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High Resolution Topography of Age-Related
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Electroencephalography
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1 Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America,
2 Wisconsin Center for Sleep Medicine and Research, University of Wisconsin, Madison, Wisconsin, United
States of America, 3 Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin, United
States of America, 4 Department of Psychology, University of Wisconsin, Madison, Wisconsin, United States
of America, 5 Center for Investigating Healthy Minds, University of Wisconsin, Madison, Wisconsin, United
States of America

* ksprecher@wisc.edu

Abstract
Sleeping brain activity reflects brain anatomy and physiology. The aim of this study was to

use high density (256 channel) electroencephalography (EEG) during sleep to characterize

topographic changes in sleep EEG power across normal aging, with high spatial resolution.

Sleep was evaluated in 92 healthy adults aged 18–65 years old using full polysomnography

and high density EEG. After artifact removal, spectral power density was calculated for stan-

dard frequency bands for all channels, averaged across the NREM periods of the first 3

sleep cycles. To quantify topographic changes with age, maps were generated of the Pear-

son’s coefficient of the correlation between power and age at each electrode. Significant

correlations were determined by statistical non-parametric mapping. Absolute slow wave

power declined significantly with increasing age across the entire scalp, whereas declines

in theta and sigma power were significant only in frontal regions. Power in fast spindle fre-

quencies declined significantly with increasing age frontally, whereas absolute power of

slow spindle frequencies showed no significant change with age. When EEG power was

normalized across the scalp, a left centro-parietal region showed significantly less age-

related decline in power than the rest of the scalp. This partial preservation was particularly

significant in the slow wave and sigma bands. The effect of age on sleep EEG varies sub-

stantially by region and frequency band. This non-uniformity should inform the design of

future investigations of aging and sleep. This study provides normative data on the effect of

age on sleep EEG topography, and provides a basis from which to explore the mechanisms

of normal aging as well as neurodegenerative disorders for which age is a risk factor.
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Introduction
Characterizing brain change across the healthy lifespan is important for understanding the
mechanisms of normal aging as well as neurodegenerative disorders for which age is a risk fac-
tor. Because changes in sleeping brain activity reflect underlying changes in anatomy and
neurophysiology, electroencephalography (EEG) during sleep can be a powerful tool for study-
ing the aging brain. Sleep EEG is impacted by structural characteristics such as the number and
health of cells and axons through which signals propagate. For example, power in the delta fre-
quencies (1–4.5 Hz) correlates with the maturation of grey and white matter in adolescents as
well as degeneration in elderly adults [1–3]. Sleep EEG also reflects functional properties; for
example, power in the slow wave band (1–4.5 Hz) is modulated by synaptic strength [4] and
synchronous firing [5], key mechanisms of information flow through neural networks [6].
EEG measures activity arising from neural ensembles on a millisecond timescale, capturing
dynamic oscillatory activity that reflects functional connectivity. This fine temporal resolution
is a key advantage of EEG over complementary imaging modalities such as magnetic resonance
imaging (MRI) and positron emission tomography (PET) that are limited to time units of sec-
onds or minutes. EEG is a particularly useful tool for imaging the brain in older populations,
because it can be performed at the bedside and in individuals with contra-indications for MRI,
such as metallic implants and claustrophobia. Furthermore, sleep EEG shows high test-retest
stability within an individual across short time spans (days-weeks) [7–11] and recording dur-
ing sleep allows the measurement of spontaneous brain activity, free from factors that compli-
cate waking recordings across age ranges, such as movement, variations in attention and the
ability to follow instructions. Thus sleep EEG can be used to examine structural and functional
changes in dynamic neural networks across the life span.

Age-related alterations in grey and white matter structure, brain metabolism and connectiv-
ity show substantial regional variation [12–16]. Furthermore, it is becoming increasingly
apparent that sleep does not occur uniformly throughout the brain. Rather, it can be a regional
phenomenon, such that slow waves and spindles may occur in one brain region independent of
activity in other regions [17], with a topography influenced by prior waking use [18,19]. There-
fore, we hypothesized that the effect of age on sleep EEG would vary across the scalp. Across
childhood, slow wave power shifts from posterior to frontal dominance, and correlates with
anatomical cortical maturation [1,20]. In adulthood, previous work has suggested that age-
related declines in EEG power during sleep are greatest in frontal derivations [21–25]. How-
ever, these studies had low spatial resolution (using only 4–20 electrodes), which could have
missed or distorted the pattern of age effects on EEG. Regional variations in activity can be
detected with greater accuracy when more electrodes are used; this has been empirically dem-
onstrated using simulated and measured data [26,27]. Therefore we examined EEG topography
with high spatial resolution by recording from 256 electrodes (high density EEG; hdEEG).

Prior studies assessing the effects of aging on sleep EEG topography included age as a binary
variable, comparing young adults to older adults, and in the majority of studies the size of each
group was small, ranging from 8 to 18. Although some studies have used regression to examine
age-related changes in NREM spectral power [28], no studies have examined changes in topog-
raphy throughout the life span. Aging is a progressive, rather than step-wise process, making
the treatment of age as a continuous variable a more appropriate method of evaluating the
brain changes associated with aging. Furthermore, midlife was largely neglected, with only one
study including adults aged between 40 and 57 years,[21] and none including subjects between
30 and 40 years. It is important to investigate midlife as several studies indicate that it is a criti-
cal period; brain health at this age may predict resilience or vulnerability to disease in later life.
For example, middle aged adults with obstructive sleep apnea (OSA) show greater cognitive
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deficits than younger adults with equally severe OSA [29,30] and mid-life vascular health pre-
dicts later development of dementia [31,32]. Understanding sleeping brain function through-
out normal aging will provide an essential base from which to explore pathological patterns of
brain aging.

The aim of this study was to characterize topographic changes in sleep EEG power across
normal aging. We drew upon a pool of healthy adults aged 18–65 years old who had previously
completed baseline studies in our laboratory using high density EEG.

Methods

Participants and Study Design
This study analyzed data collected from 92 adults aged 18–65 years (59 women) who had par-
ticipated as healthy controls in protocols at the University of Wisconsin-Madison sleep labora-
tory (S1 and S2 Figs). Individuals were included in the analysis if they had undergone
polysomnography (PSG) with hdEEG, without behavioral or pharmacological interventions.
Participants were included only if they were free from neurological, major medical and sleep
disorders including sleep disordered breathing (Apnea Hypopnea Index< 5/hr) and sleep
related movement disorders (Periodic Limb Movements< 8/hr). Participants were excluded if
they were taking drugs known to affect sleep (assessed by self-report). 54 participants (34
women) were drawn from a study of sleep and meditation, for which individuals aged 25–65
years were recruited through newspaper advertisements, email and distribution of recruitment
flyers to meditation and wellness centers.[33] Only participants with no meditation experience
were included in this analysis. 38 participants (22 women) were drawn from a study of normal
sleeping brain activity[34–36], for which healthy adults were recruited through newspaper
advertisements and word of mouth. Some participants were allowed to sleep until they awoke
naturally while others were awakened at 6:30am. Therefore, to ensure that functionally similar
sleep periods were examined across all individuals, participants were only included if they had
experienced at least 3 sleep cycles during their PSG, with< 30% wake from sleep onset to the
end of the third sleep cycle. For all participants, only the first 3 sleep cycles were analyzed. All
participants were right-handed, defined by the Edinburgh Handedness Scale.[37]

Each participant’s medical and psychiatric histories were collected through an initial phone
screening, followed by a thorough in-person screening involving questionnaires assessing gen-
eral medical history, anxiety and depression, and a modified version of the Sleep Disorders
Questionnaire[38] with 16 questions assessing symptoms of sleep apnea and periodic limb
movement disorder. All participants were instructed to maintain regular sleep-wake schedules
during the week prior to the study, which was confirmed with sleep diaries and wrist-worn
actigraphy (Actiwatch, Mini-Mitter, Bend, OR), and to refrain from consuming caffeine and
alcohol on the day of the study. Participants arrived at the laboratory between 7 and 9 pm,
were set up with sensors for the sleep study (approximately 45 minutes), then went to bed
within one hour of their usual bed time. They were allowed to sleep undisturbed until 6:30 am
or until they awoke naturally. All data were drawn from baseline study visits; no pharmacologi-
cal or behavioral interventions were performed. All participants provided informed consent,
and protocols were approved by the Institutional Review Board of the University of Wiscon-
sin-Madison.

Polysomnography
Sleep was evaluated in all participants with standard PSG monitoring including electrooculo-
gram (EOG), sub-mental electromyogram (EMG), electrocardiogram (ECG), bilateral tibial
EMG, respiratory inductance plethysmography, pulse oximetry and a position sensor using a
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customized Alice 5 System (Philips Respironics, Murrysville, PA). Simultaneously, high density
electroencephalography (hdEEG) was recorded from 256 channels with vertex referencing
using NetStation software (Electrical Geodesics Inc., Eugene, OR). Sleep was scored by a regis-
tered sleep technologist according to AASM scoring guidelines [39] using Alice1 Sleepware
(Philips Respironics, Murrysville, PA) and then reviewed by a Sleep Medicine physician certi-
fied by the American Board of Medical Specialties (RMB). Sleep staging was performed using 6
hdEEG channels located at approximate 10–20 locations (F3, F4, C3, C4, O1, O2), re-refer-
enced to the mastoids.

HdEEG Recordings
HdEEG signals were sampled at 500 Hz and referenced to the vertex, using a NetAmps 300
amplifier and NetStation software (Electrical Geodesics Inc., Eugene, OR). In NetStation a
first-order high-pass filter (0.1 Hz) was applied to mimic common hardware analog filters and
to eliminate low frequency drift. Data were filtered in MATLAB (The MathWorks Inc., Natick,
MA) using first order high pass (0.1 Hz) to remove low frequency artifact associated with
sweating, followed by a band-pass filter (Kaiser type, 1–50 Hz). The data were then average-ref-
erenced to the mean voltage across all good channels.

Analyses were performed on the first 3 sleep cycles only, to maximize equivalence between
participants. Spectral analysis of NREM sleep was performed for each channel in six-second
epochs (Welch’s averaged modified periodogram with a Hamming window). A semi-automatic
artifact rejection was conducted to remove six-second sleep epochs that exceeded thresholds
for individual channels based on the mean power in either low (1–4 Hz) or high (20–30 Hz)
frequency bands. EEG channels in which artifacts affected most of the recording were subse-
quently removed. Average spectral density across NREM sleep was computed in six standard
frequency ranges from the literature and our own studies:[40–42] delta (1–4.5 Hz), theta (4.5–
8 Hz), alpha (8–12 Hz), sigma (12–15 Hz), beta (15–25 Hz) and low gamma (25–40 Hz). The
frequency cutoffs used to distinguish between slow and fast spindles vary throughout the litera-
ture [23,40,43]. Therefore to explore differences between fast and slow spindle frequencies
without selecting arbitrary cutoffs, spectral density was computed in 1 Hz bins from 9 to 16
Hz.

Statistical Analysis
Preliminary analyses were performed to ensure no violation of the assumptions of normality,
linearity and homoscedasticity. The relationship between age and sleep architecture across the
first 3 sleep cycles was assessed using Pearson product-moment correlation coefficient. All-
night sleep architecture is not reported, because the protocols were not designed to assess this.
For comparison of spectral data and for initial topographic visualization, subjects were divided
into 5 age groups: 18–24, 25–34, 35–44, 45–54 and 55–64 years. Each polysomnographic vari-
able was analyzed separately in a two-way ANOVA with factors age group and gender. Signifi-
cant main effects were assessed with post-hoc Tukey tests, with p<.05 considered significant.
Spectral power density in 1/6 Hz width bins was compared between age groups with a one-way
ANOVA with factor age group. Significant comparisons (p<.05) were followed up with post-
hoc Scheffe’s tests of group differences.

For each age group topographic maps of average absolute spectral power density (μV2) were
calculated for standard frequency bands for all channels, averaged across the NREM periods of
the first 3 sleep cycles. To account for inter-individual variability, normalized maps were also
generated by computing the z-score across all good channels for each subject. The correlation
of age with power density was calculated for each electrode and Pearson’s correlation
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coefficient was displayed on topographic maps. Absolute power was log transformed before the
correlation with age was computed, to produce normally distributed residuals. To control for
multiple comparisons, significant correlations were determined by statistical non-parametric
mapping (SnPM) using a single threshold test [44]. To visualize the relationship, the linear cor-
relation was plotted at Fz in each frequency band. To increase the signal-to-noise ratio, statisti-
cal analyses of topographies were restricted to channels overlaying the scalp (specifically, 173
channels falling within a plotting radius of 0.57 specified in the topoplot function of the
EEGLAB plug-in for MATLAB), with channels on the neck or the face excluded. All statistical
procedures were performed using MATLAB (The MathWorks Inc., Natick, MA). To confirm
regional differences of the age effect, a mixed ANOVA was conducted with SPSS 22, with age
as the between-subjects factor and region as the within subjects factor (2 levels: frontal and left
central). Frontal slow wave power was defined as the mean power in a cluster of electrodes
encircling Fz. Frontal sigma power, left central slow wave and left central sigma power were
defined as the mean power in the electrodes that showed a significant correlation of age with
normalized power.

Results

Participant Characteristics and Sleep Architecture
92 adults (59 women) met the selection criteria and were included in all analyses. The propor-
tion of women was greater with increasing age (S1 Fig). Polysomnographic characteristics
(averaged across the first 3 sleep cycles only) are summarized in Table 1. Increasing age was
associated with less deep sleep, evidenced by higher percentages of wake after sleep onset and
stages N1 and N2, and lower percentage of stage N3. There was no relationship between age
and total sleep time or percent REM sleep during the first 3 sleep cycles. There was no signifi-
cant interaction effect of sex on these relationships.

Spectral high density EEG Analysis
Power spectra, averaged across all channels, are plotted in Fig 1. All age groups showed the
classical pattern of NREM spectral activity, with greatest power in the slow wave frequency
band (1–4.5 Hz) and a second peak in the sigma band (12–15 Hz). In general, older age groups
showed significantly lower power than younger age groups in the slow wave and low theta fre-
quency ranges, and greater power than younger age groups in the high gamma range. No dif-
ferences between age groups were observed in the high theta, alpha, sigma, or beta frequency
ranges.

Table 1. Correlation Between Age and Sleep Architecture.

mean (SD) r p

TST (min) 271.7 (55.8) -.18 n.s.

WASO (%) 7.9 (6.9) .48 <.0001

N1 (%) 6.9 (4.2) .40 <.001

N2 (%) 68.2 (11.5) .41 <.001

N3 (%) 15.8 (11.1) -.38 <.0001

REM (%) 19.7 (6.4) -.16 n.s.

N = 92. r, Pearson product-moment correlation coefficient (2-tailed); p, significance; n.s., non-significant.

TST, Total Sleep Time; WASO, Wake After Sleep Onset (% of Time in Bed), N1/2/3/REM(%), NREM stage

1/2/3/REM (% of TST). All variables calculated for the analysis period (first 3 sleep cycles).

doi:10.1371/journal.pone.0149770.t001
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High density EEG topography
The topography of absolute EEG spectral power density in standard frequency bands for each
age group is shown in S3 Fig. Power in the slow wave range was greatest frontally at all ages.
Both frontal and posterior maxima were evident in the theta, alpha and sigma ranges. Repre-
sentative scatterplots of the correlation between age and EEG power at Fz are shown in S4 Fig.

Correlation of EEG power with age
To quantify topographic changes with age, maps were generated for the coefficient of the corre-
lation between power and age at each electrode (Fig 2). When power was expressed as absolute
values, slow wave power declined significantly with increasing age across the entire scalp,
whereas power in the theta and sigma range declined significantly in a frontal cluster of elec-
trodes adjacent to Fz. There was no significant effect of age on absolute power in the alpha,
beta or gamma frequency bands.

When EEG power was normalized across the scalp, a left centro-parietal region showed sig-
nificantly less age-related decline in power than the rest of the scalp. This partial preservation
of left centro-parietal power was particularly prominent in the slow wave and spindle bands.

Fig 1. NREM EEG Power Spectra. EEG power spectra (log μV2/Hz) for NREM sleep during the first 3 sleep cycles, averaged across 173 scalp electrodes in
1/6 Hz frequency bins. Age groups plotted by decade (aged 18–25 years, dark blue; 25–35 years, green; 35–45 years, black; 45–55 years, light blue; 55–65
years, red). Classically defined frequency bands indicated by vertical dotted lines. Black squares along the x-axis indicate frequency bins in which ANOVA
showed a significant effect of age group.

doi:10.1371/journal.pone.0149770.g001
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The interaction of region and age was confirmed by mixed ANOVA, such that the decline of
EEG power with age was greater in the frontal than left central region for the slow wave band
[F(2,90) = 28.9, p<.0001] and sigma band [F(2,90) = 30.8, p<.0001] (Fig 3). In general, age-
related power declines were greatest frontally, and this effect was statistically significant in the
theta and sigma bands. The parietal shift in dominance was driven by a loss of frontal power
and preservation of parietal power. It was not driven by an increase in parietal activity, because
absolute power did not increase with age at any electrodes.

When spindle frequencies were examined in 1 Hz bins (Fig 4), absolute power in faster spin-
dle frequencies (13–16 Hz) declined significantly with increasing age in a frontal cluster adja-
cent to Fz whereas absolute power of slower spindle frequencies (9–12) showed no significant
change with age. Partial preservation of relative power in a centro-parietal region was evident
across the spindle band, but was particularly prominent in the 12–15 Hz range.

In all frequency bands the effect of age on EEG topography was similar across sleep cycles,
with larger clusters of electrodes showing statistical significance in earlier sleep cycles. There-
fore the findings are robust, not driven by one sleep cycle (data not shown). We found no sig-
nificant effect of sex on the relationship between EEG topography and age (S1 File).

Discussion
This study examined age-related changes in the topography of sleep EEG power across an age
range of 18–65 years. The study design had three key strengths. First, the high spatial resolution
of hdEEG used in this study allowed identification of regional effects. Second, age was treated
as a continuous variable, rather than comparing groups from opposite ends of the age spec-
trum. Finally, this study included middle-aged adults, a critical period for brain health that has
been largely neglected in studies of sleep and aging.

The effect of age on EEG power varied considerably by region and across frequency bands.
We focus our discussion primarily on the slow wave and spindle frequency range, as these
waveforms are known to support cognitive processes that change substantially across the life-
span, such as learning and memory.[2,45]

Fig 2. Topography of the correlation of age with NREMEEG power. Topography of the correlation between age and NREM spectral density, averaged
across the first three sleep cycles in standard frequency bands. Color represents the coefficient of the correlation between age and power at each electrode.
In the upper panel, blue indicates a negative correlation, i.e. a decline in absolute NREM EEG power (log μV2) with increasing age. The lower panel plots the
coefficient of correlation (r) between age and power (μV2) normalized to the scalp mean within an individual. Colors indicate that as age increases, EEG
power is increasingly higher (red) or lower (blue) than the scalp mean. Large black dots indicate channels at which the correlation of age and EEG power was
significant, accounting for multiple comparisons with statistical nonparametric mapping.

doi:10.1371/journal.pone.0149770.g002
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Fig 3. Interaction of age and region on EEG Power. Correlation of age and absolute NREM EEG power (log μV2) in the SlowWave (left) and Sigma (right)
frequency bands. In each band, power was averaged in a frontal (blue circles) and left central (green squares) region, defined by clusters of electrodes
showing significant correlation of age and normalized power. Mixed ANOVA revealed a significant region x age interaction, such that the age-related decline
of EEG power was greater in the frontal than left central region for slow wave and sigma bands.

doi:10.1371/journal.pone.0149770.g003

Fig 4. Topography of the correlation of age with NREMEEG spectral density in spindle frequencies. Topography of the correlation between age and
NREM EEG spectral density (log μV2), in 1 Hz bins of spindle frequencies, averaged across the first three sleep cycles. Color represents the coefficient of the
correlation between age and power at each electrode. Small black dots indicate electrode locations. Large black dots indicate electrodes at which the
correlation of age and EEG power was significant, accounting for multiple comparisons with statistical nonparametric mapping.

doi:10.1371/journal.pone.0149770.g004
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Scalp-Wide Decline in Absolute SlowWave Power
With increasing age, slow wave (SW) power declined significantly across the entire scalp. Prior
studies reported a frontal dominance of age effects on slow waves,[22,24] based on recordings
from only 3 or 4 electrodes along the antero-posterior midline (Fz, Cz, Pz, Oz). The disparity
could be due to the EEG referencing techniques used. We used an average reference because
this technique has better performance than other commonly used schemes [26,46]. Prior
reports referenced to the mastoids, which can distort the EEG signal by removing more physio-
logic information closer to the mastoids (i.e. central and parietal regions) than in more distant
regions (i.e. frontal) [27]. This could explain why frontal effects were more prominent in the
prior reports. The scalp-wide topography of SWA decline we observed could be due to high
proportions of women in the older age groups in our sample; an age-related decrement in SW
incidence was found to be greater frontally in men, but was equally distributed along the
antero-posterior axis in women[21]. We found that the effect of age on EEG spectral power did
not differ by sex, consistent with some [28] but not all [21,47] previous reports.

Declining SW power in older age is likely driven by anatomical changes. Aging is associated
with widespread atrophy of grey matter [14,16], as well as a regional thinning of grey matter
that mediates an age-related reduction in SW amplitude and density [3]. In addition, individual
differences in SW power correlate with white matter volume and microstructure[48,49]. Slow
waves are primarily maintained and synchronized by cortico-cortical connections[34], and
more synchronous firing leads to greater summation of electrical potentials, observable as
greater SW amplitude and power[5]. Given that DTI measures of white matter structure begin
to decline after age 20 years[13], atrophy or degradation of white matter could diminish syn-
chronization, thereby contributing to SW power reduction scalp-wide.

In addition to changes in gross brain structure, the loss of SW power with age may also be
driven by synaptic changes. It has been repeatedly suggested that changes in SW power across
childhood could be driven by synaptic proliferation and subsequent pruning, motivated by the
observation that SW power, synaptic density and brain metabolism follow parallel inverted-U
shaped curves up to late adolescence [34,49–51]. It follows that the further decline in SW
power across adulthood could be due to continued synaptic loss. However, a recent study test-
ing this hypothesis in mice failed to find an association between SW power and synaptic den-
sity across adolescence[52]. Instead, the loss of SW power might result from a more subtle
reorganization of cortical circuits. For example, some classes of synapses are more vulnerable
to aging than others; thin spines accounted for the majority of spine loss in prefrontal cortex
whereas mushroom and stubby spines remained relatively stable with aging in rhesus monkeys
[53]. Given that spine morphology affects the strength and dynamics of synaptic transmission,
spine changes across aging could result in altered circuit synchronization and lowered SW
power.

Slow waves are thought to reflect and participate in plastic processes during sleep[54]. It has
already been shown that in a frontal region, age-related declines in SW power correlate with
decrements in memory performance[2]. Our findings of a scalp-wide decline in SW power sug-
gest that aging may be associated with impairments in slow-wave mediated plasticity across the
entire cortex.

Frontal Declines in Absolute Theta and Sigma Power
In contrast to the scalp-wide decline in SW power, the age-related decline in theta and sigma
power was focused on a frontal region, with no significant declines posteriorly. This pattern is
consistent with a previous report using only three mid-line derivations[22]. Grey matter vol-
ume correlates with individual differences in maximal theta and sigma power[48]; therefore
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the frontal pattern of theta and sigma decline observed here could be due to atrophy of frontal
grey matter known to accompany aging[14,16]. Oscillations in the theta range (4–7 Hz) during
wakefulness promote synaptic plasticity and are linked to memory encoding[55–57], and there
is evidence that frontal theta plays a similar role during REM and NREM sleep[58,59]. Thus
disruptions of theta oscillations during sleep may contribute to age-related declines in memory
performance. The sigma band corresponds to the frequency of spindles, which are discussed in
further detail below.

Preservation of EEG Power in a Left Centro-Parietal Partial Region
Age-related declines in EEG power were less pronounced in a left centro-parietal region. This
asymmetry has not been previously described, because previous studies of topography and
aging restricted analyses to midline derivations or to one hemisphere. The relative preservation
was in the dominant hemisphere (all participants were right-handed). With increasing age, loss
of dexterity is more pronounced in the non-dominant hand[60], and atrophy of grey matter is
more pronounced in the sensorimotor hand area of the non-dominant hemisphere compared
to the dominant hemisphere[61]. Therefore the preservation of EEG power over left centropar-
ietal cortex could be due to a larger neural population contributing to oscillations in that
region. Alternatively, the preservation of power may reflect sleep-mediated plastic processes.
Regional SW power reflects prior use, for example sleep SW power is increased in parietal cor-
tex following a motor training task[18,19]. Older adults experiencing reduced dexterity in the
non-dominant hand may compensate by using the dominant hand more frequently and by
learning new motor patterns adapted to their abilities. This motor learning could be reflected
in increased parietal SW power.

Age-Related Decline of Fast Frontal Spindle Band Power, But Not
Centroparietal Spindle Band Power
Spindles fall into two distinct classes: fast and slow. Although their precise origins and func-
tions are uncertain, the two classes have different topographies [23,40,43], are differently
affected by pharmacological agents [62] and clinical disorders [33,63,64] and make distinct
contributions to cognition [65,66]. The frequency cutoffs used to define each class vary
throughout the literature; therefore we examined activity in 1Hz bins. We observed the pre-
dicted slow-frontal, fast-central topographic distinction in all age groups. Our finding of an
age-related decrease of frontal power in faster (13–15 Hz) but not slower (9–12 Hz) spindle fre-
quencies confirms that slow and fast spindles are distinct phenomena that are differently
affected by age.

The age-related decline of power in fast spindle frequencies was confined to a frontal region,
where fast spindles are usually less prominent [40]. Others have reported age-related declines
in spindle band power but the few reports of topographic changes have been mixed. Landolt
and Borbely[22], found a posterior shift in slow (10.25-12Hz) but not fast spindle band power
in old compared to young adults. Using spindle detection algorithms at 5 midline derivations,
Martin et al. [23] found that older adults showed lower spindle density (spindles/min) and
amplitude in frontal derivations, whereas an age-related reduction in duration was strongest in
posterior derivations. They did not categorize spindles as fast and slow, but did report that
spindle frequency was lower in younger adults in posterior derivations during later sleep cycles
only. Based on these reports, the frontal loss of fast spindle band power that we observed could
be due to reduced spindle amplitude and density, and is unlikely to be due to changes in spindle
frequency. Fast spindles are more strongly tied to slow wave upstates than are slow spindles
[40]; their loss may be via a shared mechanism with the decline in frontal slow waves.
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The precise function of spindles is uncertain but there is evidence for a role in learning and
memory and as an attentional ‘gate’ protecting sleep by regulating the salience of external sti-
muli [67,68]. The functional significance of each spindle class and the implications of selective
loss of frontal fast spindle band power are unclear. When a prefrontal region was examined a
priori, fewer prefrontal fast spindles (13.5–15 Hz) statistically mediated poorer memory func-
tion in older (71.9 ± 6.7 years) compared to younger (20.5 ± 2.1 years) adults [45]. Spindles are
generated in the reticular formation of the thalamus and conveyed to the cortex by thalamo-
cortical projections [67]. Thus age-related alterations in spindle band power could arise from
changes in the thalamus, the cortex or thalamo-cortical projections. Anterior and medial tha-
lamic aspects of the thalamus and their projections to frontal cortex show signs of atrophy with
increasing age, while the volume of thalamic projections to parietal, temporal and occipital cor-
tex show no significant relationship with age [16,69]. Age-related deterioration of anterior tha-
lamic nuclei and their projections could therefore impair transmission of fast spindles from the
thalamic nuclei to frontal cortex. However the source generators and transmitting fibers of dis-
tinct spindle classes are still uncertain and it is unclear why the slow spindle band, which is
frontally dominant, was not affected by age.

Limitations and Strengths of This Study
Limitations of this study include the cross-sectional design and the lack of ad-libitum sleep,
which precluded analyses of sleep architecture and time-of-night effects. Data was only ana-
lyzed from one night for each participant, however the scalp topography of sleep EEG shows a
consistent pattern across nights within individuals [8,9]. Hormonal and menopausal status of
women was not assessed in our sample, which could have influenced findings; for example,
activity in alpha, sigma and beta frequencies varies across the menstrual cycle [70] and meno-
pause is associated with elevated beta activity [71]. We found, however, that the effect of age on
EEG spectral power did not differ by sex (S1 File). This is consistent with previous reports that
although EEG spectral density differs between men and women, the effect of age does not vary
by sex [28,47].

A key strength of the current study was that it examined brain change across aging by treating
age as a continuous variable, whereas previous studies of EEG topography have compared age
groups at opposite ends of the age spectrum. Aging is a progressive, rather than step-wise process
therefore the treatment of age as a continuous variable is a more appropriate method of evaluat-
ing the brain changes associated with aging. It will be important to confirm the age-related
changes observed in this cross-sectional dataset with longitudinal studies within individuals.

Conclusion
This study provides normative data on the effect of age on sleep EEG topography with high
spatial resolution. These results are relevant for interpreting sleep EEG changes in disorders
that present later in life. For example, the aging-related pattern of scalp-wide SW decline and
frontal theta and sigma decline differs markedly from the posterior and parietal EEG changes
we have observed in disorders for which older age is a risk factor including OSA [72] and
insomnia [64]. Given the substantial effect of age on sleep EEG power and topography, it is
important for future studies of sleep EEG to control for age in their statistical models and study
design. Furthermore, given the asymmetric effect of age on EEG topography, future study
designs should consider regional variation in their measures. The functional and anatomical
correlates of age-related EEG topography changes in each frequency band also require further
investigation. Understanding normal sleeping brain activity across adulthood provides an
important basis from which to explore pathological patterns of brain aging.
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