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Abstract: Beans (Phaseolus vulgaris) contain bioactive components with functional
properties that may modify cardiovascular risk. The aims of this pilot study were to
evaluate the ability of black beans to attenuate postprandial metabolic, oxidative stress, and
inflammatory responses and determine relative contribution of dietary fiber and antioxidant
capacity of beans to the overall effect. In this randomized, controlled, crossover trial,
12 adults with metabolic syndrome (MetS) consumed one of three meals (black bean (BB),
fiber matched (FM), and antioxidant capacity matched (AM)) on three occasions that
included blood collection before (fasting) and five hours postprandially. Insulin was lower
after the BB meal, compared to the FM or AM meals (p < 0.0001). A significant meal
ˆ time interaction was observed for plasma antioxidant capacity (p = 0.002) revealing
differences over time: AM > BB > FM. Oxidized LDL (oxLDL) was not different by
meal, although a trend for declining oxLDL was observed after the BB and AM meals at
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five hours compared to the FM meal. Triglycerides and interleukin-6 (IL-6) increased in
response to meals (p < 0.0001). Inclusion of black beans with a typical Western-style meal
attenuates postprandial insulin and moderately enhances postprandial antioxidant endpoints
in adults with MetS, which could only be partly explained by fiber content and properties of
antioxidant capacity.

Keywords: postprandial; bean; fiber; antioxidant capacity; metabolic syndrome

1. Introduction

Diet and lifestyle patterns play a significant role in the development of Metabolic Syndrome (MetS)
and the diseases it precipitates, namely cardiovascular disease (CVD) and type 2 diabetes mellitus [1].
In particular, MetS development is associated with the consumption of foods typical of the Western diet,
including red meat and fried foods [2]. The Western diet is characterized by excess intake of energy,
readily available carbohydrates and fats that result in postprandial hyperglycemia and hyperlipidemia [3].
Three large scale prospective cohort studies support the relationship of postprandial lipemia and risk
of cardiovascular disease [4–6]. Postprandial inflammation and oxidative stress are postulated to be
products of hyperglycemia and lipemia and are associated with impaired insulin sensitivity. Impaired
insulin responses to Western meals exaggerate postprandial hyperglycemia and lipemia, creating a
vicious cycle leading to vascular dysfunction and damage that, over time, likely augments risk for
CVD [3].

Reducing transient fluctuations of these postprandial (fed) responses is one lifestyle modification for
the prevention and management of MetS [7]. The addition of certain foods to the diet may attenuate these
postprandial responses. Foods rich in dietary fiber have been shown to modulate postprandial lipemia [7]
and aid in glycemic control [8]. Antioxidant-rich foods have been shown to attenuate postprandial
oxidative status markers [9] and increase plasma antioxidant capacity [7]. Beans are a food that provide
both dietary fiber and possess high antioxidant capacity [10].

Few studies have investigated the postprandial response to beans (Phaseolus vulgaris) [11–16] and
only one has studied black beans [16]. These few studies have demonstrated that different types of beans
elicit different biological responses [17]. This may be in part due to dosing differences, polyphenol
bioavailability, and endogenous factors [18]. For example, polyphenols modulate digestive enzymes,
eliciting beneficial effects on the postprandial responses. Anthocyanidins in particular, which are
found in black beans, have been shown to inhibit α–amylase, maltase, and sucrase activity, which
lower postprandial blood glucose [19]. Further, metabolic health benefits of beans are likely related
to the functional effects of their inherent dietary fiber and polyphenol content [20,21], the latter being
questioned as an effect of the general antioxidant properties of polyphenols or a specific effect of the
polyphenol structure. Nowadays, it is popular to isolate and sell functional components of foods as
dietary supplements and many supplements are marketed for their “antioxidant” properties. However,
functional ingredients may not produce the same effects when delivered outside a whole food matrix [10].
Further, delivery of health benefits based on antioxidant capacity has come under intense scrutiny in
recent years [22].
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Therefore, we studied the effects of beans on postprandial metabolic, oxidative stress, and
inflammatory responses with the focus of understanding the contribution of food matrix and two specific
properties: fiber and antioxidant capacity on biological responses in adults with MetS. We hypothesized
that meals with whole black beans would produce greater benefits on postprandial responses than meals
with added fiber or added antioxidant capacity.

2. Experimental Section

2.1. Study Participants

The UC Davis Institutional Review Board approved the study and the study was registered at
clinicaltrials.gov identifier NCT01190384. The study was conducted at the Ragle Human Nutrition
Research Center on the UC Davis campus. Participants were recruited from the greater Sacramento area
via flyers and websites. Interested participants were screened by phone for inclusionary and exclusionary
criteria. Eligible participants were required to be adults ages 18 and older and meet criteria for MetS [23].

Exclusionary criteria included diagnosis of a chronic disease (such as diabetes mellitus), known
allergies/intolerances to study foods, dieting, unusual dietary habits (such as pica), pregnancy or
lactation, smokers, drug or alcohol addiction and in recovery <1 year, excessively exercising, on
medications that interfered with outcome measurements as assessed by the study physician, or reported
difficulty with phlebotomy or an indwelling catheter. Participants who qualified after the phone screening
were invited for in-person screening to provide written informed consent and confirm MetS with a fasting
blood draw and anthropometric measurements.

2.2. Study Design

The study design of this pilot study was a randomized, controlled, crossover trial. There were a
total of three study days, each separated by a one week washout period. Consistent with suggested
postprandial methods [7], participants were instructed to consume the same meals, refrain from alcohol
consumption, and avoid excessive exercise on the day before each study day. After a 12 hour overnight
fast, participants arrived at the research center. The study registered nurse inserted an indwelling catheter
into the antecubital vein and blood draws were obtained at baseline (fasting) and postprandially every
hour for five hours for a total of six blood draws per study day. Five hours was chosen to extend the
findings of previous bean trials that assessed postprandial metabolic and inflammation markers after three
hours [12,14,16] and represent the usual amount of time between meals [8]. After the baseline blood
draw, a moderate-fat breakfast was provided to participants, which included one of three experimental
soups to create the black bean (BB) meal, fiber matched (FM) meal, or antioxidant capacity matched
(AM) meal. Meal consumption occurred within 20 min and was monitored to ensure compliance.
Thereafter, bottled water was provided to the participants ad libitum.
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2.3. Meal Composition

The moderate-fat breakfast consisted of commercially available foods typical of a Western-style
breakfast and these foods were prepared as previously described [9]. Soups were provided as part of the
meal and a Registered Dietitian matched for macronutrients using nutrition software and nutrition facts
labels and for antioxidant capacity using the oxygen radical absorbance capacity (ORAC) method [9,24].

The BB meal consisted of the moderate-fat meal and a soup made from dried black beans that
was prepared according to the package instructions and carried dietary fiber and antioxidant capacity.
The FM and AM meals comprised of the moderate-fat meal and soups that were couscous-based and
supplemented with Instantized BiPro, a whey protein isolate (Davisco Food International, Eden Prairie,
MN, USA), to match the protein level of the BB soup.

Additionally, the FM soup was supplemented with Unifiber, an insoluble fiber supplement made
mostly of powdered cellulose, but also included some maltodextrin and xanthan gum (DrNatura, Fort
Mill, SC, USA), and a 100% pure psyllium fiber supplement (Konsyl, Easton, MD, USA), to match the
soluble and insoluble fiber content of the BB soup, but lack the antioxidant capacity. Specifically, the
FM soup was matched for the soluble and insoluble dietary fiber of black beans, as the detailed chemical
composition of black bean cell walls is currently unknown and, if it were known, it would be difficult
to extract [25]. The AM soup was supplemented with 300 mg grape seed extract (GSE) (Polyphenolics,
Madera, CA, USA) that was added prior to consumption to match the antioxidant capacity of the BB
soup, but lack the fiber content. Each moderate-fat breakfast and soup (BB, FM, or AM) provided an
average amount of fat in a typical meal [7] and the soups alone comprised „30% of the calories of the
entire breakfast (Table 1).

Table 1. Meal Composition.

Nutrient Units BB Meal FM Meal AM Meal

Calories
kj 3845 3904 3862

kcals 919 933 923

Fat g 25 25 25

Saturated fat g 10 10 10

Monounsaturated fat g 4 4 4

Polyunsaturated fat g 1 1 1

Carbohydrate g 129 135 133

Fiber g 18 17 4

Insoluble fiber g 4 2 0

Soluble fiber g 10 8 0

Protein g 42 39 39

Total ORAC µmol/L trolox equivalents 4499 580 5758

BB, black bean; FM, fiber matched; AM, antioxidant capacity matched; ORAC, oxygen radical
absorbance capacity.
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2.4. Food Records

Weighed food records were obtained three days prior to each study day for a total of nine days of
food records. Participants were provided an electronic food scale and encouraged to submit nutrition
facts labels. The food records were analyzed by nutrition software (Food Processor SQL Version 10.2,
esha Research, Salem, OR, USA).

2.5. Biochemical Measurements

On each study day, „90 mL of blood was drawn into EDTA blood collection tubes and immediately
placed onto ice. After „30 min, blood samples were centrifuged at 1800 X g for 15 min at 4 ˝C to obtain
plasma and frozen at ´80 ˝C until lab analyses were performed in-batch. Biochemical measurements
were performed according to manufacturers’ instructions, including appropriate quality controls.

Triglyceride and glucose concentrations were analyzed by enzymatic colorimetric assays using a
clinical autoanalyzer (Randox Laboratories, Kearneysville, WV, USA). High sensitivity C-reactive
protein (hs-CRP) was analyzed by a chemiluminescent immunometric assay (Fisher Scientific,
Pittsburgh, PA, USA). Pro-inflammatory cytokines, interleukin (IL)-6 and IL-1β, and biomarkers
of vascular endothelial activation, soluble intercellular adhesion molecule1 (sICAM1) and soluble
vascular cell adhesion molecule1 (sVCAM1), were measured by ELISA (R&D Systems, Minneapolis,
MN, USA). Insulin was analyzed by an AlphaLISA assay (PerkinElmer, Waltham, MA, USA).
Insulin resistance and sensitivity were calculated using homeostasis model assessment (HOMA)-insulin
resistance, HOMA-β cell function [26], quantitative insulin sensitivity check index [27], and fasting
glucose:insulin.

Oxidized LDL (OxLDL) was also analyzed by ELISA (Mercodia, Winston Salem, NC, USA).
Intra- and inter-variability for IL-6 were 5.7% and 16.4%, sICAM1 7.4% and 9.5%, sVCAM1 3.3% and
10.1%, and OxLDL 4.5% and 5.4%, respectively. Curve-fitting and interpolation of ELISA values were
obtained by Graphpad 4.03 (Graphpad Software, La Jolla, CA, USA). Plasma hydrophilic and lipophilic
Oxygen radical absorbance capacity (ORAC) values were measured according to Prior et al. [24] with
minor modifications [9].

2.6. Statistical Analysis

Outcome measurements were postprandial lipemia, inflammatory biomarkers, oxidative status,
and glycemic control responses. Variables not meeting normality and/or homogeneity of variances
assumptions were transformed using a log transformation. Data were analyzed by analysis of variance
using a mixed model (SAS Version 9.3, Cary, NC, USA). Baseline concentrations of biochemical
measurements were included in the model as a covariate when significantly different at baseline.
Main effects were analyzed as meal, time, and meal ˆ time interactions. Random effects included
participants and meal order. Post-hoc comparisons used the Bonferroni adjustment to correct for multiple
comparisons. Statistical significance was considered at p < 0.006 and data was presented as least squares
means (LSM) as an estimate of the five hour postprandial response after the BB, FM, and AM meals or
mean ˘ SD.
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As a pilot study, the recruitment goal was 12 participants. A power analysis revealed adequate power
to detect significant differences with >80% confidence for IL-6, sVCAM1, insulin, and total ORAC
using a sample size of n = 12 per meal, type I error rate of 0.05, observed differences (0.4, 42.4, 0.12,
and 0.15, respectively), and observed variability (0.3, 30.9, 3.2, and 4.3, respectively).

3. Results

Fourteen (n = 14) participants were enrolled in the study, two participants were dropped from the study
due to inability to complete the breakfast within the allotted time, and twelve participants completed the
study (Figure 1). All participants met the criteria for MetS [23]. Half (50%) of the participants were
Caucasian, 25% Hispanic, and 25% Asian. The mean age of participants was 49 ˘ 14 years and BMI
32.2 ˘ 5.7 kg/m2. Half (50%) of the participants were women and all presented with evidence of insulin
resistance at baseline (Table 2) [26,27].

The weighed food records obtained three days prior to each study day were not significantly different,
implying that participants had good compliance with consuming similar dietary intake leading up to each
study day. Both the average of the three day food records and 24 hours prior to the study day were not
different. Participants consumed approximately 2062 ˘ 74 calories a day and, as a percent of energy:
44% ˘ 1% as carbohydrate, 39% ˘ 4% as fat, and 21% ˘ 4% as protein. Saturated fat, sodium, and
fiber intake were 11% ˘ 1% of calories, 3206 ˘ 316 mg, and 12 ˘ 1 g/1000 calories a day, respectively.

All meals resulted in elevated triglycerides over the five hour postprandial period, peaking around
three hours and remaining elevated from baseline by five hours (time p < 0.0001) (Figure S1). No
differences in the postprandial triglyceride responses were observed among meals (Table 3). No
significant differences in glucose concentrations were observed among meals (Figure 2B and Table 3);
however, a main effect of meal was apparent for the insulin response (meal p < 0.0001). The mean five
hour insulin response after the BB meal was „34% lower than the AM meal and the FM meal was „24%
lower than the AM meal (Figure 2A and Table 3).

Nutrients 2015, 7 6 
 
3. Results 

Fourteen (n = 14) participants were enrolled in the study, two participants were dropped from the 
study due to inability to complete the breakfast within the allotted time, and twelve participants 
completed the study (Figure 1). All participants met the criteria for MetS [23]. Half (50%) of the 
participants were Caucasian, 25% Hispanic, and 25% Asian. The mean age of participants was  
49 ± 14 years and BMI 32.2 ± 5.7 kg/m2. Half (50%) of the participants were women and all presented 
with evidence of insulin resistance at baseline (Table 2) [26,27]. 

The weighed food records obtained three days prior to each study day were not significantly 
different, implying that participants had good compliance with consuming similar dietary intake 
leading up to each study day. Both the average of the three day food records and 24 hours prior to the 
study day were not different. Participants consumed approximately 2062 ± 74 calories a day and, as a 
percent of energy: 44% ± 1% as carbohydrate, 39% ± 4% as fat, and 21% ± 4% as protein. Saturated 
fat, sodium, and fiber intake were 11% ± 1% of calories, 3206 ± 316 mg, and 12 ± 1 g/1000 calories a 
day, respectively. 

All meals resulted in elevated triglycerides over the five hour postprandial period, peaking around 
three hours and remaining elevated from baseline by five hours (time p < 0.0001) (Figure S1). No 
differences in the postprandial triglyceride responses were observed among meals (Table 3). No 
significant differences in glucose concentrations were observed among meals (Figure 2B and Table 3); 
however, a main effect of meal was apparent for the insulin response (meal p < 0.0001). The mean five 
hour insulin response after the BB meal was ~34% lower than the AM meal and the FM meal was 
~24% lower than the AM meal (Figure 2A and Table 3). 

 

Figure 1. Participant Flow. 

  

 

Figure 1. Participant Flow.



Nutrients 2015, 7 6145

Table 2. Baseline Labs (n = 12) a.

Baseline Values Units Mean SD

Lipids
Triglycerides mmol/L 1.5 0.7

Total-cholesterol mmol/L 4.6 0.8
Inflammation

hs-CRP b mg/dL 4.0 4.2
IL-6 pg/mL 2.2 1.3

IL-1β c pg/mL ND ND
sICAM1 ng/mL 202.5 3.1
sVCAM1 ng/mL 484.3 21.1

Glycemia
Glucose mmol/L 5.6 0.4
Insulin pmol/L 68.2 25.1

HOMA-insulin resistance d ratio 2.4 1.0
HOMA-β cell function e % 92.6 32.0

Quantitative insulin sensitivity check index ratio 0.34 0.02
Glucose:insulin ratio ratio 11.5 2.8

Oxidative stress
OxLDL mU/L 49.8 11.4

Total ORAC f µmol/L trolox equivalents 18.6 12.7

hs-CRP, high sensitive C-reactive protein; ND, non-detectable; sICAM1, soluble intercellular adhesion
molecule 1; sVCAM1, soluble vascular cell adhesion molecule 1; OxLDL, oxidized LDL; ORAC, oxygen
radical absorbance capacity; HOMA, homeostasis model assessment. a Baseline labs were calculated as the
mean of the baseline (fasting) values from each study day. b Only measured in the fasting state. c Despite
being analyzed in two different labs by two different lab technicians, both fasting and postprandial results were
non-detectable. The minimum detectable level was 0.03 pg/mL. d Normal HOMA-insulin resistance is 1 [15].
e Normal HOMA-β cell function is 100% [15]. f n = 11 for total ORAC.

Table 3. Postprandial Responses of Biochemical Measurements.

Biochemical
Measurement

BB Meal LSM FM Meal LSM AM Meal LSM SE Units

Triglycerides b 1.8 2.0 2.0 0.2 mmol/L
Glucose b 5.9 5.9 6.0 0.2 mmol/L
Insulin a,b 240.4 275.5 360.9 * 30.9 pmol/L

IL-6 b 3.5 3.4 3.2 0.5 pg/mL
sICAM1 204.2 189.7 * 198.4 15 ng/mL
sVCAM1 492.7 * 449.5 458.6 30.9 ng/mL

Total ORAC a,b 37.1 33.2 * 42.2 3.2 µmol/L TE
OxLDL 46.7 49.5 49.1 2.5 U/L

Values represent the least squares means (LSM) in the first three columns and the standard error (SE)
in the fourth column, as an estimate of the five hour postprandial response after the BB, FM, and AM
meals. LSM, least squares means; BB, black bean; FM, fiber matched; AM, antioxidant capacity matched;
OxLDL, oxidized LDL; ORAC, oxygen radical absorbance capacity; sICAM1, soluble intercellular adhesion
molecule 1; sVCAM1, soluble vascular cell adhesion molecule; TE, trolox equivalents 1 a indicates a
significant meal ˆ time interaction with * indicating the significant differences from pairwise comparisons.
b indicates a significant time effect.
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Figure 2. Postprandial insulin (A) and glucose (B) responses to moderate-fat breakfast
with BB, AM, or FM. BB, black bean meal; FM, fiber matched meal; AM, antioxidant
matched meal.

All meals resulted in elevated postprandial IL-6 over the five hour postprandial period (time
p < 0.0001) (Figure S2). No differences in the postprandial IL-6 responses were observed among meals
(Table 3). A main effect of meal was evident for the vascular inflammatory biomarkers, sICAM1 and
sVCAM1 (p = 0.006 and p = 0.0002, respectively) (Table 3), although time and meal ˆ time interactions
were not different. The mean five hour postprandial sICAM1 response was „7% higher after the BB
meal than after the FM meal (p = 0.001) (Figure S3), an effect due to a gradual increasing trend after
the BB meal and decreasing trend after the FM meal. The concentrations of sICAM1 were significantly
different at the five hour time point between the BB and FM meals only (p = 0.002). The mean five hour
sVCAM1 response was „7% higher after the BB meal than after the AM meal (p = 0.002) and „9%
higher than after the FM meal (p < 0.0001) (Figure S4).

Oxidative status was analyzed by plasma total ORAC, a non-specific indicator of antioxidant capacity,
and OxLDL, an indicator of oxidative damage. The postprandial total ORAC response was significant
for meal (p < 0.0001), time (p < 0.0001), and meal ˆ time interaction (p = 0.002). Overall, the AM meal
produced the highest average five hour total ORAC value, which was „21% higher than after the FM
meal (p < 0.0001), which was „11% higher than after the BB meal (p = 0.0004) (Figure 3). Despite
meal related differences in plasma antioxidant capacity (total ORAC), no significant effects on OxLDL
were apparent (Table 3).
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4. Discussion

In the current study, inclusion of black beans into a typical Western meal favorably modified the
postprandial (fed) insulin response in adults with MetS. Black bean in the meal (BB) resulted in an
attenuated postprandial insulin response compared to meals controlling for the fiber fraction (FM) or
the antioxidant capacity (AM) of black beans. These results did not directly translate to improvements
in endothelial function markers or appear to influence or be due to changes in markers of inflammation
or oxidative damage (OxLDL) in this study. Overall, the inclusion of black beans in a meal improved
postprandial metabolic responses as indicated by postprandial insulin that could not be explained by
either the fiber or antioxidant fractions alone.

Few studies have investigated the postprandial response to beans [11–16]. Thompson et al., evaluated
three bean and rice meals during a three hour postprandial period in adults with diabetes mellitus. The
bean meals (comprised of black, pinto, and dark red kidney beans) attenuated postprandial glucose,
compared to the rice control meal. Further, the two hour postprandial glucose response was < 140 mg/dL
after the bean meals, which is consistent with diabetic glycemic control goals [16]. Other postprandial
bean studies, investigating brown [12], white, and cream beans [13], and black bean extract [14],
have also shown reduced glucose and insulin within a three hour postprandial period, compared to a
reference food. In addition, white beans reduced postprandial lipemia, a result likely due to their different
non-nutrient content (lower total galactoside, trypsin inhibitors, and lectin content) compared to cream
beans [13]. Nilsson et al., tested brown beans consumed as an evening test meal and measured two
inflammatory biomarkers the next morning. IL-6 and IL-18 were reduced, which was explained, at least
in part, by the actions of colonic fermentation [12]. In the current study, these effects on inflammatory
biomarkers would not have occurred, as the meals would not have reached the colon in the postprandial
period of five hours. In contrast to the aforementioned postprandial bean studies, others have not shown
differences on postprandial glucose or insulin responses after consumption of pinto beans, navy beans,
black-eyed peas (Vigna unguiculata subsp. unguiculata) [15], and white beans [11].

In the present study, we found significant effects of the BB meal on postprandial insulin responses,
but not on glucose responses, although a trend was apparent in response to the BB meal. This may be
explained in part by the fiber component of the black beans, since the meal containing equivalent amounts
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of fiber (FM) also reduced postprandial insulin compared to the AM meal, but not to the full extent of
the BB meal. The anthocyanin content of the black beans could be playing a role in the improved
insulin responses observed. Black beans provide a dietary source of total polyphenols, and specifically,
anthocyanidins [28]. Dietary anthocyanins have been associated with improvements in insulin sensitivity
and inflammation [29], which is consistent with clinical trial data using pure anthocyanins [30] or other
dietary sources of anthocyanins [31]. The AM and BB meals were matched for antioxidant capacity, but
purposely not for polyphenol content to be able to test the antioxidant property question. Collectively, the
data support a role for specific effects of bioactive components, rather than a general antioxidant effect on
outcomes related to insulin sensitivity. Whether the AM meal would have produced lower postprandial
insulin or glucose responses, compared to a negative control lacking both fiber and antioxidant capacity,
is unknown.

Vascular inflammation, as assessed by the adhesion molecules sICAM1 and/or sVCAM1, has been
reported to decrease after postprandial dietary interventions, including antioxidant vitamins [32,33],
walnuts [34], olive oil [34–36], and a high monounsaturated fat foods (spreads, cooking oils, baking fats,
and mayonnaise) [37]. The findings from the current study do not support these findings directly, since
time and meal ˆ time interactions were not observed. A recent review found that adhesion molecules
are not consistently altered postprandially, yet leukocyte bound markers are readily detected, which may
be a better indicator of postprandial inflammation after high fat meals [38].

IL-6 concentrations increased after all meals, which aligns with some but not all studies: four out
of eight studies have demonstrated an elevated postprandial IL-6 response to meals [3]. Postprandial
inflammation is known to be sensitive to study design details, including length of postprandial
assessments, meal challenge, or participants [39,40]. The current study collected blood samples out
to five hours, whereas longer assessment periods of six or more hours may be necessary to measure
intervention associated differences [39–42]. Choice of inflammatory markers may have also revealed
different results. A high fat meal increased postprandial IL-18 and a high carbohydrate and high
fiber meal (16.8 g) decreased the postprandial IL-18 response [43]. IL-18 is a relatively novel
pro-inflammatory cytokine and recently associated with MetS [44] with an independent but modest
relationship to cardiovascular disease [45]. Future studies will indeed want to expand inflammatory
biomarkers to better understand postprandial inflammatory responses to dietary composition.

Several studies using different foods, including walnuts [46], pecans [47], antioxidant spice
blend [48], mixed grape powder [49], mint herbs [50], blueberries [49,51,52], orange juice, orange
flavonoids [53], kiwifruit, and cherries, have demonstrated that these additions to a typical meal enhance
antioxidant defense, as measured by ORAC. Further, meals without these antioxidants have been shown
to decline postprandial antioxidant capacity [49]. The results from the current study showed that the AM
meal produced the highest ORAC value five hours postprandially, followed by the BB meal and then
the FM meal. There was no significant influence of this enhanced antioxidant capacity on the endpoints
measured. However, the last blood draw was obtained at five hours, which may have been too early to
detect meal related differences in OxLDL. Examining the meal ˆ time interaction curves of OxLDL
clearly showed a declining trajectory of OxLDL after the AM and BB meals between four and five hours
postprandially. Previous work has shown that differences in OxLDL between treatments may not be
apparent until six hours postprandially [41,54]. Future research is needed to understanding the temporal
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dynamics of oxidative stress and damage to better discern the impact of dietary factors and to provide
insight for developing dietary guidance.

This pilot study had limitations worth noting. First, the study did not include a negative control that
contained no fiber and antioxidant capacity to fully evaluate the impact of the black beans or to show the
potential benefits imparted by the individual dietary components. The AM provided 1259 µmol/L trolox
equivalents more antioxidant capacity than the BB meal. However, the postprandial total ORAC response
between the BB and AM meals was not significantly different and both were significantly elevated
compared to the FM meal, so the overall difference likely did not favor the AM meal over the BB meal
remarkably. Another limitation was that MetS has inherent heterogeneity in its definition [55]. However,
MetS is increasing in incidence, so studying this at risk population provides potential applicability to a
large portion of the population. Lastly, as a pilot study, enrolling one sex or increasing the sample size
to circumvent potential sex differences was not feasible [3]. Some sex differences in adults with MetS
have been reported in postprandial metabolic indices, such as women with lower triglycerides [56], men
with more delayed triglyceride clearance [57], and women with elevated IL-6 [58].

5. Conclusions

Including black beans with a typical Western-style meal increases content of protein, dietary fiber,
and an array of micronutrient and phytochemical components with many of the latter exhibiting the
antioxidant property. After controlling for energy, protein, fiber, and antioxidant capacity in comparator
meals, the meal with the black beans resulted in reduced postprandial insulin concentrations, suggesting
enhanced insulin sensitivity in adults with MetS. These results support regular consumption of black
beans with meals to manage postprandial metabolic responses, a strategy that would contribute to the
metabolic health and delay of CVD and diabetes mellitus in adults with MetS.
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