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In Brief

Identifying features that most strongly

separate samples from two biological

classes is fundamental in the analysis of

genomic datasets. This task is typically

addressed by finding (1) single features

using univariate statistical methods or (2)

multi-feature combinations from time-

intensive machine learning. Here we

present GENVISAGE, a tool that enables

researchers to interactively identify

visually interpretable and significant

feature pairs that separate the classes.

With this highly optimized tool,

researchers can instantaneously

generate and explore hypotheses on very

massive genomic datasets.
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SUMMARY

Better tools are needed to enable researchers to quickly identify and explore effective and interpretable
feature-based explanations for discriminating multi-class genomic datasets, e.g., healthy versus diseased
samples. We develop an interactive exploration tool, GENVISAGE, which rapidly discovers the most
discriminative feature pairs that separate two classes of genomic objects and then displays the corre-
sponding visualizations. Since quickly finding top feature pairs is computationally challenging, especially
for large numbers of objects and features, we propose a suite of optimizations to make GENVISAGE
responsive at scale and demonstrate that our optimizations lead to a 4003 speedup over competitive base-
lines for multiple biological datasets. We apply our rapid and interpretable tool to identify literature-sup-
ported pairs of genes whose transcriptomic responses significantly discriminate several chemotherapy
drug treatments. With its generalizable optimizations and framework, GENVISAGE opens up real-time
feature-based explanation generation to data from massive sequencing efforts, as well as many other sci-
entific domains.

INTRODUCTION

A common approach to discovery in biology is to construct ex-

periments or analyses that directly contrast two specific classes

of biological objects. Examples of this approach include exam-

ining patient samples contrasting tumor versus normal tissue,1

studying the differences in molecular effects of two competing

drug treatments,2 or characterizing differentially expressed

genes versus genes with unaltered gene expression in a carefully

designed experiment.3 To understand the mechanisms that

determine these object classes, researchers often employ statis-

tical andmachine-learning tools to identify a manageable subset

THE BIGGER PICTURE A fundamental task in the analysis of genomics datasets is identifying features that
can explain the difference between two groups of biological samples. As studies and data repositories that
enable simultaneous analysis of thousands of samples become widespread, it is imperative that feature
identification tools return interpretable and significant results rapidly, allowing researchers to interactively
generate and explore hypotheses on thesemassive datasets. Our tool, GENVISAGE, is built around a frame-
work that identifies pairs of features that strongly separate samples of different classes. An extensive suite
of optimization techniques enables us to extract literature-supported feature pairs with accompanying
interpretable visualizations from exceptionally large genomic datasets in real time. The GENVISAGE optimi-
zations and webserver instance provide a blueprint for future online tools providing interactive feature
exploration in massive datasets from genomics and other domains.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem

Patterns 1, 100093, September 11, 2020 ª 2020 The Author(s). 1
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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of features, e.g., genes, that accentuate, discriminate, or help

explain the differences between classes, i.e., separate the two

classes. We refer to this problem as the separability problem,

and many important scientific applications can be abstracted

as this problem.

Tools have been developed in several different biological set-

tings4–9 for the separability problem, by focusing on discov-

ering pairs of features that taken together strongly discriminate

the classes. Feature pair methods can provide a better charac-

terization of what distinguishes two object classes by offering

insights into the interplay between important features that

would not be found using single-feature statistical tests10 or

univariate classifiers.11 Specifically, predictors built with gene

feature pairs are more robust to normalization and can achieve

better model performance than predictors using single genes

as features.5,6 On the other hand, methods focused on feature

pairs offer the advantage of providing more interpretable or

explainable results over more complicated machine-learning

approaches that return a complex combination of several fea-

tures to discriminate the classes, such as multivariate regres-

sion with LASSO regularization12 or pattern mining from

random forest models.13 Some existing papers7,14–16 employ

these more complex machine-learning approaches to heuristi-

cally return more interpretable feature pairs. However, these

heuristic methods do not fully explore the search space nor

do they offer a guarantee on the quality of the returned feature

pairs.

The major downside with current methods that address the

separability problem with either feature pairs or more complex

machine-learning models is that they do not scale to the growing

size of genomic datasets. As is often the casewith genomics, the

biological objects being analyzed (e.g., tissue samples or drug

experiments) are frequently represented by high-dimensional

numeric feature vectors (e.g., transcript abundance measure-

ments). Additionally, with the rise of low-cost sequencing, the

possible number of biological objects in a dataset is also

increasing and likely to grow in orders of magnitude over the

next decade.17 Applying these standard methods to datasets

with tens of thousands of objects and features results in massive

running times that preclude interactive exploration of the data.

For example, exhaustively searching for the optimal feature pairs

from the full space of possibilities in a typical genomic analysis

resulted in running times over an hour on a 200-node compute

cluster in Watkinson et al.9

One reason that more complex machine-learning and

feature-pair-based methods do not scale well with the num-

ber of features and objects is the selection of the metric for

scoring separability. In Watkinson et al.,9 a metric called syn-

ergy is proposed for evaluating the utility of feature pairs,

aiming to capture both linear and non-linear aspects of the

separability of the two class, leading to the aforementioned

long running times. Consequently, the intrinsic complexity of

these metrics makes them difficult to benefit from optimiza-

tion techniques. Metrics based only on quantifying linear

separability, on the other hand, may return a more limited

subset of interesting features, but they also may be more

intuitive for users to understand and simultaneously enable

more performance optimizations and speedups. The linear

separability metric has been used in previous studies to iden-

tify pairs of genes with expression differences between two

cancer types18 or pairs of motifs that discriminate between

different types of genomic sequences.19 However, the linear

separability metric defined in the former study18 is either

zero or one, while in our tool we employ a soft metric, ranging

from zero to one, to better measure the linear separability; the

latter19 is not focused on the efficiency optimizations for

large-scale scenarios.

Motivated by these observations, we present GENVISAGE, an

interactive data-exploration tool designed to provide effective

explanations to address the separability problem and scale to

the size of large genomic analysis datasets. With GENVISAGE,

we not only achieve high separability with our carefully formu-

lated objective but also enable explanations regarding separa-

tion via intuitive visualizations, and, at the same time, we can

handle large datasets efficiently—the best of all three worlds.

Specifically, to enable this scalability, GENVISAGE focuses on

returning the top-ranking feature pairs that discriminate the ob-

jects of separate classes, rather than returning larger subsets

of features using more complexity and longer times to train ma-

chine-learning approaches. GENVISAGE is also based around a

linear separability metric that provides an intuitive interpretation

for feature pairs while enabling and simplifying the design of

several important performance optimizations. These optimiza-

tions include: (1) elimination of repeated computation for

different features pairs; (2) pruning poor ranking pairs during

early execution; (3) sampling with a quality guarantee to further

reduce running time; and (4) cleverly traversing the search space

of feature pairs for improved efficiency. To the best of our knowl-

edge, this type of interactive data-exploration tool is relatively

underexplored compared with other areas of visualization in

biology. Specifically, there is work on biological network visual-

ization20,21 and biological time series visualization,22 but not a

lot of work on visualizing experimental data. Some related

work23,24 performs dimensionality reduction for single-cell tran-

scriptomics and visualizes the global structure of the data in

two dimensions, whereas a tool like GENVISAGE extracts the

most relevant pairs of features that explain the separation of

two object sets and then displays the related data in an interpret-

able visualization.

We applied GENVISAGE to two large genomic datasets with

tens of thousands of objects and high-dimensional feature vec-

tors where it is computationally expensive to score the separa-

bility for all possible feature pairs. In one, called LINCS, we find

pairs of genes whose expression discriminates between pertur-

bagen experiments involving different drug treatments, and in

the other, called MSIGDB, we find pairs of annotations (such

as pathway membership) that separate differentially expressed

cancer genes from other genes. With the carefully designed

separability metric of GENVISAGE and its suite of sophisticated

optimizations that accelerates evaluation, we are able to accu-

rately return the highest-ranking separating feature pairs for

both datasets within 2 min on a single machine. This reflects

a 1803 and 4003 speedup over a competitive baseline for

the MSIGDB and LINCS datasets, respectively. We also show

that the feature pairs identified by GENVISAGE often more

significantly discriminate between the object classes than the

corresponding best-ranking individual features, even after ac-

counting for the larger search space. Finally, we performed
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an in-depth analysis of nine distinct drug treatments in the

LINCS dataset and found 1,070 feature (gene) pairs that had

significant separability scores. These gene pairs were enriched

in literature support for known relationships between the genes

and the drug, as well as known interactions between the genes

themselves.

To summarize, GENVISAGE offers researchers the ability to

gain additional insights into their object classes beyond singu-

lar features without the prolonged duration needed to train a

complex machine-learning model. By implementing optimiza-

tions that take advantage of a linear separability metric, GEN-

VISAGE enables researchers to quickly explore their data, iden-

tify the strongest, most compelling features, and from simple

visualizations form hypotheses about the interplay between

features and with the object classes. The performance of our

tool also allows researchers to investigate multiple definitions

of the object classes and investigate alternative hypotheses

interactively on the fly, as well as build a feature set to pass

on to more in-depth, longer-running machine-learning-based

analysis.

METHODS

We begin by formally defining the separability problem, introducing our sepa-

rability metric, and finally detailing optimizations that enable the rapid identifi-

cation of the best separating feature pairs.

Problem Definition

Let M be a feature-object matrix of size m3 N, where each row is a feature

and each column is an object as shown in Figure 1. One example feature-ob-

ject matrix is one where each object corresponds to a tissue sample from a

cancer patient and each feature corresponds to a gene, where the ði; jÞth entry
represents the expression level of the ith gene in the jth tissue sample. We

denote the m features as F = ff1; f2;/; fmg and N objects as O = fo1;o2;/;

oNg. Each entry Mi;j in M corresponds to the value of feature fi for object oj

as illustrated in Figure 1.

We are also given two non-overlapping sets of objects, one with a positive

label, O+ and the other with a negative label, O�. In our example, tumor sam-

ples, O+ , may be assigned the positive label, and the healthy tissue samples,

O�, the negative label. The number of labeled objects, n, is equal to j bOjwherebO = O+WO�. Also, let lk be the label of object ok˛ bO, i.e., lk = 1 if ok is positive

and lk = � 1 if ok is negative.

GENVISAGE aims to find feature pairs that best separate the objects in O+

from those inO� using only those features, and then output a visualization that

demonstrates the separability. (We will define the metric for separability sub-

sequently.) A feature pair that leads to a good ‘‘visual’’ separation between

the positive and the negative sets may be able to explain or characterize their

differences via an interesting, non-trivial relationship among the features. The

overall workflow is depicted in Figure 1. We now formally define the separa-

bility problem.

Problem 1 (Separability)

Given a feature-object matrixM and two labeled object sets ðO+ ;O�Þ, identify
the top-k feature pairs ðfi ; fjÞ that separateO+ fromO� based on a given sepa-

rability metric.

Wewill describe our separability metric in the next section, followed by a dis-

cussion of optimization techniques. The notation used in the description of the

method is summarized in Table S3.

Separability Metric

Given a feature pair ðfi ; fjÞ as axes, we can visualize the object setsO+ andO�
in a two-dimensional (2D) space, where each object corresponds to a point

with x value and y value as the object’s value on feature fi and fj, respectively.

A desirable (i.e., both interesting and interpretable) visualization would be one

in which the objects are linearly separated, defined as follows. Two sets of ob-

jects, i.e.,O+ andO�, are said to be linearly separable25 if there exists at least

one straight line such that O+ and O� are on opposite side of it. We focus on

metrics that capture this linear separation, since it corresponds to an intuitive

2D visualization. Given a feature pair ðfi ; fjÞ and a line [ , we can predict the label

of an object ok , denoted as h[ ;ki;j , using Equation 1, wherew0,wi and wj are co-

efficients of [ and wj>0:

Predicted Label : h
[ ;k
i;j = signðwi ,Mi;k + wj ,Mj;k + w0Þ: (Equation 1)

If ok lies above the line [ , i.e., ok has higher value on the y axis than the point

on line [ with the same value on the x axis as ok , then h
[ ;k
i;j = 1; otherwise, h[ ;ki;j =

� 1. Let q[ ;ki;j be the indicator variable denoting whether the sign of the pre-

dicted label matches the real label lk : if h
[ ;k
i;j ,lk = 1, then q

[ ;k
i;j = 1; otherwise,

q
[ ;k
i;j = 0.

GENVISAGE’s separability metric captures how well the objects in the

feature pair’s 2D visualization can be linearly separated, formally defined

next. Given a feature pair ðfi ; fjÞ and a line [ , the separability score of the line

(denoted q[i;j ) is defined as the sum of the indicators (q[ ;ki;j ) for all objects: q
[
i;j =P

kq
[ ;k
i;j . Figure 2A shows separability scores q[i;j for different separating lines.

For example, the separating line with q[i;j = 12 correctly separates six green

points and six red points. The final separability score for a feature pair ðfi ; fjÞ
(denoted as qi;j ) is defined as the best separability score q[i;j among all possible

lines [ . Accordingly, we define the overall separability error of the feature pair

as erri;j = n� qi;j .

Brute-Force Calculation of qi;j
As suggested in Figure 2A, the simplest way to calculate qi;j is to first

enumerate all possible separating lines [ and calculate q[i;j for each of them.

We can easily trim down the search space to Oðn2Þ lines by linking the points

corresponding to every two objects in the 2D plane. This is because the results

of all other possible lines can be covered by theseOðn2Þ lines.26 Nevertheless,
it is still very time consuming to considerOðn2Þ lines for each feature pair ðfi ;fjÞ.
Rocchio-Based Measure

We can speed up the process by selecting a single representative line L

providing us with an estimate of the true separability score qi;j. To achieve a

A B C

Figure 1. GENVISAGE Workflow

Given (left) a feature-object matrix and green positive and red negative class labels on the objects, GENVISAGE (center) evaluates all pairs of features using

several optimizations to identify (right) the top feature pair and its corresponding visualization that best separates the object classes.
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fast and reliable estimate, we select our representative line based on Roc-

chio’s algorithm.27 Let us denote the centroids of positive objects O+ and

negative objects O� for a given ðfi ; fjÞ as m+
i;j = ðM+

i ;M+
j Þ and m�

i;j = ðM�
i ;

M�
j Þ, respectively, where M+

i and M+
j are the values of the centroids of

the positive objects on feature fi and fj , and M�
i and M�

j are the values of

the centroids of the negative objects on feature fi and fj. The perpendicular

bisector of the line joining the two centroids is selected as the representative

separating line L (see Figure 2B), with its coefficients corresponding to Equa-

tion 1 defined as wi = M+
i � M�

i , wj = M+
j � M�

j , and w0 = � 
ðM+

i Þ2�ðM�
i Þ2

2 +
ðM+

j Þ2�ðM�
j Þ2

2

!
.

Brute Force versus Rocchio Based

Compared with the brute-force calculation, the Rocchio-based measure

is much more lightweight, but at the cost of accuracy in calculating qi;j.

Intuitively, the representative line is a reasonable proxy to the best sepa-

rating line since the Rocchio-based measure assigns each object to its

nearest centroid. We further empirically demonstrate that qLi;j is a good

proxy for qi;j in the section Comparison of Different Algorithms. Thus, we

will focus on the Rocchio-based measure subsequently, removing L (or

[ ) from the superscripts where it appears, and using qi;j and qLi;j
interchangeably.

Proposed Suite of Optimizations

In this section, we first analyze the time complexity of identifying the top-k

feature pairs using the Rocchio-basedmeasure and then propose several opti-

mization techniques to reduce the complexity.

Time Complexity Analysis

For a given feature pair ðfi ; fjÞ, if we have already calculated the class cen-

troids for each feature, the separating line L can be calculated in Oð1Þ. We

can then calculate the number of correctly separated objects qi;j via OðnÞ
evaluations. Since there are Oðm2Þ feature pair candidates, the total time

complexity is Oðm2nÞ, which can be very large, since m and n are typi-

cally large.

Optimizations: Overview

To reduce the time complexity, we introduce two categories of optimizations:

those that reduce the amount of time for fully evaluating a given feature pair

(see Pre-transformation for Faster Feature Pair Evaluation and Early Termina-

tion) and those that reduce the number of feature pairs that require full evalu-

ation (see Sampling-Based Estimation and Search Space Traversal). In the

following, we refer to these optimizations as modules to indicate that they

can be used in any combination—however, in reality, careful engineering is

necessary to ‘‘stitch’’ these modules together to multiply the effects of the

optimizations.

The TRANSFORMATION module (see Pre-transformation for Faster

Feature Pair Evaluation) reduces redundant calculations across feature

pairs by mapping the feature-object matrix M into a new space that en-

ables faster evaluation of object labeling. The EARLYSTOP module

A B Figure 2. Calculating Separability Score qi;j
The scored separating line can be defined using

(A) brute force (few sample lines are shown) or (B)

the representative line from a Rocchio-based

measure based on the object class centroids

(white circles).

(see Early Termination) takes advantage of the

fact that evaluation of a poorly separating feature

pair can be terminated early without having to

evaluate the separability of all n objects.

The SAMPLING module (see Sampling-Based

Estimation) first identifies likely top-k feature

pair candidates by evaluating their separability

on a sampled subset of all objects and then con-

ducts full evaluations only on these feature pair

candidates. Finally, the TRAVERSAL module

(see Search Space Traversal) reduces the num-

ber of feature pairs checked by greedily choosing feature pairs based

on the separability of the corresponding single features. These optimiza-

tion modules can be used on their own or combined with each other. In

Results, we will show how these optimization modules greatly reduce

the running time of finding the top-k separating feature pairs without

significantly affecting the accuracy.

Pre-transformation for Faster Feature Pair Evaluation

We observe that there is massive redundancy across qi;j ’s computation

of different feature pairs. Motivated by this, we propose the TRANS-

FORMATION module, which will pre-calculate some common computa-

tional components once across different features and reuse these com-

ponents in evaluating the separability for each different feature pair.

This TRANSFORMATION module transforms the original Mi;k matrix

into another space cM i;k using the identified common feature pair com-

ponents and updates the separability score equation accordingly. Spe-

cifically, with this transformation of the feature-object matrix cM i;k , eval-

uating whether an object was correctly separated is simplified as: if

signðcM i;k + cM j;kÞ = 1, then qki;j = 1; otherwise, qki;j = 0. Details and an

example can be found in Supplemental Experimental Procedures and

Figure S1.

Early Termination

Given a feature pair ðfi ;fjÞ, we need to scan all the objects to compute the sepa-

rability score qi;j. However, since we only need to identify feature pairs in the

top-k, we can stop for each feature pair as soon as we can make that determi-

nation without scanning all objects; we call this the EARLYSTOP module.

High-Level Idea. We maintain an upper bound t for the separability error erri;j
of the top-k feature pairs. Then, the lower bound of the separability score can

be denoted as (n� t). Given a feature pair ðfi ;fjÞ, we start to scan the object list

until the number of incorrectly classified objects exceeds t. If so, we can termi-

nate early and prune this feature pair since it cannot be among the top-k.

Otherwise, ðfi ; fjÞ is added to the top-k feature pair set and we update t

accordingly.

Enhancement by Object Ordering. Although EARLYSTOP has the potential

to always reduce the running time, its benefits are sensitive to the ordering of

the objects for evaluation. Since we terminate as soon as we find t incor-

rectly classified objects, we can improve our running time if we examine

‘‘problematic’’ objects that are unlikely to be correctly classified relatively

early. For this, we order the objects in descending order of the number of sin-

gle features fi that incorrectly classify the object ok , i.e., cM i;k%0. Thus, the

first object evaluated is the one that is incorrectly classified by the most sin-

gle features. The benefit of this strategy is illustrated with an example in

Figure 3A.

Sampling-Based Estimation

One downside of the EARLYSTOP module is that the improvement in the

running time is highly data dependent. Here, we propose a stochastic method,

called SAMPLING, which reduces the number of examined objects. Instead of

calculating qi;j over the whole object set bO, SAMPLING works on a sample set

drawn from bO.
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High-Level Idea. SAMPLING primarily consists of two phases: candidate

generation and validation (Figure 3B). In phase 1, we estimate the confidence

interval of qi;j for each feature pair using a sampled set of objects and generate

the candidate feature pairs for full evaluation based on where their confidence

intervals lie. If the confidence interval overlaps with the score range of the cur-

rent top-k, then it is selected for evaluation. In phase 2 (lower half of Figure 3B),

we evaluate only the feature pairs in the candidate set, calculating qi;j over the

whole object set, bO, to obtain the final top-k feature pairs. Unlike our previous

optimizations, SAMPLING returns an approximation of the top-k ranking

feature pairs.

Candidate Generation. Let S be a sample set drawn uniformly from bO. Given

a feature pair ðfi ;fjÞ, let qi;jðSÞ be the number of correctly separated objects in S.
We can estimate ~qi;j from qi;jðSÞ using ~qi;j =

qi;j ðSÞ
jSj ,n by assuming the ratio of

correctly separated samples in S is the same as that in bO. Using Hoeffding’s

inequality,28 we can show that by selecting U

�
1
ε
2

�
samples, qi;j is within the

confidence interval ½~qi;j �εn; ~qi;j + εn� with high probability (for details see Sup-

plemental Experimental Procedures). Since the sample size jSj is independent
of the number of objects, thismodule helps GENVISAGE scale to datasets with

large n.

Following the top half of Figure 3B, we can first calculate the confidence in-

terval of qi;j for each feature pair ðfi ;fjÞ. Next, we compute the lower bound of qi;j
for the top-k feature pairs, denoted as z as shown by the red dotted line.

Finally, we can prune feature pairs away whose upper bound is smaller than

z, keeping the candidate set C of feature pairs depicted by blue intervals. These

feature pairs C will be further validated in phase 2, i.e., candidate validation.

Typically, jCj will be orders of magnitude smaller than m2, the original search

space for all feature pairs.

Candidate Validation. We re-evaluate all of the candidates generated from

phase 1 to produce our final feature pair ranking. This evaluation is performed

using the whole object set bO and the top-k feature pairs are reported (lower

half of Figure 3B).

Enhancement by Candidate Ordering. In Early Termination we proposed an

enhancement that allows us to terminate computation early by manipulating

the order of the objects; here, we similarly found a way to reduce the running

time by changing the order in which feature pair candidates are validated in

phase 2. Instead of directly validating each feature pair candidate, we first or-

der the candidates in descending order according to the upper bound of each

candidate’s confidence interval. We then sequentially calculate the full sepa-

rability score qi;j for each feature pair and update z correspondingly. Recall

that z is the current estimate of the lower bound of qi;j for the top-k feature

pairs. Finally, we terminate our feature pair validation when the next feature

pair’s upper bound is smaller than the current value of z (Figure 4).

Search Space Traversal

The optimizations discussed so far check fewer than n objects for each feature

pair and reduce the number of feature pairs for full evaluation. Our

TRAVERSAL module aims to reduce the number of feature pairs considered

from m2 to a smaller number. Instead of examining each feature pair, we

only examine a limited number of feature pairs, but in an optimized traversal

order. The number of examined feature pairs, c, determines a trade-off be-

tween efficiency and accuracy. Fewer feature pairs checked will result in faster

running times, though at the cost of accuracy to the top-k. The order of the

feature pairs must be determined carefully, and we propose two alternative or-

derings based on the ranking of single features by their separability scores qi;i.

The first traversal order, called horizontal traversal, prioritizes feature pairs that

have at least one high-ranking single feature in the considered feature pair. The

second order, called vertical traversal, prioritizes feature pairs where both fea-

tures have high single-feature score rankings (see Figure S2 for more details

and an example).

RESULTS

In this section, we illustrate that GENVISAGE rapidly identifies

meaningful, significant, and interesting separating feature pairs

in real biological datasets. First, we describe the datasets and

the algorithms used in our evaluation. Each algorithm that we

evaluate represents a combination of optimization modules for

ranking top-k feature pairs using our Rocchio-based mea-

sure—we report the running time and accuracy of the algorithms.

Second, we compare the top-k feature pairs returned by GEN-

VISAGE with the corresponding top-k single features, and

examine their significance and support in existing publications.

Lastly, we present some sample visualizations to illustrate the

separability of the object classes.

Evaluation Setup
Datasets

We consider datasets from two biological applications (see

Table 1): (1) in MSIGDB, we find gene annotations such as path-

ways and biological processes that separate the differentially ex-

pressed genes from the undisturbed genes in specific cancer

studies; (2) in LINCS, we find genes whose expression levels

can distinguish experiments in which specific drug treatments

were administered from others.

In MSIGDB, we are given a feature-object matrix with genes as

the objects and gene properties as the features. Rather than be-

ing a 0/1 membership indicator matrix, the values of this feature-

object matrix indicate the strength of the relationship between

the gene and the set of genes that have been annotated with

the gene property. Matrix values are calculated using random

walks29 on a heterogeneous network built from prior knowledge

found in gene annotation and protein homology databases (see

A B Figure 3. Optimization Module Examples

(A) When evaluating a feature pair with EARLYSTOP

module, the transformed cM scores are scanned left

to right and each incorrectly classified object is

marked in blue. Without object ordering (above),

evaluation terminates after five checked objects.

When objects are reordered by the most ‘‘prob-

lematic’’ (below), the feature pair is rejected after

checking only the first two objects.

(B) To calculate the top three feature pairs with SAM-

PLING, the confidence interval of qi;j is calculated for

every feature pair evaluated on the sample set S
(above). The third interval lower bound z is obtained

(reddotted line), andall featurepairswitha largerupper

bound are designated as candidates for validation

(blue intervals). The selected candidates (center box)

are evaluated on the whole object set bO to compute

the exact qi;j and pick the top three (right box).
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Supplemental Experimental Procedures for more details). The

positive genes for each dataset inMSIGDB are the set of differen-

tially expressed genes (DEGs) in a specific cancer study down-

loaded from the Molecular Signatures Database (MSIGDB).30

Each of our tests is an application of GENVISAGE to such a data-

set, reporting pairs of properties that separate DEGs of that can-

cer study (the ‘‘positive’’ set) from all other genes (the ‘‘nega-

tive’’ set).

In LINCS, the feature-object matrix contains expression values

for different genes (features) across many drug treatment experi-

ments (objects) conducted on the MCF7 cell line by the LINCS

L1000 project.31 The values of the matrix are gene expression

values as reported by the ‘‘level-4’’ imputed Z scores measured

in the L1000 project. In each dataset, the positive object set in-

cludes multiple experiments that used the same drug, at varying

dosages and for varying durations. We applied GENVISAGE on

each dataset so as to find the top pairs of genes (feature pairs)

whose expression values separate the LINCS experiments

relating to a single drug from all other LINCS experiments.

Note that the average number of positive objects in any data-

set is far fewer than the average number of negative objects. To

address this imbalance, we adjust q[i;j to a weighted sum form:

q[i;j =
P

ok˛O�
q
[ ;k
i;j + jO�j

jO+ j,
P

ok˛O+

q
[ ;k
i;j .

Algorithms

We evaluated six combinations of our optimization modules from

the section Proposed Suite of Optimizations, listed in Table 2. For

our baseline,weuse the algorithmwith only thematrix pre-transfor-

mation optimization module (TRANSFORMATION). The rightmost

column of Table 2 shows the varying time complexity of the algo-

rithms. Consider the HORIZSAMPOPT as an example. First, TRANS-

FORMATIONtakesOðmnÞ time.Then,TRAVERSALrequiresasort-

ing over the feature set, taking OðmlogmÞ time. Finally, with

SAMPLING over c feature pairs, the running time is reduced from

Oðm2nÞ time to OðcjSj + jCjnÞ time, where the first and second

terms represent the time for candidate generation and candidate

validation, respectively. Note that jCj is typically orders of magni-

tude smaller than c in HORIZSAMPOPT, as discussed in Sampling-

Based Estimation. Combinations of modules beyond the six re-

ported were always inferior to one of those shown in the sense

that they returned the same top-k feature pairs and had a longer

running time.We implemented thealgorithms inC++, andconduct-

ed theevaluationsonamachinewith16CPUsand61.9GBofRAM.

Comparison of Different Algorithms
In this section, we first justify that Rocchio-based measure is a

good proxy for the best possible separating score computed

by a brute-force method. We then compare the performance

of the algorithms in terms of the running time and the separability

of their top 1,000 feature pairs.

Accuracy of Rocchio-Based Approximation

As discussed in Separability Metric, when using brute force we

need to consider Oðn2Þ lines in order to find the best separating

line [ �)arg[maxfq[i;jg, with a time complexity of Oðn2m2Þ when

considering all feature pairs. An alternative is to use Rocchio-

based representative separating line L, dramatically reducing

Oðn2Þ lines considered toOð1Þ. To give some concrete numbers,

we attempted to run the brute-force approach using only n= 600

objects and m= 150 features, and it took more than 3 h for the

run to complete. Note that in our experiments on real data as

shown in Table 1, both m and n are around 20K for each single

dataset in MSIGDB (m and n are even larger in LINCS), which

when extrapolated suggests it would take around 23107 hours

using the brute-force approach for one dataset. Since the

brute-force method becomes computationally infeasible for da-

tasets with large n, we compared the Rocchio-based measure

with the brute-force-based measure using specially defined

small object sets, bO, for the ten datasets in MSIGDB. For this

comparison, the upregulated genes in each MSIGDB test was

defined as the set of positive objects and the downregulated

genes as the set of negative objects, resulting in an average

number of 295 objects for each comparison. We call the brute-

force-based separability score the true separability score, since

it examines all possible separating lines. We first find the best

feature pair using Rocchio-based measure and the brute-

force-based measure separately (potentially different feature

pairs) and then calculate the ratio of the true separability scores

of the Rocchio versus the brute-force best feature pairs. We

observe that the Rocchio-based method picks a best feature

pair that has true separability score similar to the best pair picked

by brute force, with the ratio of the two scores being better than

0.94 in all ten datasets (Figure S3a). Second, for the best feature

pairs identified by Rocchio-based method for the ten datasets,

we calculate the ratio of the Rocchio-based separability score

and the brute-force-based separability score, and find the differ-

ence to be greater than 0.96 on average (Figure S3b).

Running Time

Figure 5 depicts the running times of our different selected algo-

rithms. Each plotted box corresponds to one algorithm, repre-

senting the distribution of running times for finding the top-k

feature pairs (by Rocchio score) for all datasets.

First, let us compare themedian running times among different

algorithms. For MSIGDB, the BASELINE takes more than 2 h, EAR-

LYORDERING takes less than 1 h, SAMPONLY and SAMPOPT take

around 6 min and 5 min, respectively, while HORIZSAMPOPT and

Figure 4. Candidate Ordering Enhancement

(A) Feature pair candidates are sorted by the upper

bounds of their confidence intervals (solid red

boundary), and the lower bound of the top three

feature pairs, i.e., z, is set (red dotted line).

(B–D)For each featurepair,wecalculate qi;j (filledblue

circle) using all objects and update z if necessary.

Note that z is increased in (D) after evaluating the third

featurepairand, since z is larger than theupperbound

of the fourth feature pair, candidate validation can

terminate and return the top-ranking pairs.
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VERTSAMPOPT both take only 1 min on average. Overall, the opti-

mizations result in a reduction of the running time by over 1803 .

We next examine the effect of different modules on the running

time. (1) EARLYSTOP: we observe that the EARLYSTOPmodule

helps achieve a 23 speedup, with the average number of

checked objects (genes) reduced from 20K to 5K (Table S1);

(2) SAMPLING: the SAMPLINGmodule helps reduce the running

time dramatically, with 203 reduction from BASELINE to SAMPOPT,

since on average only 2M candidates are generated from all

possible 200M feature pairs (Table S1); (3) TRAVERSAL: the

modules HORIZSAMPOPT and VERTSAMPOPT achieve an additional

63 speedup compared with SAMPOPT by terminating after only

considering c= 107 feature pairs, approximately 1
20 of all possible

feature pairs. This speedup of HORIZSAMPOPT and VERTSAMPOPT is

approaching the limit set by the feature ordering overhead

(around 6 s) and the time for the TRANSFORMATION module

(around 8 s) (Table S1). The improvement over SAMPOPT is not

stronger, since the candidate generation phase of SAMPOPT is

able to remove a vast amount of the feature pairs from full eval-

uation that would also be ignored by HORIZSAMPOPT and VERTSAM-

POPT (Table S1).

Next, consider the log-scale interquartile range (IQR) of the

running times for the different selected algorithms (Figure 5). We

observe that EARLYORDERING has the largest interquartile range,

indicating that the EARLYSTOP module, which tries to reduce

the number of objects evaluated for each feature pair, is very

dependent on the object set and feature values. As we discussed

in Early Termination, EARLYSTOP has no guarantee of improving

the running time. In fact, the algorithm can occasionally be worse

than the BASELINE as shown in Figure 5B because EARLYSTOP in-

curs additional overhead for checking the criteria for pruning and

early termination when scanning the object list for each feature

pair. Similar results for LINCS are shown in Figure 5B (see Supple-

mental Experimental Procedures).

Separability Quality

As discussed previously, we found the accuracy of the baseline

method that computes the Rocchio-based estimate of top-k fea-

tures to be high. Here, we study the impact of ourmodules on ac-

curacy. The EARLYSTOP module is deterministic and produces

the same top-k feature pairs as the baseline method only with

optimized computation. The SAMPLING module, on the other

hand, is stochastic and can only provide an approximation of

the top-k feature pair ranking. Finally, the TRAVERSAL module

is heuristic and may output top-k feature pairs that are very

different from the ranking produced by the BASELINE algorithm,

and since BASELINE returns the true Rocchio-based separability

score of each feature pair, we measured the quality of each

selected algorithm by counting the number of common feature

pairs returned in the top 100 between the BASELINE and the given

algorithm. Figure 6 shows this separability quality comparison.

Let us first focus on MSIGDB. EARLYORDERING, as expected,

has exactly the same separability quality as the BASELINE. We

also observe that the SAMPONLY and SAMPOPT rankings are

nearly identical to the top 100 feature pairs of the BASELINE,

owing to the probabilistic guarantee described in Supplemental

Experimental Procedures. The HORIZSAMPOPT and VERTSAMPOPT

algorithms output a median of 92 and 48 feature pairs in com-

mon with BASELINE, respectively, because of the heuristic

TRAVERSALmodule. In the MSIGDB results, HORIZSAMPOPT per-

forms much better than VERTSAMPOPT, with the median much

higher and the IQR much narrower, as shown in Figure 6A.

This suggests, as we hypothesized, that interesting separating

feature pairs exist outside of only the combinations of the top

single features as in VERTSAMPOPT. We repeated this quality

analysis for LINCS and found that the SAMPLING-based algo-

rithms returned identical top-100 feature pairs for all 40 data-

sets. The quality of the TRAVERSAL-based algorithms was

again lower, although the performance separation of the

HORIZSAMPOPT and the VERTSAMPOPT algorithms was not as large

as for MSIGDB.

Takeaways

If the accuracy is paramount, SAMPOPT is recommended; if the

running time is paramount to the user, HORIZSAMPOPT is

recommended.

Table 1. Dataset Statistics

jF j = m jOj = N jSj c # of bO avg(jO+ j) avg(jO�j)
MSIGDB 19,912 22,209 400 107 10 295 21,914

LINCS 22,268 98,061 400 107 40 165 97,897

For each dataset, the number of features m, objects N, sample size jSj
used by SAMPLING module, feature pairs c examined by TRAVERSAL

module, number of object sets # of bO, average positive set size

avg(jO+ j), and average negative set size avg(jO�j).

Table 2. Selected Algorithms Using Different Optimization Modules

EARLYSTOP SAMPLING Candidate Ordering TRAVERSAL Approximation Complexity

BASELINE no No no any no Oðm2nÞ
EARLYORDERING yes No no any no Oðm2nÞ
SAMPONLY no Yes no any yes (guarantee) Oðmn +m2jSj + jCjnÞ
SAMPOPT no Yes yes any yes (guarantee) Oðmn +m2jSj + jCjnÞ
HORIZSAMPOPT no Yes yes horizontal yes (heuristic) Oðmn +cjSj + jCjnÞ
VERTSAMPOPT no Yes yes vertical yes (heuristic) Oðmn +cjSj + jCjnÞ
All algorithms, including the BASELINE, are using TRANSFORMATION. In addition, EARLYSTOP and TRAVERSAL are coupled with object ordering and

feature ordering by default, respectively. Each algorithm (row) shows which optimization modules are employed, whether the algorithm is returning the

exact answer or an approximation answer, and the running time complexity for that combination. The terms ‘‘guarantee’’ and ‘‘heuristic’’ indicate that

the returned answer is with and without stochastic guarantee, respectively. In addition, m and n are the number of features and objects, S is the

sampled set size, c is the limit on the number of feature pairs considered, and C is the number of generated feature pair candidates.
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Feature Pair versus Single Feature
In this section, we quantify the statistical significance of the top-

ranking results of the selected algorithms.We show that we often

find separating feature pairs that are more significant than the

best single separating feature. To assess the significance of a

separating feature or feature pair, we first calculate the p value

using the one-sided Fisher’s exact test on a 232 contingency ta-

ble. This contingency table is constructed with the rows being

the true positive and negative labels, the columns being the pre-

dicted positive and negative labels, and the values being the

number of objects that belong to each table cell. Using the Fish-

er’s exact test p value, we assert that feature pairs can provide a

better separability compared with single features, i.e., (1) feature

pairs have stronger p values compared with the corresponding

individual features even after appropriate multiple hypothesis

correction and (2) there exist high-ranked pairs of features that

are poorly ranked on their own as single features.

Single Feature

Finding top-k single features is a special case of finding

feature pairs by setting i = j. For each single feature obtained,

we compute the p value with Fisher’s exact test, denoted as

pval. Next, we define the Bonferroni-corrected p value as

corrected pval = pval3 m3 n, since there are m3n

possible hypotheses, one for each possible single feature

and separating line. We say a selected feature is significant

if the corrected p value is smaller than the threshold 10�5, i.e.,

� log10ðcorrected pvalÞR5. In Figure 7, we plot the distribution

of the corrected p value of the top 100 features reported for each

dataset in MSIGDB and LINCS. We observe that 10 out of 10 da-

tasets in MSIGDB and 32 out of 40 datasets in LINCS have at

least one significant single feature, and will focus on these data-

sets for further analysis. We observe very small p values, %

10�50, in the left part of Figures 7A and 7B, indicating that single

features are sufficient to separate the object classes for several

datasets well.

Feature Pair

We next build the contingency tables and calculate the p value

for the top-k feature pairs. To correct for m2 possible feature

pairs and the n2 possible ways to choose the separating lines

for each feature pair, we apply a Bonferroni p value correction

to produce the corrected pval = pval3m2 3 n2.We plot the dis-

tribution of the corrected p values for the top-k feature pairs in

Figure 7. Once again, the threshold for defining a significant

feature pair is set to 10�5. We find that 10 out of 10 datasets in

MSIGDB and 27 out of selected 32 datasets in LINCS have at

Figure 5. Running Time Comparison

A boxplot for each algorithm (A, MSIGDB; B, LINCS)

is shown with the median value appearing in

matching color above. For each boxplot, whiskers

are set to be 1.53 the interquartile range, the out-

liers are shows as red dots, and the average is

marked by a black star. The number on the top

shows the median running time for each algorithm.

least one significant feature pair by this

metric. Visual comparison of the top 100

single features with the top 100 feature

pairs (Figure 7) per dataset reveals several

datasets where the corrected p values of the feature pairs are

more significant than those of the best single features, even after

accounting for the larger search space. Admittedly this is not al-

ways the case; e.g., for five LINCS datasets no feature pair was

found to be significant at corrected pval%10�5 while at least one

single feature did meet this threshold. Overall, this analysis sug-

gests that rapid discovery of top feature pairs may identify more

significant patterns in the given dataset than does a traditional

single-feature analysis. In the following, we further illustrate

that feature pairs can also provide better and newer insights

compared with single features.

Improvement from Single Feature to Feature Pair

Having computed the corrected p value for each single feature

and feature pair in the top 100 for our datasets, we now examine

the improvement of each feature pair from its two corresponding

single features in terms of p value. For each feature pair ðfi;fjÞ, we

define the improvement quotient as the ratio between the cor-

rected p value of ðfi; fjÞ and the better one of the corrected p value

of fi or fj, i.e., improv quot =
corrected pvalðfi ;fjÞ

minðcorrected pvalðfiÞ;corrected pvalðfjÞÞ. We

examined only the improv quot for the top 20 feature pairs for

each of the ten runs in MSIGDB and 32 runs in LINCS. We found

that on average across these datasets, 9.3 of the top 20 feature

pairs in MSIGDB and 8 of the top 20 feature pairs in LINCS

are more significant than their corresponding single features

(� log10ðimprov quotÞ>5). The distribution of the improv quot

is plotted in Figure S4. Overall, these histograms show that there

is an improvement from single features to some feature pairs in

terms of the separability significance. Next, we will explore the

improved feature pairs more carefully, commenting on their

redundancy, reliability, and relevance.

New Insights from Feature Pairs

To assess the quality of the top-ranking feature pairs, we

focused on the LINCS dataset where the objects are experi-

mental treatments on the MCF7 breast cancer cell line with the

same drug and the features are expression values for different

genes. For the evaluations above, we used object sets for the

40 drugs with the largest number of LINCS experiments. For

the following analysis, we refine our list to those that are common

drugs and have at least 60 LINCS experiments on the MCF7 cell

line. These nine drugs are vorinostat, trichostatin, estradiol,

tamoxifen, doxorubicin, gemcitabine, daunorubicin, idarubicin,

and pravastatin. For each chosen drug, we ran the SAMPOPT algo-

rithmof GENVISAGE to rank the top 1,000 feature (gene) pairs for

separating the LINCS experiments of the drug from all other

MCF7 experiments.
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For all drugs except pravastatin, all of the top-1,000 ranked

feature pairs were found to be significant, i.e.,

�log10ðcorrected pvalÞ>5 (see Table 3). As described in Feature

Pair versus Single Feature, we are especially interested in

feature pairs whose corrected p value is better than the

corrected p values of their corresponding single features

(� log10ðimprov quotÞ>0). We found 1,070 ‘‘improved’’ feature

pairs with larger separability over their single feature among

the top 1,000 of these evaluation drug sets. One drug, trichosta-

tin, had especially strong single features and showed no feature

pairs that significantly improved on them. The remaining seven

drugs, however, benefited from the feature pair analysis, yielding

between 9 (tamoxifen) and 369 (doxorubicin) improved feature

pairs (Table 3).

Many of the aforementioned 1,070 significantly improved

feature pairs are partially redundant, in the sense that they

comprise a common best-ranked single feature (gene). In fact,

we found for all drug runs except doxorubicin that at least 20%

of the improved feature pairs for that run contained a shared

gene (the results are presented in Table S4). An example of

this is with the object set for the drug (small molecule) estradiol.

We found the gene PRSS23 as the single feature with the highest

separability and many feature pairs containing PRSS23 and a

second gene as having an improved corrected p value, for

example (PRSS23, RAP1GAP), (PRSS23, TSC22D3), and

(PRSS23, BAMBI). We looked for evidence of the relationship

between the drug estradiol and these feature pair genes in the

Comparative Toxicogenomics Database32 and with our own

literature survey. From this search, we found evidence for the

pronounced effect of estradiol in increasing expression levels

of PRSS23,33 RAP1GAP,34 and BAMBI,35 and decreasing

expression of TSC22D3.36 So although the top single feature

(gene PRSS23) reoccurred in multiple top feature pairs, each

secondary feature gene was also meaningfully related to the

administered drug in this case.

We next examined the 1,070 improved feature pairs, found

over the nine LINCS datasets, to determine their consistency

with existing biological knowledge bases (see Supplemental

Experimental Procedures for details). The interaction networks

from these sources covered 23,167 genes and had at least one

known interaction between 2:17% of all possible gene pairs.

Our 1,070 improved feature pairs were mapped to 996 unique

gene pairs in this interaction dataset. The number is reduced

because in some cases, (1) the feature identifier could not be

Figure 6. Separability Quality Comparison

Boxplots in the style of Figure 5 comparing the

number of feature pairs returned by each method

from the 100 best feature pairs of the baseline.

mapped to a corresponding gene identi-

fier, (2) two differently named features

were mapped to the same gene, or (3) the

same feature pair was present inmore than

one drug experiment. Of the 996 unique

feature pairs with significant improv quot,

133 gene pairs (13:4%) were found to

have at least one known interaction. This

6-fold enrichment demonstrates that GENVISAGE more often

finds pairs of genes that have a known relationship than is ex-

pected by chance. One example is (GLRX, NME7) that is espe-

cially good for separating vorinostat experiments from all others.

Not only are both of these genes known to have increasedmRNA

expression in response to vorinostat,37,38 but the two genes are

annotated by STRING to both be in database pathways of nucle-

otide biosynthesis, co-expresswith each other in othermodel or-

ganisms, and mentioned together often in literature abstracts. In

the next section, we will demonstrate that the positive objects

and negative objects are visually separated under this feature

pair, as shown in Figure 8.

In Table S2, for the LINCS nine drug datasets we examine

several of the ‘‘improved’’ feature gene pairs reported by GEN-

VISAGE analysis. Of 39 feature pairs in this table, 12 have three

types of accompanying evidence: (1) a literature-based rela-

tionship between the drug and the first gene; (2) a literature-

based relationship between the drug and the second gene;

and (3) an interaction network relationship between the pair of

genes. Six have two of the three types of evidence and there

are only three with no evidence at all. Particularly interesting

are the top improved feature pairs in which neither of the single

gene features ranked well alone. An example is the gene pair

CDKN1A and CEBPB for separating doxorubicin experiments

from others. Either gene feature alone is not within the top

600 genes for separating doxorubicin experiments from others.

However, the combination of the pair is significant at a cor-

rected p value of 2310�25 and is the second most improved

feature pair for doxorubicin. This feature pair also has all three

types of accompanying evidence; doxorubicin is known to in-

crease expression of CDKN1A and CEBPB,39 and the pair of

genes are annotated in STRING to have evidence for co-

expression and text-mining relationships. This feature pair

can be used to form an interesting hypothesis for further anal-

ysis or experiment. The potential for finding more significant

and previously unidentified features is why GENVISAGE is de-

signed to recover top-ranking feature pairs instead of just single

features.

Output Visualizations
As discussed in the Introduction, the output of GENVISAGE is

not simply a ranking of the top feature pairs with their scores

but also a visualization that helps users to interpret the separa-

bility. In Figure 8, we depict sample output visualizations from
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the MSIGDB and LINCS runs. For MSIGDB, we select the feature

pair with the highest improved p value, i.e., improv quot, using

the SAMPOPT algorithm. For our LINCS representative, we visu-

alize the gene feature pair (GLRX, NME7) for the drug vorinostat

as described in the previous section. For the MSIGDB example

(Figure 8A), we observe that the feature values for negative ob-

jects are clustered around zero, while the genes differentially ex-

pressed in papillary thyroid carcinomas from this MSIGDB study

have larger values overall, indicating stronger connections to the

two Gene Ontology terms features, cell adhesion and response

to reactive oxygen species. This is consistent with studies that

have highlighted the overexpression of important cell adhesion

genes in thyroid cancer.40 For the LINCS example (Figure 8B),

positive objects mostly have elevated expression for the two re-

ported genes (GLRX and NME7) compared with the negative ob-

jects. The direction of this differential gene expression for both

genes is consistent with literature for vorinostat experi-

ments.37,38 The above two examples illustrate how visualization

of significant feature pairs can be a useful way to explain the

separability of object sets and understand the data.

Figure 7. Single-Feature Bonferroni-Cor-

rected p Value Distribution versus Feature

Pairs’ Corrected p Value Distribution

For each test the x axis shows the significance

(� log10ðcorrected pvalÞ) of the top 100 best single

features (gray dots) and feature pairs (blue dots) for

the (A) MSIGDB and (B) LINCS datasets. We order

the datasets by their best corrected single-feature p

value and discard the datasets where no single

feature has a corrected p value better than 10�5.

Table 3. Feature Pair Statistics by Drug Treatment

Drug

Num

Exprs Avg. Signif. Top 1,000 Signif.

Top 1,000

Improved

Vorinostat 904 235.5 1,000 287

Trichostatin 689 277.1 1,000 0

Estradiol 325 166.8 1,000 203

Tamoxifen 122 105.8 1,000 9

Doxorubicin 104 28.0 1,000 369

Gemcitabine 97 52.5 1,000 116

Daunorubicin 91 40.9 1,000 28

Idarubicin 78 30.1 1,000 58

Pravastatin 61 �7.5 0 0

Grand total 43.1 9,068 1,070

For each chosen drug from LINCS, the number of experiments in MCF7

cell line that were performed with that drug (NumExprs), and statistics

for the top 1,000 feature pairs for that drug including the average

�log10ðcorrected pvalÞ (Avg. Signif.), number of feature pairs with

�log10ðcorrected pvalÞ>5 (Top 1,000 Signif.), and number with

�log10ðimprov quotÞ>0 (Top 1,000 Improved).

DISCUSSION

The GENVISAGE algorithm with its optimi-

zation modules enables researchers to

visualize and explore the interplay between important pairs of

genomic features rapidly, rather than relying on slow machine-

learning feature extractionmethods or only examining the simple

list of top single features. The optimization modules led to a two

orders of magnitude speedup in the task of returning the top

feature pairs for separating the biological classes in our two

benchmark datasets, MSIGDB and LINCS. The quality of these

top feature pairs was confirmed by their agreement with litera-

ture and interaction databases, and the features are easily un-

derstood with intuitive heatmap visualizations. GENVISAGE re-

lies on the Rocchio-based separability measure, which well

approximates the best possible linear separator quickly and en-

ables optimizations such as TRANSFORMATION that can pre-

compute important quantities from each individual feature.

One potential improvement over the current Rocchio-based

measure is to take into account the different variance41 in the

two labeled object sets. In particular, if the positive and negative

object sets have very different variance along the direction that

connects the two centroids, we should not use the perpendicular

bisector as our representative separating line. Formally

speaking, let var +i;j and var�i;j be the variance of the positive object

set and the negative object set, respectively, along the direction

that connects the two centroids m+
i;j and m�

i;j . Instead of taking the

perpendicular bisector, we can use a perpendicular line that sep-

arates the two centroids with a ratio of

ffiffiffiffiffiffiffiffi
var +

i;j

pffiffiffiffiffiffiffi
var�

i;j

p . This approach can

potentially improve the accuracy of Rocchio-based measure,

but as a trade-off it will also incur additional computation cost.

Specifically, we need to compute the variance for each feature

pair, which in total has a complexity of Oðm2nÞ. Sampling tech-

niques can potentially provide an efficient estimate of the vari-

ance and once again provide a speedup for ranking results by

this more sophisticated measure.

Additionally, because of the dependency on linearity, feature

pairs with distinct object class distributions that form complex,

non-convex, non-isotropic patterns are potentially very inter-

esting, but will not be well ranked by GENVISAGE. Finally, in

GENVISAGE, the optional SAMPLING module and TRAVERSAL

modules make stochastic or greedy decisions in order to esti-

mate the quality of and prune the potential candidate feature

pairs for evaluation. While this greatly benefits the amount of

time required to find the top-ranking pairs, it has the potential

to do so at the cost of ranking accuracy. Overall, we observed
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that for our settings, the sacrifice in accuracy was slight for the

SAMPOPT feature pair rankings and more substantial when using

the HORIZSAMPOPT and VERTSAMPOPT rankings with the greedy

candidate traversal. However, users of GENVISAGE are able to

optimize the trade-off with performance and accuracy by modi-

fying the sample size, jSj, used by the SAMPLING module or the

number of candidate feature pairs examined, c, by TRAVERSAL

module depending on the needs of their research and dataset.

EXPERIMENTAL PROCEDURES

The details of the experimental procedures are enumerated in the Results sec-

tion and in Supplemental Information.

Resource Availability

GENVISAGE resources are available at a public, free-to-use webserver for

discriminating two gene sets: http://genvisage.knoweng.org:443/.
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Data and Code Availability
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