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ABSTRACT OF THE DISSERTATION

Constraining Dark Matter Physics with Cosmological Simulations

By

Oliver D. Elbert

Doctor of Philosophy in Physics

University of California, Irvine, 2017

Professor James S. Bullock, Chair

Dark Matter (DM) accounts for the vast majority of mass in the universe, but the particle

identity of dark matter remains a mystery. Uncovering the fundamental nature of DM

remains one of the greatest challenges facing modern physics. Because the only information

about DM comes from astrophysical observations, these are the best sources to constrain

models. Dwarf galaxies present an especially tantalizing regime to investigate dark physics,

as they have the highest ratio of dark to luminous matter and therefore will be most affected

by differences between DM models. Additionally, this is precisely the scale where generic

dark matter theories have the most difficulty reproducing astronomical observations, leading

to the missing satellites, core-cusp and too-big-to-fail (TBTF) problems.

A particular class of models with nuclear scale self-interactions (called SIDM) has emerged as

a promising candidate. SIDM naturally forms cored halos, which may alleviate both the core-

cusp and TBTF problems. However, at larger scales the the interplay between SIDM halos

and the galaxies residing in them is poorly understood, complicating this picture greatly.

In this thesis I present numerical simulations of SIDM and CDM halos investigating these

issues. I show that at dwarf scales SIDM cross sections as small as 0.5 cm2 g−1 solve the

TBTF and core-cusp problems, and that cross sections 2 orders of magnitude larger are not

ruled out. I have also embedded gravitational potentials that approximate realistic galaxies

xi



in simulations of larger haloes in order to test the impact of galaxy formation on SIDM

halos. These simulations show that SIDM is indistinguishable from CDM in systems where

the galaxy dominates the central region, but in galaxies with higher mass-to-light ratios or

less centrally concentrated baryons it is possible to constrain SIDM cross sections. In the

galaxy cluster regime I show that an SIDM cross section of 0.1− 0.2 cm2 g−1 is preferred to

CDM or other SIDM cross sections.
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Chapter 1

Introduction

The standard cosmological paradigm holds that the Universe is dominated by a cosmological

constant Λ (dark energy), and Dark Matter (DM), with luminous matter accounting for

roughly 6% of the global energy density (Hinshaw et al., 2013; Planck Collaboration et al.,

2015). Microsensing studies have shown that the DM cannot be large compact objects such

as black holes or Jupiter-like planets (Tisserand et al., 2007; Mediavilla et al., 2017), implying

that it is instead comprised of some new particle. In this ΛCDM model DM particles clump

into gravitationally bound haloes, which then host galaxies as they form and grow (White &

Rees, 1978). Unfortunately, while there have been tantalizing hints about the fundamental

nature of dark matter (Boyarsky et al., 2014; Bulbul et al., 2014; Ackermann et al., 2017),

we still do not know what it truly is.

Even without this detail, however, the ΛCDM paradigm has been remarkably successful in

predicting the large-scale properties of galaxy populations such as their distribution (Springel

et al., 2006, see e.g.). However, at smaller scales discrepancies have emerged that challenge

this model. Two issues are the Core-Cusp and Too Big to Fail (TBTF) problems. Simulations

of dark matter haloes have found that halo densities follow a characteristic radial profile
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(Navarro et al., 1997), with a cuspy, ρ ∝ r−1 center. Observations of dwarf galaxies, on

the other hand show a tendency for them to have flat central density profiles instead of the

r−1 cusps (Flores & Primack, 1994; Kuzio de Naray et al., 2008; Oh et al., 2008; Walker

& Peñarrubia, 2011), forming the Core-Cusp problem. Related to this is the fact that the

central masses of observed dwarf spheroidal galaxies are well below those predicted for the

1010 M� haloes expected to host these systems (Boylan-Kolchin et al., 2011, 2012). If the

local dwarf spheroidals are in fact hosted by smaller dark matter haloes then there is no that

the 1010 M� haloes expected to be prevalent in the local Universe host any galaxies, hence

the TBTF name. If, however, the DM haloes had cored density profiles, the reduced inner

halo mass would explain TBTF. Feedback from baryonic processes such as supernovae and

gamma-ray heating can in principle solve these issues by forming central cores, (Pontzen &

Governato, 2012; Di Cintio et al., 2014; Oñorbe et al., 2015), but it is unclear if enough stars

form in these systems to successfully create cores (Garrison-Kimmel et al., 2013; Fitts et al.,

2016).

An intriguing resolution to these problems is to allow DM particles to scatter off of each

other with cross sections similar to the strong nuclear force. First explored astrophysically

by Spergel & Steinhardt (2000), such Self-Interacting DM (SIDM) models form isothermal

central cores through energy exchange, independent of star formation. Early work found

that SIDM cross sections of order σ/m ∼ 1 cm2 g−1 naturally produced haloes with sizeable

cores (Burkert, 2000; Davé et al., 2001; Coĺın et al., 2002), though these cross sections were

ruled in tension with observations at cluster scales (Yoshida et al., 2000; Gnedin & Ostriker,

2001; Miralda-Escudé, 2002, see e.g. ). Recent work, however, has revised these limits back

to the 1 cm2 g−1 range (Peter et al., 2013; Massey et al., 2015; Kim et al., 2016), and SIDM

models with a velocity-dependent cross section have come into favor (Feng et al., 2009; Loeb

& Weiner, 2011; Tulin et al., 2013b; Vogelsberger et al., 2012, e.g. ), allowing independent

constraints to be placed at different halo mass scales. In principle it is completely possible

for DM particles to have scattering cross sections of 5 cm2 g−1 at dwarf galaxy scales but for
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σ/m to be over an order of magnitude smaller in clusters. While this makes SIDM models

more viable when compared to observations, it also makes it more difficult to constrain an

actual dark matter scattering cross section.

A separate form of dark matter, meanwhile has led to a revolution in astronomy over the past

year. The detection of gravitational waves from merging black hole binary systems (Abbott

et al., 2016d,c, 2017) has both strikingly confirmed a fundamental prediction of General

Relativity (Einstein, 1916) and hinted at a much larger-than-expected population of massive

stellar remnant black holes. Work is ongoing to identify likely host galaxies for these binary

black hole (BBH) mergers (Lamberts et al., 2016; Belczynski et al., 2016a; Chatterjee et al.,

2017) and possible physical processes to facilitate these mergers (VanLandingham et al.,

2016; Kimpson et al., 2016), but understanding the population of these remnants of massive

stars could give insights into star formation and galaxy evolution as well. Gravitational wave

astrophysics is a brand-new, wide open field with many questions to ask.

This work addresses some of the current gaps in our understanding of DM physics and black

hole populations. It is organized as follows. In Chapter 2 we use high resolution simulations

of dwarf galaxy haloes in CDM and multiple SIDM cross sections to explore the viability of

SIDM models as solutions to the TBTF and Core-cusp problems. Chapter 3 presents a set of

dark matter-only simulations with an additional gravitational potential included to represent

the central galaxies hosted by these halos. We explore the effects of adiabatic contraction

on our SIDM haloes in comparison to the CDM case and use this to constrain SIDM cross

sections on galaxy cluster scales. In Chapter 4 we combine the results of modern stellar

evolution codes with X to analytically calculate the number and distribution of compact

stellar remnants in the Universe, with a particular focus on massive black holes. We then

present a simple model to use current merger rate observations from LIGO to constrain

binary black hole merger properties. We summarize and conclude in Chapter 5.
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Chapter 2

Dwarf halo cores with SIDM

2.1 Chapter Abstract

We investigate the effect of self-interacting dark matter (SIDM) on the density profiles of

Vmax ' 40 km s−1 isolated dwarf dark matter haloes – the scale of relevance for the too

big to fail problem (TBTF) – using very high resolution cosmological zoom simulations.

Each halo has millions of particles within its virial radius. We find that SIDM models with

cross-sections per unit mass spanning the range σ/m = 0.5 − 50 cm2 g−1 alleviate TBTF

and produce constant-density cores of size 300− 1000 pc, comparable to the half-light radii

of M? ∼ 105−7M� dwarfs. The largest, lowest density cores develop for cross-sections in

the middle of this range, σ/m ∼ 5 − 10 cm2 g−1. Our largest SIDM cross-section run

(σ/m = 50 cm2 g−1) develops a slightly denser core owing to mild core-collapse behaviour,

but it remains less dense than the cold dark matter case and retains a constant-density

core profile. Our work suggests that SIDM cross-sections as large or larger than 50 cm2 g−1

remain viable on velocity scales of dwarf galaxies (vrms ∼ 40 km s−1). The range of SIDM

cross-sections that alleviate TBTF and the cusp/core problem spans at least two orders of
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magnitude and therefore need not be particularly fine-tuned.

2.2 Introduction

Cosmological studies of the large-scale universe have provided tremendous evidence in favour

of a Universe dominated by dark matter (DM) and dark energy (e.g. Komatsu et al., 2011;

Hinshaw et al., 2013; Planck Collaboration et al., 2014), but thus far very little is known

about the underlying nature of the DM particle other than that it is long-lived and that it

interacts weakly with the standard model. For thermal particles, the DM needs to be fairly

massive (or ‘cold’ – non-relativistic at decoupling) in order to produce a power spectrum

consistent with large-scale structure (Reid et al., 2010). Weakly interacting massive particles

(WIMPs), for example, provide a compelling and well-motivated class of cold dark matter

(CDM) candidates (Steigman & Turner, 1985; Griest, 1988; Jungman et al., 1996). On the

scales of concern for galaxy formation, WIMPs behave as collisionless particles and are one of

the prime motivations for what has become the standard paradigm for structure formation:

collisionless CDM.

There are, however, disagreements between predictions from CDM-only simulations and

observations on small scales. For example, some galaxies appear to have flat central density

profiles (e.g. Flores & Primack, 1994; Kuzio de Naray et al., 2008; Amorisco et al., 2014; Oh

et al., 2008; Walker & Peñarrubia, 2011; Salucci & Burkert, 2000; Gentile et al., 2004, but

also see Strigari et al., 2014) with core-like log-slopes (α ∼ 0) rather than the predicted cusps

(α ∼ 1) seen in CDM simulations (Dubinski & Carlberg, 1991; Navarro et al., 1997). This

issue is known as the cusp/core problem. A qualitatively similar anomaly was pointed out

by Boylan-Kolchin et al. (2011, 2012), who showed that observations of the dwarf spheroidal

(dSph) satellites of the Milky Way (MW) imply central masses well below those of the

Vmax = 40 km s−1 haloes that appear to be common in ultrahigh resolution simulations of
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MW-size hosts (e.g. Diemand et al., 2008; Springel et al., 2008). This issue is known as the

‘too big to fail’ problem (TBTF). Tollerud et al. (2014) and Garrison-Kimmel et al. (2014b)

further showed that the Andromeda (M31) dSph satellites and the field galaxies near the

MW and M31, respectively, suffer from the same problem. Studies of larger samples of dwarf

galaxies in the field also indicate a similar density problem at a comparable velocity scale

Vmax ' 40 km s−1 (Ferrero et al., 2012; Klypin et al., 2014; Papastergis et al., 2014).

One natural solution to TBTF and other central-density issues is to posit that galaxy haloes

have lower core densities than predicted in CDM-only simulations. For example, baryonic

processes may act to reduce and flatten the central densities of small galaxies in CDM (e.g.

Navarro et al., 1996; Governato et al., 2012; Pontzen & Governato, 2012; Di Cintio et al.,

2014). In contrast, Peñarrubia et al. (2012) and Garrison-Kimmel et al. (2013) have argued

that the M? ∼ 106M� galaxies of interest for TBTF have not had enough supernovae to

alter densities sufficiently (though see Gritschneder & Lin, 2013; Amorisco et al., 2014).

Others have suggested environmental effects may increase the efficacy of these internal pro-

cesses by similarly reducing the central masses of subhaloes (e.g. Zolotov et al., 2012; Del

Popolo, 2012; Arraki et al., 2014; Brooks & Zolotov, 2014; Del Popolo et al., 2014). However,

these external processes are weak or non-existent in the field, suggesting that non-baryonic

solutions may be necessary to solve the discrepancy observed outside the MW and M31

(Garrison-Kimmel et al., 2014b; Papastergis et al., 2014). Similarly, while large TBTF sub-

haloes become increasingly infrequent as the mass of the MW and M31 host haloes decrease

(Purcell & Zentner, 2012; Wang et al., 2012; Rodŕıguez-Puebla et al., 2013; Cautun et al.,

2014), solutions of this kind appear less likely in the face of evidence that TBTF is persistent

in the field (Ferrero et al., 2012; Klypin et al., 2014; Garrison-Kimmel et al., 2014b).

Alternatively, the central density issues may be telling us something about cosmology. For

example, if the primordial power spectrum is non-standard (Zentner & Bullock, 2002; Polisen-

sky & Ricotti, 2014; Garrison-Kimmel et al., 2014c) or the DM is warm rather than cold (An-
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derhalden et al., 2013; Lovell et al., 2014; Horiuchi et al., 2014) then the central densities of

DM haloes would decrease. However, neither of these possibilities produce constant-density

cores on observable scales; they simply lower the normalization while retaining cuspy slopes.

The focus of this paper is to explore an alternative possibility: that the CDM particles are

strongly self-interacting.1 First discussed in an astrophysical context by Spergel & Steinhardt

(2000), self-interacting dark matter (SIDM) with energy-exchange cross-sections per unit

mass on the order of σ/m ∼ 1 cm2 g−1 can naturally produce constant-density cores in

the hearts of DM haloes on the scales of relevance for galaxy rotation curves and TBTF

(Burkert, 2000; Davé et al., 2001; Feng et al., 2009; Vogelsberger et al., 2012; Rocha et al.,

2013). Constant-density isothermal cores in SIDM haloes come about because kinetic energy

can be transmitted from the hot outer halo inwards (see, e.g., the discussion in Rocha et al.,

2013). This effect can only occur if σ/m is large enough for there to be a relatively high

probability of scattering over a time tage comparable to the age of the halo: Γ×tage ∼ 1, where

Γ ' ρdm(σ/m)vrms is the interaction rate, ρdm is the local DM density and vrms is the rms

speed of DM particles. If the cross-section is too large, however, then the high probability

of interaction can potentially lead to a negative heat flux, where energy is transmitted from

the inside out (Kochanek & White, 2000), leading to a ‘core collapse’ phenomena, not unlike

core collapse in globular clusters, where the central halo density increases to the point that

it exacerbates the overdensity problem on small scales. The specific range of cross-sections

that are (a) small enough to be observationally allowed, (b) large enough to alleviate the

relevant small-scale problems, and (c) small enough to avoid catastrophic core collapse, are

all topics of this exploration.

In most particle-physics based models for SIDM, the scattering interactions have a velocity

dependence (e.g., Blinnikov & Khlopov, 1983; Feng et al., 2009, 2010b; Khlopov et al., 2010;

Loeb & Weiner, 2011; Tulin et al., 2013a; Kaplinghat et al., 2014b; Boddy et al., 2014b,a).

1SIDM models with primordial power spectra that deviate from CDM on small scales have been explored
by Buckley et al. (2014) but we focus on CDM-type power spectra here.
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Astrophysical constraints, on the other hand, tend to rely on specific classes of objects that

have a characteristic vrms scale, meaning that they constrain σ(v)/m at a specific value of

v ' vrms. The best published limits (σ/m . 1 cm2 g−1) come from galaxy clusters with

characteristic rms velocities vrms ' 1000 km s−1 (Yoshida et al., 2000; Gnedin & Ostriker,

2001; Randall et al., 2008; Rocha et al., 2013; Peter et al., 2013). At the same time, the

most compelling astrophysical motivations for exploring SIDM in the first place occur on

the scales of dwarf galaxies where vrms ' 10 − 100 km s−1. These differences in velocity

scale are significant. For example, the SIDM cross-section could vary as σ/m ∝ v−4 if the

interaction were a dark version of Rutherford scattering, with a massless force carrier (Tulin

et al., 2013b). Thus it is not outlandish to consider the possibility that DM self-interactions

on the scale of dwarf galaxies are four orders of magnitude larger than they are on the scale

of galaxy clusters. Clearly we have significant need to derive constraints on as many velocity

scales as possible.

The potential for significant velocity scaling in the SIDM energy-exchange cross-section has

motivated Vogelsberger et al. (2012) and Zavala et al. (2013) to explicitly run zoom simu-

lations of MW-size hosts using SIDM with velocity-dependent σ/m values tuned to evade

bounds on cluster scales and to have large values (∼ 10 cm2 g−1) on the scale of problematic

TBTF haloes (vrms ' Vmax ' 40 km s−1). They show that TBTF is resolved for σ/m ' 1-

10 cm2 g−1 on the velocity scale of dwarfs. We note that fig. 8 of Vogelsberger et al. (2012)

makes clear that a run with σ/m = 10 cm2 g−1 provides a particularly good match to the

spread in dwarf satellite central densities seen around the MW.

The goal of this paper is to explore more fully a range of cross-sections at the dwarf scales

of interest, focusing specifically on isolated haloes rather than subhaloes in order to achieve

very high resolution. We run a set of ultrahigh resolution cosmological simulations of isolated

dwarf haloes with vrms ' 40 km s−1 using SIDM cross-sections σ/m = 0.1 – 50 cm2 g−1 in

addition to collisionless CDM. The aim is to quantify the range of cross-sections that can
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Name Mv Rv Vmax Np(Rv) σ/m
(1010M�) (kpc) (km s−1) (106) (cm2 g−1)

Pippin 0.9 55 37 4.1 0, 0.1, 0.5,
5, 10, 50

Merry 1.2 59 38 5.4 0, 0.5, 1, 10

Table 2.1: Summary of simulated haloes. The first four columns list identifying names and
virial-scale properties (virial mass, virial radius, and maximum circular velocity). The fifth
column gives number of particles within the virial radius for the high-resolution runs and
the last column summarizes the cross-sections each halo was simulated with. The virial-scale
properties of the haloes listed are for the CDM cases (σ/m = 0) but each of these values
remains unchanged (within ∼ 5%) for all SIDM runs. Mv and Rv are calculated using the
Bryan & Norman (1998) definition of ρV.

alleviate TBTF (in the field) and are expected to produce observable cores in small dwarf

galaxies. We also investigate whether a certain range of cross-sections can be ruled out

because they would result in catastrophic core collapse.

This work is organized as followed. In §2.3, we describe the simulations and analysis pipeline.

We present our results in §2.4, focusing first on the impact of varying σ/m on the density

profiles in §2.4.1 and then on the implications for TBTF in §2.4.2. We summarize our results

and conclude in §2.5.

2.3 Simulations

As we demonstrate explicitly below, in order to resolve the relevant ∼ 300− 1000 pc scales

of classical dSph galaxies, very high force and mass resolution are required. We achieve

this resolution in cosmological simulations using the zoom technique (Katz & White, 1993;

Oñorbe et al., 2014). Our SIDM implementation follows that described in Rocha et al.

(2013), using a modified version of GADGET-2 (Springel, 2005). Halos were identified with

the six-dimensional phase-space halo finder ROCKSTAR (Behroozi et al., 2013b).

We chose two haloes for our primary simulations using parent cosmological volumes of 7 Mpc
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Figure 2.1: DM density of Pippin in CDM (left) and SIDM with σ/m increasing from left
to right: 0.5, 5 and 50 cm2 g−1. Boxes on the top span 100 kpc (Rv = 55kpc) and the
bottom panel zooms in to span a central 10 kpc box (with modified colour bar). Note that
the global properties of the haloes on the scale of the virial radius, including the number and
locations of subhaloes, are nearly identical across all runs. The only difference is that the
inner core regions become less dense and somewhat puffed out in the SIDM cases. Note that
the 50 cm2 g−1 simulation is somewhat denser in the inner core than the 5 cm2 g−1 case; it
is undergoing mild core collapse.

on a side. Initial conditions were generated with MUSIC (Hahn & Abel, 2011) at z = 125 using

cosmological parameters derived from the Wilkinson Microwave Anisotropy Probe-7 year

data (Komatsu et al., 2011): h = 0.71, Ωm = 0.266, ΩΛ = 0.734, ns = 0.963 and σ8 = 0.801.

Their global properties are given in Table 2.1. We refer to the slightly smaller of the two

dwarfs (Vmax = 37 km s−1) as Pippin and the larger (Vmax = 38 km s−1) as Merry. Our

high-resolution runs, which we analyse throughout, have particle mass mp = 1.5× 103 M�

and a Plummer equivalent force softening ε = 28 pc. We have also checked that various basic

parameters of our target haloes (spins, concentrations and formation times) are within one

standard deviation of what is expected for dwarf haloes based on a larger simulation box of

35 Mpc on a side (described in Oñorbe et al., 2014).

In addition to σ/m = 0 (collisionless CDM) runs, we simulate both haloes with σ/m =

0.5, 1, 10 cm2 g−1. Additionally we have simulated Pippin with σ/m = 0.1, 5, 50 cm2 g−1. In
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Figure 2.2: Top: circular velocity profiles of Pippin at our fiducial resolution (solid; mp =
1.5× 103 M�, ε = 28 pc) and at low resolution (dotted; mp = 1.2× 104 M�, ε = 84 pc) for
both CDM (black) and SIDM (1 cm2 g−1, yellow). Bottom: the relative difference between
high- and low-resolution circular velocity profiles. The dashed vertical lines indicate the
Power et al. (2003) radius for the low-resolution haloes. Note that the SIDM haloes are
much better converged than the CDM simulations.
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all SIDM simulations, the DM self-interactions were calculated using an SIDM smoothing

length equal to 0.25ε, as described in Rocha et al. (2013).

Fig. 2.1 shows visualizations of Pippin at high resolution, coloured by the local DM density,

with collisionless CDM on the far left and SIDM runs of increasing cross-section to the right.

The upper panels visualize a box 100 kpc across (∼ 2Rv) and the lower panels zoom in on

the central 10 kpc of the haloes, using a colour bar that has been rescaled to emphasize

the highest densities. As these visualizations emphasize, bulk halo properties on the scale

of Rv are virtually identical in CDM and SIDM; even the locations of subhaloes remain

unchanged. The fact that substructure remains very similar in both SIDM and CDM is

consistent with the findings of Vogelsberger & Zavala (2013) and Rocha et al. (2013); here,

however, we examine mass scales well below those resolved in any previous SIDM study,

resolving substructure as small as Vmax = 1 km s−1. The main differences are apparent in

the core regions (lower panels), where the SIDM runs are systematically less dense than

CDM. Note that the 50 cm2 g−1 run is actually denser in its core than the 5 cm2 g−1 run.

As discussed below, this is a result of core collapse.

2.3.1 Resolution Tests

We have designed our high-resolution simulations explicitly to recover the density structure

at the ∼ 300 pc half-light radius scale of low-mass dwarfs based on the work of Power et al.

(2003) for CDM simulations. Power et al. (2003) showed that the differential density profiles

of CDM haloes should be converged only outside of a specific radius where the gravitational

two-body relaxation time approximates the Hubble time. While this work is perfectly well-

designed for CDM runs, the issue of convergence in SIDM is less well explored. In order

to remedy this concern, we have simulated Pippin in CDM and SIDM (1 cm2 g−1) at lower

resolution, with eight times worse mass resolution (mp = 1.2 × 104 M�) and with greater
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force softening (ε = 84 pc) than our high-resolution runs. As expected, we confirm that the

differential density profile of the CDM halo is convergent down to the classic Power et al.

(2003) radius of the low-resolution runs (168 pc for Pippin, 160 pc for Merry); reassuringly,

the SIDM run is even more stable. We find convergence in the density profile down to below

half the Power radius (see also Vogelsberger et al., 2012, who found similar robustness for

SIDM haloes). This is qualitatively reasonable in the limit where physical self-interactions

are more important than artificial two-body interactions.

While the differential density is the most natural theoretical quantity to consider in a con-

vergence study, observationally the circular velocity (or cumulative mass) is more relevant.

Velocity curves suffer more from numerical convergence issues because they rely on the

integrated density. Fig. 2.2 shows the circular velocity profiles of the low- (dashed) and

high-resolution (solid) simulations with CDM in black and SIDM in yellow. The lower panel

shows the relative difference as a function of radius, with the Power radii of the low-resolution

runs marked for comparison as vertical dashed lines. The low-resolution rotation curve in

CDM starts to underpredict visibly compared to the higher resolution run at about 1.4 times

the Power radius (some 14 times the formal force softening ε) and disagrees by more than

5% at ∼ 1.2× rPower. The SIDM run, however, remains reasonably well converged through-

out: the high- and-low resolution simulations do not disagree by more than 4% outside of

∼ 0.6× rPower, and not by more than 5% outside of 100 pc.

For the remainder of this work, we present high-resolution density profiles of CDM haloes

down to the Power radius and to half the Power radius for SIDM profiles. Based on the work

presented in this section, we believe that the full regions plotted are converged. For rotation

curves, we plot both CDM and SIDM haloes to 200 pc. This is the 1.2rPower limit for the

CDM curves, where we expect them to be correct within . 5%. The SIDM rotation curves

are accurate to the last plotted point.
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Figure 2.3: Density profiles of Pippin (left) and Merry (right) in collisionless CDM and in
SIDM (see legend) at z = 0. All SIDM runs with σ/m ≥ 0.5 cm2 g−1 produce central density
profiles with well-resolved cores within ∼ 500 pc. Core densities are the lowest (and core
sizes the largest) for cross-sections in the range σ/m = 5− 10 cm2 g−1. The 50 cm2 g−1 run
of Pippin has undergone a mild core collapse, with a resultant central density intermediate
between the 10 and 1 cm2 g−1 run. For velocity dispersion profiles of these haloes, see
Appendix 2.4.5. NFW fits to the CDM profiles of each halo yield scale radii of ∼ 2.7 kpc.

2.4 Results

2.4.1 Halo Profiles

Fig. 2.3 presents the density profiles of our resultant haloes. While the σ/m = 0.1 cm2 g−1

run of Pippin produces only a modest reduction in core density compared to CDM, all

SIDM runs with σ/m ≥ 0.5 cm2 g−1 result in substantial ∼ 500 − 1000 pc cores, with

reduced central densities compared to CDM. As the SIDM cross-section is increased from

σ/m = 0.1 → 5 − 10 cm2 g−1 the cores become increasingly extended and have lower

central densities. However, the Pippin run with σ/m = 50 cm2 g−1 has a denser core than

the σ/m = 10 cm2 g−1 case. This is almost certainly due to core-collapse behaviour (e.g.

Kochanek & White, 2000; Balberg et al., 2002; Coĺın et al., 2002; Koda & Shapiro, 2011).

As illustrated and discussed in Appendix 2.4.5, the velocity dispersion profile of this run is
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noticeably hotter in the core than in the outer regions – a clear indication that a negative

heat flux is in action. However, note that even a cross-section as large as 50 cm2 g−1 results

in a significantly lower central density than the CDM case, with a clear constant-density

core within ∼ 500 pc. Evidently, for this particular halo at least, a cross-section as large as

50 cm2 g−1 does not produce runaway core collapse, but rather a mild increase in the central

density compared to a run with 10 times weaker self-interaction (5 cm2 g−1).

Our results on core collapse are not significantly different than those reported most recently

in the literature. Older simulations of isolated haloes showed core recollapse after a few

dynamical times for an equivalent cross-section larger than∼ 5 cm2 g−1 (scaled appropriately

to the mass of Pippin; Kochanek & White, 2000; Balberg et al., 2002; Koda & Shapiro, 2011).

However, cosmological haloes only core collapse for higher cross-sections, and not consistently

for a fixed halo mass (Yoshida et al., 2000; Coĺın et al., 2002; Davé et al., 2001; Rocha et al.,

2013). There are several reasons why cosmological haloes might produce differences from

isolated haloes (Yoshida et al., 2000; Coĺın et al., 2002). These include the cosmological

accretion of new matter into the halo over time as well as velocity dispersion profiles that

can deviate from idealized models significantly. Major mergers can also change the heat

flux within haloes significantly, thought they do not appear responsible for suppressing core-

collapse in our simulations; both Merry and Pippin have quiescent merger histories, with

their last major mergers occurring at z = 1.5 and 4, respectively. This indicates that even

without the stabilizing effect of mergers, a high cross-section (σ & 10 cm2 g−1) is required for

haloes to core collapse. Similarly, Vogelsberger et al. (2012) studied subhaloes and only found

evidence for core collapse in their largest constant cross-section run (σ/m = 10 cm2 g−1).

and, even then, only for a single subhalo, even though subhaloes are biased against major

mergers.

In summary, even for the two fairly quiescent haloes we simulate (with no major mergers

since at least z = 1.5), core collapse does not occur except in models with extremely large
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(σ & 10 cm2 g−1) cross-sections. Even in these cases, the core collapse is fairly mild, with

resultant central densities that remain lower than they would be in CDM. In systems with

recent major mergers, we would expect the core collapse to be even less pronounced.

2.4.2 Circular Velocities and TBTF

According to the ELVIS simulations of the Local Group (Garrison-Kimmel et al., 2014a),

there should be ∼ 10 isolated haloes with Vmax & 40 km s−1 in the local (∼ 1.2 Mpc)

field around the MW and M31, excluding satellites of either large system. Of the 14 isolated

dwarfs in this volume, only 1 (Tucana) is clearly dense enough to reside in a CDM halo larger

than 40 km s−1. Tucana itself is extremely dense, and as discussed in Garrison-Kimmel et al.

(2014b), it is difficult to understand, even in the context of CDM. Tucana’s density suggests

a CDM halo with Vmax > 70 km s−1, similar in size to the halo expected to host the Small

Magellanic Cloud. If we force Tucana to reside within one of the typical Vmax ' 40 km s−1

haloes we expect within ∼ 1 Mpc, then this leaves roughly nine isolated, massive haloes

unaccounted for. These missing, or overdense, haloes are the systems of concern for TBTF.

Fig. 2.4 illustrates this problem explicitly by comparing the circular velocities of nearby field

dwarfs at their half-light radius (data points) to the circular velocity profiles of our simulated

haloes (lines), each of which has Vmax ' 40 km s−1 and is therefore nominally a TBTF halo.

The data points indicate local dwarf galaxies (M∗ < 1.7 × 107) farther than 300 kpc from

both the MW and Andromeda that are DM dominated within their half-light radii ( r1/2),

with estimates for their circular velocities at r1/2 (V1/2). We restrict our observational sample

to the local volume because this is where galaxy counts are complete at halo masses around

1010M�. Note that we do not consider galaxies with rotation curves derived from gas physics

(e.g. Oh et al., 2011) as these data are obtained from such large volumes that they are

incomplete at this mass scale. V1/2 for the purely dispersion galaxies are calculated using the
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Wolf et al. (2010) formula, where measurements for stellar velocity dispersion, σ?, are taken

from Hoffman et al. (1996), Simon & Geha (2007), Epinat et al. (2008), Fraternali et al.

(2009), Collins et al. (2013) and Kirby et al. (2014). However, Tucana, WLM and Pegasus

also display evidence of rotational support, indicating that they are poorly described by the

Wolf et al. (2010) formalism. For the first two, we use the Leaman et al. (2012) estimate of

the mass within the half-light radius, obtained via a detailed dynamical model. The data

point for Pegasus is obtained via the method suggested by Weiner et al. (2006), wherein σ2
? is

replaced with σ2
? + 1

2
(v sin i)2 in the Wolf et al. (2010) formula, where v sin i is the projected

rotation velocity. (also see section 5.2 of Kirby et al., 2014). We plot Tucana as an open

point to highlight its extreme density, as discussed above.

As expected, the all of data points save Tucana lie below the CDM curves (black lines),

demonstrating explicitly that both Merry and Pippin are TBTF haloes. The SIDM runs,

however, provide a much better match, and in fact all of the SIDM runs with σ/m ≥

0.5 cm2 g−1 alleviate TBTF.

2.4.3 Expectations for the stellar-mass halo-mass relation

A problem related to TBTF, but in principle distinct from it, concerns the relationship

between the observed core densities of galaxies and their stellar masses. Specifically, there

does not appear to be any correlation between stellar mass and inner DM density inferred

from dynamical estimates of dwarf galaxies in the Local Group (Strigari et al., 2008; Boylan-

Kolchin et al., 2012; Garrison-Kimmel et al., 2014b). If DM haloes behave as expected in

dissipationless ΛCDM simulations, then we would expect more massive galaxies to have

higher DM densities at fixed radius. This ultimately stems from the expectation, born out

at higher halo masses, that more massive DM haloes tend to host more massive galaxies.

Consider, for example, the two galaxies Pegasus (r1/2 ' 1 kpc) and Leo A (r1/2 ' 500 pc) in

17



200 400 1000 2000 3000
Radius [pc]

10

20

40

60

C
ir

cu
la

r
V

el
oc

it
y

[k
m
/s

]

A
n
d
X

X
V

III

A
n
d
X

V
III

S
ex

tan
sB

A
q
u
ariu

s

P
eg

asu
s

T
u
ca

n
a

IC
1
61

3

V
V

12
4

C
etu

s

L
eo

A

W
L
M

CDM

σ=0.1 cm2 g−1

σ=0.5 cm2 g−1

σ=1 cm2 g−1

σ=5 cm2 g−1

σ=10 cm2 g−1

σ=50 cm2 g−1Pippin

200 400 1000 2000 3000
Radius [pc]

10

20

40

60

C
ir

cu
la

r
V

el
oc

it
y

[k
m
/s

]

A
n
d
X

X
V

III

A
n
d
X

V
III

S
ex

tan
sB

A
q
u
ariu

s

P
eg

asu
s

T
u
ca

n
a

IC
1
61

3

V
V

12
4

C
etu

s

L
eo

A

W
L
M

CDM

σ=0.5 cm2 g−1

σ=1 cm2 g−1

σ=10 cm2 g−1Merry

Figure 2.4: Circular velocity profiles of Pippin (left) and Merry (right) simulated with CDM
(solid black) and various SIDM cross-sections (see legend). Halos of this mass (Vmax '
40 km s−1) should be fairly common within the ∼ 1 Mpc Local Field of the MW. The data
points indicate measurements of the circular velocity at the half-light radii of Local Field
(as defined in Garrison-Kimmel et al., 2014b) dwarf galaxies (see references in text). The
sizes of the points scale with the stellar mass of the galaxy, with the smallest AndXXVIII at
M? ' 3×105M� and the largest IC 1613 at M? ' 2×108M�. While these Vmax ' 40 km s−1

haloes are too dense in CDM to host any of the plotted Local Field dwarfs, the same haloes
in SIDM with σ/m ≥ 0.5 cm2 g−1 are consistent with many of the data points.
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Fig. 2.4. Both of these galaxies have about the same stellar mass M? ' 107M�. According

to the expectations of abundance matching (Garrison-Kimmel et al., 2014b), each of these

galaxies should reside within a Vmax ' 40 km s−1 halo. Instead, their central densities are

such that, if their DM structure follows the CDM-inspired NFW form, they need to have

drastically different potential well depths: Vmax ' 30 and 12 km s−1 for Pegasus and Leo A,

respectively (see fig. 12 of Garrison-Kimmel et al., 2014b). However, if we instead interpret

their densities in the context of SIDM, the results are much more in line with abundance

matching expectations.

Abundance matching relations remain unchanged in SIDM because halo mass functions in

SIDM are identical to those in CDM (Rocha et al., 2013). That is, in SIDM, just like CDM,

we would naively expect both Pegasus and Leo A to reside in haloes with Vmax = 40 km s−1,

like Pippin and Merry. In SIDM, unlike in CDM, the predicted density profiles allow this to

happen self-consistently. In the right-hand panel of Fig. 2.4 we see that both Pegasus and Leo

A could be hosted by Merry with σ/m = 10 cm2 g−1. In the left-hand panel, both galaxies

are consistent with the σ/m = 50 cm2 g−1 line. Given the obvious halo-to-halo scatter and

small number of simulations we have, it is difficult to determine which cross-section would

be favoured, but it is clear that for these haloes SIDM predicts central densities much more

in line with naive expectations for the stellar mass to halo mass relation at the mass scale

of dwarfs.

We extend this analysis to smaller stellar masses in the next subsection, where we also address

whether high values of σ/m are forbidden by the dynamics of the Local Group dwarfs.
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2.4.4 Are any cross-sections too large to accommodate measured

densities?

We would like to be able to rule out some range of cross-sections on the velocity scale of dwarf

galaxies by requiring that DM densities at least as high as those observed can be achieved.

This is in some sense the inverse of the standard central-density problem: for what SIDM

cross-sections are galaxies too dense?

Aside from Tucana, the densest Local Field galaxies shown in Fig. 4 are And XVIII (r1/2 '

400 pc) and And XXVIII (r1/2 ' 300 pc) with average densities just under 0.1 M � pc−3.

In practice, the mass uncertainties on these galaxies are so large that it will be difficult to

derive stringent constraints. At face value, however, the σ/m = 10 cm2 g−1 lines do appear

to be somewhat underdense (by a factor of ∼ 2-3) compared to the central data points.

The difficulty in this comparison is that we expect that the core densities of SIDM haloes

will increase with decreasing Vmax (Rocha et al., 2013). We must account for this possibility

in any attempt to rule out a given cross-section based on an observed galaxy density.

In order to estimate a Vmax scale that might be reasonable for these galaxies we can turn to

abundance matching. These dense dwarfs have M? ' 3-8×105M�. According to abundance

matching estimates (Garrison-Kimmel et al., 2014a), we expect galaxies in this stellar mass

range to reside within Vmax ' 20-30 km s−1 haloes.

How much denser is a Vmax = 20 km s−1 halo than a Vmax = 40 km s−1 halo in SIDM? Fig.

2.5 provides some insight. Plotted are fitted halo core densities (assuming a Burkert 1995

profile), ρb, as a function of Vmax for SIDM simulations with σ/m = 1 cm2 g−1. The black

squares show haloes from the simulations of Rocha et al. (2013) while the coloured squares

show the two haloes discussed in this paper. The dotted line shows a ρb ∝ V −1
max scaling (a

power law fit to all the plotted points yields ρb ∝ V −0.9
max ).
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mass, smaller haloes have higher central densities. The arrows represent the inferred half-
light density and half-light velocity dispersions of the Local Field dwarfs plotted in Fig. 2.4,
which serve as lower limits on the galaxies’ central densities. Of note is the fact that all of
these limits are consistent with the σ = 1 cm2 g−1 scaling, save for Tucana, whose half-light
density is so high (78× 10−2 M�/pc3) as to lie above the limits of the plot.
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The arrows show the densities of Local Field dwarfs at their half-light radii (ρ1/2 = M1/2/
4
3
πr3

1/2)

plotted against their implied circular velocities ar r1/2 (V1/2 =
√
GM1/2/r1/2). If these dwarfs

have constant density cores then ρ1/2 represents a lower limit on the density of that core:

if the core radius is smaller than the half-light radius then the true core density will be

higher than the implied average density at r1/2; if, on the other hand, r1/2 > rcore, then the

average density at r1/2 is the core density. We also assume a rising rotation curve at r1/2,

and this allows us to treat the observed V1/2 as lower limits on Vmax. Dwarfs lying above the

relation implied by our simulations and those of Rocha et al. (2013) are therefore too dense

within their half-light radius to reside in an SIDM halo with a given cross-section. We note

that Tucana’s half-light density is so high (78 × 10−2 M�/pc3 with a half-light velocity of

33 km s−1) that it lies above the plotted region. As discussed in Section 2.4.2, this central

density places Tucana not only in tension with SIDM models, but also with CDM, so we

discount it in our analysis. It is clear from Fig. 2.5, however, that none of the other dwarfs

are in conflict with σ/m = 1 cm2 g−1. If the same ρb ∝ V −1
max behaviour holds for core densi-

ties in σ/m = 10 cm2 g−1 models, then presumably the lower normalization of the ρb-Vmax

relation could place it in tension with the denser field dwarfs, though the large scatter in

simulated haloes makes this a loose constraint.2 Such a model then remains viable in the

face of current constraints.

Thus it appears difficult to rule out any cross-sections based on the observed densities of

isolated field dwarfs in the Local Group. The same conclusion holds for Milky Way satellites

if one considers fig. 8 of Vogelsberger et al. (2012): SIDM with σ/m = 10 cm2 g−1 (on the

velocity scale of dwarf galaxies) can match the spread of local densities seen for the classical

satellites of the MW. A larger simulation suite that includes a range of halo masses and

more precise observational mass measurements may eventually allow such a constraint to be

derived.

2This assumes a constant SIDM cross-section. If the cross-section is instead velocity dependent this will
change, most likely resulting in a shallower power law fit.
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Figure 2.6: Velocity dispersion profiles of Pippin (left) and Merry (right) in collisionless
CDM and with a variety of SIDM cross-sections (see legend). As the cross-section increases
to σ/m = 10 cm2 g−1, the cores become increasingly hotter and the profiles become more
isothermal as kinetic energy is transported to the center of the halo. Very high cross-sections
σ/m ≥ 10 cm2 g−1 lead to a negative radial gradient, resulting in energy transport from the
center of the halo to the outer parts, resulting in mild core collapse and higher central
densities, as in the 50 cm2 g−1 run plotted in Figure 2.3.

Overall, we emphasize that the puzzling ‘common mass’ relation inferred from collisionless

CDM simulations, where luminous galaxies are no more dense, and potentially less dense,

than galaxies 1000 times dimmer (as is seen in the Local Group, e.g. Strigari et al., 2008;

Boylan-Kolchin et al., 2012; Garrison-Kimmel et al., 2014b), is a natural consequence of

SIDM, where halo core densities generally increase with decreasing halo mass.

2.4.5 Velocity dispersion profiles

The velocity dispersion profiles of SIDM haloes provide insight into the origin and nature of

their cored density structures. Figure 2.6 plots the velocity dispersion profiles of our haloes

both in collisionless CDM and in SIDM, in direct analogy to the density profiles shown in

Figure 2.3. As the SIDM cross-section is increased from σ/m = 0.1 → 5 − 10 cm2 g−1, the

cores become steadily hotter and more isothermal as kinetic energy is transported from the

23



outside in (resulting in increasingly lowered central densities relative to the cold cusp that

forms in CDM). However, the run with a cross-section larger than σ/m ∼ 10 cm2 g−1 begins

to display a negative radial gradient – i.e., a core that is hotter than the outer regions.

This is precisely the situation where core collapse behavior is expected in SIDM: heat is

transferred out of the halo center, resulting in decreased pressure support and ultimately a

density enhancement (and further heating). This core collapse behavior is seen explicitly in

the left panel of Figure 2.3, where the Pippin run with σ/m = 50 cm2 g−1 is much denser

than the σ/m = 5, 10 cm2 g−1 cases.

2.4.6 Comparisons to Classical Milky Way Satellites

While Pippin and Merry are isolated dark matter haloes, rather than subhaloes, it is nonethe-

less interesting to compare their velocity profiles to the brightest Milky Way dwarf satellites.

Figure 2.7 plots the same circular velocity profiles of Pippin as in Figure 2.4, but with the data

points replaced by measurements of the circular velocities of the bright (M? > 2× 105M�)

Milky Way satellites used to define TBTF in Boylan-Kolchin et al. (2011, 2012). The points

are taken from Wolf et al. (2010), who used data from Muñoz et al. (2005), Koch et al.

(2007), Simon & Geha (2007), Mateo et al. (2008), and Walker et al. (2009). As in the field

(Figure 2.4), SIDM runs with σ/m ≥ 0.5 cm2 g−1 alleviate TBTF significantly. Because the

simulated haloes have not been tidally stripped by a larger host halo, however, a quantitative

comparison is impossible and we instead present these results for illustrative purposes only.

2.5 Conclusions

In this work, we have used very high resolution cosmological simulations of Vmax = 40 km s−1

haloes to investigate the effect of SIDM on their density structure. By simulating a range of
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SIDM cross-sections and comparing our simulations to the observed masses of Local Field

dwarfs we have reached the following conclusions:

• SIDM models with σ/m ' 0.5-50 cm2 g−1 on the velocity scale of dwarf galaxies (vrms '

40 km s−1) alleviate TBTF and produce constant-density core profiles comparable in

size to the half-light radii of Local Field dwarfs. It is possible that cross-sections even

larger than 50 cm2 g−1 will alleviate the problem without producing catastrophic core

collapse.

• The largest (∼ 1 kpc), lowest density (∼ 0.03 M � pc−3) cores occur for models with

σ/m ' 5 − 10 cm2 g−1. Our single run with σ/m = 50 cm2 g−1 produces a slightly

denser core owing to a mild degree of core collapse, yet it retains a constant-density

profile at small radii and remains significantly less dense than the CDM case.

• SIDM halo core densities increase inversely with halo circular velocity, roughly as

ρcore ∝ 1/Vmax (Fig. 5). This fact may help explain the unusual trend for less luminous

dwarf galaxies to be denser or as dense as galaxies 1000 times brighter (Strigari et al.,

2008). However, this behaviour also makes it difficult to rule out SIDM models by

requiring haloes to be at least as dense as the densest known dwarfs (e.g. And XVIII

or Draco) since the host Vmax is not well constrained.

A much larger number of simulations, coupled with more precise measurements of dwarf

galaxy densities, are required to place tight constraints on σ/m at these velocity scales.

Further research, which is currently underway (Vogelsberger et al., 2014; Elbert et al., in

preparation; Robles et al., in preparation), is also needed to investigate the effects of baryons

on density profiles in an SIDM universe. Overall, however, our results suggest that a wide

range of SIDM cross-sections remain viable on the velocity scales of dwarf galaxies, and that

the range of cross-sections that can alleviate TBTF spans at least two orders of magnitude.
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Chapter 3

A Testable Conspiracy: Simulating

Baryonic Effects on Self-Interacting

Dark Matter Halos

3.1 Chapter Abstract

We investigate the response of self-interacting dark matter (SIDM) halos to the growth of

galaxy potentials using idealized simulations, each run in tandem with standard collisionless

Cold Dark Matter (CDM). We find a greater diversity in the SIDM halo profiles compared to

the CDM halo profiles. If the stellar gravitational potential strongly dominates in the central

parts of a galaxy, then SIDM halos can be as dense as CDM halos on observable scales. For

extreme cases with highly compact disks core collapse can occur, leading to SIDM halos that

are denser and cuspier than their CDM counterparts. If the stellar potential is not dominant,

then SIDM halos retain constant density cores with densities far below CDM predictions.

When a disk potential is present, the inner SIDM halo becomes more flattened in the disk
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plane than the CDM halo These results are in excellent quantitative agreement with the

predictions of Kaplinghat et al. (2014a). We also simulated a galaxy cluster halo with a

central stellar distribution similar to the brightest central galaxy of the cluster A2667. A

SIDM halo simulated with cross section over mass σ/m = 0.1 cm2 g−1 provides a good match

to the measured dark matter density profile of A2667, while an adiabatically-contracted

CDM halo is denser and cuspier. The cored profile of the same halo simulated with σ/m =

0.5 cm2 g−1 is not dense enough to match A2667. Our findings are in agreement with

previous results that σ/m & 0.1 cm2 g−1 is disfavored for dark matter collision velocities

in excess of about 1500 km/s. More generally, the predictive cross-talk between baryonic

potentials and SIDM density distributions offers new directions for constraining SIDM cross

sections in massive galaxies where baryons are dynamically important.

3.2 Introduction

The dark matter (DM) paradigm has been tremendously successful in explaining the large-

scale structure of our universe (see, e.g. Planck Collaboration et al., 2015; Rodŕıguez-Torres

et al., 2016), though the precise nature of dark matter remains unknown. The simplest

example of cold dark matter (CDM), consisting of a single, collisionless particle with neg-

ligible primordial thermal velocity dispersion, can match the large-scale data remarkably

well. Alternatively, dark matter could be more complex, with nongravitational coupling

to standard model particles (e.g. Boehm & Schaeffer, 2005; Escudero et al., 2015) and/or

new dark sector particles (e.g. Feng et al., 2010b; Khlopov et al., 2010; Lesgourgues et al.,

2016); many models of this kind produce observable signatures in astronomical data sets

(Mangano et al., 2006; Feng et al., 2009; Cyr-Racine et al., 2015). In this paper we consider

the possibility that dark matter has strong elastic self-scattering interactions and explore the

implications of such interactions on the dark matter distributions within individual galaxies.
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We specifically focus on the back-reaction associated with galaxy formation.

Collisional or Self-Interacting dark matter (SIDM) was first explored in the context of galaxy

formation by Spergel & Steinhardt (2000), who argued that SIDM models with cross-section

over mass σ/m ∼ 1 cm2 g−1 should lead to observable constant density cores in galaxies,

in agreement with observations at that time. While early estimates suggested that SIDM

models of this kind would significantly reduce substructure counts compared to CDM, more

recent numerical investigations have shown that the substructure differences are minimal

(Vogelsberger et al., 2012; Rocha et al., 2013). However, the original expectation that SIDM

halos should have constant-density cores has been demonstrated robustly in cosmological

simulations (Davé et al., 2001; Rocha et al., 2013; Zavala et al., 2013).

SIDM cores are generated by energy-exchange interactions, which heat the halo center until

it becomes isothermal. The radial extent of this core is set by the requirement that a typical

dark matter particle will experience at least one interaction per Hubble time (Rocha et al.,

2013). This implies that larger SIDM cross sections produce larger isothermal cores. If the

cross section is large enough, the isothermal region can extend beyond the peak in the halo’s

velocity dispersion profile; in this case, energy-exchange interactions could extract heat from

the core leading to core-collapse, which increases the central density (Kochanek & White,

2000; Balberg et al., 2002; Coĺın et al., 2002; Koda & Shapiro, 2011; Vogelsberger et al.,

2012). However, this effect is muted in cosmological simulations and Elbert et al. (2015)

used dark matter (only) zoom cosmological simulations to show that core-collapse behavior

sets in only for very large cross sections σ/m & 10 cm2 g−1.

The tendency for SIDM models with σ/m . 10 cm2 g−1 to produce constant-density cores

with lower overall density is of special interest for comparisons to dwarf and low surface

brightness (LSB) galaxies. This is because many of these galaxies are observed to have cores

on roughly the scales expected in SIDM (Flores & Primack, 1994; Moore, 1994; de Blok

et al., 1996; Salucci & Burkert, 2000; de Blok et al., 2001; Swaters et al., 2003; Gentile et al.,
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2004; Simon et al., 2005; Spekkens et al., 2005; Kuzio de Naray et al., 2008; de Blok et al.,

2008; Donato et al., 2009; Oh et al., 2011; Adams et al., 2014) as opposed to the cusps

predicted in dissipationless CDM simulations (Dubinski & Carlberg, 1991; Navarro et al.,

1997). SIDM cores also may provide a natural explanation for the unexpectedly low densities

of local dwarf galaxies (Vogelsberger et al., 2012, 2014; Elbert et al., 2015), a problem known

as “Too Big to Fail” (TBTF) (Boylan-Kolchin et al., 2011, 2012; Ferrero et al., 2012; Klypin

et al., 2014; Papastergis et al., 2014; Garrison-Kimmel et al., 2014b; Tollerud et al., 2014).

There are many in the galaxy formation community who believe these issues may be resolved

by baryonic processes such as supernova feedback (Navarro et al., 1996; Read & Gilmore,

2005; Pontzen & Governato, 2012; Governato et al., 2012; Di Cintio et al., 2014; Oñorbe

et al., 2015; Maxwell et al., 2015; Dutton et al., 2016; Katz et al., 2016; Read et al., 2016)

though not all authors necessarily agree (Peñarrubia et al., 2012; Garrison-Kimmel et al.,

2013; Pace, 2016). Tidal effects have been shown to solve TBTF in satellite galaxies (see

e.g. Read et al., 2006; Zolotov et al., 2012; Brooks & Zolotov, 2014; Del Popolo et al., 2014;

Arraki et al., 2014), but the evidence for TBTF in the local field (Kirby et al., 2014; Garrison-

Kimmel et al., 2014b) necessitates another solution for these galaxies. This ongoing debate

and the lack of DM detections in direct, indirect and collider searches motivates a thorough

exploration of the SIDM hypothesis.

The goal of this paper is to investigate the late-time effects of galaxy formation on SIDM

halos, specifically the contraction of these halos due to the gravitational potential of the

galaxy. To this end we use a set of N-body simulations similar to those initially used to

examine contraction in CDM halos. The work is organized as follows: in §3.3, we briefly

describe the properties required of a viable SIDM model and in §3.4, we sketch the physics of

contraction of SIDM halos and motivate our work in this paper. We describe our simulations

and analysis in §3.5. We present our results in §3.6, discussing our Milky Way analogue halos

in §3.6.1 and our elliptical and lsb simulations in §3.6.2, while in §3.6.3 we directly compare

our simulations to the analytic model presented in Kaplinghat et al. (2015). §3.7 shows the
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results of our cluster simulations, and compares these with the observations of Newman et al.

(2013a). We summarize our results and conclude in §3.8.

3.3 Properties of viable SIDM models

Previous work has placed constraints on the SIDM cross section over mass across a range

of halo masses. Generally, σ/m below 0.1 cm2 g−1 have been found to be indistinguishable

from CDM models (Rocha et al., 2013). In low mass galaxies with maximum circular velocity

Vmax ' 30 km s−1, σ/m values ranging from 0.5 to 10 cm2 g−1 alleviate the core-cusp and

TBTF (Vogelsberger et al., 2012; Zavala et al., 2013; Fry et al., 2015; Elbert et al., 2015).

However, values significantly in excess of 1 cm2 g−1 may lead to efficient tidal stripping of

stars in the satellites of the MW and Andromeda (Gnedin & Ostriker, 2001; Peñarrubia

et al., 2010; Dooley et al., 2016) , providing a possible avenue for an upper limit on the cross

section in the future. Recent work by Kaplinghat et al. (2015) showed that SIDM models

with cross sections around 2 cm2 g−1 fit the rotation curves of the 12 analyzed dwarf and

low surface brightness galaxies well. This work used an analytic model built on arguments

discussed previously (Rocha et al., 2013; Kaplinghat et al., 2014a) and showed that the

analytic model is a good match for the density profiles of halos in DM-only cosmological

SIDM simulations. The summary of above constraints is that for collisional velocities of

order 100 km/s or smaller, a σ/m values close to 1 cm2 g−1 is favored and consistent with

all existing constraints. A larger sample of rotation curves will reduce uncertainties in the

determination of the cross section on galactic velocity scales.

The dark matter velocities in galaxy clusters are an order of magnitude larger than in dwarf

galaxies, and many techniques have been used to constrain the DM self-interaction cross

section at these velocities. Cluster mergers have been used by many studies to constrain

SIDM (see e.g. Randall et al., 2008; Dawson et al., 2012; Kahlhoefer et al., 2014; Massey
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et al., 2015; Schaller et al., 2015; Kim et al., 2016; Robertson et al., 2016), with typical

limits of σ/m ≤ 1 cm2 g−1 on the self-interaction cross section. However, recent work by

Kim et al. (2016) showed that constraints based on the displacement of the stellar and dark

matter centroids are overly stringent, weakening previous constraints. They find that the

displacement of the brightest cluster galaxy (BCG) relative to the halo center may be a

better observable, possibly allowing σ/m values around 0.1 cm2 g−1 to be tested. The Bullet

cluster constraint based on the mass loss from the merging sub-cluster (Markevitch et al.,

2004) also needs to be reevaluated using self-consistent SIDM merger simulations and taking

into account cosmic variance in the initial conditions. In addition, we also need theoretical

refinement to apply these constraints to velocity-dependent cross sections. Cluster shapes

have provided an orthogonal method of investigating self-interaction cross section on these

scales. Core formation in SIDM halos leads to more spherical inner density profiles, so

measurements of the ellipticities of cluster halos have been used to constrain σ/m values

to below 0.1 cm2 g−1 (Miralda-Escudé, 2002). However, due to the large scatter in axis

ratios, the ability of SIDM halos to retain some triaxiality, and the observational methods

used to constrain halo shapes, the ellipticity constraints are unlikely to be better than about

1 cm2 g−1 for cluster velocities (see Peter et al., 2013, for a detailed discussion).

The most stringent constraint on cluster velocity scale arises from the fact that the measured

dark matter density profiles are in substantial agreement with CDM outside the half-light

radii of the BCGs. Within about 10-50 kpc (range of BCG half-light radii), however, the

dark matter density profile is shallower than the CDM expectations (Newman et al., 2013a),

as we discuss later. Kaplinghat et al. (2015) used these measurements to show that the

preferred cross section for relative velocities larger than 1000 km/s is about 0.1 cm2 g−1,

consistent with earlier results from Yoshida et al. (2000). If the inferred shallowness of the

density profile is due to AGN feedback or some other baryonic process (Martizzi et al., 2013,

e.g.), then this value of 0.1 cm2 g−1 provides a stringent upper limit on the self-interaction

cross section for velocities in excess of 1000 km/s. This result and the large difference in DM
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velocities in dwarf galaxies and galaxy clusters demand that viable SIDM models must have

a velocity dependent self-interaction cross section. The required velocity dependence – from

1 cm2 g−1 for velocities below about 100 km/s to 0.1 cm2 g−1 for velocities above 1000 km/s

– can be easily accommodated in a variety of particle physics models (Feng et al., 2010a;

Loeb & Weiner, 2011; Tulin et al., 2013b; Cline et al., 2014; Boddy et al., 2014b, 2016).

3.4 Motivation: contraction of SIDM halos

Our work on simulating SIDM halos including a baryonic component is important for two

specific reasons. First, in galaxies dominated by baryons there is no systematic evidence for

large cores or lowered dark matter density profiles (e.g. Cappellari et al., 2015). Second, in

galaxy clusters the stars dominate the total mass budget within their half-light radii, yet the

dark matter tends to be under-dense compared to predictions. There is a simple analytic

model (which we discuss later) that can explain both these observations but it has not been

tested against simulations including a stellar component. By testing the accuracy of the

analytic model we are able to bolster the case for a velocity dependent self-interaction cross

section. We also test the possibility of core collapse in systems that have extremely dense

baryonic distributions.

In this work, our aim is to test and further elucidate the general physics of how SIDM

halos become isothermal in the potential well of the baryons. Because of this, we have

chosen to run idealized simulations with disks grown adiabatically. This is complementary to

the approach of running full-fledged hydrodynamic simulations that include self-interactions

between dark matter particles. Vogelsberger et al. (2014) and Fry et al. (2015) examine

dwarf galaxies (Mv ∼ 1010 M�) using fully self-consistent hydrodynamic simulations and

find that observable cores are still formed in these dwarfs in SIDM. Fry et al. (2015) find

that the cores in their simulated dwarfs are not substantially different from those formed
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purely via feedback in their CDM simulations. It is not clear how these results generalize to

larger halo masses, where feedback is expected to be less important in driving core formation

in CDM halos and halo contraction effects are expected to dominate (e.g. Di Cintio et al.,

2014; Dutton et al., 2016; Fiacconi et al., 2016).

The fact that growing baryonic potentials can cause contraction of CDM halos was first

investigated analytically by Blumenthal et al. (1986) and Ryden & Gunn (1987), who used

an adiabatic invariant approach. They demonstrated that if a baryonic potential grew to

dominate the central potential, the entire dark halo would contract, increasing the central

dark matter density by more than an order of magnitude in plausible cases. Other studies

(e.g. Jesseit et al., 2002) ran numerical simulations of isolated DM halos with disk potentials

and found the DM density in these halos reproduced analytical predictions. Gnedin et al.

(2004) studied baryonic contraction in hydrodynamic cosmological simulations and found

that both adiabatic model predictions and isolated simulations produced central densities

that were roughly 50% too high in halos where baryons dominate and proposed an alternative

model to encapsulate the adiabatic contraction effect.

Though previous work on halo contraction explored collisionless DM, the general results

should apply to SIDM as well. The adiabatic contraction occurs at early times when the

disk or bulge of a galaxy is forming. These timescales are much shorter than the typical

timescale for self-interactions in galaxies, assuming a cross section around 1 cm2 g−1. At

later times, the self-interaction process will allow the halo to become isothermal, and this

process can make the dark matter density profile shallower, retain the steep density profiles

created by adiabatic contraction, or steepen it further in the case of core-collapse. As we

show later, the outcome depends on the cross section, the gravitational potential of the

baryons and the outer (CDM) dark matter halo profile.

Feedback could change the density profile of dark matter for dwarf galaxies but it is not

expected to be important for the baryon dominated systems we simulate, which are Milky
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Way size or larger (Di Cintio et al., 2014; Dutton et al., 2016). It is important to note that

when the equilibration time scale is short, changes due to feedback need to happen very late

in order to prevent the dark matter from moving towards the equilibrium solution.

Kaplinghat et al. (2014a) discussed the response of SIDM halos to the formation of a stellar

disk or bulge using analytic equilibrium models. They found that the resultant SIDM core

radius and density should be linked closely to the underlying baryonic potential in systems

where the baryons are important dynamically. In the limit where the stars dominate the

gravitational potential, the dark matter density profile (in the region where it is isothermal)

scales as exp(−Φ?(r)/σ
2
v0) (Amorisco & Bertin, 2010; Kaplinghat et al., 2014a) where Φ?

is the gravitational potential of the stars and σv0 is the 1-d central velocity dispersion of

dark matter. Thus, stars and dark matter are tied together in terms of the density profile

and the shape of the dark matter halo must follow the contours of the stellar gravitational

potential. This result emphasizes the need to account for the baryons when exploring SIDM

phenomenology in galaxies with significant gas or stellar components.

The goal of this paper is to numerically investigate the effects of baryonic contraction on

SIDM halos using a set of isolated N-body dark matter simulations of Milky Way, Elliptical,

LSB, and Cluster analogue halos. These simulations are similar in spirit to those first used

to test and confirm analytic contraction models in the context of CDM. All of our halos were

simulated with fixed SIDM cross sections of σ/m = 0.5 cm2 g−1, but we show below that

our simulations reproduce the model of Kaplinghat et al. (2015), indicating we can use their

model to extend our results to a wide range of cross sections.
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3.5 Simulations

Because we are primarily interested in isolating the effects of baryonic contraction on SIDM

halos as opposed to modeling a fully realistic treatment of galaxy formation in an SIDM

universe, we ignore the effects of halo growth and baryonic feedback in our simulations. To

model halos after rapid early accretion has finished, we choose a spherical Navarro, Frenk,

& White (1997) density profile for our initial conditions because it describes the equilibrium

state of DM halos well. We may then add the galaxy potential in order to simulate a system

without violent starbursts or major mergers. These assumptions and approximations work

well for galaxies with quiescent periods greater than SIDM thermalization times (. 1 Gyr).

Our code is a modified version of GADGET-2 (Springel, 2005) that allows for the inclusion of

hard-sphere scattering between dark matter particles (Rocha et al., 2013). The simulations

consist of a series of 3 to 50 million particle dark matter halos, initialized as Navarro, Frenk,

& White (1997) profiles, and run in isolation with and without an analytic galaxy potential.

The potentials are grown linearly in time from a mass of zero to a final mass Mgal in 1 Gyr at

the start of our simulations. We also simulated our Milky Way halo forming the fiducial disk

after the SIDM core stabilized and found no difference in the DM distribution. The particle

initial conditions were generated by the public code SPHERIC 1, which was first introduced in

Garrison-Kimmel et al. (2013). To increase our effective resolution we exponentially truncate

the outer regions of our initial NFW halos. These truncation radii lie far outside the halo scale

radius except in the case of the Cluster, which we truncate exponentially at 500 kpc in order

to resolve the central few kpc of the halo. We have compared our idealized, dark-matter-only

halos to analogous cosmological halos presented in Rocha et al. (2013) and found their radial

profiles to be in good agreement. This demonstrates that the rapid merging process that

forms halos in cosmological simulations does not cause significant deviation from NFW or

isothermal profile.

1 https://bitbucket.org/migroch/spheric
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Table 3.1 summarizes our simulations, which consist of four characteristic halo/galaxy mass 2

combinations:

1. Milky Way: Mv = 1012M� with disks Mgal = 5× 1010M�;

2. LSB: Mv = 2× 1011M� with disk Mgal = 6× 108M�;

3. Elliptical: Mv = 1.8× 1012M� with Mgal = 6.2× 1010M�; and

4. Cluster: Mv = 1× 1015M� with Mgal = 2.1× 1012M�.

Each of these simulations are run with CDM and SIDM and also with and without the galaxy

potentials for comparison. The Milky Way halo mass simulations include three separate

galaxy disk potential runs, each of which has a fixed galaxy mass but variable scale length (see

below). We present 22 simulations in all. All SIDM halos were run with σ/m = 0.5 cm2 g−1

and used a self-interaction smoothing factor of 25 % of the force softening length (Rocha

et al., 2013). We also resimulated our cluster halo with σ/m = 0.1 cm2 g−1. The force

softening and convergence radius (Power et al., 2003; Elbert et al., 2015) of each run are

indicated in columns five and six.

For the disk potentials in the LSB and Milky Way runs we adopt the form of Miyamoto &

Nagai (1975):

ΦMN(R, z) =
−GMgal√

R2 + (a+
√
b2 + z2)2

, (3.1)

where a defines a scale length and b sets a scale height.

Each Milky Way simulation has a fixed scale height b = 0.3 kpc. We explore three scale

lengths: a = 1.5, 3.0, and 6.0 kpc, which we refer to as ‘Compact Disk’, ‘Fiducial Disk’,

2Our virial mass definition follows Bryan & Norman (1998) for a flat LCDM cosmology with Ωm = 0.27.
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Figure 3.1: Left: The black lines show circular velocity profiles for dark-matter only Milky
Way size halos (SIDM, solid; CDM, dashed). The colored lines show the circular velocity
profiles of three imposed baryonic potentials: Fiducial Disk (yellow), Extended Disk (ma-
genta), and Compact Disk (cyan). Middle: Dark matter density profiles without (grey) and
with (colored) response to the grown disk potentials. The lower panel shows the ratio of the
SIDM run to CDM run as a function of radius for each set of simulations. Right: Velocity
dispersion profiles of the same halos, which demonstrate isothermal cores for the SIDM runs,
as expected. Note that the relative effect of baryonic contraction is much more substantial
in SIDM: the central densities at 600 pc increase by a factor of ∼ 70 from the non-contracted
case to the Compact Disk case in SIDM, compared to only a factor of ∼ 5 in the CDM case.
Interestingly, the Fiducial Disk runs in SIDM and CDM have very similar normalizations,
though the SIDM simulation does show a small core developing within ∼ 800 pc. The Com-
pact Disk, on the other hand, has led to core-collapse in the SIDM halo, resulting in a much
higher central density than even the contracted CDM halo. Core collapse is expected when
the velocity dispersion has a negative gradient within the scattering radius, as is clearly the
case for the Compact Disk in the right panel.
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and ‘Extended Disk’, respectively. These values 3 roughly span the lower two-sigma to

upper one-sigma of disk sizes for Mgal = 5 × 1010 M� galaxies (Reyes et al., 2011). In

particular, the compact disk is extremely dense and was chosen to investigate whether core

collapse occurs. Our LSB disk mimics a typical LSB from Kuzio de Naray et al. (2008), with

Mgal = 6.3× 108 M�, a = 2.2 kpc, and b = 0.2 kpc.

We use spherical Hernquist (1990) distributions for the Elliptical and Cluster galaxy runs:

ΦH(r) =
−GMgal

(r + h)
. (3.2)

For the Elliptical, we adopt h = 3.0 kpc and Mgal = 6.2 × 1010M� motivated by matching

themedian of bin 28 in Graves et al. (2009). We relate the typical effective radius for galaxies

of this size by demanding that the 3D half-light radii are equal: h = Re/1 +
√

2. For the

central cluster galaxy we match the results for A2667 as quoted in Newman et al. (2013b) by

fitting a Hernquist profile with the same half-light radius to the best-fit dPIE profile, which

yields Mgal = 2.1× 1012M� and h = 28.5 kpc.

Because we do not directly model rapid galaxy formation and feedback in our simulations,

we restrict our analysis to the late-time results of contraction, after most of these effects

have subsided in massive galaxies. Each simulation was analyzed after reaching dynamical

equilibrium, such that the density profile was no longer evolving. This occurred within ∼ 5

Gyr for all cases except the “compact” SIDM Milky Way, which underwent core collapse and

showed a slowly increasing core density until we stopped the simulation after 10 Gyr.

3 We map the MN disk parameter to quoted exponential disk scale lengths Rd by requiring that the
half-mass radii are equal. This implies a ' 1.25Rd for the range of parameters we explore.

41



SIDM Only

CDM Only CDM, Fiducial Disk CDM, Compact Disk

SIDM, Fiducial Disk SIDM, Compact Disk

5 kpc

Figure 3.2: Edge-on vizualizations of the dark matter density of an idealized Milky Way
sized halo formed with CDM (top) and SIDM (bottom). Images along the left edge are
dark-matter only runs. The middle panels show the dark matter after the growth of a disk
like the Milky Way. The far right panel shows the dark matter after the growth of a compact
disk (see Table 1). As expected, the SIDM-only simulation has a much lower central density
than the CDM-only case. When a Milky Way-like disk is imposed, both CDM and SIDM
halos contract to similar overall central densities, but the SIDM halo tracks the shape of
the disk potential more closely than CDM owing to its isothermal velocity distribution. The
compact disk case drives core-collapse in the SIDM simulation, and thus results in an even
higher core density than in the contracted CDM run.

3.6 Results

3.6.1 Milky Way Halos

The setup for the Milky Way analogue simulations is shown in the left column of Figure

3.1. The black dotted line shows the circular velocity curve (Vc(r) =
√
GM(< r)/r) for our

CDM-only run (equivalent to the initial conditions) and the solid black line shows Vc(r) for

SIDM-only run, which is noticeably less dense in the center owing to SIDM core formation

(e.g., Rocha et al., 2013). The colored lines show the implied in-plane circular velocities
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(
√

rdΦ
dr
|z=0) for the imposed Extended, Fiducial, and Compact Disk potentials. These show

that the disk potential is dominant in our compact and fiducial runs. Our goal is to explore

the halo back-reaction to the growth of each of these components.

The middle column of Figure 3.1 shows the dark matter density profiles for all simulations.

The solid lines correspond to the SIDM model and dotted lines to the CDM model. The

gray curves are the dark-matter only runs while the colored lines show what happens after

the potentials are grown. For reference, the bottom panel plots the ratio of dark matter

density in SIDM to CDM as a function of radius for each set of runs.

As expected, both CDM and SIDM halos contract in response to galaxy potential growth 4.

The relative differences are enlightening. While the dark-matter-only simulations are quite

distinct between the cuspy CDM run and the cored SIDM within ∼ 3 kpc, the dark matter

profiles in the Fiducial Disk runs are almost identical down to the resolving limit. Specifically,

the SIDM halo has responded more to the imposed potential than the CDM halo and this has

driven the two profiles to a very similar end state. We only begin to see the formation of an

SIDM core within ∼ 1 kpc, which is similar to the Milky Way core size measured in Portail

et al. (2016). The Extended Disk runs, which impose a less severe potential, have maintained

something closer to the original differences, with SIDM beginning to roll off towards a core

within ∼ 3 kpc, but the differences between the SIDM and CDM are less severe than in

the DM-only case (which disagree at 5 kpc). Finally, the Compact Disk has produced a

dramatic change: the SIDM halo is now more dense than CDM at small radii, with a very

cuspy distribution ρ ∼ r−2.5 at r ∼ 2 kpc. This is a result of core-collapse: the compact disk

potential has heated the dark matter to such an extent that it is now hotter in the core than

in the outer part. The SIDM particles are conducting heat outwards, resulting in a loss of

core pressure and subsequent mass inflow.

4We have confirmed that our CDM runs generally adhere to the expectations of standard Blumenthal
et al. (1986) contraction
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The SIDM phenomenology is clarified in the right panel of Figure 3.1, which shows the

velocity dispersion profile of the dark matter in each run. The two SIDM simulations with

clear constant-density core behavior (DM-only and Extended Disk) are seen to have well-

established isothermal velocity distributions at small radii. In these cases, the SIDM halos

are hotter in their cores and colder in their outer regions than their CDM counterparts.

This is exactly the situation that leads to heat transfer from the outside in. The same effect

is seen, though much more mildly, in the Fiducial Disk case. In the Compact Disk runs,

even the CDM halo is hotter in the core than in the outer part. Such a declining velocity

dispersion profile is subject to outward heat flow in the SIDM simulation, and this drives

core collapse.

We show in Section 3.6.3 that the resultant density profiles are well explained by the ana-

lytical predictions presented in Kaplinghat et al. (2014a, 2015), with the exception of the

Compact Disk. However this is to be expected, given the gravothermal core collapse occur-

ring in the Compact Disk, which violates the assumption of isothermality the model is based

on.

Figure 3.2 displays visualizations of the dark matter in three pairs of our simulations, with

CDM runs shown along the top and SIDM along the bottom. The left row shows the dark-

matter only versions of each simulation. The middle and right rows show resultant dark

matter distributions after the growth of our Fiducial and Compact disks, oriented such that

the disks are seen edge-on. These results emphasize that the shapes of the SIDM halos have

been altered substantially by the formation of the disk, mirroring the baryonic potential

much more closely than the CDM cases within 10 kpc.
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3.6.2 LSB and Elliptical Halos

Figure 3.3 shows the density profiles and initial rotation curves of our elliptical and LSB

halos. In the upper-left panel, we see that the elliptical halo is baryon-dominated within ∼ 5

kpc, and consequently the density profiles (lower-left panel) show significant contraction.

Again we see minimal difference between the final SIDM and CDM halos, with no SIDM

core resolved. This is not surprising given our results from 3.6.1; denser galaxies will have

greater impacts on their host halos and inhibit SIDM core formation. We also display the

total (DM + baryons) density profiles in the lower-left panel of Figure 3.3, as well as an

r−2 power-law for comparison. As a result of contraction, both simulations have power-law

slopes of α = −2 around 3 kpc, and slightly steeper outside this region. This places our

simulations in agreement with observations of elliptical galaxies (Gavazzi et al., 2007; Auger

et al., 2010). In short, because they are centrally baryon dominated, predictions for SIDM

halos are largely the same as the CDM case for elliptical galaxies.

Our LSB-analogue simulations, however, do exhibit differences between CDM and SIDM

runs. The right panel of Figure 3.3 demonstrates that the LSB disk has very little effect on

our dark matter halos: the CDM halo undergoes barely any contraction, and the SIDM halo

still displays a central core. This makes sense in light of our previous results that massive

and centrally concentrated baryon densities generate the largest impacts on both SIDM and

CDM halos. The diffuse nature of low-surface-brightness galaxies implies that their baryons

have little effect on the host dark matter halos. Thus, these systems are the best laboratories

to investigate dark matter self-interaction possibilities.

3.6.3 Analytic Model

In this section, we compare the results of our simulations to the analytic model presented

in Kaplinghat et al. (2015). In this model, the dark matter is assumed to behave as an
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Figure 3.3: Initial rotation curves and final DM differential density profiles for our elliptical
and LSB galaxy simulation simulated in both CDM and SIDM. Left: Elliptical Simulations.
The top panel shows the rotation curves for our CDM and SIDM halos as well as for the
added Hernquist potential, displaying how the halo becomes baryon-dominated within 5
kpc. The bottom panel shows the response of the halos to the added potential; as in the
MW disk above, there is very little difference between the two contracted halos. We also
include the total (DM plus galaxy potential) density profiles in cyan, and an r−2 power-law
for comparison. Right: LSB simulations. The top panel shows the rotation curves for the
initial CDM and SIDM halos along with the central disk potential, which contributes far less
to the central mass and density of these halos. The lower panel shows that this relatively
shallow baryonic potential has a much smaller impact on the host halo; there is very little
difference between the initial and contracted CDM halos. The SIDM halo contracts slightly
more, but still retains a core of lower density than the initial CDM halo.

46



80

100

200

Simulated Compact Disk

Analytic Model

Simulated Compact Disk

Analytic Model

103 104

Radius [pc]

0.3

1

3

C
ir

cu
la

r
V

e
lo

ci
ty

[k
m
/
s]

V
a
n

a
ly

ti
c
/
V

si
m

50

100

200

Simulated Fiducial Disk

Analytic Model

Simulated Fiducial Disk

Analytic Model

103 104

Radius [pc]

0.3

1

3

C
ir

cu
la

r
V

e
lo

ci
ty

[k
m
/
s]

V
a
n

a
ly

ti
c
/
V

si
m

50

100

200

Simulated Extended Disk

Analytic Model

Simulated Extended Disk

Analytic Model

103 104

Radius [pc]

0.3

1

3

C
ir

cu
la

r
V

e
lo

ci
ty

[k
m
/
s]

V
a
n

a
ly

ti
c
/
V

si
m

20

70

Simulated LSB

Analytic Model

Simulated LSB

Analytic Model

4× 102 103 2× 103

Radius [pc]

0.3

1

3

C
ir

cu
la

r
V

e
lo

ci
ty

[k
m
/
s]

V
a
n

a
ly

ti
c
/
V

si
m 103 3× 103 104

70

100

200

Simulated Elliptical

Analytic Model

Simulated Elliptical

Analytic Model

103 3× 103 104

Radius [pc]

0.3

1

3

C
ir

cu
la

r
V

e
lo

ci
ty

[k
m
/
s]

V
a
n

a
ly

ti
c
/
V

si
m

104 105

Radius [pc]

30

100

300

1000
C

ir
cu

la
r

V
e
lo

ci
ty

[k
m
/
s]

Simulated Cluster, σ/m = 0.1

Simulated Cluster, σ/m = 0.5

Analytic Cluster, σ/m = 0.1

Analytic Cluster, σ/m = 0.5

Figure 3.4: Comparison between circular velocities of our analytic model and simulations.
Generally the analytic model is in agreement with simulations, with the notable exception
of the Compact Disk. This is because of the core-collapse occurring in the Compact Disk
simulation, causing greater central densities than predicted by our model, leading to higher
circular velocities in the halo center.
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isothermal gas within a radius r1, defined as the radius where particles interact at least once

in the age of the system: Γ(r1) tage = 1 or

ρ(r1) (σ/m) (4/
√
π)σv0 tage = 1. (3.3)

Here σ/m is the SIDM cross-section per unit mass, σv0 is the radial velocity dispersion in

the core and the factor of 4/
√
π accounts for the average relative velocity for Maxwellian

distribution. tage is the time period over which the self-interactions have been operating. We

take this to be the time after the stellar component is fully in place to be consistent with

the boundary conditions imposed.

The analytic model we use is spherically symmetric. To apply it to our simulated galaxies,

we follow the procedure of Kaplinghat et al. (2014a) and construct a new spherical mass

profile for the baryons Mbaryon(r) by including all the mass in all the stars within a sphere

of radius r. Inside r1 the SIDM density is set by hydrostatic equilibrium, giving

∇2 ln ρDM(r) = − 4π

σ2
v0

G [ρDM(r) + ρbaryon(r)] , (3.4)

where ρbaryon is the density profile corresponding to the mass profile Mbaryon. At r1, as

boundary conditions, the isothermal mass and density profiles (from solving the hydrostatic

equation above) are required to match the CDM halo profile after adiabatic contraction

(essentially the z = 0 CDM profile in our simulations).

In all cases, we find two islands of solutions in the central density−−dispersion plane, for

the same boundary condition Kaplinghat et al. (2014a). We choose the lower density island

because it matches the simulated profiles well; the higher density (with smaller cores) island

could be the analog of core collapsed solutions. Typically, the 1-d central dispersion σv0

values picked out by the two solutions are very close. The value of σv0 value is set by the

matching and it recovers the correct inner dispersion seen in the simulations.
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Figure 3.4 shows circular velocity profiles for our contracted SIDM halos along with the

analytic predictions for rotation curves. Here the cyan bands indicate the range of solutions

which match ρ(r1) and M(r1) within 5%. We chose 5% for two reasons. One, it shows

the sensitivity of the inner density profile of SIDM profiles to the matching (boundary)

conditions. Two, the simulated SIDM only and CDM only halos are not identical and

allowing for a small slop in the matching makes us less sensitive to their differences.

The analytic solutions and the simulated halo profiles generally agree well, with the notable

exception of the Compact Disk ”Milky Way” case. The analytic mass profile for this case is

systematically higher, even though the non-trivial shape of the mass profile (see Figure 3.1)

is captured well by the analytic profile. The analytic profile is very sensitive to the value of

σv0. For the Fiducial and Extended disks, the matching correctly infers the SIDM central

velocity disperison
√

3σv0 to be 250 km/s and 210 km/s (see Figure 3.1) and the analytic

solution does a good job of describing the simulated mass profiles. For the Compact disk

case, the inferred velocity dispersion is close to 290 km/s. However, in the Compact disk

simulation, the velocity dispersion rises this high only within about 2 kpc, while r1 is about

14 kpc. As Figure 3.1 shows, the dispersion profile for the Compact disk case is increasing

toward the center due to core collapse (see Section 3.6.1), so the mismatch between the

simulated profile and the analytic model is not surprising.

Given the overall consistency of the analytic model (equilibrium) predictions with our simu-

lated halo profiles when core collapse is not seen, we are confident that the Kaplinghat et al.

(2015) model predicts the SIDM halos in realistic galaxies and clusters well.
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Figure 3.5: Density profiles for our simulations of cluster Abell 2667 along with the inferred
dark matter density profile from Newman et al. (2013a). Even before contraction, our CDM
halo (left) is too dense and the contracted SIDM profile with σ/m = 0.5 cm2 g−1 (center)
is not dense enough to reproduce the observed density profile. Our contracted SIDM halo
with σ/m = 0.1 cm2 g−1 (right), however, matches the observed density of Abell 2667 well,
in agreement with the predictions of Kaplinghat et al. (2015).

3.7 Cluster Limits

We also simulate an analog of Abell cluster 2667. Our setup is described in the bottom

row of Table 3.1. The virial mass and concentration of the initial NFW halo match the

observations of Newman et al. (2013b), however they model the density of the BCG as a

dual psuedo-isothermal elliptical profile (dPIE):

ρ =
ρ0

1 + r2/(r2
core)(1 + r2/r2

cut)

In order to model this in our simulations we use a Hernquist (1990) sphere with the same

half-mass radius as the measured profile, and use a least-squares fitting method to obtain

a best-fit total mass. This is necessary because dPIE profiles exhibit central cores, while

Hernquist profiles have central 1/r cusps, so a Hernquist distribution with the same mass

and half-mass radius as a dPIE distribution will be less dense at all radii outside of the

core radius, significantly reducing the contraction effect we wish to investigate. We grow the
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central potential over the course of 2 Gyr, and allow the halo to evolve for 3 Gyr after this,

running for 5 Gyr total.

Figure 3.5 shows the density profiles of our simulations; uncontracted densities are plotted

as black dashed lines, while the contracted halos are solid black. We also include a vertical

arrow to indicate the smallest converged radius of our simulations, as defined in Elbert et al.

(2015). We plot the inferred Cored NFW dark matter density profile measured by Newman

et al. (2013a) as a cyan band, though we note that the generalized NFW fits Newman et al.

(2013a) reported are not significantly different. Finally, the effective density of the BCG

Hernquist profile is shown in magenta. The leftmost figure displays our CDM simulations.

Even before contraction, the initial NFW profile is too centrally dense to match observations

by a factor of ∼ 1.5 at the limits of our resolution. Adiabatic contraction increases the

density by another factor of 1.5, further worsening this discrepancy. If instead we assume

the dark matter is self interacting with a cross section of 0.5 cm2 g−1 we obtain the densities

in the center plot. In this case, we see that such a cross-section results in a halo that is

underdense by more than a factor of 3 in its center, and still below the observed limits at

100 kpc in our SIDM-only simulation. While baryonic contraction does increase the DM

density, it is not nearly strong enough to completely alleviate the problem. Indeed, over

most of our resolved region the contracted halo is only 20− 30% higher than the SIDM-only

simulation.

This result may seem surprising at first given that the baryons are important in the center

in terms of their dynamical mass. However, the key point is that the DM halo is so massive

that its velocity dispersion dwarfs the stellar potential. In this respect, the contraction

of the SIDM halo is different from the adiabatic contraction of CDM halos; applying the

Blumenthal et al. (1986) adiabatic contraction formula would result in a halo profile much

denser than the simulated result. The isothermal equilibrium solution, on the other hand, is

a good match to the simulated halo profile.
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We also simulate Abell 2667 with a cross-section of 0.1 cm2 g−1; our results are plotted in

the right-panel of Figure 3.5. In the SIDM only case, the density is near the lower-limits

of the Newman et al. (2013a) data. After contraction has been accounted for, however,

0.1 cm2 g−1 is consistent with observations, bordering the upper limits of the Newman et al.

(2013a) measurement, and we estimate that a cross section of 0.2 cm2 g−1 will border the

lower limits. Our estimates are in agreement with the results of Kaplinghat et al. (2015), who

find cross sections of 0.1 − 0.2 cm2 g−1 (assuming tage = 5 Gyr) by fitting to the Newman

et al. (2013a) data using the analytic model (described previously). This implies that a

SIDM model with a cross section that falls from about 1 cm2 g−1 on dwarf galaxy scales to

about 0.1 cm2 g−1 on cluster scales can resolve the small-scale puzzles (Kaplinghat et al.,

2015; Elbert et al., 2015; Vogelsberger et al., 2014; Zavala et al., 2013), while also matching

density profile constraints in clusters.

3.8 Conclusions

In this work we have investigated the combined effects of baryonic gravitational potentials

and dark matter self-interactions on dark matter halos using idealized simulations of dark

matter halos with galactic potentials. By simulating halos of various sizes with many different

potentials we have found:

• SIDM halo shapes are not inherently more resilient to effects from baryons than their

CDM counterparts. For a Milky Way halo hosting a Milky Way analogue disk, the

SIDM halo is more compact along the disk axis than its CDM equivalent in agreement

with the prediction of Kaplinghat et al. (2014a). For an elliptical galaxy, whose stellar

potential is markedly more spherical, we expect the SIDM halo to be correspondingly

more spherical.
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• Halos that host substantial baryonic populations display few differences in spherically-

averaged density profiles between CDM and SIDM models on observable scales. Even

extended baryon populations can contract halos with respect to SIDM-only simula-

tions, though these systems retain potentially observable constant-density cores and

are less dense than CDM. In extreme cases, we find that potentials from dense baryonic

structure can cause SIDM halos to core-collapse and become denser than their CDM

counterparts.

• Halos that host concentrated stellar populations may display few differences in spherically-

averaged density profiles between CDM and SIDM models on observable scales. Even

extended stellar populations can contract halos with respect to SIDM-only simula-

tions, though these systems retain potentially observable constant-density cores and

are less dense than CDM. In extreme cases, we find that potentials from dense baryonic

structure can cause SIDM halos to core-collapse and become denser than their CDM

counterparts.

• The densities of our contracted halos are in good agreement with the analytical pre-

dictions in Kaplinghat et al. (2014a, 2015), with the exception of the core-collapsing

Compact Disk because it no longer obeys the isothermal assumption of the model.

In particular, we show that the spherically-averaged density profiles are well approxi-

mated by the simple model in Kaplinghat et al. (2015), which has an isothermal core

and an undisturbed CDM outer profile.

• We simulated a cluster halo for 3 Gyr after the brightest cluster galaxy was fully in

place to test against the mass measurements for A2667 Newman et al. (2013a). Our

simulated CDM halo was denser than the observed central profile for A2667. On the

other hand, SIDM with σ/m ' 0.5 cm2 g−1 was too low in density compared to the

measurements. The choice of σ/m ' 0.1 cm2 g−1 was in much better agreement with

the measured normalization (and inner slope) of the A2667 density profile. Larger
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values like σ/m ' 0.5 cm2 g−1 are ruled out, even allowing for a factor of 2 uncertainty

in the age of the halo. These conclusions are in substantial agreement with the detailed

analysis of seven clusters (Newman et al., 2013a) by Kaplinghat et al. (2015), which

found a average value of σ/m ' 0.1 cm2 g−1 on cluster velocity scales for an assumed

age of 5 Gyr.

Based on these results, an ideal scale to investigate possible DM self-interactions appears to

be the dwarf galaxy scale with halo masses 1010−11 M� scale, as they will have the largest in-

teraction cross sections and the least contracted halos. However, these are precisely the halos

expected to be most vulnerable to stellar feedback (Pontzen & Governato, 2012; Governato

et al., 2012; Di Cintio et al., 2014; Oñorbe et al., 2015). Ongoing work (Vogelsberger et al.,

2014; Fry et al., 2015; Robles et al., in prep) is investigating the effects of feedback on the

SIDM halos and their results suggest that dwarfs with stellar masses M? . 106M� will have

density profiles indistinguishable from the predictions of the dark matter-only simulations.

This suggests that the faintest dwarf spheroidals provide excellent laboratories constraining

SIDM models.

For halo masses much larger than 1011 M� that host a large stellar disk or bulge, as the

inner halo becomes isothermal the SIDM halo retains the high densities created by adiabatic

contraction following the formation of the disk. Thus, in Milky Way sized halos the CDM

and SIDM halos densities are very similar beyond about a kpc, in marked contrast to the

dark-matter-only predictions. As predicted by Kaplinghat et al. (2014a), the self-interactions

also force the SIDM halo to be more compact along the stellar disk axis. We find that the

SIDM halo in the inner region of Milky Way analogs is more compact along the galactic disk

axis than the CDM halo. Thus, it may be possible to use the shape of the dark matter halo

in the inner regions of large spiral galaxies to provide a sharp test of the SIDM paradigm.
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The predictive cross-talk between the dark matter and baryons in the SIDM models leads to

a large diversity of halo profiles and halo shapes. This cross-talk is purely gravitational and

the result of the dark matter becoming isothermal in the inner parts of the halos. This is fully

explained by simple equilibrium models. The prospects for using these concrete predictions

of the SIDM paradigm to rule in or rule out SIDM in the near future are excellent.
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Chapter 4

Counting Black Holes: The Cosmic

Stellar Remnant Population and

Implications for LIGO

4.1 Chapter Abstract

We present an empirical approach for interpreting gravitational wave signals of binary black

hole mergers under the assumption that the underlying black hole population is sourced

by remnants of stellar evolution. Using the observed relationship between galaxy mass and

stellar metallicity, we predict the black hole count as a function of galaxy stellar mass. We

show, for example, that a galaxy like the Milky Way should host millions of ∼ 30 M� black

holes and dwarf satellite galaxies like Draco should host ∼ 100 such remnants, with weak

dependence on the assumed IMF and stellar evolution model. Most low-mass black holes (∼

10M�) typically reside within massive galaxies (M? ' 1011M�) while massive black holes (∼

50 M�) typically reside within dwarf galaxies (M? ' 109M�) today. If roughly 1% of black
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holes are involved in a binary black hole merger, then the reported merger rate densities from

Advanced LIGO can be accommodated for a range of merger timescales, and the detection of

mergers with > 50 M� black holes should be expected within the next decade. Identifying

the host galaxy population of the mergers provides a way to constrain both the binary

neutron star or black hole formation efficiencies and the merger timescale distributions;

these events would be primarily localized in dwarf galaxies if the merger timescale is short

compared to the age of the universe and in massive galaxies otherwise. As more mergers

are detected, the prospect of identifying the host galaxy population, either directly through

the detection of electromagnetic counterparts of binary neutron star mergers or indirectly

through the anisotropy of the events, will become a realistic possibility.

4.2 Introduction

With the first detection of gravitational waves, the Laser Interferometer Gravitational-Wave

Observatory (LIGO) simultaneously confirmed a fundamental prediction of General Rel-

ativity and discovered the first known binary black hole (BBH) merger (Abbott et al.,

2016d). This first gravitational wave event, GW150914, appears to have been caused by

the merger to two fairly massive (∼ 30M�) black holes. Subsequent detections of a BBH

mergers (GW151226 and GW170104, Abbott et al., 2016c, 2017) and a candidate BBH

event (LVT151012, Abbott et al., 2016a) have allowed more robust estimates of the local

BBH merger rate density and have confirmed the existence of black holes involved in these

mergers with masses that range from 7.5 to 36 M�.

As the field now pivots from gravitational wave discovery to gravitational wave astronomy,

there are number of questions we hope to explore in more detail. One basic question is

the origin of these massive black holes. Heavy (& 30 M�) black holes are expected to

exist as the result of stellar evolution (e.g. Spera et al., 2015; Belczynski et al., 2010, and
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references therein), and have been predicted to dominate the LIGO signal (e.g. Belczynski

et al., 2016b). However, the possibility that the GW150914 event was due to primordial

black holes (that would constitute some part of the dark matter) has also been advanced

(Bird et al., 2016; Cholis et al., 2016; Carr et al., 2016; Inomata et al., 2016).

Ab initio computation of the BBH merger rate (of stellar remnants) is currently not pos-

sible. This calculation requires inputs from multiple fields including galaxy formation and

numerical relativity. In this work, we outline a simple way to compute the BBH merger

rate for stellar remnant black holes that allows one to assess the uncertainties in the various

required ingredients in a transparent manner. The key idea is that we have a good empirical

understanding of the overall galaxy number density, stellar ages and metallicities as a func-

tion of galaxy mass, and estimates of the initial mass function of stars that formed in these

galaxies. Using these ingredients, together with the current generation of stellar evolution

codes, we can provide a grounded estimate of the global distribution of black holes as a

function of black hole mass and galaxy stellar mass. With this as a starting point, we are

able to quantify the astrophysical parameters needed to produce the observed BBH merger

signals observed. For example, the LIGO collaboration has reported a global “event-based”

merger rate of R = 55+185
−46 Gpc−3 yr−1 for binaries more massive than 5M� each (Abbott

et al., 2016b,f), and the detection of GW170104 has reduced the range to 12 ≤ R ≤ 213

(Abbott et al., 2017). Below we will demonstrate that such a rate is reasonable with the

population of stellar black holes we expect to exist within galaxies in the local universe and

we discuss how the host mass of mergers will be a valuable diagnostic for testing scenarios

going forward.

Our work is complementary to past work by Belczynski et al. (2016b) and Lamberts et al.

(2016), who focus their efforts on understanding the formation of binaries and the details of

binary black hole evolution. Both of these papers explicitly focused on the first GW150914

event. Lamberts et al. (2016) concluded that the black holes involved in GW150914 likely
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formed in a massive galaxy at z ∼ 1, but that formation in a dwarf galaxy was also likely pos-

sible. Belczynski et al. (2016b) suggested that the black holes likely form in low-metallicity

systems. Chatterjee et al. (2017) explored the formation of BBH systems specifically in

globular clusters and came to qualitatively similar conclusions.

Important to all of these investigations is the realization that massive black hole formation

is suppressed in stellar populations with higher metallicites (Spera et al., 2015; Belczynski

et al., 2008). For example, according to the calculations of Spera et al. (2015), a star of mass

M ' 90M� will be required to produce a remnant of mass mbh = 30M� if its metallicity

is Z/Z� = −0.5. A more metal poor star (−1.5) will need to be only M ' 33M� to

produce a 30M� BH remnant. These expectations, combined with the long merger times

often predicted for isolated BBH systems (see Postnov & Yungelson, 2014, and references

therein), have led many authors to conclude that the detected BBH merger signals observed

by LIGO will be dominated by the mergers of black holes formed in the early universe.

However, processes such as the Kozai-Lidov mechanism (Kozai, 1962; Lidov, 1962) may

accelerate the merger timescale both in galaxy centers(VanLandingham et al., 2016) and star

clusters (Silsbee & Tremaine, 2016; Kimpson et al., 2016) and low-metallicity star formation

is ongoing at low-redshifts, especially in low mass galaxies (Ellison et al., 2008; Mannucci

et al., 2010; Lara-López et al., 2010), allowing massive BBH systems to form locally and

potentially merge quickly enough to detect. We note that spin constraints limit the merging

time of GW150914 to be greater than 100 Myr (Kushnir et al., 2016). Given the large

uncertainties, we treat the merging time of BBH systems as a free parameter in our analysis,

and explore observational means to constrain the timescale.

Our work is organized as follows: In §4.3 we describe our approach. In §4.4 we estimate

the local number density of black holes as a function of black hole mass using the local

mass-metallicity relation and stellar mass function. We examine how these black holes are

distributed among galaxies of a given mass in §4.4.1 and work out the global number density
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in §4.4.2. We move from the total number density to merger rate densities in §4.5 and discuss

how by localizing event rates by host galaxy masses we can begin to constrain more details

of BBH merger scenarios in §4.5.1. We summarize and conclude in §4.6.

4.3 Our Approach

Before detailing our predictions in the next section, we here provide an overview of our basic

approach.

Our calculation proceeds in two steps. First we determine the cosmic number density of

stellar remnants, nbh, using empirical measurements of the galaxy population (§3). Next,

with this empirically-grounded number density in hand, we calculate binary black hole merger

rate densities using two simple parameters that quantify our ignorance of binary formation

and binary evolution (§4). Specifically, we introduce a dimensionless parameter ε ≤ 1 that

captures the complicated physics of binary system formation and binary remnant survival.

We also introduce a characteristic merger timescale, τ , that parameterizes our uncertainty

in binary black hole evolution and the distribution of times it takes for a binary pair to

merge after formation. In principle, any merger timescale distribution can be mapped to

this characteristic timescale τ .

As we show below, nbh is fairly robust to uncertainties. The larger uncertainties are in the

physics of binary formation and evolution encapsulated in ε and τ . We show that the observed

LIGO signals can be readily explained with reasonable values for both of these parameters

and make predictions for future observations of black hole and neutron star merger rates that

provide a means to constrain the physics they encapsulate. We also explore and quantify the

degeneracies between ε and τ and describe how determining the galaxy host mass distribution

for mergers could be a way to break these degeneracies.
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Figure 4.1: The minimum stellar masses to produce a remnant black hole more massive
than mbh = 10, 30, and 50M� are shown as a function of the star’s metallicity Z for two
different stellar evolution tracks.: PARSEC (Spera et al., 2015, shown in bold black) and
StarTrack (Fryer et al., 2012, shown in cyan). Both estimates are in reasonable agreement,
though we note that the Fryer et al. (2012) model fits are extrapolated to 50 solar masses.
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4.4 Black hole number density predictions

In this section, we discuss the global number density of black holes at the present time and

their distribution as a function of the galaxy stellar mass. In §4.4.1 we work out the expected

specific black hole frequency as a function of black hole mass and galaxy mass. In §4.4.2

explore the implied cosmic density of black holes. These determinations will ground us as

we move forward to estimate merger rates.

4.4.1 Black Hole Populations Within Galaxies

The number of black holes more massive than mbh that exist within a galaxy will depend on

the number of massive stars previously formed in that galaxy with an initial mass larger than

some minimum value, Mmin(mbh, Z). The minimum mass of a star required to produce a

remnant black hole of some mass mbh is expected to be a strong function of stellar metallicity

Z owing to mass loss from stellar winds. Figure 4.1 plots Mmin as a function of Z for

three example black hole remnant masses mbh > 10, 30,and 50M�, as determined by stellar

evolution codes PARSEC (Spera et al., 2015, black) and StarTrack (Fryer et al., 2012, blue).

Both calculations give similar results, especially at low metallicities1. We see that for high

metallicities (Z & −1.5), a very large stellar progenitor (M & 90M�) will be required

to produce the massive black holes of the type that have been observed in mergers by

LIGO. Lower metallicity populations require less extreme progenitors. We will adopt the

PARSEC results as our fiducial choice below.

With Mmin in hand, we can determine the total number of black holes more massive than

mbh that have ever formed, Nbh(> mbh), within a galaxy of mass M? and a total number

of stars N?(M?) by integrating over the stellar IMF ξ(M) and the metallicity distribution

1The largest discrepancy between the models is at mbh > 50M�, which is perhaps not unexpected since
the fits from Fryer et al. (2012) are extrapolations at this mass range.
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function (MDF) of stars expected for a galaxy of that mass P(Z,M?):

Nbh(> mbh,M?) (4.1)

= N?(M?)

∫
P(Z,M?)

∫ Mu

Mmin(mbh,Z)

ξ(M′) dM′dZ.

We set the upper limit on the IMF integral at Mu = 150 M�, though our results are

not strongly sensitive to this choice.2 The black hole count is normalized by N?(M?) =

M?/M̄(M?), where

M̄(M?) =

∫ Ml(M?)

0.08 M�
M′ ξ(M′) dM′. (4.2)

For the upper limit Ml(M?), we chose the stellar mass with main sequence lifetime equal

to the average stellar age of galaxies of mass M? (from Behroozi et al., 2013a, see their

Fig. 13). For P(Z,M?) assume that galaxies more massive than M? = 109M� follow a log-

normal distribution in Z, with mean and standard deviation given by Gallazzi et al. (2005).

For smaller galaxies, we use the results of Kirby et al. (2013), who measured resolved-star

MDFs for 15 individual local dwarf galaxies with stellar masses M? ' 103 − 108M�. We

assume that these individually observed MDFs are representative for galaxies in the dwarf

mass range throughout the universe. Finally, for ξ(M) we adopt a Kroupa (2002) IMF

for our fiducial calculations. We have also explore the effects of metallicity-dependent IMF

(specifically adopting the IMF of Geha et al., 2013) and find that our results are sensitive

at the factor of ∼ 2 level to this level of variation in the IMF.

Figure 4.2 shows Nbh(M?) as derived from Equation 1 for three choices of black hole mass:

mbh > 10, 30, 50M�. The mbh > 30M� results are shown as squares, color coded according

the median metallicity of galaxies at each M?. Boxes at M? < 109M� are placed at the

2Setting the upper limit to ∞ in the subsequent analysis changes our results by < 10%.
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Figure 4.2: The number of remnant black holes per galaxy as a function of galaxy stellar mass,
Nbh(M?), for black holes of mass mass mbh > 10, 30, or 50M�. The squares (corresponding
to 30M� black holes) are color coded by the median galaxy metallicity. We see that for
low metallicities, Nbh ∝M? in all cases. For the most massive black holes (30, 50 M�), the
relation breaks when galaxies become too metal rich to produce remnants in proportion to
their total stellar mass – these black holes form only in the low-Z tail of the distribution.
At the highest stellar masses, the relations begin to rise again, when the relation between
M? and Z becomes flat.
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stellar masses of the individual galaxies in the Kirby et al. (2013) MDF sample. We see that

for galaxies less massive than M? ' 1010M�, the number of black holes of all masses scales

linearly with galaxy mass, Nbh ∝ M?. For example, we find that there should be roughly

one 30M� black hole per 1000M� of stars in a galaxy, at least for smaller galaxies. For the

mbh > 30 and 50M� populations, the linear scaling with M? breaks down when galaxies

become so metal rich that only the low-metallicity tail of the population can be associated

with massive black hole formation. But the black hole counts recover and begin increasing

monotonically with stellar mass again once galaxies become massive enough that there is no

longer a strong trend between M? and Z (at M? & 1011M�). Note for the smallest black

holes, Nbh ∝M? for all galaxy masses, as there is very little trend between progenitor mass

and remnant mass for mbh . 10M� (see Figure 1).

4.4.2 Cosmic Black Hole Number Density

In order to obtain the global number density of black holes, nbh(> mbh), we integrate

Nbh(M?) over the galactic stellar mass function φ(M?):

nbh(> mbh) =

∫ ∞
Mmin

φ(M?)Nbh(> mbh,M?) dM?. (4.3)

We adopt the results of Baldry et al. (2012) for φ(M?) though we have checked that using the

stellar mass function from Bernardi et al. (2013) does not change our results significantly.

For the minimum mass in the M? integral we use Mmin = 103M� and find the number

density of black holes is convergent below this galaxy mass.

The solid black line in Figure 4.3 shows the results of this calculation of nbh for our fiducial

Kroupa IMF assumption. For comparison, the dotted line shows the result for the Geha

metallicity-dependent IMF (Geha et al., 2013). Though the Geha IMF yields slightly more

black holes, the factor of ∼ 2 offset is not large given the other uncertainties in this calcu-
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lation. We will adopt the Kroupa IMF in all the results to follow. In that case, we see, for

example, that number density of 30 M� black holes is nbh ∼ 1014 Gpc−3. If ∼ 0.1% of these

black holes merge over a Hubble time (tH ∼ 1010 yrs) then we might expect a local rate of

R ∼ 0.001nbh/tH ∼ 10 Gpc−3 yr−1, which is comparable to the LIGO estimate for massive

black holes based on the ∼ 30 M� pair seen in the GW150914 event (R30 = 3.4+8.6
−2.8 Gpc−3

yr−1 Abbott et al., 2016b). In Section 4.5 we will present a more careful comparison to the

inferred LIGO rates.

Figure 4.3 clearly shows that the overall black hole number density in the universe is fairly

high. Whether this provides a consistent and reasonable explanation of the LIGO observa-

tions depends largely on the expected fraction of merging BBH and the merger time scale.

One question of interest is how is this cosmic abundance of black holes distributed among

galaxies? Figure 4.4 shows the results for various cuts on mbh. We see that most low-

mass lack holes in the universe reside within massive galaxies, while higher mass black holes

tend to reside in dwarfs. This general trend is expected since low-mass black holes tend to

track stellar mass, and most of the stellar mass in the local universe is in massive galaxies.

Massive black holes tend to reside in M? ∼ 108−10M� galaxies. The most likely host for

a single ∼ 30M� black hole chosen at random in the universe is a galaxy of stellar mass

M? ∼ 1010M�. Of course, just because most black holes live in massive galaxies this does

not necessarily imply that most black hole mergers will occur in massive galaxies. We will

return to this question in §4.5.1.

4.4.3 Comparison to Core Collapse Supernova Rates

A useful test of our methodology is to compare the observed density of core collapse supernova

(CCS) remnants to that predicted in our model. If we change the mass limits in Equation

4.1, we can calculate the global density of CCS remnants using Equation 3. For the minimum
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Figure 4.5: Predicted merger rate density of black holes more massive than 5M� as a
function of merger timescale for various choices of binary merger efficiency fractions ε (see
the discussion of ε below Equation 4). The gray band displays the measurement from (Abbott
et al., 2017) for all mbh > 5M� merging pairs. In order to lie within these LIGO limits,
either a long (τ ∼ 10 Gyr) merger timescale and low ε ∼ 10−3 merging fraction, or a short
merger timescale and slightly larger ε ∼ 10−2 merging fraction are required.
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stellar mass we use 8 M� and for the upper limit we use 18 M�, which assumes that most

stars above this mass collapse to form black holes with no visible supernovae (Smartt, 2015).

Doing this gives a value of roughly one CCS for every 100 solar masses of stars formed, and

integrating over the stellar mass function yields a remnant density of nr = 2.5× 106 Mpc−3.

Current measurements place the local CCS rate density at 0.7× 10−4 yr−1 Mpc−3 (Strolger

et al., 2015). If we assume the CCS rate closely tracks the star formation rate, we can

normalize the evolution of the cosmic star formation rate density from Madau & Dickinson

(2014) to this value and integrate over the age of the universe to find the total density of

CCS remnants. This gives a density of nr = 3.8 × 106 Mpc−3, which is within a factor of

∼ 1.5 of our estimated remnant density.

4.5 Black Hole Merger Rates

In what follows we will assume that black hole mergers occur among binary pairs and that

these mergers occur after the birth of the binary pair over a timescale τ . For simplicity, we

will focus on merger rates for pairs of black holes each with masses above the same threshold

value of mbh. The merger timescale τ is subject to several assumptions and therefore difficult

to calculate from first principles (Lipunov et al., 1997; Sipior & Sigurdsson, 2002; Dominik

et al., 2013; Belczynski et al., 2016a; Lamberts et al., 2016). Our approach is to treat τ as

a parameter to be constrained.

At any given epoch, the number density of black hole pairs available to merge before z = 0

can be written in terms of the black hole number density at that time. Specifically for pairs

of mass m1,m2 > mbh we have

npair
bh (> mbh) =

1

2
ε nbh(> mbh). (4.4)
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Here we have introduced a new parameter that we refer to as the “binary black hole effi-

ciency”: ε ≡ fb? × fm1/m2 × fsurv × ft < 1. This dimensionless quantity parameterizes our

ignorance of merging black holes from massive stars. The value fb? is the massive star binary

fraction (fb? ∼ 0.5; e.g. Sana et al., 2012; Kobulnicky & Fryer, 2007; Pfalzner & Olczak,

2007) and fm1/m2 is the fraction of massive binary systems with mass ratios near unity. Cur-

rent models predict fm1/m2 ∼ 0.1 for m1/m2 = 0.9 (Sana et al., 2012). The fraction of those

massive star binaries that survive as black hole pairs after stellar evolution is fsurv ∼ 0.1

(Belczynski et al., 2016a; Lamberts et al., 2016). Finally, ft represents the fraction of bi-

nary black holes with orbital configurations that make them available to merge before the

present day (ft < 1). In this work we assume ε is independent of mass m1,m2. If it varied

significantly in the 10 − 50M� mass range, then our predictions for BBH mergers not yet

observed by LIGO would be inaccurate. With these assumptions, we find below that the

binary efficiency parameter values ε ' 0.01 − 0.001 can reproduce the reported black hole

merger rate density from LIGO using only stellar remnant black holes.

The formation rate density of black hole pairs that can merge will depend on the birthrate

density of black holes: ṅpair
bh = 0.5 ε ṅbh. Here, the over-dot implies differentiation with respect

to time. We will assume that the black hole formation rate density tracks the observed shape

of the global star formation rate (SFR) density ψ(t) (with t = t0 = 13.7 Gyr corresponding

to the present day) such that

ṅbh(> mbh, t) = nbh(> mbh)
ψ(t)∫ t0

0
ψ(t′)dt′

. (4.5)

For ψ(t) we used the parameterization of Madau & Dickinson (2014). The SFR density

peaks at z ∼ 2, corresponding to t ' 3.4 Gyr after the Big Bang and a lookback time of 10.3

Gyr.

Now let us assume that for every binary black hole pair that is born that there is an dis-
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tribution of times P(τ ′) for them to merge. In this case, the cosmic black hole merger rate

density today (t = t0) can be written as an integral over the black hole birth rate density:

R =
1

2
ε

∫ t0

0

ṅbh(t0 − τ ′) P(τ ′) dτ ′ , (4.6)

where ṅbh is evaluated at the black hole mass of relevance for the merger rate. We note

that P(τ ′) is the average distribution of merger times; the full distribution depends on many

other underlying factors such as the orbit of the binary system and the environment it is in.

For simplicity, we treat P(τ ′) as a delta function centered on a characteristic timescale:

P(τ ′) = δ(τ ′− τ). This allows for our results to be cast in terms of two effective parameters:

the merging efficiency ε and the characteristic timescale τ , and results in a present day BBH

merger rate density given by:

R =
1

2
ε ṅbh(t0 − τ) . (4.7)

Note that Equations 7 and 5 imply that for a fixed value of ε, a merger timescale that

matches the lookback time to the peak in cosmic star formation (τ ∼ 10 Gyr) will produce

the largest local merger rate. Thus, in order to match the observed local merger rate, a case

with τ ∼ 10 Gyr will require the smallest values of ε.

The rationale for this simple single-timescale approach is that it allows us to readily explore

the relationships between merger timescales, the unknown binary merger efficiency, and the

host galaxies of merging events. Though the assumption is clearly a major simplification,

any physically-motivated τ ′ distribution can in principle be mapped to a delay time τ . For

example, one well-motivated assumption for the merger time distribution is P(τ ′) ∝ 1/τ ′

(Dominik et al., 2013). Using τ = 1 Gyr yields roughly the same density, with nearly

the same constraints on ε, as assuming P(τ ′) ∝ 1/τ ′ in Equation 6. Even if underlying

merger timescale distribution is multi-modal, a combination of delta-function models can be
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Figure 4.6: The shaded band shows the joint region of parameter space in binary efficiency
ε and merger timescale τ that reproduces the merger rate density of black holes reported by
Abbott et al. (2017) for all black hole pairs more massive than 5M�.
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used. For example, Belczynski et al. (2016a) and Lamberts et al. (2016), predict a bimodal

distribution in birth times of massive BBH merger progenitors, with one peak at redshifts

z ∼ 2 and the other at much lower redshift, z ∼ 0.2. In this case, a combination of delta

functions, one with τ ∼ 1 and another with τ ∼ 10 Gyr reproduces such a model.

Figure 4.5 shows the predicted local merger rate of mbh > 5M� black holes as a function

of merger timescale τ for two choices of our binary efficiency parameter ε = 0.01 and 0.001.

The shaded band shows the total observed range from Abbott et al. (2017): 12 ≤ R ≤ 213.

We see that for shorter timescales (τ . 2 Gyr), ε = 0.01 matches the data better. For longer

timescales (close to the peak of cosmic star formation, τ ' 10 Gyr) the lower efficiency of

0.1% is more consistent with the measurement. Note that Abbott et al. (2016b) also quote

a event-based rate for binary mbh ' 30M� mergers like GW150914 of R30 = 3.4+8.6
−2.8 Gpc−3

yr−1. Our predicted binary merger rates for mbh > 30M� black holes also agree well with

their R30 range, producing curves like those in Figure 4.5 shifted down by approximately an

order of magnitude, with ε = 0.01 working better for τ . 2 Gyr and ε = 0.001 consistent for

τ ' 10 Gyr (just as in the mbh > 5M� rate case).

The degeneracy between τ and ε values is clearer in Figure 4.6. The band shows the range

of parameter values that are consistent with the reported LIGO rates for merging pairs with

mbh > 5M�. For τ . 2 Gyr, efficiencies of ε ' 0.002 − 0.03 are required. The efficiencies

need to be smaller if the typical merger timescale approaches the lookback time of peak

star formation τ ' 10 Gyr, ε ' 0.0002 − 0.004. The sharp uptick in required efficiency as

τ → t0 = 13.7 Gyr is driven by the fact that the star formation rate drops to zero as we

approach the big bang. As the merger timescale approaches age of the Universe, reproducing

the observed rates requires virtually every black hole that is present in the early universe to

end up merging today.

Figure 4.7 displays our predicted merger rates for black holes of various masses (mbh ≥ 5,

30, and 50 M�) as a function of τ for ε = 0.01. As previously discussed, for τ < 4 Gyr, this
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choice of ε is consistent with the reported merger rate for > 5M� BBH mergers, though

the overall amplitude of the lines is linearly proportional to ε. The aim of this figure is to

illustrate how the rates vary with compact object mass. The mbh > 30M� BBH merger rate

density, for example, is lower by a factor of ∼ 8 at fixed τ . The the 2− σ limit from Abbott

et al. (2016b) for massive black holes of this kind is R30 = 0.6 − 12.4 Gpc−3yr−1, which

matches our predictions for this choice of ε as long as τ < 3 Gyr (with larger τ requiring

smaller ε as in Figure 6).

Figure 4.7 also includes neutron star-neutron star (NS-NS) merger rates, which were com-

puted in a similar manner as our BBH merger rates. Specifically, we calculate the neutron

star density assuming a minimum stellar mass for producing a NS of 8 M� (as we did in

the CCS estimate in §4.4.3), and a maximum stellar mass equal to the minimum needed to

form a black hole. The upper limit on the NS-NS binary merger rate density reported in

Abbott et al. (2016g) is RNS < 12, 600 Gpc−3yr−1. The ε = 0.01 case plotted is clearly well

below this observational limit, which provides a weak constraint ε . 0.1 for large τ and ε . 1

for small τ . We may further check our model using the Milky Way’s binary NS population

and the short gamma ray burst (GRB) density. Kim et al. (2006) and Enrico Petrillo et al.

(2013) estimate the binary NS merger rate should be RNS ' 102 − 103 Gpc−3yr−1, which is

consistent with the predictions shown in Figure 7 for τ . 5 Gyr.

Having confirmed the consistency of our model with previous theoretical explorations and

observational constraints, we now predict the merger rate density for even more massive

compact objects – a regime that has not yet been probed observationally. Our expected rate

density for black hole binary mergers each with mbh > 50M� is R50 & 1 (ε/0.01) Gpc−3yr−1.

With a rate density this high, we expect that a massive merger of this kind should be detected

within the next decade. Mergers involving at least one black hole of this high mass should

be more common.
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Figure 4.7: Merger rate densities for NS-NS mergers (cyan), all black hole binaries (black),
black hole binaries each more massive than 30 M� (yellow), and black hole binaries more
massive than 50 M� (magenta) as a function of characteristic merger timescale τ , assuming
a binary black hole efficiency of ε = 0.01. This value gives a binary neutron star merger rate
in good agreement with other observational and theoretical constraints (Kim et al., 2006;
Enrico Petrillo et al., 2013; Dominik et al., 2013) and is consistent with the BBH merger
rate densities reported by Abbott et al. (2016b) for τ < 4 Gyr. Note that all rates scale
linearly with ε.

76



4.5.1 Breaking degeneracies with host galaxy masses

One of the goals of gravitational wave astronomy is to constrain the astrophysics that un-

derlies black hole merger detections, including 1) the physics of black hole binary formation

and 2) the processes that drive subsequent mergers. We have parameterized these two global

uncertainties using two simplifying parameters: the merger timescale τ and the binary black

hole efficiency ε. As demonstrated in Figure 4.6, current constraints on the merger rate

provide only degenerate constraint on these parameters, and in particular allow a vast range

of characteristic merger timescales, from fairly prompt mergers, τ ' 100 Myr, to mergers

that have taken a Hubble time to occur.

One possible way to break this degeneracy is to identify the host galaxy mass distribution

for observed merger events. Small galaxies today have ongoing star formation, while larger

galaxies tend to be quenched (e.g. Mannucci et al., 2010). Thus, binary mergers that occur

soon after formation will more likely be seen in small galaxies. Mergers over timescales

comparable to the age of the universe, however, will more closely track the overall stellar

mass distribution. Most stars are in massive galaxies today (Baldry et al., 2012; Bernardi

et al., 2013). Thus mergers detected locally that have take a long time to occur will be

biased to reside within large galaxies.

An expanded network of gravitational wave detectors, including Advanced Virgo and the

planned LIGO-India project, should be able to localize gravitational wave sources within

a few square degrees (Nissanke et al., 2013; Abbott et al., 2016e). With enough detec-

tions, cross-correlating merger locations with galaxy counts on degree scales could enable

constraints on the host mass for BBH mergers, as massive galaxies cluster more strongly

with other galaxies than do lower mass sytems (e.g. Zehavi et al., 2012; Raccanelli et al.,

2016). More precise determinations of host mass distributions would be enabled if there

are electromagnetic counterparts to mergers. Unfortunately, BBH mergers are not expected
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to produce significant EM radiation except in extreme cases (Loeb, 2016, e.g.), though see

Perna et al. (2016) for a more plausible scenario. On the other hand, NS-NS mergers are

expected to produce short gamma-ray bursts (e.g. Narayan et al., 1992; Rosswog et al., 2003;

Nakar & Piran, 2011). The Advanced LIGO/Virgo detector network should detect tens of

NS-NS mergers per year (Abadie et al., 2010), which could enable a promising avenue for

mapping out the host distributions for these mergers with some precision.

In order to provide some quantitative insight into how well host masses can help discriminate

models with different timescales, we consider two extreme examples: one prompt (τ ∼ 100

Myr) and another comparable to the Hubble time (τ ∼ 10 Gyr). The rate of prompt mergers

will be governed by the compact object birthrate in the low-z universe, ṅco,0 ≡ ṅco(t ' t0).

Specifically, the merger rate for prompt mergers will be

Rprompt =
1

2
ε ṅco,0. (4.8)

While Equation 4.5 can be used to provide a good estimate for ṅco,0, it cannot be used to

determine the host mass distribution for newly formed black holes or neutron stars. This is

because Equation 4.5 is normalized by the total remnant density and contains no information

on when and where those remnants were born – only where they are today.

In order to accurately determine the host mass distribution for compact objects being born

recently, we can perform an analysis similar to the one we used in calculating nbh (Equations

4.1 and 4.3). Starting with neutron star birthrates, we assume that they track massive star

formation at a given gas-phase metallicity Zg. Specifically, we need the minimum (Mns
min =

8M�) and maximum stellar progenitor mass that will produce a neutron star: Mns
max(Zg) =

Mmin(mco, Z) with mco = 5M� is the same progenitor mass limit discussed in § 4.4.1.

The observed mass-metallicity-SFR relation Ṁ?(M?, Zg) (Mannucci et al., 2010; Lara-López

et al., 2010) then provides a means to estimate the birth rate density by integrating over

78



103 104 105 106 107 108 109 1010 1011 1012

Host Galaxy Mass [M�]

10−2

10−1

1

10

102

103

B
la

ck
H

o
le

M
e
rg

e
r

R
a
te

D
e
n

si
ty

[G
p

c
−

3
y
r−

1
d

e
x
−

1
]

τ ∼ 10 Gyr mbh > 5 M�
τ ∼ 100 Myr mbh > 5 M�
τ ∼ 10 Gyr mbh > 30 M�
τ ∼ 100 Myr mbh > 30 M�
τ ∼ 10 Gyr NS

τ ∼ 100 Myr NS

Figure 4.8: Merger rate density per dex in host galaxy stellar mass as a function of host
stellar mass for NS-NS mergers (cyan), all BBH mergers (black), and for BBHs mergers of
two > 30 M� black holes (yellow). Solid lines show predictions for long merger timescales
τ = 10 Gyr while dotted lines show the host distribution for prompt mergers τ ∼ 100 Myr.
Merging efficiencies have been set to ε = 0.007 for prompt mergers and ε = 0.001 for delayed
mergers to produce the same global rate for the mbh > 30M� mergers. Prompt mergers are
more likely to occur in smaller galaxies because this is where the star formation is occurring
today. This is especially true for the most massive BBHs owing to the fact that recent
massive black hole formation is limited to galaxies with lower gas-phase metallicities.
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metallicity distribution function and stellar mass function:

ṅns,0 =

∫ ∞
Mmin

φ(M?)

∫
Ṁ?(M?, Zg)

M̄
P(Zg,M?) (4.9)∫ Mns

max

Mns
min

ξ(M′) dM′ dZg dM?.

Note that the observed gas-phase metallicity relation provides results for the oxygen abun-

dance and we are interested in the overall metallicity. We account for this following Peeples

& Somerville (2013) and use the [α/Fe]-mass relation from Thomas et al. (2005) to determine

Zg from the gas-phase oxygen abundance.

The birthrate calculation for black holes is the same as the above calculation for neutron

stars except for the limits of the integral over the IMF. For black holes of mass > mbh the

lower limit is Mmin(mbh, Z) and the upper limit is Mu (as defined for Equation 1).

We emphasize that both Equations 4.5 and 4.9 give almost identical answers for the global

compact object birthrate rate today when Equation 4.5 is evaluated at t = t0. This must

be the case if ψ(t) is normalized self-consistently. However, Equation 4.9 now allows us to

determine the host mass distribution for newly formed objects. That is, we can differentiate

Equation 4.8 with respect to galaxy stellar mass to derive the black hole merger rate density

per host mass in the case that black hole mergers occur promptly after black hole binary

formation.

Figure 4.8 shows the results of these calculations for binary NS-NS mergers in cyan, all BBH

mergers in black, and BBH mergers with mbh > 30 M� in yellow. Dashed lines indicate

prompt mergers of compact objects formed recently (τ ∼ 100 Myr), derived by differentiating

Equation 4.8. Solid lines indicate long-timescale mergers of objects formed at redshift z = 2

(τ ∼ 10 Gyr), derived by differentiating Equation 4.5 (and thus Equation 4.3) with respect to
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stellar mass. For this figure, we have used merging efficiencies of ε = 0.007 for prompt mergers

and ε = 0.001 for delayed mergers in order that they both produce the same global rates,

specifically the mean reported LIGO rate for the overall and massive black hole populations.

The median host galaxy mass for prompt NS-NS mergers is M? = 1.4 × 109 M� while for

delayed mergers it is M? = 3.9 × 1010 M�. The main difference between the distributions

is in the low-mass tail, where prompt BBH merger rate density varies slowly with host mass

as M
1/7
? while long timescale BBH merger rate density increases more sharply with host

mass as M
1/2
? . This is caused by the shape of the mass-metallicity-SFR relation; while the

total number of black holes formed in a galaxy is largely independent of its mean stellar

metallicity (4.2) below a certain threshold, the number forming locally depends on the

specific star formation rates of the host galaxies, which changes only moderately with stellar

mass at these scales (Leitner, 2012; Tomczak et al., 2016, e.g.). In the prompt scenario,

this implies 47% of NS-NS mergers occur in dwarf galaxies with M? < 109 M� while in

the delayed-merging scenario only 6% are hosted by dwarfs. Given the expected binary NS-

NS detection rate for the Advanced LIGO/VIRGO network (Abadie et al., 2010) and the

likelihood for electromagnetic counterpart signals, it should be possible to map out the host

galaxy population in coming decade and to explore the question of whether these mergers

have occurred long after formation (thus tracing stellar mass and the most massive galaxies)

or promptly after formation (tracing star formation and dwarf galaxies). The LIGO India

detector will only enhance the ability to perform this experiment.

The dependence of host mass distribution on merger timescale also exists for BBH mergers.

For all > 5M� BBH mergers, the median host galaxy masses are 9.5 × 108 M� and 2.6 ×

1010 M� for the short and long merger timescales, respectively. The fraction of mergers

hosted by M? < 109 M� dwarf galaxies is 51% and 9% in the two cases. For the more

massive > 30M� “GW150914-like” mergers, 95% occur in dwarfs for the prompt case while

just 24% are hosted by dwarfs in the long-timescale case.
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To assess the feasibility of discriminating between the prompt and the long-timescale sce-

narios for BBH mergers, we can draw an analogy with the ultra-high energy cosmic rays.

The origin of the ultra-high energy cosmic rays (UHECRs) with measured energies in excess

of 1019 GeV is a mystery. The strong energy losses at these energies due to interactions

with the Cosmic Microwave Background imply that the sources must lie within a Gpc. At

energies above 5 × 1019 GeV, the abrupt (Greisen-Zatsepin-Kuzmin or GZK) cutoff due to

the ∆+ resonance leads to a dramatic decrease in the implied distance to the sources. The

angular resolution of the measurements and the smearing due to bending in magnetic fields

imply that the actual direction of the UHECR events can be reconstructed to only about 5

degrees, a situation similar to that for gravitational wave detections.

The BBH mergers are detectable to distances of a Gpc and unlike the case with the UHECRs,

we expect some constraint on the source distance from the gravitational wave detections. For

the UHECR case, it seems like the 69 events from the Pierre Auger Observatory is a large

enough set of events to test for correlation with putative local sources (Abreu et al., 2010).

No clear consensus has been reached on the origin of these UHECR events. In particular,

only a fraction of the UHECRs can be attributed to the local catalogs of AGNs or 2MASS

galaxies that have been cross correlated (Khanin & Mortlock, 2016). While the origin of

UHECR has not been clarified by these analyses, they have demonstrated the feasibility of

testing various hypotheses for the origin of UHECRs with upwards of about 50 events.

If the origin of the BBH mergers is related to stellar mass remnants, then our analogy

with UHECR correlation studies suggests that looking for correlation large, clustered galax-

ies could be a fruitful way forward. Because the galaxy clustering bias begins to increase

around masses of M? & 1010.7 at z < 0.3 (e.g. Zu & Mandelbaum, 2015) we use this as

our mass threshold. For the long timescale scenario, our prediction is that 30% of BBH

mergers with masses > 5M� and 42% of NS mergers occur in M? & 1010.7 hosts, while the

corresponding numbers for the prompt scenario are 5.4% and 4.6%. Thus, we would expect
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a cross correlation with these highly biased galaxies only in the long timescale scenario (the

situation for the most massive > 30M� BBH mergers is even more stark, though less ob-

servable: 6.4% and 1.0× 10−3%, respectively). Testing a model that includes templates for

both the red and dwarf galaxies, it may be possible to infer the relative contributions of

each to the observed mergers. Given our correlated predictions for the NS-NS mergers and

their possibile EM counterparts, nailing down the timescale for the mergers seems a likely

possibility.

Note that in calculating our host mass distributions for long-timescale mergers we have

assumed that black hole pairs that formed near the peak in cosmic star formation rate

density (z = 2) have distributed themselves like the bulk of the black holes in the Universe

today. This assumption is conservative in the sense that it biases mergers to occur in lower

mass hosts than they otherwise would. In reality, black holes that formed at z = 2 will

reside in slightly higher mass galaxies than the bulk of the black hole population (since half

the stars formed after this time, and later star formation occurs in smaller galaxies). Given

this, it is possible that the dichotomy in host mass populations for prompt and long merger

timescale populations is sharper than that in Figure 4.8.

4.6 Conclusions

In this paper we have worked through empirically-derived expectations for the stellar remnant

black hole population in the Universe and used these as a basis for interpreting gravitational

wave signals such as those being detected by Advanced LIGO and eventually Advanced Virgo

(LIGO Scientific Collaboration et al., 2015; Acernese et al., 2015). We have quantified our

uncertainties using two parameters: the binary black hole efficiency ε (Equation 4), and the

typical merger timescale τ (Equations 6 and 7).
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Stellar-remnant black holes should be abundant in the local universe. For example, mbh >

30M� black holes should have a local number density of 0.9 − 2 × 1014 Gpc−3 with the

range reflecting variations between our fiducial Kroupa (2002) and metallicity dependent

(Geha et al., 2013) IMFs. This corresponds to an occupation rate of ∼ 1 per 1000 M� of

stars formed in galaxies with M? . 1010M� (see Figures 4.2 and 4.3). Such an abundant

black hole population provides an ample source for binary systems that eventually merge for

reasonable choices of parameters that characterize the merger process.

If ε ' 1% of stellar remnant black holes end up in a binary configuration that eventually

merges, then the current LIGO merger rate constraints can be accommodated as long as

the typical merger timescale is τ . 5 Gyr (See Figure 6). If mergers tend to occur over a

timescale that coincides with the peak in cosmic star formation rate density (τ ' 10 Gyr)

then the efficiency of binary mergers would need to be smaller (ε ' 0.1%) in order to be

consistent with the observed rates.

Though our approach is not well suited for ab initio calculations, it does provide fairly robust

scalings because the uncertain/unknown parameters are reasonably constant for all compact

objects in our calculations. For example, for any ε or τ , 50 M� black holes should have

merger rate densities that are a factor of 7± 1 smaller than merger rates of binary 30 M�

black holes (see Fig. 4.7). This range accounts for uncertainties in the faint end of the stellar

mass function (taken from Geller et al., 2012; Baldry et al., 2012; Lan et al., 2016). Scaling

from the event-based rate derived for GW150914, we would therefore predict the rate for

50 M� black holes binary mergers to be R50 = 8+27
−6 Gpc3yr−1. This places 50 M� black

hole binary mergers at the limit where detection by LIGO within the next decade should

be expected. In principle, the mass specturm of detected compact objects will provide

information on the galaxy SMF, as few massive detections would imply a shallow faint-end

slope of α ∼ −1.3, while a large number would support slopes closer toα ∼ −1.7.

Given the degeneracy between merger timescale and binary efficiency in producing the ob-
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served range of merger rates, we have explored one possible avenue for breaking this degen-

eracy. In Figure 8, we showed that for very short timescale “prompt” mergers, which occur

soon after black hole formation, the host galaxy population is expected to track the local

star formation, and therefore be skewed towards smaller galaxies. For example, about half of

the BBH mergers with mbh > 5M� should occur in hosts with stellar masses < 109M� in

the prompt merger scenario, while only 10% of such events should be hosted by these dwarf

galaxies in the long timescale scenario.

As we move towards an era where a global network of gravitational wave detectors is likely,

we can expect source localization to provide a means towards discriminating scenarios of

this kind. For BBH mergers with no electromagnetic counterparts, the host distribution

may in principle be inferred by searching for correlation of these events with background

galaxy population, in much the same way as has been attemped with ultra-high energy

cosmic rays measured by the Pierre Auger Observatory (§4.1). For NS-NS mergers, we

expect electromagnetic counterparts, which would be more direct way to determine the host

masses. If we are able to map out the source distribution for NS-NS and BBH mergers

directly through electromagnetic counterparts or indirectly through the anisotropy of source

distribution, then we will be able to constrain formation and evolution scenarios for binary

black hole and neutron star merger events.
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Chapter 5

Summary and Conclusions

In this work we have used numerical and analytic techniques to investigate the ability of Dark

Matter self-interactions to resolve current problems in galaxy evolution and to estimate the

population of stellar remnant objects in the universe.

In Chapter 2 we presented a set of high resolution n-body simulations of dwarf haloes with

both collisionless and self-interacting dark matter. We found that SIDM cross sections

greater than 0.1 cm2 g−1 can solve the Too Big to Fail and Core-Cusp problems, though

σ/m > 1 cm2 g−1 would generate cores too sparse to host local field dwarfs. However, if the

SIDM cross section is around 50 cm2 g−1, core collapse will begin and increase the central

halo density enough to again match observations.

Chapter 3 detailed our analysis of adiabatic contraction in SIDM haloes. By embedding

gravitational potentials into idealized simulations of Milky Way, Elliptical, Low Surface

Brightness (LSB) and Cluster host haloes we are able to reproduce the adiabatic contraction

first predicted by Blumenthal et al. (1986), and investigate this process in SIDM haloes.

We found that the predictions of the Kaplinghat et al. (2014a) model accurately reflect our

simulations, and that contraction is stronger in SIDM haloes than in CDM haloes. For
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extremely baryon dominated systems core-collapse can cause high-density cusps to emerge

in SIDM haloes. For a Milky Way halo hosting a Milky Way galaxy, the dark matter density

profile is nearly identical under both CDM and SIDM, and the same is true for the typical

elliptical galaxy. More dark matter dominated systems, such as LSBS, however, retain large

SIDM cores. This implies that the strongest constraints on SIDM cross sections can come

from galaxies with high mass to light ratios. In cluster systems, in particular, we find that

cross sections of 0.1 − 0.2 cm2 g−1 are best able to reproduce the observations of Newman

et al. (2013a).

In Chapter 4 we combined known statistics of galaxy populations with results of the latest

stellar evolution models to study the universal population of stellar remnant black holes and

neutron stars. We found that a galaxy should host roughly one 30 M� black hole for every

1000 M� of stars formed. This leads to a universal number density of ∼ 1014 Gpc−3, and

the overall remnant black hole density is an order of magnitude higher. We then calculated

merger rate densities for binary black holes (BBHs) by assuming a merging efficiency and

characteristic delay time and between star formation and remnant merger. Using the BBH

rate densities measured by LIGO (Abbott et al., 2016b) we then constrained the efficiency

and delay times, and found that most BBH mergers occur either at high redshift in massive

hosts or at low redshift in dwarf galaxies. Because of this, if hosts for BBH gravitational

waves are identified it can provide strong constraints on the properties of black hole mergers.
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A., 2016, Phys. Rev. D, 94, 084013

Cline J. M., Liu Z., Moore G. D., Xue W., 2014, Phys. Rev. D, 90, 015023
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