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The Equation of Motion of an Electron* 

Kwang-Je Kimt and-Andrew M. Sessler:!: 

tArgonne National Laboratory, Argonne, IL 60439 and The University of Chicago, Chicago, IL 60637 
1Lawrence Berkeley National Laboratory, Berkeley, CA 94720 

ABSTRACT. We review the current status of understanding of the equation of motion of an 
electron. Classically, a consistent, linearized theory exists for an electron of finite extent, as long 
as the size of the electron is larger than the classical electron radius. Nonrelativistic quantum 
mechanics seems to offer a fine theory even in the point particle limit. Although there is as yet no 
convincing calculation, it is probable that a quantum electrodynamical result will be at least as 
well-behaved as is the nonrelativistic quantum mechanical results. 

INTRODUCTION 

For almost 100 years there has been consideration of the proper equation of motion 
of an electron. Many fine physicists, beginning with Abraham (1) and Lorentz (2), 
have worked on this subject, and there are hundreds of papers in the literature. In this 
paper we review the present state of understanding, with some historical background, 
giving the major contributions through the years. 

In contrast with what most physicists believe, it is seen that the linearized classical 
theory, when it is applied in the appropriate regime (nonquantum), is in fine shape: it is 
fmite, has no contradiction with relativity, has no run-away solutions, and has no a­
causal behavior. 

The Abraham-Lorentz equation for a point electron involving a third derivative in 
time suffers from two major problems: contradiction with relativity and run-away or 
acausal behavior. The work of Poincax:- (3) and Dirac (4) solves the problem with 
relativity. The run-away problem is solved by going to an extended model of an 
electron described by a difference-differential equation. The equation for the 

• Work supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract 
No. W -31-1 09-ENG-38 and Office of Energy Research, Office of High Energy and Nuclear Physics, 
Division of High Energy Physics, under Contract No. DE-AC03-76SF00098. 



nonrelativistic case was derived by Sommerfeld (5) and Page (6) and was generalized 
to the relativistic case by Caldirola (7). The extended model is finite and causal if the 

electron size a is larger than the classical el~tron radius re = e 2/ mc2 = 2. 7 x 1 o-13 em. 

Classical theory is clearly not appropriate for examining behavior at a distance less 
than the Compton wavelength of an electron, A= li/ me = 4 x 10-11 em. The work by 

Moniz and Sharp (8) indicates that in nonrelativistic quantum mechanics an electron 
behaves as an extended particle with a size of the Compton wavelength: The equation 
of motion is finite and causal even in the point particle limit as long as the Compton 
wavelength is larger than the classical electron radius. Furthermore, the mass 
correction om is not only finite but actually vanishes in quantum theory. We present a 
new quantum mechanical derivation of this interesting result {9). In quantum 
electrodynamic (QED) analysis, recent work by Low (10) shows that the electron 
motion is finite in perturbation theory in a= e2/li c. However, a proper QED analysis 
has not yet been obtained (and maybe, those do not even exist). 

There are several excellent text books (11-J3) and review articles (14-16) on the 
classical electron theory. 

NOTATION 

Notations adopted in this paper are as follows: 
mo baremass 
m observed mass (m = mo + om) 
c speed of light 
re classical electron radius (e2/mc2

) 

a radius of extended electron 
te (2/3) refc' 
A Compton wavelength 
x, x' 
y(t) 
y = 
u = 

~ = 

ds = 
ua = 
Ua = 
ua. -· 

space coordinate (3 vectors) 
electron coordinate as a function of time (3 vectors) 
dy/dt, y = d 2y I dt2

, etc. 

dy/dt (three-velocity), ti=du/dt, etc. t 

jujjc, "(= 1/ ~1-~2 
cdt/y (relativistic invariant) 
dxa/ds = y(1, u/c) (contra-variant four vector) 
y(l,-u/c) (covariant four vector) 
dua./ds,lia. =d2ua./d2s, etc. 
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ABRAHAM-LORENTZ AND OTHER 
CLASSICAL ~QUATIONS OF MOTION 

We start by deriving various forms of equation of motion of an electron in 
nonrelativistic classical mechanics. Let the electron trajectory be y(t). The electron is 
really a charge distribution centered at y(t) represented by 

ef (x - y (t)), (1) 

where e is the electron charge, and f(x) is a spherically symmetric function, normalized 
so that 

(2) 

The nonrelativistic equation of motion is determined by the Lorentz force law: 

m0y(t) = Fext +e J f(x- ;(t))(E(x) +±y(t) xB(x)}d3x, (3) 

where mo is the bare mass, the dot represents the time derivative, Fext is the external 
force, and E and B are, respectively, the electric and magnet field in Gaussian units. 
The second term in the above equation is the electromagnetic self force. 

It is convenient to work with the potentials A and <1> in Coulomb gaug~. 1 The scalar 
potential is given by 

<j>(x t) = eJ f(x'-y(t)) d3x'. 
' lx-x1 (4) 

The vector potential is obtained by solving the wave equation 

---V A=-y (t)f(x-y(t)). 
( 

1 a2 2) 47te . 
c2 at2 c .1. 

(5) 

Here y .~. is the transverse part of y . 

It is convenient to work in the k representation: 

11 Our discussion follows closely the derivation in Low's recent paper (10). 
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(A(x,t),f(x)]= -
1

-
3 
J eik·x[A(k, t), f(k)]d3k. 

(21t) 

We solve Eq. (5) with the retarded boundary condition: 

where k" = lkl. 

(6) 

Next, we compute E = -V<j>- aAJ(cat) and B = V x A, and insert the results into 

Eq. (3). In doing so, we observe that y l. = y- k (k · y )/k2 can be replaced by (2/3) y 
because of the spherical symmetry. The contribution via the scalar potential <1> vanishes 
because of the spherical symmetry and because we are using the Coulomb gauge. The 
self force arising from the electric field is found to be 

(7) 

where 

(8) 

The force arising from the magnetic field is nonlinear in y (and its derivative), which 
we neglect. In linear approximation, the exponential factors in Eq. (8) can also be 
replaced by l. Therefore, · 

Y(t,'t) = y (t-1:). (9) 

Equations (7) and (9) are the desired expression for the classical equation of motion 
and can be shown to be identical to the power series expression derived by Lorentz for 
linearized radiation reaction in the nonrelativistic approximation (2,11). 

For the case of a spherical shell of radius a, 

(10) 

Equations (7) and (9) become 
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m0y(t) = Fext(t) +-;-(y(t- 2a/c)- y(t)]. 
3a c 

(11) 

This differential-difference equation will be referred to as the Sommerfeld-Page 
equation because they derived it (5,6). 

Expanding y( t - 2a I c) in Eq. ( 11) in a Taylor series and neglecting terms that 

vanish as a--70, 

where 

, .. ( ) F ( ) s:: •• ( ) 2e2 ... ( ) m0y t = ext t - umy t + - 3 y t , 
3c 

4 e2 

om=---. 
3 2ac2 

(12) 

(13) 

Equation (12) will be referred to as the Abraham-Lorentz equation in the following. It 
is the simplest form of the equation of motion, taking into account the electromagnetic 
self force in a nonrelativistic linear approximation and in the point particle limit. 

The second term on the RHS of the Abraham-Lorentz equation can be interpreted as 
the inertia due to the electromagnetic mass ~m. However, it is in contradiction with 
the notion of relativity because om is different from the electrostatic mass e2/2ac2 by a 
factor of 4/3. 

To see the meaning of the third derivative term in the Abraham-Lorentz equation 
we move the om term to the LHS, multiply both sides by y, and integrate over a finite 
interval of time. The LHS becomes the increase in the electron's kinetic energy. The 
RHS is 

(14) 

As long as the second term is negligible, this is the negative of the well-known dipole 
radiation. The last term in Eq. (12) is therefore reasonable. However, we will see later 
that this term gives rise to run-away or acausal behavior. 

Equation (12) therefore contains two major difficulties: i) a contradiction with 
relativity, and ii) run-away and preacceleration behavior. We shall see in the following 
sections how these troubles are avoided. The bottom line is that there is. no problem if 
the shell radius a is larger than the classical electron radius re. 
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, 
RELATIVITY AND POINCARE STRESS 

Let us first consider the relativistic generalization of Eq. (12). In 1903, before 
special relativity was established, Abraham derived (1) the following force equation 
valid for relativistic speed (neglecting terms vanishing in the limit a~ 0): 

d 2 e2 d · 
mo -d ('}'U) = Fext- -

3 
- 2 - ('}'U) + r, 

t ac dt 
(15) 

where u = dy/dt is the three-velocity, y = 1/ )1- u2 /c2 
, and 

As was shown by von Laue (17), the r in the above is 1/y times the space part of the 
four vector: 

r ll 2 2 c··!l c·O:. ) 11) = -e u + u u a: u . 
3 

(See the explanation in the "Notation" section.) 

(17) 

The second term in Eq. (15) gives rise to an electromagnetic mass that is 4/3 times 
the electrostatic mass, in contradiction with relativity. 

Abraham also found the rate of work done on an electron (neglecting terms 
vanishing in the limit a ~ 0): 

-. =Fex1 •u-- -- y-- + -e -[u•u+-(u • u) ]. dE 2 e
2 

d ( 1 ) 2 2 "-/ •• 3f . 2 

dt 3 a dt 4y 3 c3 c2 (18) 

Since E = mc2.y from relativity, it follows that dE/dt = m{d')'U/dt)· u. However, the 
force (Eq. (15)) and the power (Eq. (18)) do not satisfy this fundamental conservation 
law. The bad term is 2/3 e2/a (dldt)(l/4y) in Eq. (18). Except for that term, Eqs. (15) 
and (18) would have formed a four vector equation. 

Although these equations were derived before relativity was fully established, 
Abraham used the correct relativistic model of an electron in which the spherical 
charge distribution in the rest frame is contracted to a spheroid for a moving electron. 
The offending term in Eq. (18) arises from this relativistic change of the electron's 
shape. The derivations of Eq. (15) and Eq. (18) are difficult and confirmed by Schott 
(18) who carried out a very rigorous and complicated calculation. 
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We therefore have the strange situation thatthe relativistic equation of motion is in 
contradiction with relativity! 

In the nonrelativistic limit, Eqs. (15) and (18) become, respectively, 

du F 2 e
2 

• 2 e
2 

•• d mo -= ---u+--u an 
dt ext 3 ac2 3 c3 ' 

(19) 

dE F 5 e2 
• 2 e2 

•• -= •u---u•u+--u•u. 
dt ext 6 ac2 3 c 3 

(20) 

Once again u • force (Eq. (19)) does not yield the power (Eq. (20)). (Note that Eq. (19) 
is identical to Eq. (12).) The problem was solved by Poincare (3) with 
nonelectromagnetic stresses and Dirac by invoking covariance (4). 

Poincare, in his paper submitted in 1905 (3) (without knowledge of Einstein's work 
on special relativity)2

, observed that a purely electromagnetic model of the electron, 
such as the charged sphere, is not internally consistent because it will fly apart due to 
the electrostatic repulsion. To counteract the repulsive force, he imagined that the 

·inside of the sphere provides a uniform negative pressure (or stress) p = e2/81ta4
• 

To see how this Poincare stress solves the problem mentioned in the previous 
section, consider the charged shell in motion. Due to the Lorentz contraction, the 
sphere becomes an oblate spheroid -~ith the minor axis in the direction of the motion 
reduced by y. The work done by the mechanical force is given by the pressure times 

. · the volume change. (The pressure is relativistically invariant since the force and the 
area element transform the same way.) Thus the mechanical system must lose energy 
at the rate 

2 e2 d 1 = -----
3 a dt 4y 

(21) 

Here the expression 47ta3/3y is the volume of the spheroid. When Eq. (21) is added to 
Eq. (18), the discrepancybetween the force and the power equation is removed. 

However, the problem of the mass-the fact that the electromagnetic mass is 4/3 
times the electrostatic mass-is not solved yet. One way of solving the problem is to 
say that the bare mass contains a term -(1/3) times electrostatic mass. For ~ more 

2
> Relative contributions of Poincare and Einstein to special relativity is a subject of some debate and 

considerable historical interest. See A.A. Logunov referred to in (3). 
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formal approach (19), we can introduce a stress tensor representing the Poincare stress 
by 

2 

ep• _ e ( 11v 11 v )ec ) Poincart ---3 g -qu u - a-r ' 
81ta 

(22) 

where r;v = (1,-1,-1,-1), q is an arbitrary constant, e is the step function, and r is the 

radial coordinate in the rest frame of the shell. The quantity e~~ncart is constructed so 

that 

a eJlV - a reJ.lV eJ.lV ) - o J.l - J.l~ EM+ Poincar~ - ' (23) 

where a~ is the electromagnetic stress tensor associated with the Coulomb field of a 

spherical shell. Equation (23) assures that the total momentum 

(24) 

is a four vector (11). The momentum associated with the Poincare stress alone is 

J.l = a3
X8J.IO = +-- --+ e

2 

1 [ 1 ] 
P Poincart f Poincart 2a 3 'Y qy, qyu (25) 

We need to add dp11P. Jdt to the RHS ofEqs. (18) and (15). Our previous result (Eq. 
omcarc 

(21)) corresponds to the case q = 0. If, on the other hand, we choose q = 1, we obtain 

2 d u fll · e2 dull 
m C -u - +r11 ----. 0 - ext 

ds 2a ds 
(26) 

We now have an equation of motion of an electron with the observed mass m = mo + 
om, om= e2/2ac2

, solving the so-called 4/3 problem. 
The above method of solving the 4/3 problem is clearly rather formal and arbitrary. 

There are also more intuitive approaches, for example by Boyer (20) who notes that the 
Poincare stress may not act at the same time in all parts of the moving electron. A 
review of different solutions of the 4/3 problem is given by Rohrlich (16). 

The saga of the 4/3 problem is in some sense a story of how special relativity 
proved itself as· a theory of internal consistency and beauty. The investigation of the 
electron's equation of motion started while special relativity was still evolving. 
Therefore, there was doubt whether the electron theory was consistent with relativity, 
which lingered even after relativity was fully established. Einstein, never doubting 
relativity, wasted no time in checking covariance of the electron theory. He was too 
busy working out general relativity! 
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Before closing this section, we need to mention Dirac's contribution (4). He 
understood that the problem with the Abraham-Lorentz equation was in trying to 
approach too near an electron. He therefore devised an ingenious way to avoid the 
difficulty. Stay a finite distance away from an electron and demand relativistic 
covariance. He then obtained Eq. (26), which is therefore referred to as the Abraham­
Lorentz-Dirac equation. 

Actually, Dirac's derivation of Eq. (4) is valid only up to a term of the form dB11/ds, 
.. where B11 is a four vector with the restriction u11 > dB11/ds ::: 0. The simplest choice, B11 

::: ku11, gives rise to a term that can be incorporated into the inertial term (me du11/ds) in 

Eq. (4). The next order term involving ti 11 (the dot indicating the derivative with 

respect to s) can be shown to be of the form B11 =k'((uatiaJu 11 +4(tiaiia~11 ). Terms 

of such a complexity are disposed of by saying that a simple thing like an electron 
cannot possibly have such a complication. 

If we are willing to make a few very plausible assumptions, the Abraham-Lorentz­
Dirac equation can be derived very easily as follows (16): 

(27) 

where X11 includes radiative effects. Both sides of Eq. (27) are orthogonal to u11• Thus 
we may write Xll = (gllv- u11 uv) Yv. Try y!1 of the form a u11 + b till+ c ii 11 • The first 
term does not contribute, and the second term is of the same form as the mass term, 
which can be incorporated into m. With the third term, it is easy to show that X11 is 

proportional to fil. (Here we are using tiatia + iia · ua = 0 .) The coefficient is 

determined by demanding consistency with the nonrelativistic Abraham-Lorentz 
equation, leading to [iL = X11• End of the proof. 

RUN-A WAY SOLUTIONS, BOUNDARY CONDITIONS, 
AND INTEGRAL EQUATIONS 

The general solution of the Abraham-Lorentz equation is 

where 

I 

m y (t)::: e t/t. [ m y (0)- 1/te J dt' e-tlr. Fext(t')], 
0 

2 re 2 e2 

t =--=--­
e 3 c 3 mc3 • 

9 
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The solution in general exhibits exponential growth, i.e., the run-away behavior. Dirac 
noted that the run-away can be avoided if we choose the initial condition: 

-
m y (0) = lite J dt'e-''1'· Fext(t'). (30) 

0 

Then 

-
m y (t) = J dae-a Fext (t +tea). (31) 

0 

This solution now exhibits preacceleration: the particle starts to move before the force 
is applied and the initial condition depends upon the entire future path. 

Nevertheless, it satisfies the Rohrlich criteria of "the unobservability of very small 
charges" (13). That is, as the charge becomes very small we shouldn't have a solution 
widely different from that of an uncharged particle. 

The reason why the Abraham-Lorentz equation exhibits either run-away or 
preacceleration is the fact that, as the electron radius a vanishes, the bare mass mo 
becomes negative to keep the observed mass m finite. A particle with a negative mass 
can clearly supply an infinite amount of energy. 

The difficulty can be avoided in an extended electron modeL To see this, we return 
to the Sommerfeld-Page Eq. (11), which can be written in the following form3

: 

y(t)= Fex,(t) +(~)(cte) I [y (t-2a!c)- y (t)]. (32) 
m(1-cte/a) 2a a (1-cte/a) 

In the above expression, the combination m(1-ct:Ja) is simply the bare mass mo. 
Assume that there are no external forces, and there exists a run-away solution of the 
form y(t) = y(O) e00 with a positive real part of a. From Eq. (32) it is easy to see that 
this is possible only when 1-ct:Ja is negative. Thus the run away solution is possible if 
and only if the electron radius a is less than (2/3) re. For a > (2/3) re we get damped 
oscillatory solutions. 

It is sometimes stated that the run~away behavior is due to the infinite energy 
associated with a point electron. This is false because the run-away occurs for even a 
finite a as long as it is less than (2/3) re. Run-away occurs if and only if the bare mass 
is negative (and, therefore, the Hamiltonian is no longer positive definite). 

We can also show that if a > cte, the motion is causal with no preacceleration. This 
can be seen most easily if Eq. (32) is turned into an integral equation with a Green's 
function: 

31 This derivation here is due to Moniz and Sharp (8). See also Pearle (15). 
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where 

-
Y (t) = J G (t-t') Fext(t') dt', 

1 -
G(t-t') =- f 

2nm_ 

e -i(J](t-t'ldro d 
----,an 

B 

It can be shown that all poles of 1/B(ro) occur in the lower half (I)-plane if 

2 
a>- re. 

3 

(33) 

(34) 

(35) 

(36) 

. Then the Green's function G('t) vanishes for 't < 0. Therefore, the motion is causal. 

On the other hand, if a < 2 
re then there is in general acausal behavior. 3 . 

A relativistic generalization of the Sommerfeld-Page equation was given by 
Caldirola (7): 

2 • 11 11 2 e2 1 
moe U = fext + - -- (u Jl (s-2a)- U Jl (s)ua(S) Ua(s-2a)]. (37) 

3 a 2a 

The Caldirola equation is fine: no run-aways and no causality problems. However, 
when we take a ~ 0, then there are problems. 

Yaghjian (14) attempted to produce a causal equation with no run-aways for a point 
electron. He modified the Abraham-Lorentz Eq. (12) by multiplying the third 
derivative term by a function Tl(t), which changes smoothly from 0 .for t < 0 to 1 for 
t > 2a/c (or by multiplying the fll term by a similar function Tl(S)), arguing that the 
Taylor series expansion breaks down when the force changes abruptly. However, the 
solution of the Yaghjian equation still exhibits acausal behavior. 

QUANTUM MECHANICAL EQUATIONS 

It had been hoped that the difficulty of the classical theory in taking a point particle 
limit might be solved by quantum mechanics. The observation that the mass 
renormalization Om is less singular in quantum electrodynamics than in classical theory 
seemed to reinforce this hope. However, a real quantum mechanical analysis of the 
electron equation has not been carried out until modem time. The reason behind this 
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lack of activity appears to be the success of the renormalization theory in quantum 
electrodynamics, which established that all observable phenomemt can be calculated to 
a finite answer order by order in perturbation theory in terms of the observed mass and 
charge; · 

In 1977, Moniz and Sharp presented a very interesting quantum mechanical 
calculation (8), according to which the equation of motion in nonrelativistic quantum 
mechanics is finite even in the point particle limit. However, the paper has not 
received much attention, probably because the derivation was not transparent due to 
the elaborate manipulations of infinite series. 

One of us (KJK) was able to derive the result of Moniz and Sharp via a more 
understandable method (9}, which will be summarized here. 

The derivation of the quantum mechanical equation of motion for Heisenberg 
operators proceeds similar to the derivation in the classical case given in the section 
"Abraham-Lorentz and Other Classical Equations of Motion." Again neglecting the 
magnetic term, one arrives at an equation identical in form to Eq. (7), but the operator 
Y is given by the symmetrized version of the classical expression, Eq. (8}, as follows: 

_ 1 ( ik·yl -ik·y1 V~. ik·Ya • -ik·Ya ) ( k k ]+ --\e e N 1 + e y 1e + ---7 - • 
4 

(38) 

Here Y2 = y(t), Yt = y(t-'t), { l+ is the anticommutator, and [k ---7 -kt indicates terms 
. obtained by changing the sign of k and taking the Hermitian conjugate. 

Noting that p = P - eAJc = mo y is the kinetic momentum operator (P = canonical 
momentum), we obtain 

ik-y1 • -ik·y1 • 1.'1 e Yte = Yt -ClV\., (39) 

where A. = h !moe is the Compton wavelength for the bare mass mo. In classical 
mechanics, we would have replaced the factor exp (ik·y1) by 1 since it would at most 
contribute to nonlinear terms. Such a procedure is not justified in quantum mechanics 
as is clear from Eq. (39). Similarly, the factor exp (ik·y2) • exp (-ik·y1) in Eq. (38) 
cannot simply be replaced by l. Instead, we proceed as follows4

: 

•> Similar reduction of product of exponential operators was used by Baier and Katkov (21) in their 
calculation of quantum synchrotron radiation. The steps used here follow closely a simplified 
formulation of the Baier-Katkov reduction by Cahn and Jackson (22). 
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exp(ik · y 2)exp(-ik · y1) = exp(i'tH/Ii)exp(ik · y1)exp(-i'tH/Ii)exp( -ik · y1) 

:=: exp(hH(p)/li)exp(-hH(p -lik)/li) (1: = t- t') (40) 

Here H is the Hamiltonian. Since H is a sum of the kinetic energy p2/2rtlo and the 
electromagnetic energy, it follows that 

. li2k2 lip. k 
H(p -lik) = -+ H(p) ---. 

2m0 m0 

(41) 

Now, using the Campbell-Baker-Hausdorff formula (23) to first order in p, we can 
show that 

exp(ik · y,)exp(-ik · y,) =exp(- i~:'} +ik · (y2 - y1 )]. (42) 

Thus 

Noting that odd power ink vanishes after d3k-integration and (kx2)=~k2 , one 

obtains (keeping only terms linear in y) 

The linearized electron's equation of motion in nonrelativistic quantum mechanics 
is then given by inserting Eq. (44) into Eq. (7). Expanding the operator y(t-'t) in Eq. 
(44) in a Taylor series around 1: = 0 and inserting it in Eq. (7), an equation involving a 
sum of derivatives of y(t) is obtained. It can be shown that the coefficients of these 
derivatives are exactly those derived in Moniz and Sharp5

: 

- 2 e
2 

- r(-1)
0 

AD )d.n+2y(t) mo y(t) - Fext(t) - -3 2 I I n dtn+2 ' 
c n=() n.c 

(45) 

51 The derivation in the above gives rise to a term proportional to j•(t) with negative coefficient. Such a 

term, not discussed in Moniz and Sharp, would provide further damping of the motion. 
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where 

A = (r+ Ac a )(1 + A a k and n 3(n + 2) dAC . (n + 1) dA rn' . 
/ 

( )( )" - ' n + 1-2k - 2 
" 

Bn = L n. ~ J dxdx'f(x)lx -xr-
1
+

2"(v /) f(x'). 
tc.=O(n+2k)! 2k 4 

(46) 

In particular, the coefficient of y(t), the quantum mechanical self-mass 3m, is found 

to be 

3m= -2 1+-- 1+A- o· (
2e

2r A a I a f 
3 c 6 aA aA 

(47) 

Here 

(48) 

where P denotes the principal value integration. Equation ( 48) is remarkable in that 
the self-mass remains finite in the point particle limit f(k) -7 1. In fact, the self-mass 
vanishes in this limit! 3m -7 0 (a -7 0 with A fixed in quantum mechanics). 

Therefore, A (bare mass ) = A (observed mass). This is why we used the same 
notation for these two Compton wavelengths. 

In another limit, A -7 0, 

and the theory reproduces the classical result, as it should. 
Whether the quantum mechanical equation of motion exhibits run-away or acausal 

behavior can be studied by writing Eq. (7) in a Green's function form, similar to that in 
the section on "Run-away Solutions, Boundary Conditions, and Integral Equations." 
Such an analysis in the point particle limit was carried out by Moniz andSharp. It is 
found that the motion is causal with no run-aways if 

e2 r 
<X=-=~< 1.75. 
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In quantum mechanics, an electron is spread over a Compton wavelength. Thus, the 
above condition is reasonable in view of the classical causality condition Eq. (36), 
which can be written as refa < 1.5. 

Nonrelativistic quantum mechanics is not valid for rapid motion with frequency 
hro> mc2 or if we approach a distance A near the electron, and a full QED analysis 
must be performed. The only calculation by QED was reported by Francis Low (13). 
He has not derived an equation of motion, but he has shown that the motion is finite in 
each order of a.. This is reasonable in view of the well-established renormalization 
theory that gives a finite answer for any physical process in perturbation expansion in 

' a.. However,· the perturbation theory is not suitable for taking the classical limit, and it 
is unclear whether QED can actually produce an equation of motion. 

CONCLUDING REMARKS 

The impression one gets from reading text books is that the classical electron theory 
is in trouble due to run-away solutions and acausal behavior. However, we have seen 
that classical theory is actually fine if the electron is taken to be a spherical object of 
not too small a radius, greater than the classical electron radius re. The restriction is 
reasonable sincere is about 100 times smaller than the Compton wavelength A, and we 
cannot consider distances less than A without considering quantum mechanics. 

The nonrelativistic quantum theory also looks fine: In fact, the quantum theory is 
better behaved than the classical theory because it is finite and causal irrespective of 
the size of the electron, as long as a.= rJA, < 1.75. The inequality is certainly satisfied 
in the real world where a.= 1/137. The fact that the quantum theory is better behaved 
is also reasonable because the electron is smeared out due to the uncertainty principle. 
The quantum theory as reviewed here has the appropriate feature of having the correct 
classical limit. However, the limit of validity of the nonrelativistic quantum analysis is 
not really understood. The vanishing of the self-mass om in the point particle limit 
must be accordingly interpreted with care. · 

In fact, we know that the nonrelativistic treatment cannot strictly be valid in the 
point-particle limit because of vacuum polarization. It is ·reasonable that a full QED 
calculation will be at least as well-behaved as is the case in nonrelativistic quantum 
mechanics. Unfortunately, there exists as yet no real calculation in QED to confirm 
these conjectures. 

Nevertheless, we are entitled to close this paper on a positive note: We started from 
the Abraham-Lorentz theory of point electron, which was problematic. We saw how 
the theory became fine by the use of an extended electron. The nonrelativistic 
quantum mechanics is fine even in the point-particle limit. A proper relativistic 
quantum electrodynamics calculation has not yet been done, and may not be possible 
(within QED as a perturbation theory), but should be no more singular than the 
nonrelativistic theory. 
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