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Majorana neutrino magnetic moment and neutrino decoupling
in big bang nucleosynthesis

N. Vassh,1,* E. Grohs,2,† A. B. Balantekin,1,‡ and G. M. Fuller3,§
1Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA
2Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

3Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
(Received 1 October 2015; published 22 December 2015)

We examine the physics of the early universe when Majorana neutrinos (νe, νμ, ντ) possess transition
magnetic moments. These extra couplings beyond the usual weak interaction couplings alter the way
neutrinos decouple from the plasma of electrons/positrons and photons. We calculate how transition
magnetic moment couplings modify neutrino decoupling temperatures, and then use a full weak, strong,
and electromagnetic reaction network to compute corresponding changes in big bang nucleosynthesis
abundance yields. We find that light element abundances and other cosmological parameters are sensitive to
magnetic couplings on the order of 10−10μB. Given the recent analysis of sub-MeV Borexino data which
constrains Majorana moments to the order of 10−11μB or less, we find that changes in cosmological
parameters from magnetic contributions to neutrino decoupling temperatures are below the level of
upcoming precision observations.

DOI: 10.1103/PhysRevD.92.125020 PACS numbers: 13.15.+g, 26.35.+c, 14.60.St, 14.60.Lm

I. INTRODUCTION

In this paper we explore how the early universe, and the
weak decoupling/big bang nucleosynthesis (BBN) epochs
in particular, respond to new neutrino sector physics in the
form of beyond-the-standard model neutrino magnetic
moments. Small electromagnetic couplings of neutrinos,
e.g., magnetic moments, may have effects in the early
universe, where neutrinos determine much of the energetics
and composition (e.g., isospin). Examinations of the role
that neutrino magnetic channels can play in astrophysics
and cosmology began long before laboratory experiments,
such as GEMMA [1], ever attempted to detect beyond-the-
standard model magnetic moments. Any plasma environ-
ment in which neutrinos are produced in copious amounts,
such as the Sun and supernovae, is susceptible to the
possibility of small neutrino magnetic moments having
observable consequences. Since neutrinos are a dominant
constituent of the early universe during the BBN era, this
environment is sensitive to the additional interactions that
the magnetic channels provide. For example, changes in the
primordial 4He abundance due to νν̄ annihilation into
electron-positron pairs were used to provide limitations
on the mass and magnetic moment of tau neutrinos before
experiment was able to exclude tau neutrino mass of order
MeV [2,3]. Similarly, massive sterile neutrinos have the
ability to magnetically decay into a light neutrino while
injecting a nonthermal photon into the primordial plasma.

Such processes alter the primordial abundance yields which
can be used to constrain the allowed sterile neutrino mass
and magnetic moment parameter space [4].
Since the magnetic moment interaction always changes

the helicity of the incoming neutrino, Dirac neutrinos in
particular have been of interest in BBN research due to their
ability to populate the “wrong” helicity states. For instance
studies of the spin-flip rate in a primordial magnetic field
[5] and primordial plasmon decay into νν̄ pairs [6] are
centered around the possibility of generating right-handed
neutrino states. If the neutrino is a Dirac particle, magnetic
interactions between the neutrinos and charged leptons
could keep the right-handed states in thermal, Fermi-Dirac
equilibrium with the left-handed states. The higher energy
density would increase Neff from ∼3 to ∼6 which is in
disagreement with current observations [7]. This has lead
many authors to examine limits on the magnetic moments
of Dirac neutrinos by constraining the production of right-
handed states during times earlier than BBN such as the
QCD epoch [8–11]. Morgan [8] and Fukugita et al. [9] use
an approximate neutrino-electron scattering cross section
to quantify the production of these helicity states. Elmfors
et al. [10] and Ayala et al. [11] perform numerical treat-
ments of the right-handed production rate by considering
the proper photon propagator in an electron-positron
plasma. These analyses then require that these helicity
states have decoupled prior to BBN. The connection with
BBN comes through either comparisons of the expansion
rate and right-handed interaction rate or in the case of [9]
through constraining the number density of right-handed
states. Therefore the limits on the magnetic moment
of neutrinos that these works produce are necessarily
functions of the right-handed decoupling temperature.
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Fukugita et al. [9] obtain μν < 7 × 10−11μB for a right-
handed neutrino decoupling temperature of Tdec≃
100 MeV. Elmfors et al. [10] and Ayala et al. [11] obtain
μν < 6.2 × 10−11μB and μν < 2.9 × 10−10μB respectively
(also for Tdec ≃ 100 MeV). However, limitations on the
magnetic interaction of neutrinos which appeal to the need
to avoid right-handed states are only applicable to Dirac
neutrinos. A right-handed Majorana neutrino behaves as an
antineutrino and so would not cause a sizable increase in
the effective number of neutrino species. Since for this
paper we will consider the case of Majorana neutrinos,
inclusion of the magnetic channels can keep the neutrinos
interacting with the primordial plasma into the BBN era.
This allows us to examine explicitly the connection
between neutrino magnetic moment and BBN observables
such as the primordial abundances and Neff .
In addition to helicity considerations, magnetic inter-

actions of Majorana neutrinos differ from the Dirac case in
that Majorana dipole moments are necessarily transition
moments. Dirac neutrinos can have both diagonal and
nondiagonal moments, but Majorana neutrino diagonal
moments are identically zero [12]. This implies that for
Majorana neutrinos the magnetic channels must occur with
flavor changing currents such as νe þ e− → ν̄μ þ e− and
νe þ νμ → eþ þ e−. Constraints on the effective magnetic
moment of neutrinos measured by experiments such as
TEXONO [13] and GEMMA are not readily applicable to
the transition magnetic moments of Majorana neutrinos.
Experimental upper bounds need to be converted into limits
on transition moments, μxy, where subscripts x and y denote
the neutrino states coupling to the photon. Such constraints
were first found in [14] using available solar þ reactor
scattering data from experiments such as SNO, SuperK,
ROVNO and MUNU. A recent analysis of sub-MeV
Borexino scattering data [15] found constraints on the
three Majorana transition moments in the mass basis to be
μij ≤ ½3.1–5.6� × 10−11μB [16]. These new limits given by
Borexino data are stronger than those found from MUNU
and TEXONO data, and secondary only to constraints
from GEMMA data which for Majorana moments are
μij ≤ ½2.9–5.0� × 10−11μB [16].
The most restrictive constraint on Dirac and Majorana

dipole moments comes from astrophysics by considering
how energy loss due to plasmon decay in red giant stars
affects the core mass at the helium flash [17]. This analysis
was updated using the red-giant branch in the globular
cluster M5 and found μν ≤ 4.5 × 10−12μB at the 95% C.L.
[18]. The previous constraint is applicable to the sum of
neutrino magnetic and electric dipole moments in the mass
basis. When considering Majorana transition moments
exclusively, previous astrophysical examinations have
mainly focused on the spin flavor precession of solar
neutrinos [19–21] and neutrinos in supernovae [22,23].
The behavior of active neutrino flavor and spin in dense
media is governed by quantum kinetic equations which are

difficult to solve in the general case, but become simpler in
the homogeneous and isotropic conditions of the early
universe [24–34]. In contrast to the solar and supernovae
environments, the literature on the role of Majorana neutrino
transition moments in BBN is sparse. To the best of our
knowledge the only investigation of Majorana moments in
the early universe appeals to an active-sterile transition
moment [35] in the presence of a primordial magnetic field.
In this paper, we examine effects of the Majorana

neutrino transition moments in the early universe without
invoking sterile neutrinos or primordial magnetic fields.
If its transition magnetic moments are large enough, a given
active neutrino species can remain coupled to the electro-
magnetic plasma into the BBN epoch. In the early universe,
a Majorana neutrino can magnetically interact with elec-
trons and positrons as well as photons and other neutrinos.
However magnetic neutrino-neutrino scattering and inter-
actions between neutrinos and photons (such as neutrino
Compton scattering) are proportional to the fourth power of
the magnetic moment [36] and so are suppressed relative to
interactions with electrons and positrons which are propor-
tional to the second power of the magnetic moment. Here we
explore effects on the primordial abundances when enhanced
interactions between electrons/positrons and Majorana neu-
trinos via magnetic scattering and annihilation channels are
taken into account. In Sec. II we demonstrate how magnetic
neutrino-electron scattering can play a significant role in a
relatively low temperature environment such as the early
universe. In Sec. III we find the neutrino interaction rate for
the case of thermal equilibrium by introducing expressions
for the thermally averaged cross section times Moller
velocity which make use of Fermi-Dirac statistics. We use
these interaction rates to find neutrino decoupling temper-
atures as a function of the transition magnetic moments μeμ,
μeτ, and μμτ. In Sec. IVwe explore the corresponding change
in the predicted abundances and Neff when these decoupling
temperatures are implemented in a modified version of
the Wagoner-Kawano (WK) code [37,38]. We conclude in
Sec. V. Appendix A discusses the inverse Debye screening
length at all temperatures for an electron-positron plasma
which is used here to demonstrate that the magnetic
scattering cross section is finite. Appendix B shows the
derivation of the interaction rate expressions employed here
which are functions of the cross section. All relevant cross
sections are listed in Appendix C. Throughout this paper, we
use natural units where ℏ ¼ c ¼ kB ¼ 1.

II. LOW TEMPERATURE ENHANCEMENT TO
MAGNETIC SCATTERING

It is well known that for neutrino-electron scattering the
magnetic channel can dominate over the weak channel
when the recoil energy of the outgoing electron is suffi-
ciently small [39]. Experiments which aim to measure the
magnetic moment of electron antineutrinos from reactors,
such as TEXONO and GEMMA, exploit this property to
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obtain bounds on neutrino moments. By continuously push-
ing their threshold energies lower, these experiments are able
to correspondingly obtain more restrictive upper bounds on
the measured effective magnetic moment given by

μ2ν̄e;eff ¼
X
j

����X
i

Ueie−iEiLμij

����2; ð2:1Þ

where L is the distance between the neutrino source and
detector, Uei is the appropriate vacuum Pontecorvo-Maki-
Nakagawa-Sakata matrix element, and μij are the values of
neutrino magnetic moments in the mass eigenstate basis since
this is the appropriate interaction basis for the magnetic
channel. The sum over j is performed outside the square in
Eq. (2.1) since reactor experiments which search for neutrino
magnetic moment do not measure the final state of the
scattered neutrino. The most recent upper limit given by
TEXONO is μν̄e;eff < 2.2 × 10−10μB at the 90% confidence
level [13]. The lowest experimental upper limit comes from
GEMMAwith μν̄e;eff < 2.9 × 10−11μB at the 90% confidence
level using a threshold energy of∼2.8 keV [1]. As previously
mentioned, these constraints must be translated into bounds
on the transition magnetic moments. The low energy
enhancement of the magnetic scattering channel over the
weak channel can play a role in environments other than the
laboratory such as the early universe during big bang
nucleosynthesis. To demonstrate this we examine the low
temperature behavior of the magnetic neutrino-electron
scattering cross section:

σðsÞ ¼ πα2μ2ν
m2

e

� jtmaxj
s−m2

e
−
s−m2

e

s
þ ln

ðs−m2
eÞ2

sjtmaxj
�
; ð2:2Þ

where α is the fine structure constant and μν is the neutrino’s
effective magnetic moment in units of Bohr magnetons.

Here s is the Mandelstam variable (related to the incoming
neutrino energy in the electron’s rest frame by s ¼ m2

eþ
2meEν) and jtmaxj is the magnitude of the upper bound of the
Mandelstam variable t (related to the minimum value of the
electron recoil energy, Te;min, in the electron’s rest frame by
tmax ¼ −2meTe;min). In this paper we cut off the infrared
divergence by using tmax ¼ −2með

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2sc þm2

e

p
−meÞ where

ksc is the inverse Debye screening length. For a homo-
geneous and isotropic electron-positron plasma in the
absence of an external magnetic field, dynamic screening
need not be considered and the static inverse screening length
can be found to be

k2sc ¼
4α

πT

Z
∞

0

dpp2
1

1þ coshðE=TÞ ; ð2:3Þ

where we have taken the chemical potential of electrons and
positrons to be negligible (see Appendix A). In Fig. 1 we
compare the weak and magnetic cross sections for electron
neutrino scattering with electrons and positrons. Figure 1
shows explicitly that at low temperature the magnetic channel
can dominate over the weak channel particularly for the low
energy portion of the thermal distribution of the neutrino.
The treatment of the divergent behavior of the scattering

cross section σ ∝ ln ðq2max=q2minÞ is what led to the re-
examination of the result of Morgan [8] in Refs. [9–11].
Fukugita et al. [9] take the minimum photon momenta
transfer to be qmin → 2πl−1D where lD ¼ ðT=4πnαÞ1=2 is the
Debye screening length in the classical limit. Elmfors et al.
[10] and Ayala et al. [11] perform more proper numerical
treatments of the plasma effects on the interaction rate by
modifying the photon propagator explicitly. Simple Debye
screening of the Coulomb divergence using the inverse
screening length will only slightly underestimate the
contribution of the photon’s longitudinal mode to the

FIG. 1 (color online). The weak and magnetic scattering cross sections as a function of temperature for different values of the invariant
variable s. The weak cross sections for νe − e− and νe − eþ scattering are represented by the black dashed and black dotted lines
respectively. The magnetic cross sections for neutrino-electron (or positron) scattering are shown as the solid lines for two possible
effective magnetic moments (red—10−10μB and blue—10−11μB).
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cross section [40]. Here we extend the approach of [9] by
implementing the proper expression for the inverse Debye
length, Eq. (2.3), at all temperatures.

III. DECOUPLING TEMPERATURE AND
INTERACTION RATE CALCULATION

To examine magnetic effects of massless Majorana
neutrinos in BBN, flavor changing currents must be con-
sidered. To treat this behavior correctly would require
solving the Boltzmann and quantum kinetic equations
[24–34] to properly evolve the number densities of each
neutrino flavor, while simultaneously following a BBN
network. A code in development which incorporates neu-
trino transport when calculating primordial abundances and
other cosmological parameters, BURST [41,42], will even-
tually be able to properly treat flavor changing currents while
self-consistently calculating the primordial abundances. For
this paper, we proceed by approximating neutrino decou-
pling as a sharp event for each flavor.
Within the decoupling temperature approximation we

treat flavor changing processes such as scattering, e.g.,
νe þ e− → ν̄μ þ e−, and annihilation, e.g., νe þ νμ →
eþ þ e−, as equilibrium channels and take nνe≈
nνμ ≈ nντ . This means the flavor dependence for the
magnetic rates only appears in the magnetic moment
contained in the cross sections. With the equilibrium
approximation of equivalent number densities, the mag-
netic flavor changing rates can be added directly to the
weak flavor preserving rates in order to obtain the total
interaction rate Γ ¼ Γweak

scatt þ Γmag
scatt þ Γweak

ann þ Γmag
ann for an

incoming neutrino. To find the decoupling temperature,
the total interaction rate must be compared with the Hubble
expansion rate:

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3m2
pl

ρ

s
; ð3:1Þ

where mpl is the Planck mass, and ρ is the energy density.
A particle species can be roughly considered to be coupled
when Γ ≥ H or decoupled when Γ < H. The decoupling
temperature is then the temperature at which the approximate
transition fromcoupled todecoupledoccurs [43], anddenoted
Tνx;dec for species x. Here we consider the interactions of
neutrinos with electrons and positrons. This gives Γscatt ¼
nehσvMoliscatt and Γann ¼ nνhσvMoliann when the target par-
ticle is an electron/positron or an antineutrino respectively.
The thermally averaged cross section times Moller velocity
for the case of thermal equilibrium is given by

hσvMoli ¼
R
σvMol

d3p1

1þeE1=T
d3p2

1þeE2=TR d3p1

1þeE1=T
R d3p2

1þeE2=T

; ð3:2Þ

where E1 and E2 are the energies of the two incoming
particles. In order to evaluate Eq. (3.2) in the comoving frame,

we adopt the approach of Gondolo and Gelmini [44], but
introduce expressions which make use of the proper Fermi-
Dirac distributions (see Appendix B). For massless neutrinos
interacting via the annihilation channel the thermally aver-
aged cross section can be written as

hσvMoliann ¼
4π2T2

n2ν

Z
∞

4m2
e

σsds
Z

∞ffiffi
s

p
=T

dx
e−x

1 − e−x

×

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − s=T2

p
2

þ ln

0
B@1þ e−

xþ
ffiffiffiffiffiffiffiffiffiffi
x2−s=T2

p
2

1þ e−
x−

ffiffiffiffiffiffiffiffiffiffi
x2−s=T2

p
2

1
CA
3
75:

ð3:3Þ

For the scattering channel we obtain

hσvMoliscatt ¼
4π2T2

nνne

Z
∞

2m2
e

σðs −m2
eÞds

Z
∞ffiffi
s

p
=T

dx
e−x

1 − e−x

×

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − s=T2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m2

e=s
p
2

þ ln

0
B@1þ e−

xþ
ffiffiffiffiffiffiffiffiffiffi
x2−s=T2

p ffiffiffiffiffiffiffiffiffiffi
1−2m2

e=s
p

2

1þ e−
x−

ffiffiffiffiffiffiffiffiffiffi
x2−s=T2

p ffiffiffiffiffiffiffiffiffiffi
1−2m2

e=s
p

2

1
CA
3
75; ð3:4Þ

and so the interaction rates can now be found by numerical
evaluation of the previous two-dimensional integrals using
the cross sections as functions of s given in Appendix C.
In Fig. 2, we show the rates for weak and magnetic

scattering on both electrons and positrons. The low temper-
ature enhancement of the magnetic scattering channel over
the weak channel discussed in Sec. II is evident. For a
magnetic moment of 10−10μB the magnetic scattering rate
dominates over the weak rate starting at a temperature of
about 0.4 MeV. Figure 3 shows the weak and magnetic
annihilation rates. Clearly magnetic moments on the order
of 10−10μB have less influence on the annihilation channel
as compared to the scattering channel.
To investigate the dependence of the decoupling temper-

atures on neutrino transition moments, we introduce
effective magnetic moments1:

1It should be noted that μ2xy ¼ μxyμ
�
xy ¼ μ2yx since the Majorana

neutrino magnetic moment matrix is antisymmetric with μxy ¼
−μyx ¼ −μ�xy [39] where in the flavor basis these transition
moments are given by μ2xy ¼ jPi;jUxiU

†
yjμijj2. It is also useful

to note that the effective Majorana moments defined in Eq. (3.5)
have recently been shown to fulfill the triangle inequality μ2τ;eff ≤
μ2e;eff þ μ2μ;eff [45], although we do not make use of this property
here since primordial abundances are found as a function of
transition moments.
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μ2e;eff ¼ μ2eμ þ μ2eτ;

μ2μ;eff ¼ μ2μe þ μ2μτ;

μ2τ;eff ¼ μ2τe þ μ2τμ: ð3:5Þ

The effective transition moments defined above are not
identical to the effective electron antineutrino magnetic
moment measured by reactor based experiments such as
GEMMA. Here we assume that the incoming and outgoing
massless neutrinos populate definite flavor states in the
early universe. Figure 4 shows the decoupling temperatures
for electron and mu=tau neutrinos as a function of effective

magnetic moment. For the range μx;eff ≃ ð2–9Þ × 10−11μB,
the magnetic interaction has a small effect on the decou-
pling temperature. The magnetic channels start to play a
more significant role when μx;eff > 10−10μB (roughly
expected from an examination of the rates in Fig. 2). If
the μμτ transition magnetic moment is sufficiently high in
comparison to the transition magnetic moments with a νe
component, the νμ and ντ species could remain coupled to
the electron-positron plasma longer than the νe.

IV. CHANGES IN PRIMORDIAL
ABUNDANCES AND Neff

The WK code assumes at the start of the computation that
all flavors of neutrinos have already decoupled from the
plasma. To alter the neutrino-decoupling epoch, we modify
the summed energy density of neutrinos and antineutrinos
such that

ρνx ¼
7

8

π2

15
T4
νx ; ð4:1Þ

where the temperature of neutrino species x, Tνx , is not
necessarily related to the inverse of the scale factor. We
define the comoving temperature parameter as an energy
scale such that the product Tcma is a comoving invariant,
where a is the scale factor. To calculate Tcm, we set Tcm
equal to the plasma temperature at an early epoch where the
photons, electrons, positrons, and all flavors of neutrinos
and antineutrinos are in thermal equilibrium. If we denote
this epoch with the subscript h, we obtain the expression
Tcm ¼ Thðah=aÞ. The temperature of each neutrino species
evolves as

FIG. 3 (color online). The weak and magnetic rates for νν̄
annihilation into eþe− pairs. The line assignments are the same as
in Fig. 2.

FIG. 4 (color online). Decoupling temperature of the three
flavors as a function of their effective magnetic moment. The
black solid line represents electron neutrinos which undergo
weak decoupling at ∼1.27 MeV. The blue dashed line represents
muon and tau neutrinos which decouple weakly at ∼1.48 MeV.

FIG. 2 (color online). The weak and magnetic rates for neutrino
scattering from electrons and positrons are given as a function of
temperature. The weak channel scattering rates are shown as
black dashed (for electron neutrinos) and black dotted (for muon
and tau neutrinos) lines. Magnetic scattering rates for three
possible values of the effective magnetic moment are represented
by the solid lines (indigo—10−9μB, red—10−10μB, and blue—
10−11μB).
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Tνx ¼
�
Tγ if Tνx > Tνx;dec
adec
a Tνx;dec if Tνx < Tνx;dec;

ð4:2Þ

where adec is the value of the scale factor at the time of νx
decoupling. Equation (4.2) states that Tνx is equal to the
plasma temperature until the decoupling epoch, after which
Tνx scales with the comoving temperature.
The late neutrino decoupling epoch necessitates a

modification to the WK temperature derivative. To calculate
the plasma temperature derivative in the presence of
coupled neutrinos, we need the quantities

pνx ¼
ρνx
3
; ð4:3Þ

dρνx
dTγ

¼ 4ρνx
Tγ

; ð4:4Þ

where p is the pressure, and dρ=dTγ is the temperature
derivative of the energy density. Initially, all three neutrino
species stay coupled to the plasma and contribute to the
relevant components of the temperature derivative:

dTγ

dt
¼ −3H

ργ þ ρe þ
P

3
x¼1 ρνx þ pγ þ pe þ

P
3
x¼1 pνx

dργ
dTγ

þ dρe
dTγ

þP
3
x¼1

dρνx
dTγ

;

ð4:5Þ
where the subscript e denotes the sum of electron and
positron components. In writing Eq. (4.5), we have omitted
the terms associated with baryons for the sake of brevity.
The actual numerical derivative does include baryons and
related derivatives. As each individual neutrino species
decouples, we remove it from the summation for ρ, p, and
dρ=dTγ . Eventually, all three neutrino species decouple and
we obtain the default derivative in the WK code.
The electron neutrino and antineutrino distributions are

inputs into the weak interaction rates:

nþ νe ↔ e− þ p; ð4:6Þ

nþ eþ ↔ ν̄e þ p; ð4:7Þ

n ↔ e− þ ν̄e þ p: ð4:8Þ

For this paper we alter the n → p and p → n rates given
in the WK code to use the hotter νe and ν̄e spectra. The weak
interaction rates influence the neutron to proton ratio, n=p,
which results in the prediction of the primordial 4He mass
fraction:

YP ≡ 4nHe
nb

≃ 4ðnn=2Þ
np þ nn

¼ 2n=p
1þ n=p

: ð4:9Þ

Equation (4.9) is only an approximation as not all of the
remaining neutrons are incorporated into 4He nuclei.

The hotter νe and ν̄e spectra will keep n=p in chemical
equilibrium longer, thereby reducing the ratio and YP.
However, n=p is not solely determined by the νe and ν̄e
spectra. The comparison of the expansion rate H and the
n ↔ p rates determines the epoch of weak freeze-out,
and thus n=p. The hotter νe and ν̄e spectra imply a larger
neutrino energy density, a faster expansion rate, and an
earlier epoch of weak freeze-out. The earlier epoch leads to
a larger n=p. Therefore, lower neutrino decoupling temper-
atures induce two competing effects with regards to 4He
production. We will adopt this theory as our initial
paradigm for the behavior of YP.
We demonstrate the interesting behavior of the primor-

dial 4He mass fraction as a function of neutrino decoupling
temperatures in Fig. 5. When holding Tνe;dec fixed, the
Tνμ;dec − Tντ;dec parameter space shown in the right panel
gives the expected behavior. A decreasing decoupling
temperature for either νμ or ντ precipitates an earlier epoch
of weak freeze-out, yielding a larger n=p and YP.
Nucleosynthesis is insensitive to the flavor of neutrinos
which are not of νe type and so the right panel of Fig. 5 is
symmetric about the line Tνμ;dec ¼ Tντ;dec. No such sym-
metry exists in the left panel of Fig. 5. If we hold Tντ;dec
fixed and examine the change in YP, we observe that YP
increases with decreasing Tνe;dec. The monotonicity would
seem to indicate that the faster expansion rate dominates
over the effect of the hotter νe spectrum on the n ↔ p rates.
Conversely, if we hold Tνe;dec fixed and examine the change
in YP, we observe that YP decreases with decreasing Tντ ;dec
until a turn-around temperature Tντ;dec ∼ 0.4 MeV. The
turn-around temperature is independent of Tνe;dec, however,
we do notice that we traverse more contours when
decreasing Tντ ;dec with larger Tνe;dec than we do with
smaller Tνe;dec. Once Tντ;dec becomes smaller than the
turn-around temperature, YP then begins to increase with
decreasing Tντ;dec. This behavior implies that the faster
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0.
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0.
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62 0.
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66
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FIG. 5 (color online). Contours of constant YP in the Tντ ;dec
versus Tνe;dec (left) and Tνμ;dec (right) parameter spaces. The left
panel uses a constant Tνμ;dec ¼ 0.245 MeV. The right panel uses
a constant Tνe;dec ¼ 0.245 MeV.
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expansion rate does not precipitate an earlier epoch of
weak freeze-out until Tντ ;dec falls below ∼0.4 MeV. This
phenomenon is unlike the behavior described earlier for
constant Tντ;dec on the left panel, and the behavior as seen
on the right panel. We conjecture that our naive paradigm of
n=p as a function of only the νe, ν̄e spectra and expansion
rate neglects the effect of important nuclear physics rates
involving nuclides with mass number two and three.
We would like to note that constraints from neutrino

decoupling are more encompassing than just having impli-
cations for neutrino transition moments. The effect of
nonstandard neutral current (NC) neutrino-electron inter-
actions on the neutrino decoupling temperature in BBN has
been previously considered in Ref. [46]. This work found
that laboratory constraints on the nonstandard NC cou-
plings do not permit such processes to significantly effect
cosmological parameters [46]. Since the neutrino charge
radius generates an additive term to the weak neutrino-
electron scattering cross section [47], studies of nonstand-
ard NC neutrino couplings also have implications for the
magnitude of the effective charge radius in the primordial
plasma. Other electromagnetic properties of neutrinos can
be probed through examinations of the magnetic channel.
Limits on neutrino magnetic moments from existing
experimental neutrino-electron scattering data have been
used to obtain bounds on the neutrino electric millicharge
[48] and generic tensoral couplings of neutrinos to charged
fermions [49]. Since the magnetic interaction coupling is
tensoral in nature, it should not be readily assumed that the
insensitivity of BBN to nonstandard NC couplings translates
to the magnetic channel. Nonstandard tensoral couplings
are being further probed by the TEXONO experiment [50],
and so a proper treatment of neutrino decoupling could be
a complimentary approach to experiment in studying these
interactions.
Since for this paper we are concerned with the connection

between neutrino decoupling and transition magnetic
moments, we proceed with the assumption that the magnetic
interaction is the only new physics affecting the neutrino
decoupling temperatures. In Fig. 6 we show the dependence
of the primordial abundances on the transition moment μeμ.
It is interesting to note that increases in magnetic moment
cause a decrease in the predicted lithium abundance but
do not have a large enough effect to be a potential solution to
the lithium problem since even relatively high magnetic
moments ∼6.3 × 10−10μB can only reduce lithium to
∼3.94 × 10−10 [far from the observationally inferred value
of ð1.6� 0.3Þ × 10−10 [51]]. The known 2σ tension
between the deuterium abundance found with codes such
as PArthENoPE and the observationally inferred value [52] is
also a factor in this paper. With the integrated n → p and
p → n rates, our modified WK code gives a value of D=H ¼
2.61 × 10−5 for small neutrino magnetic moment which
agrees well with the value given by PArthENoPE of D=H¼
ð2.65�0.07Þ×10−5 [with the updated dðp; γÞ3He reaction

rate] [52]. The values found from quasar absorption-line
systems [D=H ¼ ð2.53� 0.04Þ × 10−5] and indirect deter-
minations from CMB data therefore do not allow for this
work to place exclusions on Majorana neutrino magnetic
moments through observational constraints. The 4He abun-
dance is also modified by nonzero neutrino transition
moments, however the largest found 4He abundance for
magnetic moments in the range of ð10−11–6.3 × 10−10ÞμB is
YP ∼ 0.2465. This is well within the observationally inferred

FIG. 6 (color online). The change in relative abundances of
4He, D, 3He, and 7Li as a function of the transition neutrino
magnetic moment μeμ. The solid lines show the results when
μeτ ¼ 10−11μB (black—μμτ ¼ 10−11μB, red—μμτ ¼ 4 × 10−10μB,
and blue—μμτ ¼ 6 × 10−10μB). The dashed lines are the results
for μeτ ¼ 6 × 10−10μB with the colors representing the same
values of μμτ that they did in the solid case.

MAJORANA NEUTRINO MAGNETIC MOMENT AND … PHYSICAL REVIEW D 92, 125020 (2015)

125020-7



range of 0.2465� 0.0097 [53]. Future observations of YP
may provide constraints on neutrino transition magnetic
moments if errors can be reduced to the 1% level. D/H
could be probed to the sub-one percent level with thirty-meter
class telescopes [54–56]. However, transition magnetic
moments would tend to increase D/H, thereby causing more
tension with current observations [57] than in the case
without magnetic moments.
In Fig. 7 we explore contours of constant YP as a

function of transition magnetic moments. The effective
magnetic moment for electron neutrinos defined in
Eq. (3.5) is a symmetric function of μeμ and μeτ.
Therefore, in the left panel the plot is symmetric about
the line μeμ ¼ μeτ. The general behavior is that a larger
magnetic moment implies a larger value of n=p with a
concurrent change in YP. However, this is not universally
true as the YP ¼ 0.2440 contour does not uphold this trend.
An example of an exception to the general trend occurs for
values of μeτ ∼ 5 × 10−10μB with μeμ ≲ 5 × 10−10μB. In this
narrow range an increase in μeμ results in a decrease in YP,
implying that here the n → p rate is faster than H. The
general trend of larger magnetic moment producing a larger
value of n=p seen in the left panel applies to the right panel
without exception. For the right panel of Fig. 7, there is no
symmetry along the μeτ ¼ μμτ line. The asymmetry in the
space implies there still exists a competition between
the n → p rate and H, but the effect is not as dramatic
as in the parameter space of the left panel.
The deuterium abundance is less sensitive than YP to the

n=p ratio. Figure 8 shows the primordial relative abun-
dance of deuterium (with respect to hydrogen) multiplied
by 105 as a function of neutrino transition moments μeμ and
μμτ. The different sets of contours correspond to different
values of μeτ, namely μeτ ¼ 10−10μB for the solid contours
and μeτ ¼ 4.9 × 10−10μB for the dashed contours. For both
sets of contours, the value of D/H increases more rapidly

for increasing μeμ as compared to increasing μμτ. The larger
relative change of D/H as compared to YP (7% vs 1% over
the same parameter space) is not due to the n=p ratio, but
instead a result of a larger initial entropy per baryon. If
neutrinos remain coupled to the plasma after the initiation
of electron-positron annihilation, then entropy is trans-
ferred from the plasma into the neutrino seas. Therefore, a
late neutrino-decoupling epoch implies a loss of entropy in
the photon sector. Reference [7] gives the baryon density as
ωb ¼ 0.022068, which is inversely related to the entropy
per baryon. To match the value of ωb from Ref. [7], we
must begin BBN with a larger entropy per baryon. Figure 8
validates the exquisite sensitivity of the deuterium abun-
dance to the initial entropy per baryon.
Although examinations of the primordial abundances

could not yield approximate constraints on neutrino tran-
sition moments, there is an additional parameter with high
sensitivity to neutrino decoupling, namely Neff, defined by

ρrel ¼
�
1þ 7

8

�
4

11

�
4=3

Neff

�
π2

15
T4
γ ; ð4:10Þ

where ρrel is the radiation energy density, i.e. the sum of
the photon and neutrino energy densities. We examine
contours of constantNeff as a function of neutrino transition
moments in Fig. 9. The axes and contour sets of Fig. 9 are
the same as Fig. 8. As defined in Eq. (4.10), Neff is
independent of neutrino flavor and therefore symmetric and
monotonic in any decoupling temperature parameter space.
However, Fig. 9 shows Neff in the transition magnetic
moment space. The solid blue Neff ¼ 3.050 contour is not
symmetric in this parameter space. The asymmetry is the
result from different decoupling temperatures for ντ com-
pared to νe for equivalent effective magnetic moments. The
magnetic moment channel conduces a rate similar in value
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FIG. 7 (color online). Contours of constant YP in the μeτ versus
μeμ (left) or μμτ (right) planes. The third transition magnetic
moment is set to be ∼10−10μB in both planes.
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FIG. 8 (color online). Contours of constant 105 × D=H in
the μμτ versus μeμ plane. The solid contours correspond to
μeτ ¼ 10−10μB and the dashed contours correspond to μeτ ¼
4.9 × 10−10μB.
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to the weak scattering rates of ντ as compared to the weak
scattering rates of νe, as shown in Figs. 2 and 3. The
magnetic channel contributes more to lowering the decou-
pling temperature of ντ than it does for νe at these particular
magnetic moment values. For larger magnetic moments, the
magnetic channel dominates over the weak channels regard-
less of flavor, as seen in Fig. 4. Therefore, the Neff > 3.100
contours of Fig. 9 are symmetric. We note that it is possible
to use the one-sigma range Neff ¼ 3.30� 0.27 [7] from the
most recent Planck data to constrain the values of neutrino
magnetic moments. We find that Neff is able to exclude
transition moments larger than ∼6 × 10−10μB to two sigma.

V. CONCLUSIONS

Our analysis revealed that Majorana neutrino transition
magnetic moments can alter the nucleosynthesis of the
primordial elements by keeping the neutrinos coupled during
the BBN epoch. Investigating active neutrinos which are
Majorana in nature allowed us to explicitly look at the
cosmology associated with this physics by quantifying the
connections between transition magnetic moment and
observables. However, here we were limited by the tendency
of BBN codes to oversimplify the neutrino physics. Since a
transition magnetic moment necessarily changes flavor and
parity, a proper analysis will use the Boltzmann solvers in
BURST to account for the out-of-equilibrium neutrino dis-
tributions and the spectral swaps associated with changes in
flavor. To circumvent these issues and perform a preliminary
investigation of neutrino transition moments in BBN, we
employed the decoupling temperature approximation to
quantify how magnetically enhanced interaction rates would
maintain thermal equilibrium between the neutrinos and
charged leptons until late epochs.
We expected the late neutrino decoupling epochs to

beget a faster expansion rate and result in quicker weak

freeze-out of BBN events. 4He exhibited the most exotic
behavior of any observable quantity we investigated. The
results for YP when changing μeτ and μμτ invariably showed
a larger n=p and larger YP for increasing magnetic moment
strength. When investigating the effect on YP with chang-
ing μeμ and μeτ, the larger magnetic moment did not always
engender a larger value of YP. However, the general trend
of larger magnetic moments yielding larger values of n=p
was still apparent. In all cases, the change in YP is still
consistent with the observational bounds of Ref. [53]. The
trends for D/H, and to a lesser extent 3He=H and 7Li=H,
follow from changes in the initial entropy. A larger initial
entropy-per-baryon in the plasma causes increases in
deuterium and 3He, and a decrease in 7Li.
Changes in Neff from the resultant extra energy density

of a coupled neutrino limit μxy ≲ 6 × 10−10μB. Our
approximate constraint was limited by current observatio-
nal errors in Neff measurements. Future advances in CMB
astronomy could limit the error in Neff to percent levels,
and the baryon density to sub-percent levels. However the
projected sensitivities would still only allow for this work
to obtain constraints on magnetic moments at the order of
10−10μB. For instance the projected sensitivity on Neff of
σ ∼ 0.021 for CMB-S4 [58] applied about the base value
found using our modified WK code in the absence of
magnetic moments yields an Neff of 3.038� 0.021. This
range would imply a transition magnetic moment constraint
of μxy ≲ 2.5 × 10−10μB to 2σ. This is still roughly an order
of magnitude above the recently found constraints on
transition moments using sub-MeV Borexino data [16].
If we consider values of magnetic moments closer to the
recent laboratory bounds, we find percent changes in D/H
to be 0.021%, YP to be 0.0021%, and Neff to be 0.068% for
the case that all three transition moments are ∼7 × 10−11μB.
BBN observations are not forecast to be at this level of
precision in the near future. Thus if experiments such as
SPT-3 [59], the Simons array [60], or CMB-S4 [58]
determine Neff is statistically larger than the predicted
value of 3.046 [61], it is unlikely that beyond-the-standard
model neutrino magnetic moments are a contributing
factor. Although the calculated abundance changes are
below current observational sensitivities, the technique
outlined in this paper shows the way toward BBN probes
of other beyond-the-standard model neutrino sector issues.
Since we find that transition moments begin to play a

role in neutrino decoupling at the now excluded order of
10−10μB, this work suggests that effects on cosmological
parameters from neutrino magnetic channels are imma-
terial. However the instantaneous decoupling approxima-
tion used here neglects out-of-equilibrium effects which are
known to distort neutrino spectra. The energy dependence
of standard weak neutrino interactions implies that the
high energy tail of the neutrino distribution interacts most
strongly which in turn causes energy dependent spectral
distortions. However as demonstrated in Sec. II, the energy
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FIG. 9 (color online). Contours of constant Neff in the μμτ
versus μeμ plane. The solid contours correspond to μeτ ¼ 10−10μB
and the dashed contours correspond to μeτ ¼ 4.9 × 10−10μB.
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dependence of magnetic interactions significantly differs
from those of weak interactions (also evident from cross
sections in Appendix C). Thus magnetically modified
spectral distortions may have more pronounced effects
on Neff than what was found here with decoupling con-
siderations alone. Additionally given the sensitivity of
4He to electron neutrinos demonstrated by Figs. 5 and 7,
changes in the electron neutrino number density from
spectral swaps associated with flavor changing currents
should be carefully considered. In order to fully understand
possible effects of neutrino magnetic moment in BBN,
the inclusion of neutrino spectral distortions and swaps
deserves to be studied by a more rigorous treatment.
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APPENDIX A: INVERSE SCREENING LENGTH

Following the discussion given by Kapusta and Gale [62]
the exact inverse screening length is found from the
longitudinal polarization in the static infrared limit and
is given in natural units by

k2sc ¼ e2
∂n
∂μ ; ðA1Þ

where we must use the net electron density n ¼ ne ≡
ne− − neþ given by

ne ¼
1

π2

Z
∞

0

dpp2

�
1

eðE−μÞ=T þ1
−

1

eðEþμÞ=T þ1

�
ðA2Þ

because we have an electron-positron plasma [63]. For the
case of zero chemical potential

∂ne
∂μ

����
μ→0

¼ 2

π2
1

T

Z
∞

0

dpp2
eE=T

ðeE=T þ 1Þ2 : ðA3Þ

Then the inverse screening length is

k2sc ¼
4α

πT

Z
∞

0

dpp2
1

1þ coshðE=TÞ : ðA4Þ

Note that in the relativistic limit T ≫ me the above inverse
screening length reproduces the well-known relation ω2

p ¼
1
3
k2sc [62], where the plasma frequency in the relativistic limit

is given by ω2
p ¼ 4απ

9
T2 at zero chemical potential [63].

APPENDIX B: INTERACTION RATES WITH
FERMI-DIRAC DISTRIBUTIONS

Gondolo and Gelmini [44] outline the procedure for
turning the integral of Eq. (3.2) over d3p1 and d3p2 into an
integral over the Mandelstam variable s. Using the change
of variables,

Eþ ¼ E1 þ E2;

E− ¼ E1 − E2; ðB1Þ

gives d3p1d3p2 ¼ 2π2E1E2dEþdE−ds and we can write

1

1þ eE1=T

1

1þ eE2=T
¼ e−

Eþ
2T

2

1

coshðEþ
2TÞ þ coshðE−

2TÞ
: ðB2Þ

For massless neutrinos interacting via the annihilation
channel the numerator of Eq. (3.2) becomes

Z
σvMol

d3p1

1þ eE1=T

d3p2

1þ eE2=T

¼ π2

2

Z
∞

4m2
e

σsds
Z

∞ffiffi
s

p dEþe−
Eþ
2T

×
Z ffiffiffiffiffiffiffiffiffi

E2
þ−s

p

−
ffiffiffiffiffiffiffiffiffi
E2
þ−s

p dE−

coshðEþ
2TÞ þ coshðE−

2TÞ
: ðB3Þ

The last integral of Eq. (B3) is known analytically to
be [64]Z

dx
coshðaÞ þ coshðxÞ

¼ cosechðaÞ
�
ln cosh

�
xþ a
2

�
− ln cosh

�
x − a
2

��
;

ðB4Þ

which allows the thermally averaged cross section for the
annihilation channel to be reduced to a two-dimensional
integral and written as

hσvMoliann ¼
4π2T2

n2ν

Z
∞

4m2
e

σsds
Z

∞ffiffi
s

p
=T

dx
e−x

1 − e−x

×

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − s=T2

p
2

þ ln

0
B@1þ e−

xþ
ffiffiffiffiffiffiffiffiffiffi
x2−s=T2

p
2

1þ e−
x−

ffiffiffiffiffiffiffiffiffiffi
x2−s=T2

p
2

1
CA
3
75;
ðB5Þ
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which is the expression given in Eq. (3.3). For the scattering
channel we obtain

hσvMoliscatt ¼
4π2T2

nνne

Z
∞

2m2
e

σðs −m2
eÞds

Z
∞ffiffi
s

p
=T

dx
e−x

1 − e−x

×

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − s=T2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m2

e=s
p
2

þ ln

0
B@1þ e−

xþ
ffiffiffiffiffiffiffiffiffiffi
x2−s=T2

p ffiffiffiffiffiffiffiffiffiffi
1−2m2

e=s
p

2

1þ e−
x−

ffiffiffiffiffiffiffiffiffiffi
x2−s=T2

p ffiffiffiffiffiffiffiffiffiffi
1−2m2

e=s
p

2

1
CA
3
75; ðB6Þ

which is the expression given in Eq. (3.4). The kinematic
conditions needed to derive the interaction rate for the
annihilation channel given by Eq. (3.3) are jE−j ≤ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2þ − s

p
and E1E2vMol ¼ 1

2
s for massless neutrinos.

The results for the scattering channel given by Eq. (3.4)

make use of the kinematic scattering conditions jE−j ≤ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2þ − s

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m2

e
s

q
and E1E2vMol ¼ 1

2
ðs −m2

eÞ. Note that
in using Eqs. (3.3) and (3.4) for rate calculations the phase
space integrals d3p3 and d3p4 contained in the cross
section must be multiplied by g3 and g4 (for the internal
degrees of freedom of the outgoing particles). The results
for all rates in this paper have included these multiplicative
factors.

APPENDIX C: CROSS SECTIONS

The following cross sections assume the incoming
neutrino to be polarized. Polarization makes use of the
projection operator 1

2
ð1 − γ5Þ and ultimately leads to a

factor of 1=2 in the magnetic cross sections. However it
should be noted that this polarization does not modify the
results for the weak interaction due to the structure of the
weak interaction vertex.

1. Neutrino-electron/positron scattering cross
sections: νðp1Þ þ e�ðp2Þ → νðp4Þ þ e�ðp3Þ

a. Weak ν − e− scattering

The invariant amplitude squared is

hjMweakj2i ¼ 16G2
F½ðg2A − g2VÞm2

eðp1 · p4Þ
þ ðgA þ gVÞ2ðp1 · p2Þðp3 · p4Þ
þ ðgA − gVÞ2ðp2 · p4Þðp1 · p3Þ�

¼ 4G2
F½2ðg2V − g2AÞm2

etþ ðgA þ gVÞ2ðs −m2
eÞ2

þ ðgA − gVÞ2ðsþ t −m2
eÞ2�; ðC1Þ

where for electron neutrinos gA ¼ 1
2
, gV ¼ 1

2
þ 2sin2θw and

for muon=tau neutrinos gA ¼ − 1
2
, gV ¼ − 1

2
þ 2sin2θw. The

Mandelstam variables in the second expression of Eq. (C1)
are defined by

t ¼ q2 ¼ ðp1 − p4Þ2 ¼ −2p1 · p4

¼ 2p1 · p3 − 2p1 · p2;

s ¼ ðp1 þ p2Þ2 ¼ m2
e þ 2p1 · p2: ðC2Þ

Then the cross section can be found to be

σðsÞ ¼ G2
F

4π

ðs −m2
eÞ2

s

�
ðgA þ gVÞ2 þ 2gAðgA − gVÞ

m2
e

s

þ 1

3
ðgA − gVÞ2

�
1 −

m2
e

s

�
2
�

ðC3Þ

after the differential cross section has been integrated from

tmin ¼ − ðs−m2
eÞ2

s to tmax ¼ 0.

b. Weak ν − eþ scattering

Making use of crossing symmetry with p2 ↔ p3 we
have

hjMweakj2i ¼ 16G2
F½ðg2A − g2VÞm2

eðp1 · p4Þ
þ ðgA þ gVÞ2ðp1 · p3Þðp2 · p4Þ
þ ðgA − gVÞ2ðp3 · p4Þðp1 · p2Þ�

¼ 4G2
F½2ðg2V − g2AÞm2

etþ ðgA þ gVÞ2
× ðsþ t −m2

eÞ2 þ ðgA − gVÞ2ðs −m2
eÞ2�;

ðC4Þ

and so the cross section is

σðsÞ ¼ G2
F

4π

ðs −m2
eÞ2

s

�
ðgA − gVÞ2 þ 2gAðgA þ gVÞ

m2
e

s

þ 1

3
ðgA þ gVÞ2

�
1 −

m2
e

s

�
2
�
: ðC5Þ

c. Magnetic

It is well known that the differential cross section for
Coulomb scattering diverges at t ¼ q2 → 0. Here we will
implement a cutoff which can be generically written as
tmax → −jtmaxj. The averaged matrix element squared is
given by

hjMγj2i ¼
32π2α2μ2ν

m2
e

1

p1 · p4

ðp1 · p2Þðp1 · p3Þ

¼ 4e2κ2ν
t

ðm2
e − sÞðsþ t −m2

eÞ; ðC6Þ

where κν ¼ μνμB. The cross section is

MAJORANA NEUTRINO MAGNETIC MOMENT AND … PHYSICAL REVIEW D 92, 125020 (2015)

125020-11



σðsÞ ¼ πα2μ2ν
m2

e

� jtmaxj
s−m2

e
−
s−m2

e

s
þ ln

ðs−m2
eÞ2

sjtmaxj
�
: ðC7Þ

The cross section for neutrino-electron scattering applies
to neutrino-positron scattering as well since using crossing
symmetry with p2 ↔ p3 we can see from Eq. (C6) that
the invariant amplitude squared is symmetric under this
interchange.

2. νν̄ annihilation cross sections:
νðp1Þ þ ν̄ðp2Þ → e−ðp3Þ þ eþðp4Þ

a. Weak

For this process the invariant amplitude squared is

hjMweakj2i ¼ 16G2
F½ðg2V − g2AÞm2

eðp1 · p2Þ
þ ðgA þ gVÞ2ðp1 · p4Þðp3 · p2Þ
þ ðgA − gVÞ2ðp2 · p4Þðp1 · p3Þ�

¼ 4G2
F½2ðg2V − g2AÞm2

esþ ðgA þ gVÞ2ðt −m2
eÞ2

þ ðgA − gVÞ2ðsþ t −m2
eÞ2�; ðC8Þ

where the first expression of Eq. (C8) can be obtained from
a p2 ↔ p4, m2

e → −m2
e switch to the scattering invariant

amplitude given by the first expression of Eq. (C1). Use of
this switch requires that the annihilation process is then
defined by νðp1Þ þ ν̄ðp2Þ → e−ðp3Þ þ eþðp4Þ with four-
momentum conservation p1 þ p2 ¼ p3 þ p4. The second
expression of Eq. (C8) comes from a s ↔ t switch in the
second expression of Eq. (C1) where here

s ¼ q2 ¼ ðp1 þ p2Þ2 ¼ 2p1 · p2 ¼ 2p1 · p3 þ 2p1 · p4;

t ¼ ðp1 − p4Þ2 ¼ m2
e − 2p1 · p4; ðC9Þ

and so the cross section can be found to be

σðsÞ ¼ G2
F

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
e

s

r

×

�
ðg2V − g2AÞm2

e þ
1

3
ðg2A þ g2VÞðs −m2

eÞ
�
; ðC10Þ

after the differential cross section has been integrated from
tmin ¼ 1

2
½2m2

e − s −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

eÞ
p

� to tmax ¼ 1
2
½2m2

e − sþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

eÞ
p

�.

b. Magnetic

The invariant amplitude squared is

hjMγj2i ¼
64π2α2μ2ν

m2
e

1

p1 · p2

ðp1 · p4Þðp1 · p3Þ

¼ 8e2κ2ν
s

ðm2
e − tÞðsþ t −m2

eÞ; ðC11Þ

where the above includes the factor of 1=2 due to
polarization of the incoming neutrino and antineutrino.
So the cross section is

σðsÞ ¼ 2πα2μ2ν
6m2

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
e

s

r �
1þ 2m2

e

s

�
: ðC12Þ
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