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Abstract. We develop a new approach for the computation of the Mullineux involution for
the symmetric group and its Hecke algebra using the notion of crystal isomorphism and the
Iwahori–Matsumoto involution for the affine Hecke algebra of typeA. As a consequence, we
obtain several new elementary combinatorial algorithms for its computation, one of which is
equivalent to Xu algorithm (and thus Mullineux original algorithm). We thus obtain a simple
interpretation of these algorithms and a new elementary proof that they indeed compute the
Mullineux involution.
Keywords. Symmetric group, Mullineux involution, crystal graph
Mathematics Subject Classifications. 20C08, 05E10

1. Introduction

The Mullineux problem is a long standing problem in the representation theory of the symmetric
groups which has been studied by various authors since the end of the 70’s. Let Sn be the
symmetric group on n letters with n > 1. It is known that the irreducible representations of Sn

over the field of complex numbers are naturally labeled by the partitions of n (the sequences of
non increasing positive integers of total sum n)

IrrC(Sn) = {ρλ | λ partition of n}.

The characters and the dimensions of these representations may also been easily computed
thanks to the combinatorics of partitions. There are exactly two non isomorphic representa-
tions of Sn with dimension 1: the trivial representation which is labeled by the partition (n) and
the sign representation ε, labeled by the partition (1. . . . .1)︸ ︷︷ ︸

n times

. As a consequence, if λ is a partition

of n, there exists another partition µ such that ρµ ≃ ε⊗ρλ. It is natural to ask how one can com-
pute µ from λ. The result is that µ is the conjugate partition of λ, that is the partition defined by
interchanging rows and columns in the Young diagram of λ (the Young diagram of λ is the finite
collection of boxes arranged in left-justified rows, with λk boxes in the k-th row for all k ⩾ 1).
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Of course, all the above questions and problems arise when we replace C by an arbitrary
field k and in particular by a field of characteristic p > 0. In this case, the irreducible rep-
resentations have first been constructed in [Jam76]. They are labeled by a subset of parti-
tions called the set of p-regular partitions (the partitions of n where the non zero parts are not
repeated p or more times)

Irrk(Sn) = {ρ̃λ | λ p-regular partition of n}.

We also have two one-dimensional representations: the trivial representation and the sign rep-
resentation ε and they are non isomorphic if and only if p ̸= 2. By contrast, we still not even
know how to compute the dimensions of these representations in general. The other mentioned
problem still makes sense in this context. Namely, if λ is a p-regular partition then there exists
a unique p-regular partition µ such that

ρ̃µ ≃ ε⊗ ρ̃λ.

If we set mp(λ) := µ, we thus obtain an involution mp on the set of p-regular partitions.
If p = 2 then it is clear thatmp = Id (because then ε is nothing but the trivial representation)

but in general, it is difficult to describemp. In fact, this map may even be defined in the context of
Hecke algebras of type A at a p-root of unity. In this case, p does not need to be a prime but just
a positive integer (greater than 2). The associated involution that we obtain coincides with mp

if p is prime. A natural problem is thus to find an explicit description of this involution me on
the set of e-regular partitions for all e ∈ N>1. This is the main subject of the present paper.

In [Mul79], Mullineux first gave a conjectural algorithm for computing this involution (which
will be called the Mullineux involution in the sequel). Later, another equivalent algorithm has
been obtained by Xu [Xu99, Xu97]. In [Kle95], Kleshchev gave another combinatorial recursive
algorithm for computing the Mullineux involution but it was not clear at that time why this
algorithm would be equivalent to the Mullineux (and the Xu) algorithm. Ford and Kleshchev
gave a proof of this fact later in [FK97]. Another proof was presented in [BO98] by Bessenrodt
and Olsson. In [BK03], Brundan and Kujawa gave another proof using works by Serganova on
the general linear supergroup. We also note that recently, Fayers [Fay22] has provided another
way for computing the involution.

The aim of this paper is to present several elementary combinatorial (and recursive) algo-
rithms for the computation of the involution using the Kleshchev result. These algorithms are
based on the results of [JL10, JL13] and on the following points:

1. Each simple module for the Hecke algebra of type A labeled by an e-regular partition of
rank n can be seen as a simple module for the affine Hecke algebra of type A.

2. The Mullineux map at the level of Hecke algebra coincide with the so called Iwahori–
Matsumoto involution for the affine Hecke algebra of type A.

3. The Iwahori–Matsumoto involution may be computed using an analogue involution at the
level of Ariki–Koike algebras associated to a multicharge s ∈ Zl.

4. This later involution may be computed using the Mullineux involution for Hecke algebras
of type A on e-regular partitions with rank (strictly) less than n.
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As a consequence, to compute the image of an e-regular partition of rank n under the Mullineux
involution, we are reduced to compute several images of e-regular partitions of rank strictly
less than n under the Mullineux involution. This thus gives a recursive algorithm to solve our
problem. In fact, depending on the multicharge, we choose for our Ariki–Koike algebras, we
obtain several different algorithms. It turns out that for a particular choice of multicharge, our
algorithm is equivalent to Xu algorithm. This yields a new elementary proof for the fact that the
Mullineux and the Xu algorithm give an answer for the Mullineux problem. This also gives a
new interpretation of these algorithms (another interpretation is also given in [BK03]). We note
that the paper [DY19] also studies a link between the crystal isomorphisms (called wall crossing)
and the Mullineux involution.

The paper will be organized as follows. In section 2, we recall some basic facts on the rep-
resentation theory of affine Hecke algebras of type A and of Ariki–Koike algebras. We also
recall several results coming from [JL10, JL09a] concerning the labelling of the simple modules
for these algebras and the relations between them. Section 3 introduces the Mullineux and the
Iwahori–Matsumoto involutions and shows how these two maps are related. In section 4, we
study combinatorial properties of partitions and multipartitions which will be used in the fol-
lowing sections. Section 5 gives the algorithms we get for computing the Mullineux involution.
The last section shows that Xu algorithm can be interpreted as one of our algorithms.

2. Hecke algebras

In this first section, we recall the definitions of the affine Hecke algebra of type A and of the
Ariki–Koike algebras. We then give a brief overview of their representation theories. Finally,
we explain the relations between the known parametrizations of the simple modules for these
algebras. The main references for these parts are [Ari02] and [GJ11].

2.1. Affine Hecke algebra of type A

Let n ∈ Z>0. Let q ∈ C∗ be a primitive root of unity of order e > 1. The Iwahori–Hecke
algebra Hn(q) of type A is the unital associative C-algebra generated by T0, T1, . . . , Tn−1 and
subject to the relations:

TiTi+1Ti = Ti+1TiTi+1 (i = 1, . . . , n− 2),
TiTj = TjTi (|i− j| > 1),

(Ti − q)(Ti + 1) = 0 (i = 1, . . . , n− 1).

The affine Hecke algebra Hn(q) is the unital associative C-algebra which is isomorphic to

Hn(q)⊗C C[X±1
1 , . . . , X±1

n ],

as a C-vector space and such that Hn(q) and C[X±1
1 , . . . , X±1

n ] are both subalgebras of Hn(q)
with the following additional relations:

TiXiTi = qXi+1, TiXj = XiTj,

for all (i, j) ∈ {1, . . . , n− 1}2 with i ̸= j.
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We denote by Modn the category of finite dimensional Hn(q)-modules such that for all
j = 1, . . . , n, the eigenvalues of the Xj are power of q. The simple objects Irr(Hn(q)) in Modn
can be naturally labeled by the set of aperiodic multisegments that we now define:

Definition 2.1. Let l ∈ N>0 and let i ∈ Z/eZ. The segment of length l and head i is the sequence
of consecutive residues (i.e elements of Z/eZ, identified with {0, 1, . . . , e−1}) [i, i+1, . . . , i+
l − 1] in Z/eZ. The residue i ∈ Z/eZ is then called the head of the segment and the residue
i+ l− 1 the tail of the segment. A multisegment is a formal sum of segments. A multisegment
is said to be aperiodic if for every l ∈ Z>0, there exists i ∈ Z/eZ such that there is no segment
with length l and tail i appearing in the multisegment. We denote by Me the set of aperiodic
multisegments. The length of a multisegment is the sum of the lengths of the the segments
appearing in it and is denoted by |ψ|. We denote by Me(n) the set of aperiodic multisegments
of length n.

Example 2.2. For e = 3, the multisegment:

[0, 1, 2, 0] + [0] + [1] + [1, 2] + [2, 0],

is an aperiodic multisegment of length 10 whereas

[0, 1, 2, 0] + [0] + [0, 1] + [1, 2] + [2, 0],

is a multisegment of length 10 which is not aperiodic.

By the geometric realization of Hn(q) by Chriss and Ginzburg [CG97], we know that one
may naturally label the simple modules in Modn by the set Me(n) of aperiodic multisegments
of length n. We thus have:

Irr(Hn(q)) = {Lψ | ψ ∈ Me(n)}.

We note that the parametrization of irreducible affine Hecke algebras modules using these multi-
segments and the connections with the representation theory of Ariki–Koike algebras and crystal
graph in the case e = ∞ were first studied in [Vaz02].

2.2. Ariki–Koike algebras

Let l ∈ N>0
1 As above, we fix a primitive root of unity q ∈ C∗ of order e > 1. Let Pl := Zl and

let {zi | i = 1, . . . , l} be the canonical basis of Pl. Let Sl be the symmetric group generated by
the transpositions σi := (i, i+ 1) for i = 1, . . . , l− 1. The extended affine symmetric group Ŝl

is the semidirect product Pl ⋊ Sl with the relations given by σizj = zjσi for j ̸= i, i + 1
and σiziσi = zi+1 for i = 1, . . . , l − 1 and j = 1, . . . , l. This group is generated by the σi
for i = 1, . . . , l − 1 and by τ := zlσl−1 . . . σ1 (see [JL10, §5.1]).

1Our main result developed in Section 5 only uses the case l = 2 but part of our results is settled in the general
case l ∈ N>0, see §3.3. We have thus chosen to stick to the general case in this section to be self-contained.
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It acts faithfully on Zl as follows: for any s = (s1, . . . , sl) ∈ Zl:

σc.s = (s1, . . . , sc−1, sc+1, sc, sc+2, . . . , sl) for c = 1, . . . , l − 1 and
zi.s = (s1, s2, . . . , si + e, . . . , sl) for i = 1, . . . , l.

and we have
τ.s = (s2, . . . , sl, s1 + e).

Let s be an orbit with respect to the above action and let s := (s1, . . . , sl) ∈ Zl be an
element in this orbit. The Ariki–Koike algebra Hs

n(q) is the quotient Hn(q)/Is where
Is := ⟨

∏
1⩽j⩽l(X1 − qsj)⟩. If l = 1, this is a Hecke algebra of type A (of finite type), and

if l = 2 a Hecke algebra of type B (of finite type). One can see that the above algebra is well
defined and depends only on the orbit of s modulo the action of Ŝl (and on q).

The representation theory of this algebra has been intensively studied in a many works. We
refer to [Ari02, GJ11] and the references theirein. We will only recall what is needed for the
results of the present paper. The analogues of the multisegments in the context of Ariki–Koike
algebras are the multipartitions that we now define. For this, let us give some additional combi-
natorial definitions.

A partition is a nonincreasing sequence λ = (λ1, · · · , λm) of nonnegative integers. One can
assume this sequence is infinite by adding parts equal to zero. The rank of the partition is by
definition the number |λ| =

∑
1⩽i⩽m λi. We say that λ is a partition of n, where n = |λ|. By

convention, the unique partition of 0 is the empty partition ∅.
More generally, for l ∈ Z>0, an l-partition λ of n is a sequence of l partitions (λ1, . . . , λl)

such that the sum of the ranks of the λj is n. The number n is then called the rank of λ and it
is denoted by |λ|. The set of l-partitions is denoted by Πl and the set of l-partitions of rank n
is denoted by Πl(n). Let λ be an l-partition. The nodes or the boxes of λ are by definition the
elements of the Young diagram of λ:

[λ] := {(a, b, c) | a ⩾ 1, c ∈ {1, . . . , l}, 1 ⩽ b ⩽ λca} ⊂ Z>0 × Z>0 × {1, . . . , l}.

The content of a node γ = (a, b, c) of λ is the element b − a + sc of Z and the residue is the
content modulo eZ. If l = 1 (that is when we consider a partition instead of a multipartition),
then the Young diagram is identified with a subset of Z>0 × Z>0 in an obvious way.

Since the works of Ariki and Lascoux–Leclerc–Thibon, it is known that the representation
theory of these algebras is closely related to the representation theory of quantum groups. In
particular, one can naturally label the simple modules by the crystal basis of a certain integrable
representation for the quantum group of affine type A(1)

e−1. We will not give the details of all
the consequences of this fact but we summarize this below. Again, we refer to [GJ11] for a
complete study. For all choices of s ∈ s, we can define a certain subset of l-partitions which are
called Uglov l-partitions. This subset of multipartitions is denoted by Φe,s(n). These classes
of multipartitions, which strongly depends on the choice of s, can all be seen as non trivial
generalizations of the set of e-regular partitions:

• For all s ∈ Z, we define:

Al
e[s] := {(s1, . . . , sl) ∈ Zl | s1 = s ⩽ s2 ⩽ . . . sl < s+ e}.
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This is a fundamental domain for the action of Ŝl on Zl. If s ∈ Al
e[s], then the l-partitions

in Φe,s(n) are known as FLOTW l-partitions and they have a non recursive definition: we
have λ = (λ1, . . . , λl) ∈ Φs,e(n) if and only if:

1. For all j = 1, . . . , l − 1 and i ∈ Z>0, we have:

λji ⩾ λj+1
i+sj+1−sj .

2. For all i ∈ Z>0, we have:
λli ⩾ λ1i+e+s1−sl .

3. For all k ∈ Z>0, the set

{λji − i+ sj + eZ | i ∈ Z>0, λ
j
i = k, j = 1, . . . , l},

is a proper subset of Z/eZ.

• If s = (s1, . . . , sl) satisfies for all i = 1, . . . , l− 1, si+1− si > n− 1 (we say that s is very
dominant, it is also sometimes referred as the “asymptotic case” in the literature) then the
set Φe,s(n) is known as the set Kleshchev l-partitions. If s′′ satisfy the same property, then
the associated set Φe,s”(n) is the same.

• If l = 1, the set Φe,(s)(n) is simply the set of e-regular partitions

It turns out that each set Φe,s(n) with s ∈ s gives a natural labelling for the irreducible represen-
tations of the Ariki–Koike algebra Hs

n(q) (see [GJ11, §5]). As a consequence, there are several
natural possibilities for the labelling of the simple modules of Hs

n(q), one for each choice of an
element in the orbit s. For more details on these parametrizations, we refer to [GJ11]. Thus, one
can write:

Irr(Hs
n(q)) = {Dλ

s | λ ∈ Φe,s(n)},

with s ∈ s. By [Bow22], each of these labellings has an interpretation in terms of a cellular
structure. Lastly, clearly, if s and s′ are in the same orbit, there is a map:

Ψs→s′

e : ⊔n⩾0Φ(e,s)(n) → ⊔n⩾0Φ(e,s′)(n),

which is the unique bijection satisfying the following property. For all λ ∈ Φ(e,s)(n) then:

Dλ
s ≃ D

Ψs→s′
e (λ)

s′ .

Note that for n fixed, we have Ψs→s′
e (Φ(e,s)(n)) = Φ(e,s′)(n). This bijection has been explicitly

described in [JL10] in a combinatorial way using crystal isomorphisms (the coincidence of the
crystal isomorphisms with these bijections is proved in [Jac17, Prop. 3.7]). We recall this de-
scription in the next subsection in the case l = 2 (a program in GAP3 is available for computing
it in all cases [Jac12]). In the next sections, the following particular case: s = (s1, s2) and
s′ = (s1, s2 + e) will be of particular interest.
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Remark 2.3. If s′ and s′′ are both very dominant multicharges in the same orbit then Ψs→s′
e is the

identity.

Example 2.4. Assume that e = 3. Take s = (0 + 3Z, 1 + 3Z). Take n = 3, then, we have

Φ3,(0,1)(3) = {(∅, (3)), ((1), (1, 1)), ((1), (2)), ((2), (1)), ((2, 1),∅), ((3),∅)}

Φ3,(0,4)(3) = {(∅, (3)), ((1), (1, 1)), ((1), (2)), ((2), (1)), (∅, (2, 1)), ((1, 1), (1))}
Φ3,(1,0)(3) = {((3),∅), ((1), (1, 1)), ((1), (2)), ((1, 1), (1)), ((2, 1),∅), ((2), (1))} = Φ3,(4,0)(3)

So that :

Irr(Hs
n(q)) = {D(∅,(3))

(0,1) , D
((1),(1,1))
(0,1) , D

((1),(2))
(0,1) , D

((2),(1))
(0,1) , D

((2,1),∅)
(0,1) , D

((3),∅)
(0,1) }

= {D(∅,(3))
(0,4) , D

((1),(1,1))
(0,4) , D

((1),(2))
(0,4) , D

((2),(1))
(0,4) , D

(∅,(2,1))
(0,4) , D

((1),(1,1))
(0,4) }

= {D((3),∅)
(1,0) , D

((1),(1,1))
(1,0) , D

((1),(2))
(1,0) , D

((1,1),(1))
(1,0) , D

((2,1),∅)
(1,0) , D

((2),(1))
(1,0) }

2.3. Description of the crystal isomorphisms

First let us assume that l = 2 and that (s1, s2) ∈ Z2. Let λ ∈ Φ(e,s)(n). We follow the presenta-
tion in [JL10].

We define the minimal integer d ⩾ |s1 − s2| such that λ1d+1+s1−s2 = λ2d+1 = 0 if s2 ⩾ s1,
and otherwise the minimal integer d ⩾ |s1 − s2| such that λ2d+1+s2−s1 = λ1d+1 = 0. To (λ1, λ2),
we associate its s-symbol of length d. This is the following two-rows array.

• If s1 ⩽ s2 then:

S(λ1, λ2) =

(
s2 − d+ λ2d . . . . . . s2 − 2 + λ22 s2 + λ21 − 1
s2 − d+ λ1d+s1−s2 . . . s1 + λ11 − 1.

)
• if s1 > s2 then:

S(λ1, λ2) =

(
s1 − d+ λ2d+s2−s1 . . . s2 + λ21 − 1
s1 − d+ λ1d . . . . . . s1 − 2 + λ12 s1 + λ11 − 1.

)
We will write S(λ1, λ2) =

(
L2

L1

)
where the top row (resp. the bottom row) corresponds to λ2

(resp. λ1). Of course, it is easy to recover the 2-partition from the datum of its symbol. From
this symbol, we define a new symbol

(L̃2

L̃1

)
as follows.

• Suppose first s2 ⩾ s1. Consider x1 = min{t ∈ L1}. We associate to x1 the integer
y1 ∈ L2 such that

y1 =

{
max{z ∈ L2 | z ⩽ x1} if min{z ∈ L2} ⩽ x1,
max{z ∈ L2} otherwise. (2.1)

We repeat the same procedure to the lines L2 − {y1} and L1 − {x1}. By induction this
yields a sequence {y1, . . . , yd+s1−s2} ⊂ L2. Then we define L̃2 as the line obtained by
reordering the integers of {y1, . . . , yd+s2−s1} and L̃1 as the line obtained by reordering the
integers of L2 − {y1, . . . , yd+s1−s2}+L1 (i.e. by reordering the set obtained by replacing
in L2 the entries y1, . . . , yd+s1−s2 by those of L1). We obtain a “symbol”

(L̃2

L̃1

)
.
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• Now, suppose s2 < s1. Consider x1 = min{t ∈ L2}. We associate to x1 the integer
y1 ∈ L1 such that

y1 =

{
min{z ∈ L1 | x1 ⩽ z} if max{z ∈ L1} ⩾ x1,
min{z ∈ L1} otherwise. (2.2)

We repeat the same procedure to the lines L1 − {y1} and L2 − {x1} and obtain a se-
quence {y1, . . . , yd+s1−s2} ⊂ L1. Then we define L̃1 as the line obtained by reordering
the integers of {y1, . . . , yd+s2−s1} and L̃2 as the line obtained by reordering the integers of
L1 − {y1, . . . , yd+s2−s1}+ L2. We obtain a “symbol”

(L̃2

L̃1

)
.

The new symbol
(L̃2

L̃1

)
that we obtain is canonically associated to a bipartition (λ

1
, λ

2
) and the

multicharge (s2, s1). Applying again this transformation gives the bipartition (λ1, λ2). Thus the
above transformation is an involution.

The crystal isomorphisms in the case l = 2 are thus entirely determined from the following
results proved in [JL10]:

1. We have Ψ(s1,s2)→σ1(s1,s2)
e (λ1, λ2) = (λ

1
, λ

2
).

2. We have Ψ(s1,s2)→τ.(s1,s2)
e (λ1, λ2) = (λ2, λ1).

3. For all σ = x1. . . . .xm ∈ Ŝ2 with xi ∈ {σ1, τ} for all i = 1, . . . ,m, we have:

Ψ(s1,s2)→σ.(s1,s2)
e = Ψx2.....xm.(s1,s2)→σ.(s1,s2)

e ◦ . . . ◦Ψ(s1,s2)→xm.(s1,s2)
e .

In the general case l ∈ N>0 and s ∈ Zl, now:

1. For all c = 1, . . . , l − 1, we have Ψ
(s1,s2)→σc(s1,s2)
e (λ) = µ, where µj = λj for all

j ̸= c, c+ 1, µc = λ
c and µc+1 = λ

c+1.

2. We have Ψs→τ.s
e (λ) = (λ2, . . . , λl, λ1).

3. For all σ = x1. . . . .xm ∈ Ŝ2 with xi ∈ {σ1, . . . , σl−1, τ} for all i = 1, . . . ,m, we have:

Ψs→σ.s
e = Ψx2.....xm.s→σ.s

e ◦ . . . ◦Ψs→xm.s
e .

Example 2.5. Assume that (s1, s2) ∈ Z2 with s1 ⩽ s2. In the next sections, we will be partic-
ularly interested in the computation of Ψ(s1,s2)→(s1,s2+e)

e . Let λ = (λ1, λ2) ∈ Φ(e,s)(n), we then
write its symbol:

S(λ1, λ2) =

(
s2 − d+ λ2d . . . . . . s2 − 2 + λ22 s2 + λ21 − 1
s2 − d+ λ1d+s1−s2 . . . s1 + λ11 − 1

)
.

We then perform the above algorithm to obtain a new symbol
(L̃2

L̃1

)
which must be of the form :(

yd+s1−s2 . . . y1
xd . . . . . . x2 x1.

)
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We then consider the following symbol:(
0 . . . e− 1 xd + e . . . . . . x2 + e x1 + e
yd+s1−s2 . . . y1.

)
By the discussion above, this is the (s1, s2 + e)-symbol of the bipartition

Ψ(s1,s2)→(s1,s2+e)
e (λ1, λ2) = (λ

2
, λ

1
)

(more details and examples can be found in [Jac07])

Example 2.6. We keep the example 2.4, one can check that the map Ψ
(0,1)→(0,4)
e is given as

follows
Ψ

(0,1)→(0,4)
e : Φ3,(0,1) → Φ3,(0,4)

(∅, (3)) 7→ (∅, (3))
((1), (1, 1)) 7→ ((1), (1, 1))
((1), (2)) 7→ (∅, (2, 1))
((2), (1)) 7→ ((2), (1))
((2, 1),∅) 7→ ((1, 1), (1))
((3),∅) 7→ ((1), (2))

More examples can be found in [JL10].

2.4. Aperiodic multisegments and multipartitions

Let s be an orbit of Zl with respect to the action of the affine symmetric group (recall the defi-
nition of the action in §2.2). If V is a simple module for the Ariki–Koike algebra then it is also
a simple Hn(q)-module in the category Modn. Hence there exists a unique aperiodic multiseg-
ment ψ such that V ≃ Lψ (as aHn(q)-module). As a consequence, for any s ∈ s we have a well
defined map:

χne,s : Φ(e,s)(n) → Me(n),

which is defined as follows. Let λ ∈ Φ(e,s)(n), then we have a unique χn(e,s)(λ) ∈ Me(n) such
that:

Dλ
s ≃ Lχn

e,s(λ).

By [AJL11], this map may be described as follows:

• Assume first that s ∈ Al
e[s]. For all non zero part λci of λ, we associate the segment

[(1− i+ sc) + eZ, . . . , λci − i+ sc + eZ].

By [AJL11], The multisegment χne,s(λ) is just the formal sum of all the segments associ-
ated to the non zero part of λ.

• As a consequence, in general, if s′ ∈ s and s ∈ Al
e[s] ∩ s, then

χne,s′(λ) = χne,s(Ψ
s′→s
e (λ)).
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Given an aperiodic multisegment ψ, It is now natural to try to find the multicharges s such that
{ψ} has a non empty preimage for the map χne,s. This question has been completely solved in
[JL09a]. There always exist such multicharges (they are not unique in general) which are called
admissible multicharges. By [AJL11], χne,s is injective so that if s is admissible for ψ there exists
a unique λ such that χne,s(λ) = ψ. This l-partition will be called admissible (with respect to ψ).
By definition, we have the proposition below where we use the following notation. For s and
t two multicharges, we denote s ⊂ t if and only if, for all j ∈ Z/eZ, the number of integers
congruent to j in s is less or equal to the number of integers congruent to j in t.

Proposition 2.4.1. Assume thatλ ∈ Φ(e,s)(n) and that we have two multicharges such that s ⊂ t
then t is admissible for the multisegment χne,s(λ).

Proof. Set s = (s1, . . . , sl) and t = (t1, . . . , tm). Assume that λ ∈ Φ(e,s)(n) then as a Hn(q)-
module, we have that

∏
1⩽j⩽l(X1 − qsj) acts as 0 on Dλ

s ≃ Lχn
e,s(λ). As a consequence, as

s ⊂ t, we have that
∏

1⩽j⩽m(X1− qtj) acts as 0 on Lχn
e,s(λ). This implies that it is a well-defined

Ht
n(q)-module and the result follows.

Remark 2.7. One can also prove the above proposition combinatorially using the descriptions
of the admissible multicharges.

3. The Mullineux and the Iwahori–Matsumoto involutions

The aim of this section is to introduce the Mullineux involution for the symmetric group and its
analogues in the context of Ariki–Koike algebras and affine Hecke algebras.

3.1. Iwahori–Matsumoto involution for affine Hecke algebras of type A

We have an involution ♯ onHn(q) which has been defined by Iwahori and Mastumoto in [IM65]:

T ♯i = −qT−1
i , X♯

j = X−1
j

for i = 1, . . . , n− 1 and j = 1, . . . , n. The Iwahori–Matsumoto involution naturally induces an
involution on the set of aperiodic multisegments. We have an involution:

♯ : Me(n) → Me(n),

defined for all ψ ∈ Me(n) by
L♯ψ = Lψ♯ .

Remark 3.1. We have in fact two others well defined involutions on Hn(q) which are defined as
follows:

• The Zelevinsky involution τ defined in [MgW86] :

T τi = −qT−1
n−i, X

τ
j = X−1

n+1−j,

for i = 1, . . . , n− 1 and j = 1, . . . , n.
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• The involution ∇ :
T∇
i = −qTn−i, X∇

j = Xn+1−j,

for i = 1, . . . , n− 1 and j = 1, . . . , n.

We have for all x ∈ Hn(q):
xτ = (x∇)♯ = (x♯)∇.

These two involutions thus also induce involutions on the set Me(n) and they have been studied
in [JL09a].

3.2. Mullineux involution for Ariki–Koike algebras

Assume that s ∈ Zl. Then we have a well-defined algebra isomorphism:

γ : Hs
n(q) → Hs

n(q
−1),

which is defined on the generators as follows:

T0 7→ T0, Ti 7→ −qTi.

This map naturally induces bijections on the indexing sets of the simple modules of Ariki–Koike
algebras. Let s♯ be the orbit of (−s1, . . . ,−sl) modulo the action of the affine symmetric group.
Let v ∈ s♯ then we have a map:

ms→v
e : Φ(e,s)(n) → Φ(e,v)(n),

defined as follows. Let λ ∈ Φ(e,s)(n), then there exists a unique µ ∈ Φ(e,v)(n) such that

(Dλ
s )

γ ≃ Dµ
v ,

and we set
ms→v
e (λ) = µ.

This map has been described in [JL10]. If l = 1 and e is prime then it coincides with the usual
Mullineux involution of the symmetric group that we have defined in the introduction. If l = 1,
then it corresponds to the Mullineux involution of the Hecke algebra of type A described in
[Bru98] which will simply be denoted by me (it does not depend on s). In this paper, we will
give an algorithm for computing me.
Remark 3.2. If λ is a partition and γ a node of its Young diagram (English convention), the γ-
hook of λ id by definition the set of all the nodes at the right and at the bottom of γ (including γ).
The length of the hook is the number of nodes it contains. We say that λ is an e-core if all the
hooks have length strictly less than e. If λ is an e-core then me(λ) can be easily described: it
is just the conjugation of λ (as in the semisimple case), see [Mul79] (when e is a prime but the
results generalizes easily if e is an integer).

More generally, it is a natural question to ask how one can describe all the maps ms→v
e for

any s, v. It turns out that by [JL09b, Prop. 4.2], knowing the map me, one can describe it quite
easily in a particular case:
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Proposition 3.2.1. Assume that s is very dominant. Let s♯ := (−s′1, . . . ,−s′l) be a very dominant
multicharge such that s′i ≡ si + eZ for all i = 1, . . . , l. Then for all λ ∈ Φ(e,s)(n), we have:

ms→s♯

e (λ) = (me(λ
1), . . . ,me(λ

l)).

As a consequence, this result, combining with the fact that we know how to compute the
natural bijection between the various parametrizations of the simple modules of Ariki–Koike
algebras permits to describe all the Mullineux involutions (assuming that we knowme). Indeed,
let v1 ∈ s and let v2 ∈ s♯. Let s1 ∈ s be a very dominant multicharge. Then we have:

mv1→v2
e = Ψs♯1→v2

e ◦ms1→s♯1 ◦Ψv1→s1
e

where s♯1 is as in the above proposition.

Example 3.3. We keep the setting of example 2.4. For n = 3, the multicharge (0, 4) is very
dominant, so the above result applies in this case. One can take s♯ = (0, 5) which is also very
dominant. Using the fact that m3(3) = (2, 1), m3(1.1) = (2), we obtain

m
(0,4)→(0,5)
e Φ3,(0,1)(3) → Φ3,(0,5)(3)

(∅, (3)) 7→ (∅, (2, 1))
((1), (1, 1)) 7→ ((1), (2))
(∅, (2, 1)) 7→ (∅, (3))
((2), (1)) 7→ ((1, 1), (1))
((1, 1), (1)) 7→ ((2), (1))
((1), (2)) 7→ ((1), (1, 1))

Now combining with our cristal isomorphism in Example 2.6, we for example obtain

m
(0,1)→(0,5)
e : Φ3,(0,1) → Φ3,(0,5)

(∅, (3)) 7→ (∅, (2, 1))
((1), (1, 1)) 7→ ((1), (2))
((1), (2)) 7→ (∅, (3))
((2), (1)) 7→ ((1, 1), (1))
((1, 1), (1)) 7→ ((2), (1))
((3),∅) 7→ ((1), (1, 1))

3.3. Relations between the involutions

Now we put all the above results together to deduce relations between the various involutions
we have defined. The following result is proved in [JL09a].

Theorem 3.3.1. Let ψ be an aperiodic multisegment and let s ∈ Al
e[s] be an admissible multi-

charge for ψ. Set st = (−sl, . . . ,−s1) ∈ Al
e[−sl] then we have:

ψ♯ = χne,st ◦ms→st

e ◦ (χne,s)−1(ψ)
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As a consequence, the Iwahori–Matsumoto involution may be computed as follows. Take an
aperiodic multisegment ψ.

• Choose an admissible multicharge s for ψ and compute λ := (χne,s)
−1(ψ) using §2.4 and

the algorithm described in [JL09a].

• Compute ν := ms→st

e (λ) using the discussion in the last section.

• Compute ψ♯ := χne,st(ν) using the algorithm described in [JL09a].
Example 3.4. Take e = 3 and the multisegment [0] + [0, 1, 2] + [1, 2, 0]. One can see that (0, 1)
is admissible for this multisegment and we have (χ7

3,(0,1))
−1(ψ) = ((3), (3, 1)).

We need to compute ms→st

e ((3), (3, 1)). To do this, we first compute Ψ(0,1)→(0,7)
e ((3), (3, 1))

as (0, 7) is very dominant. We obtain the bipartition ((1), (3, 3)). Now by Proposition 3.2.1:
m(0,7)→(0,8)
e ((1), (3, 3)) = (m3(1),m3(3, 3)) = ((1), (6)).

Again, we compute Ψ(0,8)→(−1,0)
e ((1), (6)) = ((6), (1)) and thus we get

ψ♯ := [0] + [2, 0, 1, 2, 0, 1].

Now, let us explain how one can deduce an algorithm for computing the Mullineux involution
for e-regular partitions. This is based on the following elementary remark. Let λ ∈ Φe,(0) be
an e-regular partition and consider the aperiodic multisegment ψ := χne,(0)(λ) (recall that this is
nothing but the formal sum of the segments given by the rows of the Young diagram of λ). The
above theorem shows that:

me(λ) = (χne,(0))
−1(ψ♯).

So now we are reduced to compute (χne,(0))
−1(ψ♯). Take s ∈ Al

e[0] such that l > 1 then by
Proposition 2.4.1, this is an admissible multicharge. We have:

ψ♯ = χne,st ◦ms→st

e ◦ (χne,s)−1(ψ)

Now µ := (χne,s)
−1(ψ) is the admissible l-partition (associated to s) and the main problem is

thus to compute ms→st

e (µ). We have already seen that this can be done in three steps:
1. Compute the crystal isomorphism Ψs→v

e (µ) = (ν1, . . . , νl) where v is very dominant
(recall that this means that v = (s1, s2 + k2e, . . . , sl + kle) with (kj+1 − kj)e > n− 1 for
j > 1). This can be done recursively by applying the algorithm described in §2.3 k times.

2. By Proposition 3.2.1, mv→v♯

e (ν) can be computed by applying the Mullineux map com-
ponent by component. As |ν| = |λ|, if we assume that at least two components of the
l-partition (ν1, . . . , νl) are non empty, all of the components are of rank< n and we know
how to compute the Mullineux involution by induction.

3. Apply again a crystal isomorphism Ψv♯→st

e .
In the next section, we will apply the above algorithm in the case where l = 2 and in particular

show that the condition for applying our induction in step 2 is always satisfied (except in the case
where s = (s1, s2) and s1 = s2). It is unclear which hypothesis we need to satisfy this condition
for l > 2. We suggest that the multicharges (s1, s2, . . . , sl) such that s1 ̸= s2 are however good
candidates.
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4. Combinatorial properties

In this section, we will try to find simple combinatorial ways to compute several objects that
we have already defined: this concerns the admissible multicharges and multipartitions and the
crystal isomorphisms.

4.1. On admissible multipartitions

If λ and µ are two partitions, we denote by λ ⊔ ν the partition obtained by concatenation (and
reordering the parts if necessary).

Assume that we have an e-regular partition λ = (λ1, . . . , λr) (that is λ ∈ Φe,(s)(n) for
any s ∈ Z). Let s ∈ Al

e[s]. By Proposition 2.4.1, s is an admissible multicharge. The aim
of this subsection is to show that one can easily construct the associated admissible l-partition
λ ∈ Φe,s(n) such that χne,s(λ) = χne,(s)(λ) (recall that χne,s is always injective) without consid-
ering the notion of multisegments. To do this, one can use the algorithm developed in [JL09a]
from the datum of the multisegment χne,(s)(λ) or we can argue as follows. Let l′ ∈ {1, . . . , l} be
minimal such that sl′ = sl. We construct λ by induction on the rank of λ as follows.

If λ = ∅ then λ := ∅ and we are done. Otherwise, set

s′ :=


(sl, . . . , sl︸ ︷︷ ︸

l−l′+2

, s2 + e, . . . , sl′−1 + e) if l′ ̸= 1

s if l′ = 1

Note that we have s′ ∈ Al
e[sl]. We denote m := λ1 + . . .+ λe+s−sl .

By induction, we have constructed the l-partition ν ∈ Φ(e,s′)(n−m) such that we have

χn−me,s′ (ν) = χn−me,(sl)
(λe+s−sl+1, λe+s−sl+2, . . . , λr).

We then define λ as follows

• If we have l′ = 1 then λ1 = (λ1, . . . , λe) ⊔ νl and λj = νj−1 if j ̸= 1.

• Otherwise, λ1 = (λ1, . . . , λe+s−sl)⊔ ν2+l−l
′ and λj = νj+1−l′ for j > 1 where the indices

are understood modulo l.

Proposition 4.1.1. With this construction, we have λ ∈ Φe,s(n) and χne,s(λ) = χne,(s)(λ).

Proof. We prove the proposition by induction. The result is trivial when n = 0. Keeping the
above notations, one can assume that ν ∈ Φ(e,s′)(n−m). First one can perform exactly the same
procedure as in §2.4 for the description of the map χne,s to associate to λ a multisegment (even
if we have - not already - proved that λ is in Φe,s(n)). By construction, this multisegment is
nothing but χne,(s)(λ). It is thus an aperiodic multisegment. This proves condition 3 of FLOTW
l-partition for λ (see the definition in §2.2). Hence, we just need to show that the l-partition
satisfies the two first points.

• If l′ = 1, by induction, we have νj ⩾ νj+1 for all j = 1, . . . , l − 1. This implies that
λji ⩾ λj+1

i for all j = 2, . . . , l− 1 and that λli ⩾ λ1i+e for all i ⩾ 1 and we get that λ1i ⩾ λ2i
because (λ1, . . . , λe) are the greatest parts of λ and because νli ⩾ ν1i+e for all i > 0.



combinatorial theory 3 (2) (2023), #8 15

• If l′ ̸= 1, by the property of FLOTW l-partitions, we have that
µ := (νl−l

′+3, . . . , νl, ν1, . . . , νl−l
′+1, νl−l

′+2)

is in Φe,v(n−m) for v = (s2, . . . , sl′−1, sl, . . . , sl, sl) and we can thus conclude using the
fact that λ1j = λj if j = 1, . . . , e+ s− sl and λ1j = µlj−(e+s−sl) otherwise.

In the case where l = 2 (which is the case that we will mostly studied in the forthcoming
sections), the multipartition λ = (λ1, λ2) is easy to obtain. One can assume that s1 = 0, then
we have

λ1 = (λ1, . . . , λe−s2 , λ2e−s2+1, . . . , λ3e−s2 , . . . , λ2ke−s2+1, . . . , λ3ke−s2 , . . .),

and
λ2 = (λe−s2+1 . . . , λ2e−s2 , λ3e−s2+1, . . . , λ4e−s2 , . . . λ3ke−s2+1, . . . , λ4ke−s2 , . . .).

In other words, the first e − s2 parts of λ goes to λ1 then the next e parts to λ2 then the next e
parts to λ1 and so on.
Example 4.1. Let us take e = 4, λ = (8, 8, 6, 6, 4, 3, 3, 2, 1, 1), then the associated Young
tableau (with the residues of each node marked in the associated box) is:

0 1 2 3 0 1 2 3
3 0 1 2 3 0 1 2
2 3 0 1 2 3
1 2 3 0 1 2
0 1 2 3
3 0 1
2 3 0
1 2
0
1

Take s = (0, 2, 2). Following the algorithm, we first have l′ = 2. Then s′ = (2, 2, 2). We have
m = λ1 + λ2 and we need to compute ν such that

χn−m4,(2,2,2)(ν) = χn−m4,(2) (6, 6, 4, 3, 3, 2, 1, 1)

We obtain ν = ((6, 6, 4, 3), (3, 2, 1, 1),∅) and we have λ = ((8, 8), (6, 6, 4, 3), (3, 2, 1, 1)).
In the case where l = 2, we have:
• If s = (0, 0), we have λ = ((8, 8, 6, 6, 1, 1), (4, 3, 3, 2)).

• If s = (0, 1), we have λ = ((8, 8, 6, 2, 1, 1), (6, 4, 3, 3)).

• If s = (0, 2), we have λ = ((8, 8, 3, 2, 1, 1), (6, 6, 4, 3)).

• If s = (0, 3), we have λ = ((8, 3, 3, 2, 1), (8, 6, 6, 4, 1)).
Using this, we have thus constructed a map

θne,s : Φe,(0)(n) → Φe,s(n)

which associates toλ the l-partitionλ constructed above (we will sometime omit the subscriptn).
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4.2. Crystal isomorphisms

In this second subsection, we study in details the crystal isomorphisms restricted to the multi-
partitions in the image of θe,s in the case where l = 2. The first aim is to simplify the procedure
to compute it, the second is to show certain crucial properties which will help us to prove the
correctness of our algorithm.

Let λ be an e-regular partition and assume that s = (0, s). We also assume that λ is non
empty and that r is maximal such that λr ̸= 0. Let (λ1, λ2) := θ(e,(0,s))(λ) and consider the
associated symbol with length te with t sufficiently large. It is thus of the following form :(

αte . . . α(t−1)e+1 . . . α2e . . . αe+1 αe . . . αs+1 . . . α1

βte−s . . . β(t−1)e−s+1 . . . β2e−s . . . βe−s+1 βe−s . . . β1

)
By definition of the symbol, we here have αj := λ2j−j+s for j = 1, . . . , ke and βj := λ1j−j for
j = 1, . . . , ke− s. We denote (µ1, µ2) := Ψ

(0,s)→(0,s+k.e)
e (λ1, λ2) (so that, as usual, ke > n− 1

and thus so that the multicharge (0, s+ ke) is very dominant). We have:

Ψ(0,s)→(0,s+k.e)
e = Ψ(0,s+(k−1)e)→(0,s+ke)

e ◦Ψ(0,s+(k−2)e)→(0,s+(k−1)e)
e ◦ . . . ◦Ψ(0,s)→(0,s+e)

e

and we will see how this map can be more easily described in the cases we are interested in (see
the second paragraph below)

Assume that λ ̸=∅ and that µ2=∅ then the algorithm for the computation ofΨ(0,s)→(0,s+k.e)
e

easily shows that that this can happen if and only if Ψ(0,s)→(0,s+k.e)
e is the identity. Indeed if

(µ1, µ2) := Ψ
(0,s)→(0,s+k.e)
e (λ1, λ2) then |µ2| ⩾ |λ2| so µ2 = λ2 = ∅ and µ1 = λ1. The fact that

Ψ
(0,s)→(0,s+k.e)
e is the identity implies that:

{βi | i = 1, . . . , ke− s} ⊂ {αi | i = 1, . . . , ke}.

In this case, we also need to have r ⩽ e − s. Now we have for all i = 1, . . . , ke, αi = −i + s
and also βj ⩽ αj for all j = 1, . . . , ke− s. As a consequence, we have

λ21 − 1 ⩽ −1 + s.

and thus λ22 ⩽ s. We conclude

Proposition 4.2.1. Under the above notations, assume that µ2 = ∅ then λ = λ1 is an e-core.

Proof. The above discussion shows that λ has at most e − s non empty rows and at most s
columns. This implies that the hooks of λ has at most length e − 1 and thus that λ is an e-
core.
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Now let us see what we can say if µ1 = ∅. Before this, we show below that the image of λ
under a crystal isomorphism can be quite easily computed in the case where λ is in the image
of θe,s which is the case we are interested in here.

Keeping, the above notations, for all i = 1, . . . , k − 1, we have αie = λ2ie−s − ie + s and
βie−s+1 = λ2ie−s+1 − (ie − s + 1). So we have αie + ie − s ⩾ βie−s+1 + ie − s + 1 and
thus αie > βie−s+1.

In addition αie+1 = λ2ie+1−s − (ie+ 1) + s and β(i+1)e−s = λ2ie−s − ((i+ 1)e− s). So we
have β(i+1)e−s + ((i+ 1)e− s) ⩾ αie+1 + (ie+ 1)− s. So β(i+1)e−s + e > αie+1.

These calculations show that one can perform our crystal isomorphism step by steps in the
“blocks” of the symbol separated by vertical lines below. First recall in Example 2.5 how the
crystal isomorphisms Ψ(0,s′)→(0,s′+e)

e can be described.

(
αke . . . α(k−1)e+1 . . . α2e . . . αe+1 αe . . . αs+1 . . . α1

βke−s . . . β(k−1)e−s+1 . . . β2e−s . . . βe−s+1 βe−s . . . β1

)
We see that all the calculations in the blocks are trivial except in the rightmost. After one step
of the crystal isomorphism we get

(
0 . . . e − 1 . . . β3e−s + e . . . β2e−s+1 + e β2e−s + e . . . βe+1 . . . βe−s+1 + e . . . α′

1
αke . . . α(k−1)e+1 . . . α2e . . . αe+1 β′

e−s . . . β′
1

)

and we see that the properties above are always satisfied. In particular, with the notation
above, we have.

β′
e−s + e > βe−s+1 + e.

Now, take the right end of our first symbol:(
αe . . . αs+1 αs . . . α1

βe−s . . . β1

)
We already know that βe−s + e > α1. Assume that we have λ1j ̸= 0 so that βj > −j. Then we
claim that this implies that we have βj ⩾ αs+j−1. To do this, note that we have:

βj ⩾ βj−1 + 1 ⩾ . . . ⩾ βe−s + (e− s− j) > α1 − s− j.

Now we have α1 ⩾ α2 + 1 ⩾ . . . ⩾ αs+j−1 + (s+ j − 2). So

βj > αs+j−1 − 2.

The only problem may appear if βj = αs+j−1 − 1 and this implies that all the inequalities above
are in fact equalities. We thus have:

βj = βj−1 + 1 = . . . = βe−s + (e− s− j),

and

α1 = α2+1 ⩾ . . . = αs+j−1+(s+j−2) = βj+s−j−1 = βj−1+s−j = . . . = βe−s+e−1.
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This case implies that we have an e-period in the sense of [JL13, Def. 2.2]. Such property is
impossible for Uglov l-partitions by [JL13, Prop. 5.1].

This discussion implies that, under the notation above, if we have βj > −j then we must
have β′

j > −j so that the associated part of the partition is also non zero. By a direct induction,
we thus deduce:

Proposition 4.2.2. Let 0 < s < e and let λ be an e-regular partition and (λ1, λ2) := θ(e,(0,s))(λ).
Assume that (µ1, µ2) := Ψ

(0,s)→(0,s+k.e)
e (λ1, λ2) for k >> 0 (so that (0, s+k.e) is very dominant,

see §2.2). Then |µ1| ≠ 0.

Remark 4.2. In the case where s = 0, the above discussion also shows that if (λ1, λ2) :=

θ(e,(0,0))(λ) then Ψ
(0,s)→(0,k.e)
e (λ1, λ2) = (∅, λ) for k >> 0. As a consequence, this choice of

multicharge cannot be used to get our recursive algorithm to compute the Mullineux involution
because then it would require the computation of me(λ) . . . to compute me(λ).

Example 4.3. Let us take e = 3 and the partition λ = (12, 10, 8, 8, 6, 5, 4, 4, 3, 2, 2, 1). With s =
(0, 1), we have λ = (λ1, λ2) = ((8, 8, 6, 3, 2, 2), (12, 10, 5, 4, 4, 1)). With the above notations
and k = 2, we thus obtain the following symbol for λ.(

0 1 2 5 6 8 12 15 16
0 1 3 7 8 10 16 19

)
We perform our algorithm of §2.3 to get:(

0 1 3 7 8 10 12 16 19
0 1 2 5 6 8 15 16

)
The symbol for Ψ(0,1)→(0,4)

3 (λ) is(
0 1 2 3 4 6 10 11 13 15 19 22
0 1 2 5 6 8 15 16

)
We can apply our simplified procedure to get:(

0 1 2 5 6 8 10 11 15 16 19 22
0 1 2 3 4 6 13 15

)
and the symbol for Ψ(0,1)→(0,7)

3 (λ) is(
0 1 2 3 4 5 8 9 11 13 14 18 19 22 25
0 1 2 3 4 6 13 15

)
and so on.
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5. The algorithm

Let λ = (λ1, . . . , λr) be an e-regular partition of rank n. We can now present a recursive
algorithm for computing me(λ). First by Remark 3.2, one can assume that λ is not an e-core.
The algorithm now consists in the following steps:

1. Choose 0 < s < e and consider the bipartition (λ1, λ2) := θ(e,(0,s))(λ).

2. Compute (µ1, µ2) := Ψ
(0,s)→(0,s+k.e)
e (λ1, λ2) for k >> 0. By Propositions 4.2.1 and 4.2.2,

we now that |µ1| < n and |µ2| < n.

3. By induction, we know me(µ
1) and me(µ

2) and we can thus compute:

(κ1, κ2) := Ψ(0,−s+ke)→(0,e−s)
e (me(µ

1),me(µ
2)).

4. We have me(λ) = θ−1
(e,(0,e−s))(κ

1, κ2).

Note that in principle, one can choose an arbitrary multicharge s instead of (0, s) (as soon as the
second point at the end of subsection 3.3 is satisfied) but the complexity of the algorithm for the
computation of the crystal isomorphism from s to a very dominant multicharge increases. How-
ever, one can expect that some particular multicharge can lead to interesting fast new algorithms.
We now show how one can perform the above steps.

5.1. Steps 1 and 2

It follows from Section 4.2 that the first two steps can be both implemented by the process
below. This is just a translation of the process described in this section in the language of Young
tableaux. Let 0 < s < e and set s = (0, s). We set λ[1] = (λ1, . . . , λe−s) and λ[2] =
(λe−s+1, . . . , λr), we write the Young tableau ofλ[1]with the associated contents and just below,
the Young tableau of λ[2] with the associated contents with respect to the multicharge (0, s).

λ[1]
0 1 2 3 . . . . . . λ1 − 1
−1 0 1 2 . . . λ2 − 2
... ... ... ... ...

−(e− s− 1) . . . . . . λe−s − (e− s)

λ[2]
s s+ 1 . . . λe−s+1 − 1 + s

s− 1 . . . λe−s+2 − 2 + s
. . . . . .



20 Nicolas Jacon

For example, take λ = (10, 8, 7, 5, 4, 4, 3, 2, 1, 1). Take e = 4 and s = 1

λ[1]
0 1 2 3 4 5 6 7 8 9
−1 0 1 2 3 4 5 6
−2 −1 0 1 2 3 4

λ[2]
1 2 3 4 5
0 1 2 3
−1 0 1 2
−2 −1 0
−3 −1
−4
−5

Now, starting with the first part of λ[1], consider the content of the rightmost box, say c.
In λ[2], we consider the rightmost boxes and we take the one with the greatest content which is
less than c, say c′ (if it does not exist we switch to the second part of λ[1]). Then we remove the
boxes of the first part of λ[1] with content greater than c′ into this part in λ[2] (in other words,
we move the “truncated first row” containing the boxes grater than c to the row in λ[2]).

It is clear that we still have a partition. Then, we do the same for the second part of λ[1] and
so on until we reach the last part of λ[1]. Wwe continue this process until we reach the last part
of λ[1].

In our example, we must remove the boxes in bold in the first partition above, and add the
boxes in bold in the second partition below.

λ[1]
0 1 2 3 4 5
−1 0 1 2 3
−2 −1 0 1 2

λ[2]
1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6
−1 0 1 2 3 4
−2 −1 0
−3 −1
−4
−5

We then collect all the parts of λ[2] that are above the smallest part we have modified, in a
partition µ. So here µ = (9, 7, 6). The new partition λ[2] is given by the remaining parts and we
add e to the contents of all the boxes in it. Thus in the example, the first row of λ[2] starts with



combinatorial theory 3 (2) (2023), #8 21

a box of content −2+ 4 = 2. We then move to the step above and continue the process until we
cannot do anything. The remaining parts of λ[2] are then added to µ. Finally the partition λ[1]

is the first component of Ψ(0,s)→(0,s+k.e)
e (λ1, λ2) and µ is the second.

λ[1]
0 1 2 3 4 5
−1 0 1 2 3
−2 −1 0 1 2

λ[2]
2 3 4
1 2
0
−1

It becomes :

λ[1]
0 1 2 3 4
−1 0 1 2
−2 −1 0

λ[2]
2 3 4 5
1 2 3
0 1 2
−1

We have now µ = (9, 7, 6, 4, 3, 3), and we the above process:

λ[1]
0 1 2 3 4
−1 0 1 2
−2 −1 0

λ[2]
3
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gives :
λ[1]
0 1 2 3
−1 0 1
−2 −1 0

λ[2]
3 4
2

and then µ = (9, 7, 6, 4, 3, 3, 2, 1). There is nothing we can do now. The bipartition we are
searching for is ((4, 3, 3), ((9, 7, 6, 4, 3, 3, 2, 1))

5.2. Step 3 and 4

At this stage, we have computed (µ1, µ2) := Ψ
(0,s)→(0,s+k.e)
e (λ1, λ2). By induction, we thus know

(ν1, ν2) := (me(µ
1),me(µ

2)) and we must reverse the process considered in §5.1. to get our
bipartition:

Ψ(0,−s+ke)→((0,e−s)
e (ν1, ν2).

This is done as follows.
We write the Young tableau of ν1 with the associated contents for each box, and just below,

the Young tableau of ν2 with the associated contents charged by ke − s where k is sufficiently
large (that is, the content of the box (a, b) is b − a + (ke − s)). Keeping the above example,
we have by induction m4(4, 3, 3) = (10) and m4(9, 7, 6, 4, 3, 3, 2, 1) = (14, 7, 7, 3, 3, 1). So we
consider the bipartition ((10), (14, 7, 7, 3, 3, 1) and the multicharge is (0, 3).

ν1

0 1 2 3 4 5 6 7 8 9

ν2

19 20 21 22 23 24 25 26 27 28 29 30 31 32
18 19 20 21 22 23 24
17 18 19 20 21 22 23
16 17 18
15 16 17
14

At each step, starting from the bottom of ν2, we see if one can remove boxes from ν2 to add
it to ν1 as in the subsection above (except that we remove the box from the other partition). Note
that the number of rows in ν1 is fixed so we can only add boxes in the first e−s rows of ν1. Then
we remove e from all the contents of the boxes of ν2. In the example, we have nothing to do so
we remove e from all the contents of the second partitions and again one more time.
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ν1

0 1 2 3 4 5 6 7 8 9

ν2

15 16 17 18 19 20 21 22 23 24 25 26 27 28
14 15 16 17 18 19 20
13 14 15 16 17 18 19
12 13 14
11 12 13
10

Then we can add a box of content 10 and we subsract e from all the contents. We then
successively obtain the following bipartitions.

ν1

0 1 2 3 4 5 6 7 8 9 10

ν2

15 16 17 18 19 20 21 22 23 24 25 26 27 28
14 15 16 17 18 19 20
13 14 15 16 17 18 19
12 13 14
11 12 13

and then:
ν1

0 1 2 3 4 5 6 7 8 9 10 11

ν2

3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 3 4 5 6 7 8
1 2 3 4 5 6
0 1 2
−1 0 1

and then:

ν1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ν2

3 4 5 6 7 8 9 10 11
2 3 4 5 6 7 8
1 2 3 4 5 6
0 1 2
1 0 1
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At the end, the concatenation (with reordering of the parts if necessary) of the two
partitions we get must be me(λ). In our example, we obtain ((17), (9, 7, 6, 3, 3)) so that
me(λ) = (17, 9, 7, 6, 3, 3).

5.3. Example

Let us keep our running example λ = (10, 8, 7, 5, 4, 4, 3, 2, 1, 1), l = 2 and e = 4 but this time,
we take s = 2. The first two steps will give:

λ[1]
0 1 2 3 4 5 6 7 8 9
−1 0 1 2 3 4 5 6

λ[2]
2 3 4 5 6 7 8
1 2 3 4 5
0 1 2 3
−1 0 1 2
−2 −1 0
−3 −1
−4
−5

→

λ[1]
0 1 2 3 4 5 6 7 8
−1 0 1 2 3 4 5

λ[2]
4 5 6 7
3 4 5 6
2 3 4
1 2
0
−1

→

λ[1]
0 1 2 3 4 5 6 7
−1 0 1 2 3 4

λ[2]
5 6
4
3

→

λ[1]
0 1 2 3 4 5 6
−1 0 1 2 3

λ[2]
8
7

and thus, we obtain the bipartition ((6, 6), (8, 6, 5, 4, 4, 3, 1, 1, 1) which is thus the bipartition

Ψ
(0,2)→(0,2+4k)
4 ((10, 8, 3, 2, 1, 1), (7, 5, 4, 4)).
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Now, by induction, we knowm4(6, 6) = (6, 6) andm4(8, 6, 5, 4, 4, 3, 1, 1, 1) = (15, 7, 5, 4, 1, 1).
We now perform Steps 3 and 4 for ((6, 6), (15, 7, 5, 3, 1, 1)).

ν1

0 1 2 3 4 5
−1 0 1 2 3 4

ν2

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
9 10 11 12 13 14 15
8 9 10 11 12
7 8 9 10
6
5

and then:

ν1

0 1 2 3 4 5 6
−1 0 1 2 3 4 5

ν2

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 6 7 8 9 10 11
4 5 6 7 8
3 4 5 6

and then:
ν1

0 1 2 3 4 5 6 7 8
−1 0 1 2 3 4 5 6

ν2

2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6

and then:

ν1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−1 0 1 2 3 4 5 6 7

ν2

We obtain the bipartition ((17, 9), (7, 6, 3, 3)) and we conclude that me(λ) = (17, 9, 7, 6, 3, 3)
as in the last section.
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6. Xu algorithm

In [Xu99, Xu97], Xu has given an algorithm for the computation of the Mullineux involution
which is derived from the original Mullineux’s algorithm. We here recall this algorithm and
then show that it can be seen as a particular case of ours. This will in particular give a new proof
that the algorithm computes the Mullineux involution.

6.1. The algorithm

To describe Xu algorithm, we will need some additional combinatorial definitions. Let
λ = (λ1, . . . , λr) be an e-regular partition with λr ̸= 0. The rim of λ is the subset of the Young
diagram of λ consisting in the (i, j) such that (i + 1, j + 1) is not in [λ]. The e-rim is now the
subset {(a1, b1), . . . , (am, bm)} of the rim of λ which is obtained by following the rim of λ from
right to left and top to bottom, and moving down one row every time the number of nodes we
have is dividible by e.

Example 6.1. Let e = 3 and λ = (7.4.2.2). The e-rim is given by the nodes marked by a star.

⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆

⋆ ⋆

Assume that the cardinality of the e-rim of λ is m. The truncated e-rim of λ is by definition
the set of nodes (i, j) in the e-rim of λ such that (i, j − 1) is also in the e-rim of λ. If e does not
divide m, we add also the node (r, x) in the e-rim of λ such that (r, x − 1) is not in the e-rim
(recall that r is the length of the partition). We now define λ̃ to be the partition obtained by
removing the truncated e-rim from λ. It is easy to see that this partition is e-regular with rank
strictly less than the rank of λ.

Example 6.2. Let e = 3 and λ = (8, 5, 3, 3). The truncated e-rim is given by the nodes marked
by a star.

⋆ ⋆
⋆ ⋆

⋆

So the partition λ̃ is (6, 3, 3, 2).

Now we define a map
Xe : Φ(e,(0)) → Φ(e,(0))

recursively as follows. We define Xe(∅) = ∅ and if λ ∈ Φ(e,(0)(n) with n ̸= 0 then Xe(λ) is
obtained by adding a column of length n− |λ̃| to Xe(λ̃).

Theorem 6.1.1 (Xu). We have Xe = me.
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We here give a new proof of this Theorem using the crystal isomorphisms.

Example 6.3. We keep the above example. We can computeX3(6, 3, 3, 2) = (8, 2, 2, 1, 1), now
we have exactly 5 nodes in the truncated 3-rim of λ so Xe(7, 4, 2, 2) is obtained by adding a
column of length 5 to (8, 2, 2, 1, 1) and we get X3(8, 5, 3, 3) = (9, 3, 3, 2, 2).

6.2. Relation with crystal isomorphisms

We will see in this subsection that Xu algorithm is equivalent to ours in the case where we choose
s = e − 1. For λ an e-regular partition, we denote by λ̃ the partition obtained by removing the
truncated p-rim as in Xu algorithm. We denote by r the number of boxes in the truncated p-rim.

Proposition 6.2.1. We have Ψ(0,e−1)→(0,e−1+ke)
e ◦ θe,(0,e−1)(λ) = (r, λ̃) (k >> 0)

Proof. We denote λ[2] = (λ2, . . . , λe). We begin with the two first steps of our algorithm which
are described in §5.1. Assume first that one cannot add any “truncated row” of λ1 in λ[2]. This
means that there exists k > 0 such that λk+1 − k + e − 1 = λ1 − 1 and we have the following
partitions:

λ[1]
0 1 2 . . . . . . . . . . . . . . . x . . . λ1−1

λ[2]
e−1 e . . . . . . . . . . . . . . . . . . x+e−1
e−2 e−1 . . . . . . . . . . . . . . . λ3+e−3

... ... ... ... ... ... ...
e−s+1 . . . . . . . . . . . . . . . λs−s+e
. . . . . . . . . . . .

...
e−k . . . . . . . . . λ1−1

e−k−1 . . . . . . . . . λ1−2

(with x = λ2 − 1)
Then the partition (λ2, . . . , λk+1) corresponds to the partition (λ1, . . . , λk) with the very first

truncated e-rim removed. If λk+1 = 0 then we are done and λ1 is the number of nodes in the
truncated p-rim minus 1. In this case the number of elements in the associated e-rim is not
e. Otherwise we get e boxes in the associated rim and we must go to the second step of our
algorithm.

Assume that one can add a truncated row of length r. Assume that the row is added in the
part λk+1. Then the partition (λ2, . . . , λk+1) corresponds to the partition (λ1, . . . , λk) with a
truncated e-rim removed.
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λ[1]
0 1 2 . . . . . . . . . . . . . . . x . . . λ1−1

λ[2]
e−1 e . . . . . . . . . . . . . . . . . . x+e−1
e−2 e−1 . . . . . . . . . . . . . . . λ3+e−3

... ... ... ... ... ... ...
e−k+1 . . . . . . . . . λ1 . . . λk−k+e
e−k . . . x . . . λ1−1

Assume that λk+1 is non zero. Note that the length of the truncated p-rim is e−k. By induction,
the first e−k nodes of the partition λ[1] will not moved in our algorithm. We can thus just argue
by induction by replacing λ[1] with the partition λ[1]−(e−k) to find λ[2] and take into account
that we must add e−k (the length of the truncated p-rim) to the partition we obtain at the end of
our algorithm. Note that the content of the leftmost node in our first partition will be now e− k
and the contet of the leftmost node of the second partition (e− k)− e− 1 so the induction can
be done.

On the other hand, we now have the following result:

Proposition 6.2.2. We have Ψ(0,1)→(0,1+ke)
e ◦ θe,(0,1)(λ) = (me((t)), λ− 1) where t is the length

of the first column of λ (k >> 0). Here (t) denotes the partition with one part equal to t and
λ− 1 is the partition obtained from λ by decreasing each non zero part by 1.

Proof. We use the algorithm described in Subsection 5.2, using these notation, we are in the
following configuration:

λ[1]
0 1 2 3 . . . . . . λ1 − 1
−1 0 1 2 . . . λ2 − 2
... ... ... ... ...

−(e− 2) . . . . . . λe−1 − (e− 1)

λ[2]
1 2 . . . . . . λe
0 . . . . . . λe+1 − 1
... ... ... ...

−(e− 3) . . . . . . λ2e−2 − (e− 2)
−(e− 2) . . . λ2e−1 − (e− 1)

... ... ...

The first step of our algorithm thus gives:
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λ[1]
0 1 2 3 . . . . . . λe
−1 0 1 2 . . . λe+1 − 1
... ... ... ... ...

−(e− 2) . . . . . . λ2e−2 − (e− 2)

λ[2]
1 2 . . . . . . λ1 − 1
0 . . . . . . λ2 − 2
... ... ...

−(e− 3) . . . λe−1 − (e− 1)
−(e− 2) . . . λ2e−1 − (e− 1)

... ... ...
and now, we have to perform the algorithm for the following configuration of partitions:

λ[1]
0 1 2 . . . . . . . . . λe
−1 0 1 . . . . . . λe+1 − 1
... ... ... ... ...

−(e− 2) . . . . . . λ2e−2 − (e− 2)

λ[2]′

2 . . . . . . λ2e−1 + 1
1 . . . . . . λ2e
... ... ...

−(e− 2) . . . λ3e−3 − e+ 3
... ... ...
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which thus leads to

λ[1]
0 1 2 3 . . . . . . λ2e−1 + 1
−1 0 1 2 . . . λ2e
... ... ... ... ...

−(e− 2) . . . . . . λ3e−3 − e+ 3

λ[2]′

2 . . . . . . λe
1 . . . . . . λe+1 − 1
... ... ...

−(e− 2) . . . λ2e−2 − (e− 2)
−(e− 3) . . . λ3e−2 − (e− 2)

... ... ...

Now, we come to the last step, assume that s is maximal such that λke−k+s ̸= 0 (so that
ke − k + s is the length of the first column of λ). Then, we are in the following configuration
where we have an addable k + 1-node in the second partition.

λ[1]
0 1 . . . . . . . . . λke−k+1 + k − 1
1 0 . . . . . . λke−k+2 + k − 2
... ... ... ...

−(s− 1) . . . . . . λke−k+s + k − s
−s . . . k − s− 1
... ... ...

−(e− 2) . . . k − (e− 1)

λ[2]′

and we obtain for λ[1]:

0 . . . . . . k
−1 0 . . . k − 1
... ... ... ...

−(s− 1) . . . k − s k + 1− s
−s . . . k − s− 1
... ... ...

−(e− 2) . . . k − (e− 1)
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The first partition is the image of the partition ((k+1)(e−1)−(−s−2+e+1)) = (ke−k+s)
under the Mullineux involution. The second partition we get in the algorithm is λ− 1 which is
exactly what we wanted.

Let us now explain in which way our two algorithms are equivalent in the case where we
choose s = (0, e− 1). Let λ be an e-regular partition and recall the 4 steps of our algorithm at
the beginning of §5.

1. By Proposition 6.2.1, after the two first steps of our algorithm, we obtain (r, λ̃) where r is
the number of boxes in the truncated rim.

2. By induction, we know me(λ̃) and the third step of our algorithm consists in the compu-
tation of the image of (me(r),me(λ̃)) with respect to Ψ

(0,1+ke)→(0,1)
e (for k >> 0).

3. By Proposition 6.2.2 that we apply to µ = me(λ), we have Ψ
(0,1)→(0,1+ke)
e ◦ θe,(0,1)(µ) =

(me(t), µ − 1) (where t is the length of the first column of µ) so me(λ) is the partition
obtained by adding a row of length r to me(λ̃) as in Xu algorithm.

The above result thus shows that Xu algorithm indeed computes the Mullineux involution.
Remark 6.4. In [BK03], Brundan and Kujawa gave another interpretation of the Xu algorithm
using the representation theory of the supergroupGL(n|n). It would be interesting to understand
the connection of this work with ours.
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