, demographics, and risk factors. For this dataset, the

adverse event we predict is unstable state occurrence.

MIMIC-III dataset: The MIMIC-III dataset [JPS16] has de-identified electronic health

records (EHR) from Beth Israel Deaconess Medical Center from 2001 to 2012. It was collected

from two information systems (Philips CareVue Clinical and iMDsoft MetaVision ICU) that

have very different data structures. We only use data collected by MetaVision (after 2008) for

consistency. We extract 40 physiological data streams from lab tests (20) and vital signs (20)

that have the lowest missing rates (including heart rate, respiratory rate, blood pressures).

The number of patients is 23,153 and there are 5,143 sequences of length larger than 100

time steps with the longest being 1,487 time steps. For this dataset, the adverse event we

predict is death.

5.4.2 Experimental results

We evaluate the performance of ASAC against 3 benchmarks: (1) Deep Sensing [YZS18a], (2)

Contextual Bandit [LCL10, AHK14], (3) Markovian Bandit [GKL11]. Furthermore, we also

evaluate our model when replacing the actor-critic methodology with TD learning [Sut88]

and refer to this model as ASAC with TD learning. We randomly divided the dataset into

mutually exclusive training (80%) and testing (20%) sets. We conducted 10 independent

90

Figure 5.5: Results on risk predictions on both ADNI and MIMIC-III dataset with various
cost constraints in terms of AUROC and AUPRC. X-axis is cost constraints (rate of selected
measurements). Y-axis is predictive performance.

experiments with different training/testing sets in each and we report the mean and standard

deviation of the performance in the 10 experiments.

In Fig. 5.5, we plot AUROC and AUPRC against the average measurement rate of all

features (corresponding to all features being assigned the same cost). In MIMIC-III, we

ignore the cost when a missing feature is selected.

As can be seen in Fig. 5.5, ASAC (and ASAC with TD learning) consistently outperforms

all 3 benchmarks, achieving higher predictive power for the same cost across all costs. We

see from Fig. 5.5(c)(d) that ASAC is robust to missing data, where we note that around 40%

of the data is missing in the MIMIC-III dataset. ASAC and ASAC with TD learning achieve

similar performances indicating that the ASAC framework can be robustly combined with

various Reinforcement Learning frameworks to address the active sensing problem.

We can see a trade-off between accuracy and observational costs. In the ASAC framework,

we can either maximize the accuracy given constraints on observational costs or minimize

the cost given the desired accuracy constraint. As can be seen in the grid line in Fig. 5.5;

the horizontal line represents fixing the accuracy, vertical line represents fixing the cost. We

illustrate these trade-off curves for ASAC in Fig. 5.5, which shows that ASAC outperforms

91

state-of-the-art under both types of constraints.

5.4.3 Analysis on ASAC with synthetic datasets

We perform 3 synthetic experiments that we believe capture key attributes of an active sensing

method. In each simulation, the feature distribution is a 10 dimensional auto-regressive

Gaussian model over 10 time steps, i.e.

Xt = φ�Xt−1 + (1− φ)� Zt (5.13)

where � denotes element-wise multiplication, φ ∈ [0, 1]10 is a vector that determines the

dependency of each feature on the past (a higher φ corresponds to a larger dependency on

the past) and Zt is an independent Gaussian noise vector Zt ∼ N (0, I10).

5.4.3.1 Time dependency vs Measurement rate

In our first experiment, we investigate the effect of time dependency on measurement rate

of a variable. If we fix the cost and label-dependency of all variables to be the same, then

we would expect a variable with a large φ to be measured less frequently by a good active

sensing method (due to being more easily predicted from previous values).

To do this, we set the label, Yt according to

Yt = exp(−0.1× |
10∑

i=1

X i
t |) + ε (5.14)

where ε ∼ N (0, 0.1). We set the cost for each variable to be the same, which we vary from 1

to 5. We set φ = (0, 0.1, ..., 0.9). The measurement rate (the selection probability) of each

variable is reported in Table 5.2, along with the overall RMSE for each experiment.

As can be seen in Table 5.2, ASAC meets our expectations. Features with a low φ, are

regularly re-measured since past values are not as predictive of the present value, whereas

features with a high φ are measured less frequently. As cost increases, we also see a monotonic

92

φi/Cost 1 2 3 4 5

0 (X1
t) 1.00 1.00 1.00 0.46 0.38

0.1 (X2
t) 1.00 1.00 1.00 0.44 0.36

0.2 (X3
t) 1.00 1.00 1.00 0.30 0.26

0.3 (X4
t) 1.00 1.00 1.00 0.25 0.12

0.4 (X5
t) 1.00 1.00 1.00 0.22 0.10

0.5 (X6
t) 1.00 0.98 0.23 0.21 0.07

0.6 (X7
t) 1.00 0.94 0.13 0.10 0.05

0.7 (X8
t) 1.00 0.93 0.07 0.03 0.01

0.8 (X9
t) 0.92 0.41 0.03 0.02 0.0

0.9 (X10
t) 0.45 0.11 0.01 0.01 0.0

RMSE 0.106 0.110 0.126 0.138 0.146

Table 5.2: Measurement rate of each feature when each feature has a different auto-regressive
coefficient.

decrease in the measurement rate of all variables.

5.4.3.2 Cheaper but noisier features

In our second synthetic experiment, we investigate the effect of having cheaper, noisier

versions of our original 10 features. In this experiment we are interested in understanding how

well ASAC can trade-off between the cost and noise level of the noisy versions. This setting

has several real-world parallels; in medicine, cheap at-home tests (such as blood pressure

tests and home pregnancy tests) exist, but are less reliable (noisier) than the more expensive

state-of-the-art procedures that would be used in, say, a hospital setting.

To model this, we introduce 10 new noisy features

X̂t = Xt + δ (5.15)

where δ ∼ N (0, γ) with γ > 0 controlling the “noisiness”. In this experiment, we set the

label according to

Yt = exp(−|0.1X1
t + 0.2X2

t + 0.3X3
t + 0.4X4

t |) + ε (5.16)

93

where now we have set different magnitudes for the coefficients of the first 4 variables (and

the last 6 variables are now just there as pure noise). We would expect that as we increase

the cost of the true variables (or equivalently decrease the cost of the noisy variables), the

variables with lower importance (X1 and X2) will be the first ones to be “replaced” with

their noisy version, whereas it will take a higher cost for X4 to be replaced with X̂4.

We fix the cost of the original features to be 1, and investigate noise levels γ ∈ {0.2, 0.4, 0.6}
and vary the cost of a noisy feature to be ĉ ∈ {0.1.0.2.0.5}. We set φi = 0.5 for all i. In Table

5.3 we report the measurement rate of each of the first 4 variables and their noisy versions.

γ
Cost 1 0.1 1 0.2 1 0.5

Features Xt X̂t Xt X̂t Xt X̂t

0.2

X1 0.00 1.00 0.00 1.00 0.00 1.00
X2 0.00 1.00 0.00 1.00 0.29 0.70
X3 0.00 1.00 0.00 1.00 1.00 0.00
X4 0.00 1.00 0.00 1.00 1.00 0.00

0.4

X1 0.00 1.00 0.00 0.94 1.00 0.00
X2 0.00 1.00 0.30 0.65 1.00 0.00
X3 1.00 0.00 1.00 0.00 1.00 0.00
X4 1.00 0.00 1.00 0.00 1.00 0.00

0.6

X1 0.00 1.00 0.51 0.33 1.00 0.00
X2 0.75 0.25 1.00 0.00 1.00 0.00
X3 1.00 0.00 1.00 0.00 1.00 0.00
X4 1.00 0.00 1.00 0.00 1.00 0.00

Table 5.3: Measurement rate based on different cost and noise parameter γ for original feature
(Xt) and noisy feature (X̂t).

As can be seen in Table 5.3, ASAC meets our expectations. As we move right and down

in the table (corresponding to an increasing cost for the noisy feature and increasing noise,

respectively), we see that true features are selected more frequently but that the noisy versions

for the less predictive features (X1 and X2) are sometimes selected even at higher costs and

noise levels. In particular, at (γ, ĉ) = (0.2, 0.2), only the noisy features are selected. When γ

is increased to 0.4, ASAC starts to select X3 and X4 all of the time, and X2 some of the

time, while the noisy version of X1 is always preferred. When we increase γ to 0.6, the true

version of X2 is the only version selected by ASAC and the true version of X1 finally becomes

94

desirable enough to measure (sometimes).

5.4.3.3 Y dependent cost

η 0.1 0.3 0.5

Features Xt X̂t Xt X̂t Xt X̂t

Yt = 1 0.89 0.10 0.63 0.21 0.25 0.69
Yt = 0 0.13 0.81 0.14 0.80 0.12 0.78

Table 5.4: Measurement rate when the cost is different for Yt = 1 and Yt = 0.

In our final synthetic experiment, we allow for a cost that depends on Y . In our medical

example, this could correspond to the fact that when a patient is sick, it is more important

to be sure about it, than when a patient is well. In the presence of the cheaper-but-noisier

features from 5.4.3.2, we expect a worsening condition to create a switch in selections. While

a patient is healthy, we are happy to monitor the patient using the at-home tests, but when

a patients condition appears to be deteriorating, it becomes more important that accurate

measurements are made than cost being kept low.

We model this by incorporating the patients condition into the cost, setting the cost

when the patient is sick (Yt = 1) to be η ∈ [0, 1] times the cost when the patient is healthy

(Yt = 0)4. We investigate η ∈ {0.1, 0.3, 0.5}.

We generate the true features as before, now with φi = 0.9 for all i, and generate noisy

features as in 5.4.3.2 with γ = 0.4. We set the label to be binary according to

Yt =

1, w.p exp(−0.1× |∑10
i=1X

i
t + ε− 2|)

0, w.p 1− exp(−0.1× |∑10
i=1X

i
t + ε− 2|)

where “w.p” means “with probability”.

We see from Table 5.4 that ASAC is able to correctly identify that measuring the true

4By reducing the measurement cost, we are equivalently up-weighting the importance of accurately
predicting.

95

features is more important when Yt = 1, with measurement frequencies while Yt = 1 for the

true features being higher for all 3 values of η. When η = 0.5, which corresponds to the cost

being half as important while the patient is sick, we see that true features are measured twice

as frequently. As η decreases, and so accurate predictions become more important, we see

that ASAC selects true features more frequently. When η = 0.1, ASAC selects true feature

nearly 7 times more frequently while the patient is sick compared to when they are not.

ASAC can therefore be used to handle settings where the trade-off between measurement cost

and prediction accuracy varies according to the label (which is often the case in medicine).

5.5 Conclusion

We propose a novel active sensing framework, called Active Sensing using Actor-Critic models

(ASAC), to address the important question of what and when to observe. This is critical when

observations are costly. We demonstrated through real-world and synthetic experiments that

the ASAC framework can significantly reduce the cost of observation with only a small loss

in predictive power. Using the MIMIC-III dataset we also demonstrated that ASAC is robust

to missing data.

We believe ASAC has wide-ranging applications, both in cost reduction but also for things

such as planning, in which patients can be told when they might expect to need their next

check-up and for what (i.e. personalized screening).

96

CHAPTER 6

Time-series Generative Adversarial Networks

What is a good generative model for time-series data? The temporal setting poses a

unique challenge to generative modeling. A model is not only tasked with capturing the

distributions of features within each time point, it should also capture the potentially complex

dynamics of those variables across time. Specifically, in modeling multivariate sequential data

x1:T = (x1, ...,xT), we wish to accurately capture the conditional distribution p(xt|x1:t−1) of

temporal transitions as well.

On the one hand, a great deal of work has focused on improving the temporal dynamics

of autoregressive models for sequence prediction. These primarily tackle the problem of com-

pounding errors during multi-step sampling, introducing various training-time modifications

to more accurately reflect testing-time conditions [BVJ15, LGZ16, BBX16]. Autoregres-

sive models explicitly factor the distribution of sequences into a product of conditionals
∏

t p(xt|x1:t−1). However, while useful in the context of forecasting, this approach is fun-

damentally deterministic, and is not truly generative in the sense that new sequences can

be randomly sampled from them without external conditioning. On the other hand, a

separate line of work has focused on directly applying the generative adversarial network

(GAN) framework to sequential data, primarily by instantiating recurrent networks for the

roles of generator and discriminator [Mog16, EHR17, RPB18]. While straightforward, the

adversarial objective seeks to model p(x1:T) directly, without leveraging the autoregressive

prior. Importantly, simply summing the standard GAN loss over sequences of vectors may

not be sufficient to ensure that the dynamics of the network efficiently captures stepwise

dependencies present in the training data.

In this chapter, we propose a novel mechanism to tie together both threads of research,

97

giving rise to a generative model explicitly trained to preserve temporal dynamics. We

present Time-series Generative Adversarial Networks (TimeGAN), a natural framework for

generating realistic time-series data in various domains. First, in addition to the unsupervised

adversarial loss on both real and synthetic sequences, we introduce a stepwise supervised loss

using the original data as supervision, thereby explicitly encouraging the model to capture

the stepwise conditional distributions in the data. This takes advantage of the fact that

there is more information in the training data than simply whether each datum is real or

synthetic; we can expressly learn from the transition dynamics from real sequences. Second,

we introduce an embedding network to provide a reversible mapping between features and

latent representations, thereby reducing the high-dimensionality of the adversarial learning

space. This capitalizes on the fact the temporal dynamics of even complex systems are often

driven by fewer and lower-dimensional factors of variation. Importantly, the supervised loss

is minimized by jointly training both the embedding and generator networks, such that the

latent space not only serves to promote parameter efficiency—it is specifically conditioned

to facilitate the generator in learning temporal relationships. Finally, we generalize our

framework to handle the mixed-data setting, where both static and time-series data can be

generated at the same time.

Our approach is the first to combine the flexibility of the unsupervised GAN framework

with the control afforded by supervised training in autoregressive models. We demonstrate

the advantages in a series of experiments on multiple real-world and synthetic datasets.

Qualitatively, we conduct t-SNE [MH08] and PCA [BY95] analyses to visualize how well the

generated distributions resemble the original distributions. Quantitatively, we examine how

well a post-hoc classifier can distinguish between real and generated sequences. Furthermore,

by applying the ”train on synthetic, test on real (TSTR)” framework [EHR17, YJS19b] to

the sequence prediction task, we evaluate how well the generated data preserves the predictive

characteristics of the original. We find that TimeGAN achieves consistent and significant

improvements over state-of-the-art benchmarks in generating realistic time-series.

98

6.1 Related works

TimeGAN is a generative time-series model, trained adversarially and jointly via a learned

embedding space with both supervised and unsupervised losses. As such, our approach

straddles the intersection of multiple strands of research, combining themes from autoregressive

models for sequence prediction, GAN-based methods for sequence generation, and time-series

representation learning.

Autoregressive recurrent networks trained via the maximum likelihood principle [WZ89]

are prone to potentially large prediction errors when performing multi-step sampling, due

to the discrepancy between closed-loop training (i.e. conditioned on ground truths) and

open-loop inference (i.e. conditioned on previous guesses). Based on curriculum learning

[BLC09], Scheduled Sampling was first proposed as a remedy, whereby models are trained to

generate output conditioned on a mix of both previous guesses and ground-truth data [BVJ15].

Inspired by adversarial domain adaptation [GUA16], Professor Forcing involved training an

auxiliary discriminator to distinguish between free-running and teacher-forced hidden states,

thus encouraging the network’s training and sampling dynamics to converge [LGZ16]. Actor-

critic methods [KT00] have also been proposed, introducing a critic conditioned on target

outputs, trained to estimate next-token value functions that guide the actor’s free-running

predictions [BBX16]. However, while the motivation for these methods is similar to ours in

accounting for stepwise transition dynamics, they are inherently deterministic, and do not

accommodate explicitly sampling from a learned distribution—central to our goal of synthetic

data generation.

On the other hand, multiple studies have straightforwardly inherited the GAN framework

within the temporal setting. The first (C-RNN-GAN) [Mog16] directly applied the GAN

architecture to sequential data, using LSTM networks for generator and discriminator. Data

is generated recurrently, taking as inputs a noise vector and the data generated from the

previous time step. Recurrent Conditional GAN (RCGAN) [EHR17] took a similar approach,

introducing minor architectural differences such as dropping the dependence on the previous

output while conditioning on additional input [MO14]. A multitude of applied studies have

99

since utilized these frameworks to generate synthetic sequences in such diverse domains as text

[ZGC16], finance [Sim18], biosignals [HHU18], sensor [ACS17] and smart grid data [ZKK18],

as well as renewable scenarios [CWK18]. Recent work [RPB18] has proposed conditioning

on time stamp information to handle irregularly sampling. However, unlike our proposed

technique, these approaches rely only on the binary adversarial feedback for learning, which

by itself may not be sufficient to guarantee specifically that the network efficiently captures

the temporal dynamics in the training data.

Finally, representation learning in the time-series setting primarily deals with the benefits

of learning compact encodings for the benefit of downstream tasks such as prediction [DL15],

forecasting [LHH18], and classification [SMS15]. Other works have studied the utility of

learning latent representations for purposes of pre-training [FA14], disentanglement [LM18],

and interpretability [HZG17]. Meanwhile in the static setting, several works have explored

the benefit of combining autoencoders with adversarial training, with objectives such as

learning similarity measures [LSL16], enabling efficient inference [DBP16], as well as improving

generative capability [MSJ15]—an approach that has subsequently been applied to generating

discrete structures by encoding and generating entire sequences for discrimination [ZKZ17].

By contrast, our proposed method generalizes to arbitrary time-series data, incorporates

stochasticity at each time step, as well as employing an embedding network to identify a

lower-dimensional space for the generative model to learn the stepwise distributions and

latent dynamics of the data.

Fig. 6.1(a) provides a high-level block diagram of TimeGAN, and Fig. 6.2 gives an

illustrative implementation, with C-RNN-GAN and RCGAN similarly detailed. For purposes

of expository and experimental comparison with existing methods, we employ a standard

RNN parameterization. A table of related works is illustrated in Table 6.1.

6.2 Problem formulation

Consider the general data setting where each instance consists of two elements: static features

(that do not change over time, e.g. gender), and temporal features (that occur over time,

100

C-RNN-GAN RCGAN T-Forcing P-Forcing TimeGAN
[Mog16] [EHR17] [Gra13, SMH11] [LGZ16] (Ours)

Stochastic X X X
Open-loop X X X X

Adversarial loss X X X X
Supervised loss X X X

Discrete features X X
Embedding space X
Mixed-variables X

Table 6.1: Summary of Related Work. (Open-loop: Previous outputs are used as conditioning
information for generation at each step; Mixed-variables: Accommodates static & temporal
variables).

e.g. vital signs). Let S be a vector space of static features, X of temporal features, and

let S ∈ S,X ∈ X be random vectors that can be instantiated with specific values denoted

s and x. We consider tuples of the form (S,X1:T) with some joint distribution p. The

length T of each sequence is also a random variable, the distribution of which—for notational

convenience—we absorb into p. In the training data, let individual samples be indexed by

n ∈ {1, ..., N}, so we can denote the training dataset D = {(sn,xn,1:Tn)}Nn=1. Going forward,

subscripts n are omitted unless explicitly required.

Our goal is to use training data D to learn a density p̂(S,X1:T) that best approximates

p(S,X1:T). This is a high-level objective, and—depending on the lengths, dimensionality,

and distribution of the data—may be difficult to optimize in the standard GAN frame-

work. Therefore we additionally make use of the autoregressive decomposition of the joint

p(S,X1:T) = p(S)
∏

t p(Xt|S,X1:t−1) to focus specifically on the conditionals, yielding the

complementary—and simpler—objective of learning a density p̂(Xt|S,X1:t−1) that best ap-

proximates p(Xt|S,X1:t−1) at any time t.

Two Objectives. Importantly, this breaks down the sequence-level objective (matching

the joint distribution) into a series of stepwise objectives (matching the conditionals). The

first is global,

min
p̂
D
(
p(S,X1:T)

∥∥p̂(S,X1:T)
)

(6.1)

101

where D is some appropriate measure of distance between distributions. The second is local,

min
p̂
D
(
p(Xt|S,X1:t−1)

∥∥p̂(Xt|S,X1:t−1)
)

(6.2)

for any t. Under an ideal discriminator in the GAN framework, the former takes the form

of the Jensen-Shannon divergence. Using the original data for supervision via maximum-

likelihood (ML) training, the latter takes the form of the Kullback-Leibler divergence. Note

that minimizing the former relies on the presence of a perfect adversary (which we may not

have access to), while minimizing the latter only depends on the presence of ground-truth

sequences (which we do have access to). Our target, then, will be a combination of the GAN

objective (proportional to Expression 6.1) and the ML objective (proportional to Expression

6.2). As we shall see, this naturally yields a training procedure that involves the simple

addition of a supervised loss to guide adversarial learning.

ClassificationsReconstructions

Real Sequences Random Vectors

Latent Codes

Recovery

Em
be

dd
in

g Generate

Disc
rim

in
ate

Unsupervised
Loss

Learn distribution
p̂(S,X1:T)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

directly

Supervised
Loss

Learn conditionals
p̂(Xt|S,X1:t�1)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Reconstruction
Loss

Provide Latent
Embedding Space

2 S ⇥Q
t X

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

2 S ⇥Q
t X

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

2 [0, 1]⇥ . . .
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

2 ZS ⇥
Q

t Zt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

2 HS ⇥
Q

t Ht
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

e
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

r
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> d

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

g
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

s̃, x̃1:T
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

s,x1:T
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ĥS , ĥ1:T
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hS ,h1:T
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

zS , z1:T
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ỹS , ỹ1:T
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

@LR

@✓e
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

@LR

@✓r
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

@LS

@✓g
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

@LS

@✓e
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

@LU

@✓g
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

@LU

@✓d
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(a) Block Diagram (b) Training Scheme

Figure 6.1: (a) Block diagram of component functions and objectives. (b) Training scheme;
solid lines indicate forward propagation of data, and dashed lines indicate backpropagation
of gradients.

102

6.3 Proposed model: Time-series GAN (TimeGAN)

TimeGAN consists of four network components: an embedding function, recovery function,

sequence generator, and sequence discriminator. The key insight is that the autoencoding

components (first two) are trained jointly with the adversarial components (latter two), such

that TimeGAN simultaneously learns to encode features, generate representations, and iterate

across time. The embedding network provides the latent space, the adversarial network

operates within this space, and the latent dynamics of both real and synthetic data are

synchronized through a supervised loss. We describe each in turn.

6.3.1 Embedding and recovery functions

The embedding and recovery functions provide mappings between feature and latent space,

allowing the adversarial network to learn the underlying temporal dynamics of the data via

lower-dimensional representations. Let HS ,HX denote the latent vector spaces corresponding

to feature spaces S,X . Then the embedding function e : S ×∏tX → HS ×
∏

tHX takes

static and temporal features to their latent codes hS ,h1:T = e(s,x1:T). In this chapter, we

implement e via a recurrent network,

hS = eS(s), ht = eX (hS ,ht−1,xt) (6.3)

where eS : S → HS is an embedding network for static features, and eX : HS×HX ×X → HX
a recurrent embedding network for temporal features. In the opposite direction, the recovery

function r : HS ×
∏

tHX → S ×
∏

tX takes static and temporal codes back to their feature

representations s̃, x̃1:T = r(hS ,h1:T). Here we implement r through a feedforward network at

each step,

s̃ = rS(hs), x̃t = rX (ht) (6.4)

where rS : HS → S and rX : HX → X are recovery networks for static and temporal

embeddings. Note that the embedding and recovery functions can be parameterized by any

architecture of choice, with the only stipulation being that they be autoregressive and obey

103

causal ordering (i.e. output(s) at each step can only depend on preceding information). For

example, it is just as possible to implement the former with temporal convolutions [ODZ16],

or the latter via an attention-based decoder [BCB14]. Here we choose implementations of

Equations (6.3) and (6.4) as a minimal example to isolate the source of gains.

6.3.2 Sequence generator and discriminator

Instead of producing synthetic output directly in feature space, the generator first outputs

into the embedding space. Let ZS ,ZX denote vector spaces over which known distributions

are defined, and from which random vectors are drawn as input for generating into HS ,HX .

Then the generating function g : ZS ×
∏

tZX → HS ×
∏

tHX takes a tuple of static and

temporal random vectors to synthetic latent codes ĥS , ĥ1:T = g(zS , z1:T). We implement g

through a recurrent network,

ĥS = gS(zS), ĥt = gX (ĥS , ĥt−1, zt) (6.5)

where gS : ZS → HS is an generator network for static features, and gX : HS×HX×ZX → HX
is a recurrent generator for temporal features. Random vector zS can be sampled from a

distribution of choice, and zt follows a stochastic process; here we use the Gaussian distribution

and Wiener process respectively. Finally, the discriminator also operates from the embedding

space. The discrimination function d : HS ×
∏

tHX → [0, 1] ×∏t[0, 1] receives the static

and temporal codes, returning classifications ỹS , ỹ1:T = d(h̃S , h̃1:T) . The h̃∗ notation denotes

either real (h∗) or synthetic (ĥ∗) embeddings; similarly, the ỹ∗ notation denotes classifications

of either real (y∗) or synthetic (ŷ∗) data. Here we implement d via a bidirectional recurrent

network with a feedforward output layer,

ỹS = dS(h̃S) ỹt = dX (~ut, ~ut) (6.6)

where ~ut = ~cX (h̃S , h̃t, ~ut−1) and ~ut = ~cX (h̃S , h̃t, ~ut+1) respectively denote the sequences of

forward and backward hidden states, ~cX , ~cX are recurrent functions, and dS , dX are output

104

layer classification functions. Similarly, there are no restrictions on architecture beyond the

generator being autoregressive; here we use a standard recurrent formulation for ease of

exposition.

6.3.3 Jointly learning to encode, generate, and iterate

First, purely as a reversible mapping between feature and latent spaces, the embedding

and recovery functions should enable accurate reconstructions s̃, x̃1:T of the original data

s,x1:T from their latent representations hS ,h1:T . Therefore our first objective function is the

reconstruction loss,

LR = Es,x1:T∼p
[
‖s− s̃‖2 +

∑
t ‖xt − x̃t‖2

]
(6.7)

In TimeGAN, the generator is exposed to two types of inputs during training. First, in

pure open-loop mode, the generator—which is autoregressive—receives synthetic embeddings

ĥS , ĥ1:t−1 (i.e. its own previous outputs) in order to generate the next synthetic vector ĥt.

Gradients are then computed on the unsupervised loss. This is as one would expect—that is,

s
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

s̃<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x̃t
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

xt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ht
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hS
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

zS
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ĥS
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ĥt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

zt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�!ut
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

 �ut
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ỹt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ỹS
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

eS
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

eX
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

gS
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

gX
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

dS
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

dX
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

rX
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

rS
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

 �cX
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�!cX
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LS
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LU
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LR
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Embedding

DiscriminateRecovery

Generate

�!ut
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

 �ut
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ỹt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LU
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Discriminate

ĥt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

zt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Generate

x̂t
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ỹt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LU
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Discriminate

ĥt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

zt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Generate

x̂t
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

s
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ut
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

s
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

cX
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

dX
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

dX
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

 �cX
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�!cX
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

gX
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

gX
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

rX
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

rX
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(a) TimeGAN (b) C-RNN-GAN (c) RCGAN

Figure 6.2: (a) TimeGAN instantiated with RNNs, (b) C-RNN-GAN, and (c) RCGAN. Solid
lines denote function application, dashed lines denote recurrence, and orange lines indicate
loss computation.

105

to allow maximizing (for the discriminator) or minimizing (for the generator) the likelihood

of providing correct classifications ŷS , ŷ1:T for both the training data hS ,h1:T as well as for

synthetic output ĥS , ĥ1:T from the generator,

LU = Es,x1:T∼p
[

log yS +
∑

t log yt
]

+ Es,x1:T∼p̂
[

log(1− ŷS) +
∑

t log(1− ŷt)
]

(6.8)

Relying solely on the discriminator’s binary adversarial feedback may not be sufficient

incentive for the generator to capture the stepwise conditional distributions in the data. To

achieve this more efficiently, we introduce an additional loss to further discipline learning.

In an alternating fashion, we also train in closed-loop mode, where the generator receives

sequences of embeddings of actual data h1:t−1 (i.e. computed by the embedding network)

to generate the next latent vector. Gradients can now be computed on a loss that captures

the discrepancy between distributions p(Ht|HS ,H1:t−1) and p̂(Ht|HS ,H1:t−1). Applying

maximum likelihood yields the familiar supervised loss,

LS = Es,x1:T∼p
[∑

t ‖ht − gX (hS ,ht−1, zt)‖2
]

(6.9)

where gX (hS ,ht−1, zt) approximates Ezt∼N [p̂(Ht|HS ,H1:t−1, zt)] with one sample zt—as is

standard in stochastic gradient descent. In sum, at any step in a training sequence, we assess

the difference between the actual next-step latent vector (from the embedding function) and

synthetic next-step latent vector (from the generator—conditioned on the actual historical

sequence of latents). While LU pushes the generator to create realistic sequences (evaluated

by an imperfect adversary), LS further ensures that it produces similar stepwise transitions

(evaluated by ground-truth targets).

Optimization. Fig. 6.1(b) illustrates the mechanics of our approach at training. Let

θe, θr, θg, θd respectively denote the parameters of the embedding, recovery, generator, and

discriminator networks. The first two components are trained on both the reconstruction

and supervised losses,

min
θe,θr

(λLS + LR) (6.10)

106

where λ ≥ 0 is a hyperparameter that balances the two losses. Importantly, LS is included

such that the embedding process not only serves to reduce the dimensions of the adversarial

learning space—it is actively conditioned to facilitate the generator in learning temporal

relationships from the data. Next, the generator and discriminator networks are trained

adversarially as follows,

min
θg

(ηLS + max
θd
LU) (6.11)

where η ≥ 0 is another hyperparameter that balances the two losses. That is, in addition to

the unsupervised minimax game played over classification accuracy, the generator additionally

minimizes the supervised loss. By combining the objectives in this manner, TimeGAN is

simultaneously trained to encode (feature vectors), generate (latent representations), and

iterate (across time).

In practice, we find that TimeGAN is not sensitive to λ and η; for all experiments in

Section 6.4, we set λ = 1 and η = 10. Note that while GANs in general are not known for their

ease of training, we do not discover any additional complications in TimeGAN. The embedding

task serves to regularize adversarial learning—which now occurs in a lower-dimensional latent

space. Similarly, the supervised loss has a constraining effect on the stepwise dynamics of the

generator. For both reasons, we do not expect TimeGAN to be more challenging to train,

and standard techniques for improving GAN training are still applicable. Pseudocode of

TimeGAN is described in Algorithm 4.

6.4 Experiments

Benchmarks and Evaluation. We compare TimeGAN with RCGAN [EHR17] and C-RNN-

GAN [Mog16], the two most closely related methods. For purely autoregressive approaches,

we compare against RNNs trained with teacher-forcing (T-Forcing) [Gra13, SMH11] as

well as professor-forcing (P-Forcing) [LGZ16]. For additional comparison, we consider the

performance of WaveNet [ODZ16] as well as its GAN counterpart WaveGAN [DMP18]. To

assess the quality of generated data, we observe three desiderata: (1) diversity—samples

should be distributed to cover the real data; (2) fidelity—samples should be indistinguishable

107

Algorithm 4 Pseudocode of TimeGAN
Input: λ = 1, η = 10, D, batch size nmb, learning rate γ

Initialize: θe, θr, θg, θd

while Not converged do

(1) Map between Feature Space and Latent Space

Sample (s1,x1,1:Tn), ..., (snmb
,xnmb,1:Tnmb

)
i.i.d.∼ D

for n = 1, ..., nmb, t = 1, ..., Tn do (hn,S ,hn,t) = (eS(sn), eX (hn,S ,hn,t−1,xn,t))

(s̃n, x̃n,t) = (rS(hn,S), rX (hn,t))

(2) Generate Synthetic Latent Codes

Sample (zS,1, z1,1:Tn
), ..., (zS,nmb

, znmb,1:Tnmb
)
i.i.d.∼ pZS×X

for n = 1, ..., nmb, t = 1, ..., Tn do

(ĥn,S , ĥn,t) = (gS(zS,n), gX (ĥn,S , ĥn,t−1, zn,t))

(3) Distinguish between Real and Synthetic Codes

for n = 1, ..., nmb, t = 1, ..., Tn do

(yn,S , yn,t) = (dS(hn,S), dX (~un,t, ~un,t))

(ŷn,S , ŷn,t) = (dS(ĥn,S), dX (ˆ~un,t, ~̂un,t))

(4) Compute Reconstruction (L̂R), Unsupervised (L̂U), and Supervised (L̂S) Losses

L̂R = 1
nmb

∑nmb

n=1

[
‖sn − s̃n‖2 +

∑
t ‖xn,t − x̃n,t‖2

]

L̂U = 1
nmb

∑nmb

n=1

[[
log yn,S +

∑
t log yn,t

]
+
[

log(1− ŷn,S) +
∑
t log(1− ŷn,t)

]]

L̂S = 1
nmb

∑nmb

n=1

[∑
t ‖hn,t − gX (hn,S ,hn,t−1, zn,t)‖2

]

(5) Update θe, θr, θg, θd via Stochastic Gradient Descent (SGD)

θe = θe − γ∇θe −
[
λL̂S + L̂R

]

θr = θr − γ∇θr −
[
λL̂S + L̂R

]

θg = θg − γ∇θg −
[
ηL̂S + L̂U

]

θd = θd + γ∇θd − L̂U

(6) Synthetic Data Generation

(6-1) Sample (zS,1, z1,1:Tn
), ..., (zS,N , zN,1:TN

)
i.i.d.∼ pZS×X

(6-2) Generate synthetic latent codes

for n = 1, ..., N, t = 1, ..., Tn do

(ĥn,S , ĥn,t) = (gS(zS,n), gX (ĥn,S , ĥn,t−1, zn,t))

(6-3) Mapping to the feature space

for n = 1, ..., N, t = 1, ..., Tn do

(ŝn, x̂1:Tn) = (rS(hn,S), rX (hn,t))

Output: D̂ = {ŝn, x̂1:Tn}Nn=1

108

from the real data; and (3) usefulness—samples should be just as useful as the real data

when used for the same predictive purposes (i.e. train-on-synthetic, test-on-real).

(1) Visualization. We apply t-SNE [MH08] and PCA [BY95] analyses on both the

original and synthetic datasets (flattening the temporal dimension). This visualizes how

closely the distribution of generated samples resembles that of the original in 2-dimensional

space, giving a qualitative assessment of (1).

(2) Discriminative Score. For a quantitative measure of similarity, we train a post-

hoc time-series classification model (by optimizing a 2-layer LSTM) to distinguish between

sequences from the original and generated datasets. First, each original sequence is labeled

real, and each generated sequence is labeled not real. Then, an off-the-shelf (RNN) classifier is

trained to distinguish between the two classes as a standard supervised task. We then report

the classification error on the held-out test set, which gives a quantitative assessment of (2).

(3) Predictive Score. In order to be useful, the sampled data should inherit the

predictive characteristics of the original. In particular, we expect TimeGAN to excel in

capturing conditional distributions over time. Therefore, using the synthetic dataset, we train

a post-hoc sequence-prediction model (by optimizing a 2-layer LSTM) to predict next-step

temporal vectors over each input sequence. Then, we evaluate the trained model on the

original dataset. Performance is measured in terms of the mean absolute error (MAE); for

event-based data, the MAE is computed as |1− estimated probability that the event occurred|.
This gives a quantitative assessment of (3).

All of the components (embedding network, generator, and discriminator) of TimeGAN

are implemented with 3-layer GRUs with hidden dimensions 4 times the size of the input

features. The dimension of the latent space is half that of the input features. We use tanh as

the activation function and sigmoid as the output layer activation function such that outputs

are within the [0, 1] range. We also normalize the dataset to the [0, 1] range using min-max

scaling. We set λ = 1 and η = 10 in our experiments.

For fair comparison, we use the same underlying recurrent neural network architecture

(3-layer GRUs with hidden dimensions 4 times the size of input features) for C-RNN-GAN,

109

RCGAN, T-Forcing, and P-Forcing as is used in TimeGAN. In the case of deterministic models

(such as T-Forcing and P-Forcing), we first train an original GAN model to generate feature

vectors as inputs for the initial time step, which follows the original feature distribution at the

initial time step. Then, using the generated feature vector as input, we initialize the model

to generate the sequence in open-loop mode. Finally, the post-hoc time-series classification

and sequence-prediction models are implemented as 2-layer LSTMs with hidden dimensions 4

times the size of the input features. As before, we use tanh as the activation function and

sigmoid as the output layer activation function such that outputs are within the [0, 1] range.

Implementation of TimeGAN can be found at https://github.com/jsyoon0823/timegan.

6.4.1 Illustrative example: Autoregressive Gaussian models

Our primary novelties are twofold: a supervised loss to better capture temporal dynamics,

and an embedding network that provides a lower-dimensional adversarial learning space. To

highlight these advantages, we experiment on sequences from autoregressive multivariate

Gaussian models as follows: xt = φxt−1 + n,where n ∼ N (0, σ1 + (1− σ)I). The coefficient

φ ∈ [0, 1] allows us to control the correlation across time steps, and σ ∈ [−1, 1] controls the

correlation across features.

As shown in Table 6.2, TimeGAN consistently generates higher-quality synthetic data

than benchmarks, in terms of both discriminative and predictive scores. This is true across

the various settings for the underlying data-generating model. Importantly, observe that

the advantage of TimeGAN is greater for higher settings of temporal correlation φ, lending

credence to the motivation and benefit of the supervised loss mechanism. Likewise, observe

that the advantage of TimeGAN is also greater for higher settings of feature correlation σ,

providing confirmation for the benefit of the embedding network.

6.4.2 Experiments on different types of time series data

We test the performance of TimeGAN across time-series data with a variety of different

characteristics, including periodicity, discreteness, level of noise, regularity of time steps,

110

https://github.com/jsyoon0823/timegan

Temporal Correlations (fixing σ = 0.8) Feature Correlations (fixing φ = 0.8)

Settings φ = 0.2 φ = 0.5 φ = 0.8 σ = 0.2 σ = 0.5 σ = 0.8

Discriminative Score (Lower the better)

TimeGAN .175±.006 .174±.012 .105±.005 .181±.006 .152±.011 .105±.005
RCGAN .177±.012 .190±.011 .133±.019 .186±.012 .190±.012 .133±.019

C-RNN-GAN .391±.006 .227±.017 .220±.016 .198±.011 .202±.010 .220±.016
T-Forcing .500±.000 .500±.000 .499±.001 .499±.001 .499±.001 .499±.001
P-Forcing .498±.002 .472±.008 .396±.018 .460±.003 .408±.016 .396±.018
WaveNet .337±.005 .235±.009 .229±.013 .217±.010 .226±.011 .229±.013

WaveGAN .336±.011 .213±.013 .230±.023 .192±.012 .205±.015 .230±.023

Predictive Score (Lower the better)

TimeGAN .640±.003 .412±.002 .251±.002 .282±.005 .261±0.002 .251±.002
RCGAN .652±.003 .435±.002 .263±.003 .292±.003 .279±.002 .263±.003

C-RNN-GAN .696±.002 .490±.005 .299±.002 .293±.005 .280±.006 .299±.002
T-Forcing .737±.022 .732±.012 .503±.037 .515±.034 .543±.023 .503±.037
P-Forcing .665±.004 .571±.005 .289±.003 .406±.005 .317±.001 .289±.003
WaveNet .718±.002 .508±.003 .321±.005 .331±.004 .297±.003 .321±.005

WaveGAN .712±.003 .489±.001 .290±.002 .325±.003 .353±.001 .290±.002

Table 6.2: Results on autoregressive multivariate Gaussian data (Bold indicates best perfor-
mance).

and correlation across time and features. The following datasets are selected on the basis of

different combinations of these properties. Detailed statistics of each dataset can be found in

Table 6.3.

Dataset Sequences Dim. Avg. Len. Feature Corr. Temporal Variance Temporal Corr.

Sines 10,000 5 24 pts 0.0117 0.3167 0.2056
Stocks 3,773 6 24 days 0.8596 0.0129 0.9902
Energy 19,711 29 24 hrs 0.2843 0.0444 0.8506
Events 149,967 54 58 events 0.0095 0.0622 0.0744

Table 6.3: Dataset statistics

(1) Sines. We simulate multivariate sinusoidal sequences of different frequencies η and

phases θ, providing continuous-valued, periodic, multivariate data where each feature is

independent of others. For each dimension i ∈ {1, ..., 5}, xi(t) = sin(2πηt + θ), where

η ∼ U [0, 1] and θ ∼ U [−π, π].

(2) Stocks. By contrast, sequences of stock prices are continuous-valued but aperiodic;

111

furthermore, features are correlated with each other. We use the daily historical Google

stocks data from 2004 to 2019, including as features the volume and high, low, opening,

closing, and adjusted closing prices.

(3) Energy. Next, we consider a dataset characterized by noisy periodicity, higher

dimensionality, and correlated features. The UCI Appliances energy prediction dataset

consists of multivariate, continuous-valued measurements including numerous temporal

features measured at close intervals.

(4) Events. Finally, we consider a dataset characterized by discrete values and irregular

time stamps. We use a large private lung cancer pathways dataset consisting of sequences of

events and their times, and model both the one-hot encoded sequence of event types as well

as the event timings.

TimeGAN RCGAN CRNNGAN T-Forcing P-Forcing WaveNet WaveGAN

Figure 6.3: t-SNE visualization on Sines (1st row) and Stocks (2nd row). Each column provides
the visualization for each of the 7 benchmarks. Red denotes original data, and blue denotes
synthetic.

Visualizations with t-SNE and PCA. In Fig. 6.3, we observe that synthetic datasets

generated by TimeGAN show markedly better overlap with the original data than other

benchmarks using t-SNE for visualization. In fact, we (in the first column) that the blue

(generated) samples and red (original) samples are almost perfectly in sync.

Discriminative and Predictive Scores. As indicated in Table 6.4, TimeGAN consis-

tently generates higher-quality synthetic data in comparison to benchmarks on the basis of

both discriminative (post-hoc classification error) and predictive (mean absolute error) scores

across all datasets. For instance for Stocks, TimeGAN-generated samples achieve 0.102 which

is 48% lower than the next-best benchmark (RCGAN, at 0.196)—a statistically significant

improvement. Remarkably, observe that the predictive scores of TimeGAN are almost on par

112

with those of the original datasets themselves.

Metric Method Sines Stocks Energy Events

TimeGAN .011±.008 .102±.021 .236±.012 .161±.018
RCGAN .022±.008 .196±.027 .336±.017 .380±.021

Discriminative C-RNN-GAN .229±.040 .399±.028 .499±.001 .462±.011
Score T-Forcing .495±.001 .226±.035 .483±.004 .387±.012

P-Forcing .430±.027 .257±.026 .412±.006 .489±.001
(Lower the Better) WaveNet .158±.011 .232±.028 .397±.010 .385±.025

WaveGAN .277±.013 .217±.022 .363±.012 .357±.017

TimeGAN .093±.019 .038±.001 .273±.004 .303±.006
RCGAN .097±.001 .040±.001 .292±.005 .345±.010

Predictive C-RNN-GAN .127±.004 .038±.000 .483±.005 .360±.010
Score T-Forcing .150±.022 .038±.001 .315±.005 .310±.003

P-Forcing .116±.004 .043±.001 .303±.006 .320±.008
(Lower the Better) WaveNet .117±.008 .042±.001 .311±.005 .333±.004

WaveGAN .134±.013 .041±.001 .307±.007 .324±.006

Original .094±.001 .036±.001 .250±.003 .293±.000

Table 6.4: Results on multiple time-series datasets (Bold indicates best performance).

6.4.3 Sources of gain

TimeGAN is characterized by (1) the supervised loss, (2) embedding networks, and (3)

the joint training scheme. To analyze the importance of each contribution, we report the

discriminative and predictive scores with the following modifications to TimeGAN: (1) without

the supervised loss, (2) without the embedding networks, and (3) without jointly training

the embedding and adversarial networks on the supervised loss. (The first corresponds to

λ = η = 0, and the third to λ = 0).

We observe in Table 6.5 that all three elements make important contributions in improving

the quality of the generated time-series data. The supervised loss plays a particularly

important role when the data is characterized by high temporal correlations, such as in the

Stocks dataset. In addition, we find that the embedding networks and joint training the with

the adversarial networks (thereby aligning the targets of the two) clearly and consistently

improves generative performance across the board.

113

Metric Method Sines Stocks Energy Events

TimeGAN .011±.008 .102±.021 .236±.012 .161±.018
Discriminative w/o Supervised Loss .193±.013 .145±.023 .298±.010 .195±.013

Score w/o Embedding Net. .197±.025 .260±.021 .286±.006 .244±.011
(Lower the Better) w/o Joint Training .048±.011 .131±.019 .268±.012 .181±.011

TimeGAN .093±.019 .038±.001 .273±.004 .303±.006
Predictive w/o Supervised Loss .116±.010 .054±.001 .277±.005 .380±.023

Score w/o Embedding Net. .124±.002 .048±.001 .286±.002 .410±.013
(Lower the Better) w/o Joint Training .107±.008 .045±.001 .276±.004 .348±.021

Table 6.5: Source-of-gain analysis on multiple datasets (via discriminative and predictive
scores).

6.5 Conclusion

In this chapter we introduce TimeGAN, a novel framework for time-series generation that

combines the versatility of the unsupervised GAN approach with the control over conditional

temporal dynamics afforded by supervised autoregressive models. Leveraging the contributions

of the supervised loss and jointly trained embedding network, TimeGAN demonstrates

consistent and significant improvements over state-of-the-art benchmarks in generating

realistic time-series data.

114

CHAPTER 7

PATE-GAN: Generating Synthetic Data with

Differential Privacy Guarantees

More and more large datasets are becoming available in a wide variety of communities. In

the U.S. medical community, for example, the fraction of providers using electronic health

records (EHR) increased from 9.4% in 2008 to 83.8% in 2015 [HPS17]. The availability of

large datasets presents enormous opportunities for collaboration between the data-holders

and the machine learning community. However, many of these large datasets, especially EHR,

include sensitive information that prevents data-holders from sharing the data.

The most common way to mitigate the privacy risk of sharing sensitive records is to

de-identify the records - but it is by now well-known that records that have been de-identified

can be easily re-identified by linking them to other identifiable datasets [Swe97, EBT11,

NS08, MS04, EN14]. (This is especially true for medical records of patients who have rare

diseases.) However, if the purpose of sharing the data is to develop and validate machine

learning methods for a particular task (e.g. prognostic risk scoring), real data is not necessary;

it would suffice to have synthetic data that is sufficiently like the real data.

Precisely what this means depends on how the synthetic data will be used. For example,

the synthetic data may be used to train models that will be deployed directly on real data.

In this setting it is important that these methods (which we trained entirely on synthetic

data) perform as well as if they had been trained on real data. Another setting to consider is

one in which data-holders wish to use the synthetic data to identify the best method(s) to be

used on the real data [DCJ15]. In this setting, it is not important that training on synthetic

data leads to good performance on real data, but rather that comparing two methods on

115

the synthetic data results in conclusions similar to those that would have been drawn from

comparing the two methods on the real data. We evaluate our method in both settings.

Generative Adversarial Networks (GAN) [GPM14] provide a powerful method for using

real data to generate synthetic data – but it does not provide any rigorous privacy guarantees.

Our method modifies the GAN machinery in a way that does guarantee privacy; the synthetic

data is (differentially) private [DR14] with respect to the original data. To do this we modify

the training procedure of the discriminator to be differentially private by using a modified

version of the Private Aggregation of Teacher Ensembles (PATE) [PAE16, PSM18] framework.

The Post-Processing Theorem [DR14] then guarantees that the GAN generator - which is

trained only using the differentially private discriminator - will also be differentially private

and thus so will the synthetic data it generates. We call our proposed framework PATE-GAN.

Using two Kaggle datasets, two different real-world medical datasets and two UCI datasets,

we evaluate the utility of the samples generated by PATE-GAN in various settings with various

levels of differential privacy. In line with the settings outlined above, we consider two methods

for evaluating the similarity of synthetic datasets with a real dataset. The first method,

first proposed in [EHR17], compares the predictive performance of models trained on the

synthetic datasets and tested on the real dataset. The second method, which we propose for

the first time here, compares the performance rankings of predictive models on the synthetic

datasets with their performance rankings on the real dataset. We demonstrate that, for

both of these methods, PATE-GAN consistently produces synthetic datasets that are ”more

like” the original real dataset than the synthetic datasets produced by the state-of-the-art

benchmark (DPGAN [XLW18]).

The contributions of this chapter can be summarized as follows: (1) we modify the PATE

framework and apply it to GANs to generate synthetic data, (2) we demonstrate in the

experiments section that using PATE to enforce differential privacy results in higher quality

synthetic data than DPGAN using various real-world datasets, (3) we propose a novel new

metric for evaluating the generated synthetic data.

116

7.1 Related works

The most related previous work to this chapter is DPGAN [XLW18]. Like the proposed

method, DPGAN proposes a framework for modifying the GAN framework to be differentially

private, also relying on the Post-Processing Theorem to change the problem of learning a

differentially private generator to learning a differentially private discriminator. Their work

uses a technique introduced by [ACG16] that provides a differentially private mechanism

for training deep networks. The key idea is that noise is added to the gradient of the

discriminator during training to create differential privacy guarantees. These ideas are also

used in [BWW17]. Our method is similar in spirit; during training of the discriminator

differentially private training data is used, which results in noisy gradients, however, we

use the mechanism introduced in [PAE16] which we believe gives tighter differential privacy

guarantees (via tighter bounds on the effect of a single sample) than those provided in

[ACG16]. This means that for the same privacy guarantees, our method is capable of

producing higher quality synthetic data.

The proposed model modifies the PATE framework [PAE16, PSM18] for use in a generative

model setting (specifically for use with GANs). The key to the GAN framework is that the

discriminator is a differentiable module trained to classify samples as either real or generated.

The PATE framework provides a differentially private mechanism for classification by training

multiple teacher models on disjoint partitions of the data. To classify a new sample each

teacher’s output is evaluated on the sample and then all outputs are noisily aggregated. This

noisy aggregation, though, results in a classifier that is not differentiable with respect to

the parameters of the generator. In order to overcome this problem we follow the idea of

the student model, also proposed in [PAE16], that involves taking some public unlabelled

data, labelling it using the standard PATE mechanism and then training the student using

the resulting labelled data. Because access to any public data is often an unreasonable

assumption in synthetic data generation, we adapt this training paradigm in a way that does

not require public data by training the student using only outputs from the (differentially

private) generator.

117

Some previous works generate synthetic data using summary statistics of the original

data [MDG16] or based on specific domain-knowledge [BBM10]; however, those methods are

limited to low-dimensional feature spaces, specific fields and do not provide any differential

privacy guarantees. [CBM17] generates synthetic patient records using a GAN framework.

However, [CBM17] focuses only on generating discrete variables, whereas PATE-GAN is

capable of generating mixed-type (continuous, discrete, and binary) variables. Furthermore,

[CBM17] also does not provide any differential privacy guarantees and instead uses ad-hoc

notions of privacy which are only validated empirically.

Finally, it is worth remarking that it is known to be hard in the worst-case to generate

private synthetic data [UV11] and so techniques such as GANs are necessary to address this

challenge.

7.2 Background

Let us denote the feature space by X , the label space by Y and write U = X × Y. Let

the dimension of U be d. Suppose that X and Y are random variables over X and Y. We

write U = (X, Y) and x, y,u to denote realizations of X, Y and U, respectively. The dataset

D consists of N samples of u, assumed i.i.d. according to PU denoted as D = {ui}Ni=1 =

{(xi, yi)}Ni=1.

7.2.1 Differential privacy

We first provide some preliminaries on differential privacy [DR14] before describing PATE-

GAN; we refer interested readers to [DR14] for a thorough exposition of differential privacy.

We will denote an algorithm by M, which takes as input a dataset D and outputs a value

from some output space, O.

Definition 1. (Neighboring datasets) Two datasets D,D′ are said to be neighboring if

∃x ∈ D s.t. D \ {x} = D′. (7.1)

118

Definition 2. (Differential Privacy) A randomized algorithm, M, is (ε, δ)-differentially

private if for all S ⊂ O and for all neighboring datasets D,D′:

P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) + δ (7.2)

where P is taken with respect to the randomness of M.

Differential privacy provides an intuitively understandable notion of privacy - a particular

sample’s inclusion or exclusion in the dataset does not change the probability of a particular

outcome very much: it does so by a multiplicative factor of eε and an additive amount, δ.

The following theorem, a proof of which can be found in [DR14], allows us to move the

burden of differential privacy to the discriminator; the differential privacy of the generator

will follow by the theorem.

Theorem. (Post-processing) Let M be an (ε, δ)-differentially private algorithm and let

f : O → O′ where O′ is any arbitrary space. Then f ◦M is (ε, δ)-differentially private.

7.2.2 Private Aggregation of Teacher Ensembles (PATE)

In this section we describe the PATE mechanism first defined in [PAE16] and later improved

upon by [PSM18]. The PATE mechanism provides a differentially private method for

classification, a core component of the GAN framework; the discriminator is a classifier

trained to identify whether samples are real/fake.

In order to build a differentially private classifier, the dataset is first divided into k disjoint

subsets D1, ...,Dk. k classifiers, T1, ..., Tk (referred to as teachers) are then trained separately

on the k sub-datasets (i.e. Ti is only trained on Di). Given a new input feature vector x to

classify, the differentially private output is given by passing x to each of the k teachers, and

then performing a noisy aggregation of the resulting outputs.

Formally, given the k teachers, m possible classes and an input feature vector, x, set

nj(x) = |{Ti : Ti(x) = j}| for j = 1, ...,m (7.3)

119

so that nj(x) is the number of teachers that output class j for x. The output of the PATEλ

mechanism for input x is then defined as

PATEλ(x) = arg max
j∈[m]

(nj(x) + Yj) (7.4)

where Y1, ..., Ym are i.i.d. Lap(λ) random variables. The following result, found in [PAE16],

follows from [DR14].

Theorem. The output of a single query to the PATEλ mechanism is (1
λ
, 0)-differentially

private.

In order to apply this framework in the GAN framework, however, we require that the

discriminator be differentiable, which the output of this classification mechanism is not (note

that accessing the internal parameters of the teachers would violate differential privacy, the

only thing we have access to in this case is the output). Instead, we draw on the PATE

extension (also introduced in [PAE16]) in which a student model is trained. This student

model (after being trained) is free to access, not only its outputs given inputs but also its

internal parameters. The model itself is differentially private.

Formally, the student, S, is a classifier that is trained by taking some public, unlabelled

data, P = {xi}Ki=1, passing each sample, xi, through the (standard) PATE mechanism, to

receive a differentially private label, ŷi, and forming a new (noisy-)teacher-labelled dataset

P̂ = {(xi, ŷi)}Ki=1 on which the student is then trained.

Importantly, we can make the student differentiable - it can be modelled using any

classifier, such as a neural net. Moreover, querying the student is “free” - there is no privacy

cost associated with passing an input to the student and receiving an output, the only privacy

cost is in acquiring the data on which to train the student. We state the following result

which follows from the analysis in [PAE16].

Theorem. The student, S, trained on the dataset P̂ where labels were generated according to

the PATEλ mechanism using λ = K
2ε

, is (ε, 0)-differentially private with respect to the original

data D.

120

7.3 Proposed method: PATE-GAN

The proposed method builds on GAN and PATE frameworks. We replace the GAN discrimi-

nator with a PATE mechanism so that our discriminator is differentially private, but require

the (differentiable) student version to allow back-propagation to the generator. We modify

the implementation of the student, noting that the training paradigm presented in [PAE16]

is not appropriate for this setting due to the lack of publicly available data. Before training,

we partition the dataset into k subsets, D1, ...,Dk, with |Di| = |D|
k

for ∀i.

7.3.1 Generator

The generator, G, is as in the standard GAN framework. Formally it is a function G(·; θG) :

[0, 1]d → U , parameterized by θG that takes random noise, z ∼ Unif([0, 1]d), as input and

outputs a vector in U = X × Y. The generator will be trained to minimize its loss with

respect to the student-discriminator. Given n i.i.d. samples of Unif([0, 1]d), z1, ..., zn, the

empirical loss of G at θ for fixed S is defined by

LG(θG;S) =
n∑

j=1

log(1− S(G(zj; θG))). (7.5)

We will denote by PG the distribution induced by G over U .

7.3.2 Discriminator

In the standard GAN framework, there is a single discriminator, D, that is trained in a

directly adversarial fashion with G, where at each iteration either G is trying to improve its

loss with respect to D or D is trying to improve its loss with respect to G. In our proposed

model, however, we replace D with the PATE mechanism. This means we introduce k

teacher-discriminators, T 1, ..., T k, and a student discriminator, S. A noticeable difference is

that the adversarial training is no longer symmetrical: the teachers are now being trained to

improve their loss with respect to G but G is being trained to improve its loss with respect to

the student S which in turn is being trained to improve its loss with respect to the teachers.

121

7.3.2.1 Teacher-discriminators

Formally, the teacher-discriminators (which we will refer to simply as teachers) are functions

T1(·; θ1T), ..., Tk(·; θkT) : U → [0, 1] each parameterized by θiT . The teachers are given either a

real sample from their corresponding partition of the dataset (i.e. Ti may receive a sample

from Di) as input or a sample from the generator. The teachers are then trained to classify

them.

Given n i.i.d. samples of Unif([0, 1]d), z1, ..., zn, we define the empirical loss of teacher i

with weights θiT for fixed G by

LiT (θiT) = −
[∑

u∈Di

log Ti(u; θiT) +
n∑

j=1

log(1− Ti(G(zj); θ
i
T))
]
. (7.6)

Each teacher is trained in the same way the discriminator is trained in a standard GAN

framework, except that here the teacher only ever sees its partition of the real data.

7.3.2.2 Student-discriminators

The main innovation of the proposed model comes from our implementation of the student-

discriminator (which we will refer to simply as the student) in this setting. The differential

privacy guarantee provided by the standard student model is only with respect to the original

data, D, and not the public data, P, used to train the student. In our setting, where the

entire focus is on generating synthetic data because no data is publicly available, we must

propose a novel methodology to train the student without public data.

We first note, that the student training paradigm described in [PAE16] would involve

training the student using data similar to that used to train the generator - i.e. by taking

an equal number of samples from each and then labelling those using the standard PATEλ

mechanism (where here “labelling” refers to assigning them a real/fake label - not the label y

present in the data). We consider the implications of training the student on teacher-labelled

generated samples only.

We first observe that during training of the generator, the discriminator is only evaluated

122

on samples from the generator itself, and not the real data, so by training the student only

on generated samples we are in fact training it on the distribution we need it to perform well

on. However, we note that if the student only sees unrealistic samples from the generator

(i.e. generated samples that most teachers label as fake), then the student will not contain

any information that the generator can use to improve its generated samples. It is therefore

important that some of the generated samples the student is trained on are realistic. We

then note that if Supp(PU) ⊂ Supp(PG) then some of the generated samples will be realistic.

In order to ensure Supp(PU) ⊂ Supp(PG), we normalize the data into [0, 1]d and then

initialize the parameters of the generator randomly using Xavier initialization. It follows that

Supp(P) ⊂ [0, 1]d ⊂ G([0, 1]d) = G(Supp(Z)) = Supp(G(Z)) when Z ∼ Unif([0, 1]d).

We create our training data for the student by taking n i.i.d. samples of Unif([0, 1]d),

z1, ..., zn, generating n samples using the generator, û1, ..., ûn with ûj = G(zj), and using

the teachers to label these using PATEλ, setting rj = PATEλ(ûj). We train the student,

S(·; θS) : U → [0, 1], to maximize the standard cross-entropy loss on this teacher-labelled

data, i.e.

LS(θS) =
n∑

j=1

rj logS(ûj; θS) + (1− rj) log(1− S(ûj; θS)). (7.7)

Although a priori the above mechanism does not appear to depend on the number of

teachers, it should be noted that for fixed λ, more teachers results in the teacher-labelled

dataset being less noisy - the noise being added is smaller relative to the counts nj. This

introduces a trade-off - for a small number of teachers, the noise may be too large and thus

render the output meaningless; with a larger number of teachers, less data can be used to

train each teacher, which may also render the output meaningless, even though the noise has

a smaller effect. Finding the right balance in this problem is key. In our experiments, we use

d real and d generated samples to train each teacher where d is the dimension of the input

space. Although the utility of a single teacher may be low, by aggregating (even noisily)

the resulting classifier actually has high utility. Moreover, by using a minimal number of

samples for each teacher, the effect of any individual sample on the output is small (because

there are more teachers and each sample can effect at most 1 teacher) which means that our

123

differential privacy guarantees are tighter - if we used fewer teachers, the mechanism still

assumes that, in the worst case, the presence (or absence) of a single sample can completely

flip a teacher’s vote and so we still need to add the same noise.

We train G, T 1, ..., T k and S iteratively1, with each iteration of G consisting of first

performing nT updates on all teachers, then performing nS updates of the student. We

perform generator iterations until our privacy constraint, ε, has been reached.

Fig 7.1 and 7.2 indicate the iterative training procedure carried out by PATE-GAN; the

figures correspond to a single generator update. Pseudocode for PATE-GAN can be found in

Algorithm 5.

Generator

Teacher 1

𝑢ො𝑧

𝒟ଵ

Random Noise

Generated
samples

Real
samples

Teacher 2

Teacher k

…

𝒟ଶ

𝒟

Entire Data

Real
samples

Real
samples

Label 0 Label 1

Classifiers

Figure 7.1: Block diagram of the training procedure for the teacher-discriminator during a
single generator iteration. Teacher-discriminators are trained to minimize the classification
loss when classifying samples as real samples or generated samples. During this step only the
parameters of the teachers are updates (and not the generator).

To calculate the privacy of our algorithm we use the moments accountant method given in

[PAE16] to derive a data-dependent privacy guarantee at run-time. We denote the moments

accountant of PATE-GAN by α(l). The moments accountant allows us to more tightly bound

the total privacy cost of our mechanism than standard composition theorems would, and

moreover attributes a lower privacy cost to accessing the noisy aggregation of the teachers

when the teachers have a stronger consensus with the intuition being that when the teachers

1The teachers can be trained in parallel.

124

Generator

Teacher 1

𝑢ො𝑧

Random Noise

Generated
samples

Teacher 2

Teacher k

…

Teacher votes
Aggregation

Student

Noisy
Labels

Votes of
Teachers

Add noise on
Aggregation

Student
Loss

Back
propagation

Back propagation

Classifier

Alternative of
public data

Figure 7.2: Block diagram of the training procedure for the student-discriminator and the
generator. The student-discriminator is trained using noisy teacher-labelled generated samples
(the noise provides the DP guarantees). The student is trained to minimize classification loss
on this noisily labelled dataset, while the generator is trained to maximize the student loss.
Note that the teachers are not updated during this step, only the student and the generator.

have a strong consensus, a single teacher (and therefore a single sample) has a much lower

influence on the output than when the votes (n0 and n1) are close.

We now state the main theorem of the chapter, which follows from the theory in [PAE16].

Theorem 2. Algorithm 5, which takes as input δ > 0, a dataset, D, and outputs G and ε is

(ε, δ)-differentially private.

The proof relies on applying the post-processing theorem where the discriminator corre-

sponds to the mechanism M which takes outputs in O (in our case this corresponds to the

weights of the discriminator), and the generator corresponds to the function f which maps

from O to O′ (which corresponds to the weights of the generator).

7.4 Experiments

In this section, we use a real-world Kaggle dataset (Credit card fraud detection dataset

[DCJ15]) to evaluate PATE-GAN against the state-of-the-art benchmark (DPGAN [XLW18]).

In addition, we provide high-level (average) results for five additional datasets (with various

characteristics): MAGGIC [PAM12], UNOS-Heart wait-list [CT93], Kaggle cervical cancer

125

Algorithm 5 Pseudocode of PATE-GAN

Input: δ, D, nT , nS, batch size n, number of teachers k, noise size λ

Initialize: θG, θ1T , ..., θ
k
T , θS, α(l) = 0 for l = 1, ..., L

Partition dataset into k subsets D1, ...,Dk of size |D|
k

while ε̂ < ε do

for t2 = 1, ..., nT do

Sample z1, ..., zn
i.i.d.∼ PZ

for i = 1, ..., k do

Sample u1, ...,un
i.i.d.∼ Di

Update teacher, Ti, using SGD

∇θiT
−
[∑d

j=1 log(Ti(uj)) + log(1− Ti(G(zj)))
]

for t3 = 1, ..., nS do

Sample z1, ..., zn
i.i.d.∼ PZ

for j = 1, ..., n do

ûj ← G(zj)

rj ← PATEλ(ûi) for j = 1, ..., n

Update moments accountant

q ← 2+λ|n0−n1|
4 exp(λ|n0−n1|)

for l = 1, ..., L do

α(l)← α(l) + min{2λ2l(l + 1), log((1− q)
(

1−q
1−e2λq

)l
+ qe2λl)}

Update the student, S, using SGD

∇θS −
∑n

j=1 rj logS(ûj) + (1− rj) log(1− S(ûj))

Sample z1, ..., zn
i.i.d.∼ PZ

Update the generator, G, using SGD

∇θG

[∑n
i=1 log(1− S(G(zi))

]

ε̂← min
l

α(l)+log(1
δ
)

l

Output: G

dataset [FCF17], UCI ISOLET dataset and UCI Epileptic Seizure Recognition dataset.

126

7.4.1 Experimental settings

To empirically validate the quality of the generated dataset we introduce three different

training-testing settings. Setting A: train the predictive models on the real training set, test

the performance of the models on the real testing set. Setting B: train on the synthetic

training set, test on the real testing set ([EHR17]), Setting C: train on the synthetic training

set, test on the synthetic testing set. Note that the training set and the testing set are disjoint

in both the real and synthetic datasets.

We are interested in two comparisons. If we see a high predictive performance on the

real data for models that were trained on synthetic data (Setting B), we can infer that the

synthetic data has captured the relationship between features and labels well. Moreover,

synthetic data that does well in this setting can be used to train models without ever seeing

the real data.

On the other hand, when we consider synthetic data for use in competitions such as

Kaggle, we need synthetic data that allows researchers to do meaningful comparisons on

the synthetic data. In this setting, the researchers will only be able to use the synthetic

data as both the training and testing set, and will need to develop their algorithms using

results on the synthetic data. Now it becomes important that the relative performance of

two algorithms when trained and tested on the synthetic data (Setting C), is similar to

their relative performance when trained and tested on the real data (Setting A). A simple

requirement would be that if model 1 is better than model 2 on the real data, then model 1 is

better than model 2 on the synthetic data. This allows researchers to use the synthetic data

to choose the best method(s) to try on the real data (or rather to give to the data-holder to

try on the real data).

For both comparisons, we use 12 different predictive models, shown in Table 7.2. We use

two performance metrics to measure the capability of each model in predicting the label:

(1) area under the receiver operating characteristics curve (AUROC), (2) area under the

precision recall curve (AUPRC). Throughout the experiments we fix δ = 10−5 for use as input

to PATE-GAN and DPGAN. We also report the performance of the original GAN framework

127

(”GAN”), which serves to indicate an upper bound on performance and allows us to see how

much performance is lost due to the two differential privacy mechanisms (PATE-GAN and

DPGAN).

In all experiments, the depth of the generator and discriminator (student-discriminator in

our case) in both PATE-GAN and the DPGAN benchmark [XLW18] is set to 3. The depth of

the teacher discriminators is set to 1. The number of hidden nodes in each layer is d, d/2 and

d (where d is the feature dimension), respectively. We use relu as the activation functions of

each layer except for the output layer where we use the sigmoid activation function and the

batch size is 64 for both the generator and discriminator. We set nT = nS = 5. Using cross

validation, we select the number of teachers, k, among N/10 N/50 N/100 N/500 N/1000

N/5000 N/10000. The learning rate is 10−4 and we use Adam Optimizer to minimize the loss

function.

7.4.2 Data summary and Setting A performance

Table 7.1 summarises the 6 datasets we use and provides a baseline performance for a

predictive model on each dataset - Setting A refers to training and testing on the real data.

The AUROC and AUPRC in this setting are upper bounds on the AUROC and AUPRC we

could hope to achieve in Setting B.

Datasets No of samples No of features AUROC AUPRC

Kaggle Credit 284807 29 0.9438 0.7020

MAGGIC 30389 29 0.7069 0.3638

UNOS 23706 20 0.6416 0.6677

Kaggle Cervical cancer 858 35 0.9354 0.6314

UCI ISOLET 7797 617 0.9671 0.8758

UCI Epileptic Seizure Recognition 11500 179 0.9809 0.9511

Table 7.1: No of samples, No of features, Average AUROC and AUPRC performance across
12 different predictive models trained and tested on the real data (Setting A) for the 6
datasets: Kaggle Credit, MAGGIC, UNOS, Kaggle Cervical Cancer, UCI ISOLET, UCI
Epileptic Seizure Recognition.

128

7.4.3 Results with Setting B

AUROC AUPRC

GAN PATE-GAN DPGAN GAN PATE-GAN DPGAN

Logistic Regression 0.8950 0.8728 0.8720 0.4069 0.3907 0.3923

Random Forests [Bre01] 0.9075 0.8980 0.8730 0.3219 0.3157 0.2926

Gaussian Naive Bayes [Ris01] 0.8861 0.8817 0.8522 0.1963 0.1858 0.1601

Bernoulli Naive Bayes [Ris01] 0.8997 0.8968 0.8891 0.2169 0.2099 0.2069

Linear SVM [CV95] 0.7611 0.7523 0.7502 0.4473 0.4466 0.4464

Decision Tree [Qui86] 0.9102 0.9011 0.8647 0.4071 0.3978 0.3672

LDA [BNJ03] 0.8710 0.8510 0.8487 0.1956 0.1852 0.1788

AdaBoost [FS96] 0.9143 0.8952 0.8809 0.4530 0.4366 0.4234

Bagging [Bre96] 0.8951 0.8877 0.8657 0.3303 0.3221 0.3073

GBM [Fri01] 0.8848 0.8709 0.8499 0.3057 0.2974 0.2773

Multi-layer Perceptron 0.9086 0.8925 0.8787 0.4790 0.4693 0.4600

XgBoost [CG16] 0.9058 0.8904 0.8637 0.3837 0.3700 0.3440

Average 0.8866 0.8737 0.8578 0.3453 0.3351 0.3219

Table 7.2: Performance comparison of 12 different predictive models in Setting B (trained on
synthetic, tested on real) in terms of AUROC and AUPRC (the generators of PATE-GAN
and DPGAN are (1, 10−5)-differentially private).

In this subsection, we evaluate PATE-GAN and DPGAN in Setting B (trained on synthetic,

tested on real) to understand whether or not the models are capturing the feature-label

relationships well. Intuitively, if a synthetic dataset is such that a model trained on it

performs well when performance is measured on real data, then the relationship between

feature and label in the synthetic data is similar to that in the real data. In Table 7.2 we give

the results for the Kaggle Credit dataset for all 12 predictive models. In Table 7.3, we give the

performance on each dataset averaged across the 12 methods for each of the 6 datasets. Across

all datasets, we see that PATE-GAN is capable of generating synthetic samples that better

preserve the feature-label relationship (according to AUROC and AUPRC) than DPGAN.

We note that the performance of all models, including the original GAN model (i.e. PATE-

GAN - or equivalently DPGAN - with (∞,∞)-differential privacy) in the high dimensional UCI

ISOLET and UCI Epileptic Seizure Recognition datasets is lower than in lower dimensional

129

Datasets
AUROC AUPRC

GAN PATE-GAN DPGAN GAN PATE-GAN DPGAN

Kaggle Credit 0.8866 0.8737 0.8578 0.3453 0.3351 0.3219

MAGGIC 0.6574 0.6446 0.6286 0.3054 0.2952 0.2820

UNOS 0.6277 0.5996 0.5552 0.6554 0.6282 0.5862

Kaggle Cervical Cancer 0.9268 0.9108 0.8699 0.5994 0.5460 0.4851

UCI ISOLET 0.8171 0.6399 0.5577 0.5561 0.2953 0.2146

UCI Epileptic
0.9173 0.7681 0.6718 0.8133 0.6512 0.5369

Seizure Recognition

Table 7.3: Performance comparison of 12 different predictive models in Setting B (trained
on synthetic, tested on real) in terms of AUROC and AUPRC (the generators of PATE–
GAN and DPGAN are (1, 10−5)-differentially private) over 6 different datasets. GAN is
(∞,∞)-differentially private and is given to indicate an upper bound of PATE-GAN and
DPGAN.

datasets. We do, however, see that both PATE-GAN and DPGAN show more significant

decreases in performance than the original GAN in these high-dimensional settings. In the

case of PATE-GAN, we believe this may be due to the fact that the student discriminator is

trained only using data from the generator, and therefore requires that some of the generated

data look somewhat realistic from the start, which is a harder requirement to satisfy as the

data has more dimensions. On the other hand, in DPGAN, noise must be added to each

component of the gradient (of the discriminator) and so in higher dimensions the norm of the

noise added is larger. Note that in PATE-GAN, noise is added only to the teacher outputs,

whose dimension (typically 1) does not depend on the dimension of the input data, and so

this phenomena does not present itself in PATE-GAN. The results on both the UCI datasets

would suggest that the loss from increasing noise norm (for DPGAN) is greater than from

difficulty in randomly generating realistic samples (for PATE-GAN).

7.4.4 Varying the privacy constraint (ε)

In Fig. 7.3, we investigate the trade off between privacy constraint and utility. We report

the average performance of AUROC over the 12 different predictive models for PATE-GAN

and the benchmark for various ε (with δ = 10−5). As can be seen in Fig. 7.3, PATE-GAN is

130

epsilon (with delta = 10-5)

10-2 10-1 100 101 102

A
U

R
O

C

0.6

0.65

0.7

0.75

0.8

0.85

0.9

PATE-GAN
DPGAN
GAN

Figure 7.3: Average AUROC performance across 12 different predictive models trained on
the synthetic dataset generated by PATE-GAN and DPGAN with various ε (with δ = 10−5)
(Setting B).

consistently better than DPGAN over the entire range of tested ε. We believe this is because

the PATE mechanism allows us to more tightly bound the influence of a single sample on

the discriminator, and hence we can provide tighter differential privacy guarantees - when

the differential privacy guarantee is fixed, this results in higher quality synthetic data. Of

course, as we increase ε (i.e. decrease the required privacy) both methods converge to the

performance of GAN and the increase in performance of PATE-GAN over DPGAN becomes

smaller.

7.4.5 Setting A vs Setting C: Preserving the ranking of predictive models

As discussed at the beginning of this section, it is important that a synthetic dataset respects

the ranking of models (in terms of their prediction performances) [JYS18]. To evaluate this,

we now introduce a new metric, which we refer to as the Synthetic Ranking Agreement

(SRA). Suppose that we have L predictive models, f1, f2, ..., fL
2. Furthermore, suppose that

the performance of model i when trained and tested on the real data (Setting A) is Ai ∈ R

and that the performance of model i when trained and tested on the synthetic data (Setting

2For the results in Table 7.4, we use the same 12 predictive models as used in Table 7.2

131

C) is Ci ∈ R. Then we define the Synthetic Ranking Agreement by

SRA({Ai}Li=1, {Ci}Li=1) =
1

L(L− 1)

L∑

j=1

∑

k 6=j

I
(

(Aj − Ak)× (Cj − Ck) > 0
)

(7.8)

where I is an indicator function. Note that the summand is 1 when the ordering of algorithms

j and k are the same in both settings, and is 0 when the ordering in one setting differs from

the ordering in the other.

PATE-GAN DPGAN PATE-GAN DPGAN

ε = 0.01 0.6909 0.5273 ε = 1 0.8364 0.8000

ε = 0.05 0.7455 0.6909 ε = 5 0.8909 0.8364

ε = 0.1 0.7818 0.7455 ε = 10 0.9091 0.8909

ε = 0.5 0.8000 0.7818 ε = 50 0.9091 0.9091

Table 7.4: Synthetic Ranking Probability of PATE-GAN and the benchmark when comparing
Setting A and Setting C for various ε (with δ = 10−5) in terms of AUROC. The Synthetic
Ranking Agreement of Original GAN is 0.9091, which is also attained by both PATE-GAN
and DPGAN for ε = 50.

We compare the SRA of PATE-GAN and the benchmark for various ε (with δ = 10−5)3.

As can be seen in Table 7.4, PATE-GAN achieves the best SRA across all values of ε.

In addition, we perform a similar experiment in which we compare the ranking of features

by their importance (determined by their absolute Pearson correlation coefficient with the

label) on the original dataset and on the synthetic dataset (generated by PATE-GAN and the

benchmark) and report the results using a metric that is identical to SRA, with the model

performances ({Ai}, {Ci}) substituted for feature importance. As can be seen in Table 7.5,

PATE-GAN achieves consistently better agreed ranking probability across all values of tested

ε (with δ = 10−5).

3The ordering of models according to Table 7.2 is in fact quite consistent - the average agreed ranking
probability (now applied to different folds of the data, rather than real vs. synthetic data) is 0.9273 (for
AUROC). The rankings used are therefore sufficiently stable for this to be a meaningful metric.

132

PATE-GAN DPGAN PATE-GAN DPGAN

ε = 0.01 0.8810 0.7963 ε = 1 0.9048 0.8783

ε = 0.05 0.8968 0.8148 ε = 5 0.9127 0.8915

ε = 0.1 0.8968 0.8333 ε = 10 0.9153 0.8942

ε = 0.5 0.9021 0.8545 ε = 50 0.9153 0.9021

Table 7.5: Agreed ranking probability of PATE-GAN and the benchmark to order the features
by variable importance in terms of absolute Pearson correlation coefficient

7.4.6 Quantitative analysis on the number of teachers

The number of teachers is a hyper-parameter of PATE-GAN and we choose the number

of teachers among {N/10, N/50, N/100, N/500, N/1000, N/5000, N/10000} where N is the

total number of samples. As we described in the previous section, there is a trade-off

between number of teachers and the corresponding quality of the synthetic data. Table 7.6

quantitatively shows the trade-off between the number of teachers and the performance (in

terms of both AUROC and AUPRC).

of teachers N/10 N/50 N/100 N/500 N/1000 N/5000 N/10000

AUROC 0.5425 0.6398 0.7638 0.8343 0.8737 0.8655 0.8282
AUPRC 0.1273 0.2484 0.2900 0.3184 0.3351 0.3278 0.3092

Table 7.6: Trade-off between the number of teachers and the performances (AUROC, AUPRC)

7.5 Conclusion

In this chapter we introduced a novel methodology for generating differentially private

synthetic data; we proposed modified PATE frameworks on Generative Adversarial Nets.

Through several experiments we demonstrated the ability of our method to produce high

quality synthetic data while being able to give strict differential privacy guarantees.

133

REFERENCES

[ACG16] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. “Deep learning with differential privacy.” In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pp. 308–318. ACM, 2016.

[ACS17] Moustafa Alzantot, Supriyo Chakraborty, and Mani Srivastava. “Sensegen: A
deep learning architecture for synthetic sensor data generation.” In 2017 IEEE
International Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops), pp. 188–193. IEEE, 2017.

[AHK14] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert
Schapire. “Taming the monster: A fast and simple algorithm for contextual
bandits.” In International Conference on Machine Learning, pp. 1638–1646, 2014.

[AHS17] Ahmed M Alaa, Scott Hu, and Mihaela van der Schaar. “Learning from Clinical
Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis.”
In Proceedings of the 34th international conference on machine learning (ICML-17),
2017.

[AL16] Avery Allen and Wenchen Li. Generative Adversarial Denoising Autoencoder for
Face Completion, 2016.

[AS16] Ahmed M Alaa and Mihaela van der Schaar. “Balancing suspense and surprise:
Timely decision making with endogenous information acquisition.” In Advances
in Neural Information Processing Systems, pp. 2910–2918, 2016.

[AS18a] Ahmed Alaa and Mihaela Schaar. “AutoPrognosis: Automated Clinical Prognos-
tic Modeling via Bayesian Optimization with Structured Kernel Learning.” In
International Conference on Machine Learning, pp. 139–148, 2018.

[AS18b] Ahmed M Alaa and Mihaela van der Schaar. “A Hidden Absorbing Semi-Markov
Model for Informatively Censored Temporal Data: Learning and Inference.” Jour-
nal of Machine Learning Research, 19(4), 2018.

[AS19] Ahmed M Alaa and Mihaela van der Schaar. “Demystifying Black-box Models with
Symbolic Metamodels.” In Advances in Neural Information Processing Systems,
pp. 11301–11311, 2019.

[AYH18] Ahmed M Alaa, Jinsung Yoon, Scott Hu, and Mihaela van der Schaar. “Personal-
ized risk scoring for critical care prognosis using mixtures of Gaussian processes.”
IEEE Transactions on Biomedical Engineering, 65(1):207–218, 2018.

[BBM10] Anna L Buczak, Steven Babin, and Linda Moniz. “Data-driven approach for
creating synthetic electronic medical records.” BMC medical informatics and
decision making, 10(1):59, 2010.

134

[BBM15] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
Klaus-Robert Müller, and Wojciech Samek. “On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance propagation.” PloS one,
10(7):e0130140, 2015.

[BBX16] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe,
Joelle Pineau, Aaron Courville, and Yoshua Bengio. “An actor-critic algorithm
for sequence prediction.” arXiv preprint arXiv:1607.07086, 2016.

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine trans-
lation by jointly learning to align and translate.” arXiv preprint arXiv:1409.0473,
2014.

[BG11] Stef Buuren and Karin Groothuis-Oudshoorn. “mice: Multivariate imputation by
chained equations in R.” Journal of statistical software, 45(3), 2011.

[BKD92] Paul R Billings, Mel A Kohn, Margaret De Cuevas, Jonathan Beckwith, Joseph S
Alper, and Marvin R Natowicz. “Discrimination as a consequence of genetic
testing.” American journal of human genetics, 50(3):476, 1992.

[BLC09] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. “Cur-
riculum learning.” In Proceedings of the 26th annual international conference on
machine learning, pp. 41–48. ACM, 2009.

[BM99] John Barnard and Xiao-Li Meng. “Applications of multiple imputation in medical
studies: from AIDS to NHANES.” Statistical methods in medical research, 8(1):17–
36, 1999.

[BNJ03] David M Blei, Andrew Y Ng, and Michael I Jordan. “Latent dirichlet allocation.”
Journal of machine Learning research, 3(Jan):993–1022, 2003.

[Bre96] Leo Breiman. “Bagging predictors.” Machine learning, 24(2):123–140, 1996.

[Bre01] Leo Breiman. “Random forests.” Machine learning, 45(1):5–32, 2001.

[BSH10] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja
Hansen, and Klaus-Robert MÃžller. “How to explain individual classification
decisions.” Journal of Machine Learning Research, 11(Jun):1803–1831, 2010.

[BVJ15] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. “Scheduled
sampling for sequence prediction with recurrent neural networks.” In Advances in
Neural Information Processing Systems, pp. 1171–1179, 2015.

[BWR13] Stephen Burgess, Ian R White, Matthieu Resche-Rigon, and Angela M Wood.
“Combining multiple imputation and meta-analysis with individual participant
data.” Statistics in medicine, 32(26):4499–4514, 2013.

[BWW17] Brett K Beaulieu-Jones, Zhiwei Steven Wu, Chris Williams, and Casey S Greene.
“Privacy-preserving generative deep neural networks support clinical data sharing.”
BioRxiv, p. 159756, 2017.

135

[BY95] Fred B Bryant and Paul R Yarnold. “Principal-components analysis and ex-
ploratory and confirmatory factor analysis.” 1995.

[CBM17] Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F Stewart, and
Jimeng Sun. “Generating Multi-label Discrete Patient Records using Generative
Adversarial Networks.” In Machine Learning for Healthcare Conference, pp. 286–
305, 2017.

[CBS16] Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F Stewart, and
Jimeng Sun. “Doctor ai: Predicting clinical events via recurrent neural networks.”
In Machine Learning for Healthcare Conference, pp. 301–318, 2016.

[CFJ16] Emmanuel Jean Candès, Yingying Fan, Lucas Janson, and Jinchi Lv. Panning
for gold: Model-free knockoffs for high-dimensional controlled variable selection.
Department of Statistics, Stanford University, 2016.

[CG16] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting system.”
In Proceedings of the 22nd ACM international conference on knowledge discovery
and data mining, pp. 785–794. ACM, 2016.

[CPC18] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan
Liu. “Recurrent neural networks for multivariate time series with missing values.”
Scientific reports, 8(1):1–12, 2018.

[CR09] Emmanuel J Candès and Benjamin Recht. “Exact matrix completion via convex
optimization.” Foundations of Computational mathematics, 9(6):717, 2009.

[CSW18] Jianbo Chen, Le Song, Martin Wainwright, and Michael Jordan. “Learning to
Explain: An Information-Theoretic Perspective on Model Interpretation.” In
International Conference on Machine Learning, pp. 883–892, 2018.

[CT93] J Michael Cecka and Paul I Terasaki. “The UNOS scientific renal transplant
registry.” Clinical transplants, pp. 1–18, 1993.

[CV95] Corinna Cortes and Vladimir Vapnik. “Support-vector networks.” Machine
learning, 20(3):273–297, 1995.

[CWK18] Yize Chen, Yishen Wang, Daniel Kirschen, and Baosen Zhang. “Model-free
renewable scenario generation using generative adversarial networks.” IEEE
Transactions on Power Systems, 33(3):3265–3275, 2018.

[DBP16] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb,
Martin Arjovsky, and Aaron Courville. “Adversarially learned inference.” arXiv
preprint arXiv:1606.00704, 2016.

[DCI16] Yi Deng, Changgee Chang, Moges Seyoum Ido, and Qi Long. “Multiple imputa-
tion for general missing data patterns in the presence of high-dimensional data.”
Scientific reports, 6:21689, 2016.

136

[DCJ15] Andrea Dal Pozzolo, Olivier Caelen, Reid A Johnson, and Gianluca Bontempi.
“Calibrating probability with undersampling for unbalanced classification.” In
Computational Intelligence, 2015 IEEE Symposium Series on, pp. 159–166. IEEE,
2015.

[DHS06] A Rogier T Donders, Geert JMG van der Heijden, Theo Stijnen, and Karel GM
Moons. “A gentle introduction to imputation of missing values.” Journal of
clinical epidemiology, 59(10):1087–1091, 2006.

[DL15] Andrew M Dai and Quoc V Le. “Semi-supervised sequence learning.” In Advances
in neural information processing systems, pp. 3079–3087, 2015.

[DMP18] Chris Donahue, Julian McAuley, and Miller Puckette. “Adversarial audio synthesis.”
arXiv preprint arXiv:1802.04208, 2018.

[DR14] Cynthia Dwork, Aaron Roth, et al. “The algorithmic foundations of differential
privacy.” Foundations and Trends R© in Theoretical Computer Science, 9(3–4):211–
407, 2014.

[DSZ16] Anupam Datta, Shayak Sen, and Yair Zick. “Algorithmic transparency via
quantitative input influence: Theory and experiments with learning systems.” In
Security and Privacy (SP), 2016 IEEE Symposium on, pp. 598–617. IEEE, 2016.

[EAO07] Michael E Ezzie, Scott K Aberegg, and James M O’Brien Jr. “Laboratory testing
in the intensive care unit.” Critical care clinics, 23(3):435–465, 2007.

[EBT11] Khaled El Emam, David Buckeridge, Robyn Tamblyn, Angelica Neisa, Elizabeth
Jonker, and Aman Verma. “The re-identification risk of Canadians from longitu-
dinal demographics.” BMC medical informatics and decision making, 11(1):46,
2011.

[EHR17] Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. “Real-valued (med-
ical) time series generation with recurrent conditional gans.” arXiv preprint
arXiv:1706.02633, 2017.

[EN14] Yaniv Erlich and Arvind Narayanan. “Routes for breaching and protecting genetic
privacy.” Nature Reviews Genetics, 15(6):409–421, 2014.

[FA14] Otto Fabius and Joost R van Amersfoort. “Variational recurrent auto-encoders.”
arXiv preprint arXiv:1412.6581, 2014.

[FCF17] Kelwin Fernandes, Jaime S Cardoso, and Jessica Fernandes. “Transfer learn-
ing with partial observability applied to cervical cancer screening.” In Iberian
conference on pattern recognition and image analysis, pp. 243–250. Springer, 2017.

[Fri01] Jerome H Friedman. “Greedy function approximation: a gradient boosting
machine.” Annals of statistics, pp. 1189–1232, 2001.

[FS96] Yoav Freund, Robert E Schapire, et al. “Experiments with a new boosting
algorithm.” In Icml, volume 96, pp. 148–156. Bari, Italy, 1996.

137

[GB96] Francois Gingras and Y Bengio. “Recurrent neural networks for missing or
asynchronous data.” In NIPS, volume 8, 1996.

[GE03] Isabelle Guyon and André Elisseeff. “An introduction to variable and feature
selection.” Journal of machine learning research, 3(Mar):1157–1182, 2003.

[GEW06] Pierre Geurts, Damien Ernst, and Louis Wehenkel. “Extremely randomized trees.”
Machine learning, 63(1):3–42, 2006.

[GG16] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning.” In international conference on
machine learning, pp. 1050–1059, 2016.

[GH16] Bobby Gheorghiu and Simon Hagens. “Measuring interoperable EHR adoption
and maturity: a Canadian example.” BMC medical informatics and decision
making, 16(1):8, 2016.

[GKL11] Yi Gai, Bhaskar Krishnamachari, and Mingyan Liu. “On the combinatorial
multi-armed bandit problem with Markovian rewards.” In 2011 IEEE Global
Telecommunications Conference-GLOBECOM 2011, pp. 1–6. IEEE, 2011.

[GPH00] John K Gohagan, Philip C Prorok, Richard B Hayes, and Barnett-S Kramer.
“The Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial of the
National Cancer Institute: history, organization, and status.” Controlled clinical
trials, 21(6):251S–272S, 2000.

[GPM14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative adversarial nets.”
In Advances in Neural information processing systems, pp. 2672–2680, 2014.

[Gra13] Alex Graves. “Generating sequences with recurrent neural networks.” arXiv
preprint arXiv:1308.0850, 2013.

[GS05] Alex Graves and Jürgen Schmidhuber. “Framewise phoneme classification with
bidirectional LSTM and other neural network architectures.” Neural Networks,
18(5):602–610, 2005.

[GSF10] Pedro J Garćıa-Laencina, José-Luis Sancho-Gómez, and Ańıbal R Figueiras-Vidal.
“Pattern classification with missing data: a review.” Neural Computing and
Applications, 19(2):263–282, 2010.

[GUA16] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. “Domain-
adversarial training of neural networks.” The Journal of Machine Learning
Research, 17(1):2096–2030, 2016.

[GW18] Lovedeep Gondara and Ke Wang. “Mida: Multiple imputation using denoising
autoencoders.” In Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pp. 260–272. Springer, 2018.

138

[Hal99] Mark Andrew Hall. “Correlation-based feature selection for machine learning.”
1999.

[HGD17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. “Mask r-cnn.”
In Proceedings of the IEEE international conference on computer vision, pp.
2961–2969, 2017.

[HHU18] Shota Haradal, Hideaki Hayashi, and Seiichi Uchida. “Biosignal Data Aug-
mentation Based on Generative Adversarial Networks.” In 2018 40th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), pp. 368–371. IEEE, 2018.

[HPS17] J Henry, Y Pylypchuk, T Searcy, and V Patel. “Adoption of Electronic Health
Record Systems among US Non-Federal Acute Care Hospitals: 2008–2015. May
2016.” Accessed via:¡ https://dashboard. healthit. gov/evaluations/data-briefs/non-
federal-acute-care-hospital-ehr-adoption-2008-2015. php¿. Accessed on June, 21,
2017.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.” Neural
computation, 9(8):1735–1780, 1997.

[HZG17] Wei-Ning Hsu, Yu Zhang, and James Glass. “Unsupervised learning of disentangled
and interpretable representations from sequential data.” In Advances in neural
information processing systems, pp. 1878–1889, 2017.

[HZR16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning
for image recognition.” In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating
deep network training by reducing internal covariate shift.” arXiv preprint
arXiv:1502.03167, 2015.

[JGP16] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical reparameterization with
gumbel-softmax.” arXiv preprint arXiv:1611.01144, 2016.

[JPS16] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng,
Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and
Roger G Mark. “MIMIC-III, a freely accessible critical care database.” Scientific
data, 3:160035, 2016.

[JYS18] James Jordon, Jinsung Yoon, and Mihaela van der Schaar. “Measuring the quality
of Synthetic data for use in competitions.” arXiv preprint arXiv:1806.11345, 2018.

[KBR09] Hèlen Koch, Marloes A van Bokhoven, Gerben ter Riet, JM Tineke van Alphen-
Jager, Trudy van der Weijden, Geert-Jan Dinant, and Patrick JE Bindels. “Or-
dering blood tests for patients with unexplained fatigue in general practice: what
does it yield? Results of the VAMPIRE trial.” Br J Gen Pract, 59(561):e93–e100,
2009.

139

[KJC17] Han-Gyu Kim, Gil-Jin Jang, Ho-Jin Choi, Minho Kim, Young-Won Kim, and
Jaehun Choi. “Recurrent neural networks with missing information imputation
for medical examination data prediction.” In Big Data and Smart Computing
(BigComp), 2017 IEEE International Conference on, pp. 317–323. IEEE, 2017.

[KJP17] Young-Gun Kim, Kyoungwon Jung, Young-Taek Park, Dahye Shin, Soo Yeon
Cho, Dukyong Yoon, and Rae Woong Park. “Rate of electronic health record
adoption in South Korea: A nation-wide survey.” International journal of medical
informatics, 101:100–107, 2017.

[KL12] David M Kreindler and Charles J Lumsden. “The effects of the irregular sample
and missing data in time series analysis.” Nonlinear Dynamical Systems Analysis
for the Behavioral Sciences Using Real Data, p. 135, 2012.

[KLA15] David P Kao, James D Lewsey, Inder S Anand, Barry M Massie, Michael R Zile,
Peter E Carson, Robert S McKelvie, Michel Komajda, John JV McMurray, and
JoAnn Lindenfeld. “Characterization of subgroups of heart failure patients with
preserved ejection fraction with possible implications for prognosis and treatment
response.” European journal of heart failure, 17(9):925–935, 2015.

[KNS08] Kanya Kumwilaisak, Alberto Noto, Ulrich H Schmidt, Clare I Beck, Claudia
Crimi, Kent Lewandrowski, and Luca M Bigatello. “Effect of laboratory testing
guidelines on the utilization of tests and order entries in a surgical intensive care
unit.” Critical care medicine, 36(11):2993–2999, 2008.

[KR92] Kenji Kira and Larry A Rendell. “A practical approach to feature selection.” In
Machine Learning Proceedings 1992, pp. 249–256. Elsevier, 1992.

[KSM16] Pieter-Jan Kindermans, Kristof Schütt, Klaus-Robert Müller, and Sven Dähne.
“Investigating the influence of noise and distractors on the interpretation of neural
networks.” arXiv preprint arXiv:1611.07270, 2016.

[KT00] Vijay R Konda and John N Tsitsiklis. “Actor-critic algorithms.” In Advances in
neural information processing systems, pp. 1008–1014, 2000.

[KWG17] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fer-
nanda Viegas, and Rory Sayres. “Interpretability beyond feature attribution:
Quantitative testing with concept activation vectors (tcav).” arXiv preprint
arXiv:1711.11279, 2017.

[LB15] Diego M López and Bernd Blobel. “mHealth in Low-and Middle-Income Countries:
Status, Requirements and Strategies.” In pHealth, pp. 79–87, 2015.

[LCL10] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. “A contextual-bandit
approach to personalized news article recommendation.” In Proceedings of the
19th international conference on World wide web, pp. 661–670. ACM, 2010.

[LEL18] Scott M Lundberg, Gabriel G Erion, and Su-In Lee. “Consistent Individualized
Feature Attribution for Tree Ensembles.” arXiv preprint arXiv:1802.03888, 2018.

140

[LGZ16] Alex M Lamb, Anirudh Goyal Alias Parth Goyal, Ying Zhang, Saizheng Zhang,
Aaron C Courville, and Yoshua Bengio. “Professor forcing: A new algorithm
for training recurrent networks.” In Advances In Neural Information Processing
Systems, pp. 4601–4609, 2016.

[LHH18] Xinrui Lyu, Matthias Hueser, Stephanie L Hyland, George Zerveas, and Gunnar
Raetsch. “Improving Clinical Predictions through Unsupervised Time Series
Representation Learning.” arXiv preprint arXiv:1812.00490, 2018.

[LHL15] Yaojin Lin, Qinghua Hu, Jinghua Liu, and Jie Duan. “Multi-label feature selection
based on max-dependency and min-redundancy.” Neurocomputing, 168:92–103,
2015.

[Lic13] M. Lichman. “UCI Machine Learning Repository.”, 2013.

[LKW16] Zachary C Lipton, David Kale, and Randall Wetzel. “Directly modeling missing
data in sequences with rnns: Improved classification of clinical time series.” In
Machine Learning for Healthcare Conference, pp. 253–270, 2016.

[LL17] Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model
predictions.” In Advances in Neural Information Processing Systems, pp. 4765–
4774, 2017.

[LM18] Yingzhen Li and Stephan Mandt. “Disentangled sequential autoencoder.” arXiv
preprint arXiv:1803.02991, 2018.

[LSL16] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole
Winther. “Autoencoding beyond pixels using a learned similarity metric.” In
International Conference on Machine Learning, pp. 1558–1566, 2016.

[Mac10] A Mackinnon. “The use and reporting of multiple imputation in medical research–a
review.” Journal of internal medicine, 268(6):586–593, 2010.

[MDG16] Scott McLachlan, Kudakwashe Dube, and Thomas Gallagher. “Using the caremap
with health incidents statistics for generating the realistic synthetic electronic
healthcare record.” In Healthcare Informatics (ICHI), 2016 IEEE International
Conference on, pp. 439–448. IEEE, 2016.

[Men94] Xiao-Li Meng. “Multiple-imputation inferences with uncongenial sources of input.”
Statistical Science, pp. 538–558, 1994.

[MH08] Laurens van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE.”
Journal of machine learning research, 9(Nov):2579–2605, 2008.

[MO14] Mehdi Mirza and Simon Osindero. “Conditional generative adversarial nets.”
arXiv preprint arXiv:1411.1784, 2014.

[Mog16] Olof Mogren. “C-RNN-GAN: Continuous recurrent neural networks with adver-
sarial training.” arXiv preprint arXiv:1611.09904, 2016.

141

[MP10] Debashis Mondal and Donald B Percival. “Wavelet variance analysis for gappy
time series.” Annals of the Institute of Statistical Mathematics, 62(5):943–966,
2010.

[MS04] Bradley Malin and Latanya Sweeney. “How (not) to protect genomic data privacy
in a distributed network: using trail re-identification to evaluate and design
anonymity protection systems.” Journal of biomedical informatics, 37(3):179–192,
2004.

[MSJ15] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan
Frey. “Adversarial autoencoders.” arXiv preprint arXiv:1511.05644, 2015.

[NS08] Arvind Narayanan and Vitaly Shmatikov. “Robust de-anonymization of large
sparse datasets.” In Security and Privacy, 2008. SP 2008. IEEE Symposium on,
pp. 111–125. IEEE, 2008.

[ODZ16] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew W Senior, and Koray Kavukcuoglu.
“WaveNet: A generative model for raw audio.” In SSW, p. 125, 2016.

[PAB10] Ronald Carl Petersen, PS Aisen, LA Beckett, MC Donohue, AC Gamst, DJ Harvey,
CR Jack, WJ Jagust, LM Shaw, AW Toga, et al. “Alzheimer’s disease neuroimaging
initiative (ADNI): clinical characterization.” Neurology, 74(3):201–209, 2010.

[PAE16] Nicolas Papernot, Mart́ın Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal
Talwar. “Semi-supervised knowledge transfer for deep learning from private
training data.” arXiv preprint arXiv:1610.05755, 2016.

[Pal07] Lyle J Palmer. “UK Biobank: bank on it.” The Lancet, 369(9578):1980–1982,
2007.

[PAM12] Stuart J Pocock, Cono A Ariti, John JV McMurray, Aldo Maggioni, Lars Køber,
Iain B Squire, Karl Swedberg, Joanna Dobson, Katrina K Poppe, Gillian A
Whalley, et al. “Predicting survival in heart failure: a risk score based on 39 372
patients from 30 studies.” European heart journal, 34(19):1404–1413, 2012.

[Pat02] Patricia A Patrician. “Multiple imputation for missing data.” Research in Nursing
& Health, 25(1):76–84, 2002.

[PG02] Shahla Parveen and Phil Green. “Speech recognition with missing data using
recurrent neural nets.” In Advances in Neural Information Processing Systems,
pp. 1189–1195, 2002.

[PLD05] Hanchuan Peng, Fuhui Long, and Chris Ding. “Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-redundancy.”
IEEE Transactions on pattern analysis and machine intelligence, 27(8):1226–1238,
2005.

142

[PS08] Jan Peters and Stefan Schaal. “Natural actor-critic.” Neurocomputing, 71(7-
9):1180–1190, 2008.

[PS15] Archana Purwar and Sandeep Kumar Singh. “Hybrid prediction model with
missing value imputation for medical data.” Expert Systems with Applications,
42(13):5621–5631, 2015.

[PSM18] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal
Talwar, and Úlfar Erlingsson. “Scalable Private Learning with PATE.” arXiv
preprint arXiv:1802.08908, 2018.

[QSC17] Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison
Cottrell. “A dual-stage attention-based recurrent neural network for time series
prediction.” arXiv preprint arXiv:1704.02971, 2017.

[Qui86] J. Ross Quinlan. “Induction of decision trees.” Machine learning, 1(1):81–106,
1986.

[RFP19] Sandeep Reddy, John Fox, and Maulik P Purohit. “Artificial intelligence-enabled
healthcare delivery.” Journal of the Royal Society of Medicine, 112(1):22–28,
2019.

[Ris01] Irina Rish. “An empirical study of the naive Bayes classifier.” In IJCAI 2001
workshop on empirical methods in artificial intelligence, volume 3, pp. 41–46. IBM,
2001.

[RPB18] Giorgia Ramponi, Pavlos Protopapas, Marco Brambilla, and Ryan Janssen. “T-
CGAN: Conditional Generative Adversarial Network for Data Augmentation in
Noisy Time Series with Irregular Sampling.” arXiv preprint arXiv:1811.08295,
2018.

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should i trust
you?: Explaining the predictions of any classifier.” In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining,
pp. 1135–1144. ACM, 2016.

[Rub04] Donald B Rubin. Multiple imputation for nonresponse in surveys, volume 81.
John Wiley & Sons, 2004.

[SB11] Daniel J Stekhoven and Peter Bühlmann. “MissForest—non-parametric missing
value imputation for mixed-type data.” Bioinformatics, 28(1):112–118, 2011.

[Sch08] Daniel Schunk. “A Markov chain Monte Carlo algorithm for multiple imputation
in large surveys.” AStA Advances in Statistical Analysis, 92(1):101–114, 2008.

[SGK17] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. “Learning important
features through propagating activation differences.” In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pp. 3145–3153. JMLR.
org, 2017.

143

[SHK14] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. “Dropout: a simple way to prevent neural networks from
overfitting.” Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[SHR09] Fritz H Schröder, Jonas Hugosson, Monique J Roobol, Teuvo LJ Tammela, Stefano
Ciatto, Vera Nelen, Maciej Kwiatkowski, Marcos Lujan, Hans Lilja, Marco Zappa,
et al. “Screening and prostate-cancer mortality in a randomized European study.”
New England Journal of Medicine, 360(13):1320–1328, 2009.

[Sim18] Luca Simonetto. “Generating spiking time series with Generative Adversarial
Networks: an application on banking transactions.” 2018.

[SK14] Erik Štrumbelj and Igor Kononenko. “Explaining prediction models and individual
predictions with feature contributions.” Knowledge and information systems,
41(3):647–665, 2014.

[SMH11] Ilya Sutskever, James Martens, and Geoffrey E Hinton. “Generating text with
recurrent neural networks.” In Proceedings of the 28th International Conference
on Machine Learning (ICML-11), pp. 1017–1024, 2011.

[SMS15] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. “Unsupervised
learning of video representations using lstms.” In International conference on
machine learning, pp. 843–852, 2015.

[SSS16] Tobias Schnabel, Adith Swaminatan, Ashudeep Singh, Navin Chandak, and
Thorsten Joachims. “Recommendations as treatments: debiasing learning and
evolution.” ICML, 2016.

[Sut88] Richard S Sutton. “Learning to predict by the methods of temporal differences.”
Machine learning, 3(1):9–44, 1988.

[SVI16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. “Rethinking the inception architecture for computer vision.” In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826,
2016.

[SVZ13] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside convolu-
tional networks: Visualising image classification models and saliency maps.” arXiv
preprint arXiv:1312.6034, 2013.

[SWC09] Jonathan AC Sterne, Ian R White, John B Carlin, Michael Spratt, Patrick
Royston, Michael G Kenward, Angela M Wood, and James R Carpenter. “Multiple
imputation for missing data in epidemiological and clinical research: potential and
pitfalls.” BMJ, 338:b2393, 2009.

[Swe97] Latanya Sweeney. “Weaving technology and policy together to maintain confiden-
tiality.” The Journal of Law, Medicine & Ethics, 25(2-3):98–110, 1997.

144

[SWR10] Charles E Schroeder, Donald A Wilson, Thomas Radman, Helen Scharfman, and
Peter Lakatos. “Dynamics of active sensing and perceptual selection.” Current
opinion in neurobiology, 20(2):172–176, 2010.

[TB98] Volker Tresp and Thomas Briegel. “A solution for missing data in recurrent neural
networks with an application to blood glucose prediction.” Advances in Neural
Information Processing Systems, pp. 971–977, 1998.

[TP18] David Tsay and Cam Patterson. “From Machine Learning to Artificial Intelligence
Applications in Cardiac Care: Real-World Examples in Improving Imaging and
Patient Access.” Circulation, 138(22):2569–2575, 2018.

[TPB00] Naftali Tishby, Fernando C Pereira, and William Bialek. “The information
bottleneck method.” arXiv preprint physics/0004057, 2000.

[UV11] Jonathan Ullman and Salil Vadhan. “PCPs and the hardness of generating private
synthetic data.” In Theory of Cryptography Conference, pp. 400–416. Springer,
2011.

[VLB08] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
“Extracting and composing robust features with denoising autoencoders.” In
Proceedings of the 25th International conference on Machine learning, pp. 1096–
1103. ACM, 2008.

[VSP17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is all you need.”
In Advances in Neural Information Processing Systems, pp. 5998–6008, 2017.

[WRG96] Milton C Weinstein, Louise B Russell, Marthe R Gold, Joanna E Siegel, et al.
Cost-effectiveness in health and medicine. Oxford university press, 1996.

[WRW11] Ian R White, Patrick Royston, and Angela M Wood. “Multiple imputation using
chained equations: issues and guidance for practice.” Statistics in medicine,
30(4):377–399, 2011.

[WZ89] Ronald J Williams and David Zipser. “A learning algorithm for continually running
fully recurrent neural networks.” Neural computation, 1(2):270–280, 1989.

[XBK15] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. “Show, attend and tell: Neural
image caption generation with visual attention.” In International conference on
machine learning, pp. 2048–2057, 2015.

[XLW18] Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. “Differentially
Private Generative Adversarial Network.” arXiv preprint arXiv:1802.06739, 2018.

[YAH16] Jinsung Yoon, Ahmed Alaa, Scott Hu, and Mihaela Schaar. “ForecastICU: a
prognostic decision support system for timely prediction of intensive care unit
admission.” In International Conference on Machine Learning, pp. 1680–1689,
2016.

145

[YDS17] Jinsung Yoon, Camelia Davtyan, and Mihaela van der Schaar. “Discovery and
clinical decision support for personalized healthcare.” IEEE journal of biomedical
and health informatics, 21(4):1133–1145, 2017.

[YJS18] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. “GANITE: Estima-
tion of Individualized Treatment Effects using Generative Adversarial Nets.” In
International Conference on Learning Representations, 2018.

[YJS19a] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. “INVASE: Instance-
wise Variable Selection using Neural Networks.” In International Conference on
Learning Representations, 2019.

[YJS19b] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. “PATE-GAN: Gen-
erating Synthetic Data with Differential Privacy Guarantees.” In International
Conference on Learning Representations, 2019.

[YKR09] Shipeng Yu, Balaji Krishnapuram, Romer Rosales, and R. Bharat Rao. “Active
Sensing.” In Proceedings of the Twelth International Conference on Artificial
Intelligence and Statistics, pp. 639–646, 2009.

[YRD16] Hsiang-Fu Yu, Hikhil Rao, and Inderjit S. Dhillon. “Temporal regularized matrix
factorization for high-dimensional time series prediction.” NIPS, 2016.

[YZB18] Jinsung Yoon, William R Zame, Amitava Banerjee, Martin Cadeiras, Ahmed M
Alaa, and Mihaela van der Schaar. “Personalized survival predictions via Trees of
Predictors: An application to cardiac transplantation.” PloS one, 13(3):e0194985,
2018.

[YZS18a] Jinsung Yoon, William R. Zame, and Mihaela van der Schaar. “Deep Sensing: Ac-
tive Sensing using Multi-directional Recurrent Neural Networks.” In International
Conference on Learning Representations, 2018.

[YZS18b] Jinsung Yoon, William R Zame, and Mihaela van der Schaar. “ToPs: Ensemble
Learning With Trees of Predictors.” IEEE Transactions on Signal Processing,
66(8):2141–2152, 2018.

[ZGC16] Yizhe Zhang, Zhe Gan, and Lawrence Carin. “Generating text via adversarial
training.” In NIPS workshop on Adversarial Training, volume 21, 2016.

[ZKK18] Chi Zhang, Sanmukh R Kuppannagari, Rajgopal Kannan, and Viktor K Prasanna.
“Generative Adversarial Network for Synthetic Time Series Data Generation in
Smart Grids.” In 2018 IEEE International Conference on Communications,
Control, and Computing Technologies for Smart Grids (SmartGridComm), pp.
1–6. IEEE, 2018.

[ZKZ17] Jake Zhao, Yoon Kim, Kelly Zhang, Alexander M Rush, and Yann LeCun. “Ad-
versarially regularized autoencoders.” arXiv preprint arXiv:1706.04223, 2017.

146

	Introduction
	End-to-end machine learning pipeline for medicine
	Data imputation
	Model interpretation

	Synthetic data generation for private data sharing
	Summary of contributions
	Chapter 2 contributions
	Chapter 3 contributions
	Chapter 4 contributions
	Chapter 5 contributions
	Chapter 6 contributions
	Chapter 7 contributions

	GAIN: Missing Data Imputation using Generative Adversarial Nets
	Background: Three types of missing data - MCAR, MAR, and MNAR
	Problem formulation
	Imputation

	GAIN: Generative Adversarial Imputation Nets
	Generator
	Discriminator
	Hint
	Objective

	Theoretical analysis
	GAIN algorithm
	Experiments
	Source of gain
	Quantitative analysis of GAIN
	GAIN in different settings
	GAIN in MAR and MNAR settings
	Prediction performance
	Congeniality of GAIN

	Conclusion

	Estimating Missing Data in Temporal Data Streams Using Multi-directional Recurrent Neural Networks
	Related works
	Problem formulation
	Multi-directional Recurrent Neural Networks (M-RNN)
	Error/Loss
	Interpolation block
	Imputation block
	Multiple imputations
	Overall structure and computation complexity

	Results and discussions
	Datasets
	Imputation accuracy on the given datasets
	Source of gains
	Additional experiments
	Prediction accuracy
	Prediction accuracy with various missing rates
	The importance of specific features
	Congeniality of the model
	M-RNN when data is missing at random

	Conclusion

	INVASE: Instance-wise Variable Selection using Neural Networks
	Related works
	Problem formulation
	Optimization problem

	Proposed model
	Loss estimation
	Selector function optimization

	Experiments
	Synthetic data experiments
	Real-world data experiments

	Conclusion

	ASAC: Active Sensing using Actor-Critic models
	Related works
	Problem formulation
	Static setting
	Time-series setting
	Optimization problem

	Proposed model
	Predictor function
	Selector function
	Training the networks

	Experiments
	Data description
	Experimental results
	Analysis on ASAC with synthetic datasets

	Conclusion

	Time-series Generative Adversarial Networks
	Related works
	Problem formulation
	Proposed model: Time-series GAN (TimeGAN)
	Embedding and recovery functions
	Sequence generator and discriminator
	Jointly learning to encode, generate, and iterate

	Experiments
	Illustrative example: Autoregressive Gaussian models
	Experiments on different types of time series data
	Sources of gain

	Conclusion

	PATE-GAN: Generating Synthetic Data with Differential Privacy Guarantees
	Related works
	Background
	Differential privacy
	Private Aggregation of Teacher Ensembles (PATE)

	Proposed method: PATE-GAN
	Generator
	Discriminator

	Experiments
	Experimental settings
	Data summary and Setting A performance
	Results with Setting B
	Varying the privacy constraint ()
	Setting A vs Setting C: Preserving the ranking of predictive models
	Quantitative analysis on the number of teachers

	Conclusion

	References

