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ABSTRACT OF THE DISSERTATION

Synchrony and Concerted Activity in the Neural Code of the Retina.

by

Jonathon Shlens

Doctor of Philosophy in Neurosciences

University of California, San Diego, 2007

Professor E.J. Chichilnisky, Chair

Professor Henry Abarbanel, Co-Chair

All visual information the brain receives originates in the electrical activity of a

final layer of cells in the retina, termed retinal ganglion cells (RGCs). The electrical activity

of RGCs constitute the language neurons use to communicate sensory information, constraining

computations performed by the nervous system and illuminating how information is represented

in the brain more generally.

The electrical activity across RGCs is known to be correlated, reflecting circuitry

internal to the retina and thus influencing how visual information is conveyed from the eye to the

brain. Over the last few years the research compiled in this dissertation provide the first reports

of concerted activity, such as synchrony, in primate RGCs. Furthermore, with the development of

xvi



new recording technologies, this work has explored the spatial and numerical scale of concerted

activity in the primate retina with the ultimate goal of discerning it’s role in the signaling of visual

information. In the process new quantitative tools exploiting ideas from statistics and informa-

tion theory have been developed to explore such questions with the hope that such work can be

extended to understand the activity of neural systems more generally.

The following dissertation is largely comprised of three main parts corresponding to

three published or forthcoming works. The first four chapters as well as the conclusions are largely

taken from an invited book chapter of the same title. Chapter 5 consists of published material that

provided one of the first accounts of concerted activity as well as introduced many quantitative

tools exploited to successfully explain such activity. Chapter 6 is a first draft of a forthcoming

publication extending previous work to explore the concerted activity of an entire population of

RGCs.
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Chapter 1

Introduction

A common thread in systems neuroscience is the constant interplay between the external

sensory world and the internal dynamics of networks of neurons in the nervous system [168, 48].

In early sensory systems one amenable model for studying this interaction exists in the signaling

of visual information from the eye to the brain – both driven by extrinsic visual stimulation and

shaped by the intrinsic circuitry of the retina. The observation of correlated activity, such as

synchrony, in the spiking activity along the optic nerve offers a window onto the function of the

underlying neural circuitry in the presence of sensory signals – constraining the time and spatial

scales at which retinal circuits operate and providing clues about the biophysical mechanisms

used to construct such circuits [245]. The investigation of correlated activity in the neural code

of the retina is of fundamental interest because these correlations shape how visual information

is signaled from the eye to the brain and ultimately lend insight into how neural circuits in other

sensory modalities and cortical areas represent and process information [243].

Correlated activity, such as synchrony, is measured in the final layer of neurons, termed

1



2

retinal ganglion cells (RGCs), whose axons compose the optic nerve. Correlation between mature

RGCs have been identified in all species of retina investigated, including goldfish [12], salaman-

der [191, 41, 259], frog [129], rat [119], mouse [206], rabbit [13, 4, 125, 77, 11], guinea pig [259],

cat [181, 182, 183, 203, 204] and primate [273] (for studies of RGC correlation in development,

see [98]). The prevalence and consistency of observations suggests that specific circuits and mech-

anisms underlying correlated activity are conserved across species [310]. Hence, investigating

forms of correlation might yield insight into conserved principles underlying the construction of

retinal circuits and possibly their underlying functional roles.

Other sensory modalities exploit synchrony and correlation for the transmission and down-

stream decoding of behaviorally relevant, sensory information [287, 162]. Given evolutionary

pressures [15, 20], several have speculated whether correlated activity is likewise exploited by the

early visual system [300, 190]. In particular, correlated firing in RGCs could provide dedicated vi-

sual information about fine spatial detail [191, 189, 261], global scene features [148], looming sen-

sations [129] or backup (redundant) information about visual features [239, 257] (see also [269]).

Ultimately, understanding the role of correlated activity in the representation of sensory informa-

tion will yield insight into population coding in general [45] and inform our understanding of how

network interactions influence information processing in higher cortical areas [279, 48, 139, 283].

In what follows we review the literature on correlated activity in the retina, focusing on

three main issues: what are the underlying mechanisms and circuits (Section 2), what types of

correlated activity have been documented (Section 3), and finally how does correlated activity

effect the coding of visual information (Section 4). These issues require a wide ranging discussion

from the basic biophysical mechanisms to quantitative notions of neural coding. We discuss all

ideas but reserve some quantitative topics for the appendix. Before we consider such topics,
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In the neighborhood of a single target cell, 
the strength of correlation varied quite pre- 
dictably with cell type and separation be- 
tween cells (e.g., Fig. 2). The scatter of the 
points in Fig. 3 mainly reflects the variability 
introduced by pooling data from many cats 
and many retinal locations. The most im- 
portant source of variability in the correla- 
tions between Y-cells is explained in the third 
paper of this series (28). 

Correlations between cells of opposite 
center sign 

The wells in correlations between ganglion 
cells of opposite center sign are now consid- 
ered in detail. Some of the strongest examples 
of each type of pair appear in Fig. 4; Fig. 5 
presents results from all pairs. 

A correlation between an on Y- and an off 
Y-cell appears in Fig. 4A. The following char- 
acteristics are typical of this type of correla- 
tion. The bottom of the well occurs at ap- sure can be thought of either as the average 

The strength of on-off correlations is mea- 
sured by expressing the distance from the 
bottom of the well to the base line as a frac- 
tion of the base-line height. (The bottom of 
the well was smoothed by eye, if necessary, 
to overcome the variability of the bins in a 
correlogram.) This measure ranges from 0% 
for uncorrelated pairs to 100% for a pair of 
cells that never fire simultaneously. The mea- 

proximately the time of coincident firing, 
which means that each cell achieved its min- 
imum firing probability at the time of the 
other cell’s firing. The duration of the right 
side of the well, i.e., the interval from the 
time of coincident firing to the point where 
the correlogram crosses the base line, is 6 ms; 
this means that the off Y-cell had a reduced 
probability of firing for as long as 6 ms after 
the on Y-cell fired, on the average. The du- 
ration of the on Y-cell side of the well is 
shorter, 4 ms. 
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FIG. 4. Cross-correlograms for the four types of pairs of on- and off-center cells. The horizontal dashed lines are 
extensions of the base lines. The vertical dashed lines mark edges of wells. In the following, strength of correlation 
is measured by the depth of the well relative to the base line. A: on Y-off Y correlation, 7 I%, A = on Y, B = off 
y; N-t = 22,427, Nb = 11,404; eccentricity 3”, separation 0.75” or 9.8 spacings. B: on X-off Y correlation, 31%, 
A = on X, B = off Y; N, = 5,209, Nb = 7,093; eccentricity 7”, separation 0.2” or 1.2 spacings. C: on Y-off X 
correlation, 46%, A = on Y, B = off X; N, = 6,266, Nb = 5,884; eccentricity 15.5”, separation 0.7” or 3.9 spacings. 
D: on X-off X correlation, 36%; N, = 17,960, Nb = 17,829; eccentricity 3”, separation 0.05” or 1 .O spacing. 
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FIG. 2. Correlations of a single off Y-cell (cell B) with neighboring off Y- and off X-cells at various distances. 
Circles indicate the overlap of cells in each correlation, based on a rough estimate of receptive-field center size. 
Pairs were obtained at an eccentricity of 7.5” at a location where 1 O = 8.5 spacings (see text). A, B: correlations 
with an adjacent and more distant Y-cell, separations 0.6 and 1.2”, mean strengths 12.7 and 5.4%, respectively. 
For the pair in A, N, = 6,145, Nb = 5,729; for B, N, = 6,353, Nb = 5,435. C, D, E: correlations with a close off 
X-cell and with two more distant off X-cells, separations 0.2, 0.6, and 0.8”, mean strengths 8.2, 3.6, and 0.4%, 
respectively. For the pair in C, N, = 8,996, Nb = 6,873; for D, N, = 11,845, Nb = 4,472; for E, N, = 30,208, Nb 
= 17,453. 

with a series of off X-cells were weaker and 
diminished more rapidly with increasing dis- 
tance between the cells (Fig. 2C, D, E). When 
the separations between X- and Y-cell cen- 
ters were 0.2, 0.6, and 0.8”, the correlations 
were 8.2, 3.6, and 0.4%, respectively. 

To examine further the relation between 
strength of correlation and separation be- 
tween centers, I plotted strength of correla- 
tion for all pairs of a given type versus either 
the absolute separation between centers (in 
degrees of visual angle) or the relative sepa- 
ration (expressed as a multiple of the average 
local spacing between ganglion cells, see 
METHODS). There was less scatter and a 
stronger functional dependence with sepa- 
ration expressed in spacings rather than in 
degrees. Results are thus presented here with 
spacings as the measure of separation. The 
usefulness of this measure will become more 
apparent below. 

Mean strength of correlation is plotted 
against separation in spacings in Fig. 3. First 
note the dearth of Y-to-Y pairs separated by 
less than 5 spacings (Fig. 3A) and of X-to-X 
pairs separated by less than 2 spacings (Fig. 
3C). This result correlates with the anatom- 
ical finding that the cell bodies of X-cells or 
Y-cells of one center sign are regularly spaced 
apart on the retina (38, 40). Based on the 
definition of spacings in METHODS and the 
probable proportions of X- and Y-cells among 
all ganglion cells (16), the average separation 
between adjacent cells of one center sign 
should be about 2 spacings for X-cells and 
8 spacings for Y-cells. Thus, the Y-to-Y pairs 
at 5 to 7 spacings and the X-to-X pairs at 2 
to 3 spacings can be considered pairs of ad- 
jacent cells. The overlap of two adjacent Y- 
cells’ receptive-field centers would appear 
roughly as in Fig. 2A. (The pair of X-cells 
with zero separation in Fig. 3C may represent 
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FIG. 1. Cross-correlograms for the six different pairs of cells of the same center sign. The bin width is 1.0 ms, 
as in Figs. 2 and 4. The horizontal dashed lines are extensions of the base lines. The vertical dashed lines mark 
edges of peaks. These edges are chosen so as to obtain the greatest number of extra counts in a peak because 
choosing the edge of a peak as simply the edge of the first bin below the base line would lead to errors due to bin- 
to-bin variability in some cases (e.g., section C). Correlograms are scaled to show the firing rate of B, in spikes per 
second; the number of counts in each bin were divided by the bin width (in seconds) and by the number of spikes 
from A. In the following, N, is the number of spikes from A, Nb is the number of spikes from B, eccentricity is 
distance from area centralis, separation between cells is expressed in degrees of visual angle and in spacings (see 
text). Strength of correlation is given by the fraction of each cell’s spikes in the peak. A: on Y-on Y correlation, 
15% of A’s, 23% of B’s spikes; N, = 15,187, Nb = 9,937; eccentricity 3”, separation 0.4” or 5.9 spacings. B: off 
Y-off Y correlation, 25.7% of A’s, 27.2% of B’s spikes; N, = 6,937, Nb = 6,555; eccentricity 5”, separation 0.7” or 
5.6 spacings. C: on X-on Y correlation, A = on X, B = on Y, 8.4% of A’s, 13.2% of B’s spikes; N, = 6,263, Nb 
= 3,995; eccentricity 12.5”, separation 0.2” or 1.0 spacing. D: off X-off Y correlation, A = off X, B = off Y, 7.4% 
of A’s, 13.3% of B’s spikes; N, = 10,503, N,., = 5,844; eccentricity 7.5 O, zero separation. E: on X-on X correlation, 
5.4% of A’s, 7.7% of B’s spikes; N, = 25,403, Nb = 17,847; eccentricity 12”, separation 0.3” or 1.6 spacings. F: 
off X-off X correlation, 9.6% of A’s, 11.9% of B’s spikes; N, = 19,289, Nb = 15,5 11; eccentricity 9 O, separation 0.5 O 
or 3.0 spacings. 

from one of the cells, indicate the strength ings of the cells that are expected to occur 
of the correlation. This fraction of extra simply by chance. Thus, for the off Y-cells 
spikes excludes the nearly simultaneous fir- in Fig. lB, 27.2% of the spikes from B oc- 
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Figure 1.1: Synchrony and anti-synchrony between pairs of cat RGCs. The top panel shows a segment of
simultaneously recorded spike trains with identified synchronous events (asterisks). The degree of correla-
tion is measured by calculating the cross-correlation, or the average firing rate of one neuron as a function
of the second neuron’s spike time [227]. This is performed by accumulating the spike times of one neuron
relative to the spike times of the second neuron and histograming at some small temporal resolution (1 ms).
The x-axis represents the relative time of spikes from cell A to B, where cell A is presumed to have spikes at
t = 0. The y-axis is a histogram count of spike times occuring within the resolution time (1 ms), converted
into a spike rate. The flanks of the graph are a measure of the free firing rate of cell A and the pronounced
peak (trough) represents the statistical dependency between the two spike trains termed (anti-) synchrony.
Figures adapted from [181, 184].

we first discuss the basic observation of correlated activity to familiarize the reader and set a

framework for subsequent discussion.

1.1 Basic observations

Although suggestions of correlated activity in the retina had existed in gross electrode

recording along the optic nerve (e.g. [6, 5]) and multi-unit recordings in target neurons [281,

14, 286], the first observation of correlated spike trains in the retina did not occur until 1967 by

Bob Rodieck [244] and later followed with the first observation of synchronous activity by David

Arnett [12] (for negative results, see [106, 254]). Arnett recognized that nearby RGCs tended to

exhibit correlation while distant RGCs showed no significant correlation [12, 13]. These observa-
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tions were placed on clear footing by the pioneering work of David Mastronarde [181, 182, 183]

who systematically documented the basic phenomenology of correlated activity in the cat retina

(reviewed in [184]). Mastronarde demonstrated that correlated activity (1) systematically depends

on cell type and cell body location and (2) reflect multiple, distinct mechanisms and circuits in

the retina. In what follows we survey these basic observations to familiarize the reader with the

phenomena and highlight some basic considerations when discussing correlated activity in the

retina.

Although the tendency for nearly simultaneous activity can be identified in individual spike

trains (Figure 1.1, top panel), the basic observation is often visualized with a cross-correlogram [227]:

a single RGC exhibits a several fold increment (or decrement) in firing rate within milliseconds

of a second cell’s spike time (Figure 1.1, bottom panels). This prominent peak (or trough) is

termed (anti-) synchrony. Note that the time scale of correlated activity occurs within the inte-

gration period of a typical neuron [139]. This observation immediately raises several important

considerations in the context of the retina.

Intrinsic vs. induced correlations. Observed correlations are either generated internally

by the circuitry of the retina or artificially by common visual stimulation (e.g. full field flashes).

This distinction is fundamental and is reinforced semantically by distinguishing between stimulus

and noise induced correlations, respectively [227, 257].

The architecture and cell types of the retina. The retina is a highly stereotyped struc-

ture, consisting of morphologically distinct cell types [245], each of which tile all of visual

space [310] and mediate multiple, distinct, parallel visual pathways [96]. In particular, in higher

mammalian species each RGC type independently tiles visual space in the retina and projects to
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distinct target areas in the brain [96].

Returning to the cross-correlograms in Figure 1.1, we now elaborate – the observed correla-

tions were recorded in the presence of constant illumination of a mesopic light source. Thus, these

correlations are noise correlations and reflect the intrinsic circuitry of the cat retina: something

within the retina caused both neurons to fire nearly simultaneously. Identifying such mechanisms

underlying noise correlations requires a closer examination of the circuitry of the retina.

The circuitry of the retina is largely circumscribed by morphologically defined cell types [245].

Each visual pathway is constructed from distinct sets of cell types (e.g. single photon absorption

events via rods, rod bipolars and AII amacrine cells [97]) terminating at the RGC population.

Thus, one expects individual RGC types to reflect distinct underlying circuits and exhibit unique

forms of correlations. Indeed, in Figure 1.1 the magnitude, sign and detailed timing properties of

cross-correlograms vary across the pair of cells examined.

The circuitry underlying correlated activity could reflect multiple, distinct mechanisms and

types of circuits. Hints of this fact can be seen in the variation in timing precision and polarity of

the correlation across Figure 1.1 (e.g. the double peaks in the ON-Y pair [183]). These distinct

forms of correlation are reinforced by the three time scales for observed correlation in salamander

(Figure 2.1), suggestive of several putative mechanisms [41]. These mechanisms could employ

electrical and/or chemical synapses and confer distinct functional consequences (e.g. driving ac-

tivity vs. reciprocal interactions). We will discuss these issues in depth as well as review evidence

for the range of mechanisms the retina might employ in the following section.

In the mean time, we hope that this brief survey has familiarized the reader with the ba-

sic phenomena (Figure 1.1) and highlighted the major considerations in the investigation of syn-
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chronous activity in the retina – namely, the types of correlation and the prominence of cell types

in retinal circuits. Needless to say, we will focus this manuscript on the observation of noise cor-

relations to elucidate the types of neural circuits in the retina. We return to discussing the role of

all types of correlation in the context of discussing the signaling of visual information (Section 4).

This chapter is taken from J Shlens and EJ Chichilnisky, (2007) Synchrony and concerted

activity in the neural code of the retina. In RR Hoy, GM Shepherd, AI Basbaum, A Kaneko and

G Westheimer (ed). The Senses: A Comprehensive Foundation, Elsevier Press.



Chapter 2

Mechanisms and circuitry underlying correlated

activity

The relationship between identifying neural circuitry and observing correlated activity is

reciprocal: each facet mutually informs the other and both ultimately inform our understanding

of the function of these neural circuits in the retina. In this section we discuss the observation

of correlated activity as well as biophysical evidence accrued from a diversity of experimental

approaches in order to elucidate the range of mechanisms and circuits underlying this phenomena.

Achieving this goal ultimately requires a comprehensive discussion of evidence for all reti-

nal circuits. Such a discussion however would be superfluous for our purposes as large bases of

literature instead focus on aspects such as receptive field formation [141], dedicated pathways for

light levels [97] and adaptation in neural responses [18] - most of which implicitly concerns single

RGC responses. Thus, we selectively review the literature on retinal circuitry and mechanisms

concentrating on aspects of the literature that might give rise to correlations between RGCs but

note that the types of mechanisms mediating correlations could depend on stimulus features, light

7
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Neuron
528

Figure 1. Correlations in Ganglion Cell Firing
When Synaptic Vesicle Release Is Blocked

Cross-correlation functions for four pairs of
retinal ganglion cells ([A] through [D]). Spike
trains were recorded in darkness, first in
Ringer’s medium (left) and then after addition
of 200 !M CdCl2 (right). Note the expanded
time scale in (C).

cells receive shared excitation through electrical syn- calcium from the solution (Mittman et al., 1990). Most
retinal ganglion cells continued to be spontaneouslyapses from a third neuron, most likely an amacrine cell.

Finally, ganglion cells are shown to excite each other active; in fact, the firing rates increased by a factor of
2.8 on average (35 cells, two experiments), presumablythrough electrical junctions. Under certain conditions,

this network of coupled ganglion cells sustains patterns due to the loss of synaptic inhibition. Some pairs be-
came uncorrelated in their firing (Figure 1A). However,of correlated activity spanning large retinal distances.
others maintained their synchronous firing (Figures 1B
and 1C). Furthermore, some cell pairs that fired indepen-Results

dently under control conditions became correlated upon
block of vesicular transmission (Figure 1D). Therefore,Correlated Ganglion Cell Firing under Block

it appears that some forms of concerted firing are medi-of Chemical Synaptic Transmission

ated by circuits that do not rely on chemical synapses.We recorded spike trains simultaneously from many reti-
nal ganglion cells in the isolated retina of the tiger sala- There have been reports of nonvesicular transmitter

release in the retina. For example, under certain condi-mander (see Experimental Procedures). Many of these
cells were spontaneously active in darkness. Nearby tions glutamate uptake mechanisms can operate in re-

verse (Billups and Attwell, 1996). Since such a transmit-neurons showed a strong tendency to fire synchro-
nously. One measure of concerted activity between two ter release process would not be inhibited by cadmium,

we further added postsynaptic blockers of excitatorycells is the cross-correlation function (Figure 1). It repre-
sents the firing rate of cell Y as a function of time before neurotransmitters. There was no detectable change in

ganglion cell activity from the condition with cadmiumor after a spike from cell X. If the two cells were firing
independently of each other, this curve should be flat alone. Specifically, Figure 2 shows that the pairwise

correlations resistant to cadmium persisted when gluta-(e.g., Figure 1D [left]). On the other hand, a peak in this
curve near zero delay represents an overabundance of matergic (Figure 2A) or cholinergic (Figure 2B) transmis-

sion was blocked postsynaptically. We conclude thatsynchronous spike pairs (Meister et al., 1995). Figure 1
shows examples of such pairwise correlation functions these correlations must be mediated by electrical trans-

mission through gap junctions.obtained in a single experiment. Several different time
scales for concerted firing are apparent: the precision To test this notion directly, we attempted to interfere

with gap junctional conductance. A number of pharma-of spike synchrony is better than 1 ms for the cell pair
in Figure 1C, about 10 ms in Figure 1B, and about 100 cological agents have been shown to reduce electrical

coupling among neurons—for example, acetate, hepta-ms in Figure 1A.
To test the role of chemical transmission in the path- nol, octanol, dopamine, anandamide, and halothane (La-

sater and Dowling, 1985; DeVries and Schwartz, 1989;ways that generate synchronous firing, we blocked syn-
aptic vesicle release by adding cadmium and removing Cook and Becker, 1995; Venance et al., 1995; Yuste et

Figure 2.1: Time scales of synchrony in salamander. Left column is control and right column is addition of
CdCl2 to block chemical synaptic transmission. A) Broad correlations mediated through chemical synapses,
possibly shared photoreceptor input. B) Medium correlations mediated through gap junctions, possibly
through an amacrine cell. C) Narrow correlations mediated through gap junctions. D) Propagating waves
occurring the presence of chemical synaptic blockade. Figure adapted from [41].
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Figure 2.2: Diagram of potential mechanisms underlying synchrony. (a) Stimulus-induced correla-
tions [257, 227]. (b) Electrical coupling between RGCs [65, 130, 246, 125, 183, 119]. (c) Divergence
from and coupling between amacrine cells [65, 130, 107, 301, 303, 328, 306, 4]. (d) Divergent output from
photoreceptors [253, 138]. (e) Electrical coupling between photoreceptors [255, 256]. (f) Divergent output
from bipolar cells [253, 245]. (g) Widespread divergence from amacrine cells [171, 172, 284]. (h) Coupling
between photoreceptors mediated through horizontal cells [245].

levels or individual species (see Figure 2.2 for a summary).

We broadly distinguish between two methods for generating correlated activity: (1) recip-

rocal interactions and (2) driving input. These two methods do not necessarily correspond to

biophysical mechanisms but are qualitative descriptions of the neural circuits. Reciprocal interac-

tions means that one RGC drives a second RGC, and vice versa. This method, for instance, could

correspond to gap junction coupling mediated through an amacrine cell (e.g. Section 2.1.2). Driv-

ing input refers to an underlying neuron driving action potentials unidirectionally in more than

one RGC. This method, for instance, could also correspond to gap junction coupling between a

pair of RGCs and an amacrine cell. We emphasize that this single retinal circuit could mediate

both functions. Hence, although this distinction is important for differentiating between qualita-

tive phenomena (as well as statistical properties; see Section 4), it is important to be cautious at

interpreting how a neural circuit operates (e.g. reciprocal interactions) based on the observation

of a biophysical mechanism.
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2.1 Electrical coupling between retinal ganglion cells

Many lines of evidence support the hypothesis that electrical coupling between RGCs

mediate correlated activity (Figure 2.2b,c). The most direct evidence comes from biotinylated

tracer dye studies [301]. Biotinylated dyes have proven superior then standard fluorescent dyes

(e.g. Lucifer yellow) at revealing coupling between neurons (e.g. B-type horizontal cells, AII

amacrine cells [68, 114, 194]). When neurobiotin is injected into individual ON and OFF parasol

cells [65, 107, 130, 246] or α-ganglion cells in cat [301, 302], rabbit [328, 306], mouse [262],

and ferret [223], this dye propagates to neighboring, homologous RGCs as well as several types

of amacrine cells. Examples of this dye propagation are in Figure 2.3a,c. The physical propa-

gation of this dye strongly suggests a electrical connection between pairs of RGCs. Conversely,

α-ganglion cells in rat [119] and rabbit [125], which do not exhibit tracer coupling, do not exhibit

synchrony.

Tracer studies provide strong evidence for a physical connection but must be considered

in light of several complicating factors. In particular, the presence of tracer dye does not al-

ways correspond to physiologically significant coupling (e.g. ON-OFF DS ganglion cells in rab-

bit [302, 330, 78]) and the lack of tracer dye does not necessarily confirm the lack of electrical

coupling because some dyes such as Lucifer Yellow do not pass through all types of ganglion

cells [124]. These complications are explained by details of compartmentalization within a single

cell, impedance mismatches between cells [124, 196, 197] and most importantly, the selectivity of

gap junctions to the ionic charge of common tracer dyes [195, 197]. However, a new generation

of tracer dyes may overcome some of these limitations [124].

Electrical coupling is presumed to be mediated through gap junctions [56, 57] and much
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Zhou, personal communication), each junction could produce up
to a 3.6 mV change in the membrane potential of the parasol
ganglion cell for each millivolt of transjunctional voltage.

G6-gly-IR amacrine cells
As we described previously (Marshak et al., 1990), antisera to the
glycine-extended cholecystokinin precursor (G6-gly) labeled two
distinct types of amacrine cells. Their processes formed two plex-
uses centered at 30 and 65% of the IPL depth, the same levels as
parasol ganglion cell dendrites (Watanabe and Rodieck, 1989).
One type of G6-gly-IR amacrine cell had ovoid perikarya ! 10–15

!m in diameter and two to three short, primary dendrites that
typically branched once and gave rise to longer, unbranched
dendrites with a large diameter. One population had perikarya in
the INL and processes in stratum 2 of the IPL, and the second had
perikarya in the GCL and processes in stratum 4 of the IPL. In
whole mounts (Fig. 10), thin, axon-like processes were seen aris-
ing from the tips of the dendrites and occasionally from other
parts of the dendrites, but it was not possible to follow these to
their terminations. These large, unistratified cells were virtually
identical in their morphology and stratification to the large, poly-

Figure 10. Camera lucida drawings of two of the large subtypes of G6-gly-IR amacrine cells from the peripheral retina of Macaca fascicularis. The retinas
were isolated, fixed in periodate-lysine-paraformaldehyde, and labeled as described previously (Marshak et al., 1990). Note the large diameter of the
dendrites. The axons (arrowheads) typically arose from the tips of the dendrites, but they can also arise more proximally, as indicated in the lower drawing.
The axons could only be followed for a short distance through the plexus of labeled processes. Scale bar, 10 !m.

Jacoby et al. • Synaptic Inputs to Parasol Ganglion Cells J. Neurosci., December 15, 1996, 16(24):8041–8056 8049
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dant amplicons corresponding to the length of the 980 bp, the
expected sizes of Cx36 cDNA, from retinas of adult animals and
at different postnatal stages of development (data not shown).
Second, the corresponding cDNA fragment was cloned and se-
quenced on both strands. The resulting 980 bp sequence [Gen-
Bank/European Molecular Biology Laboratory (EMBL) acces-
sion number AJ296282) shows this to be similar as the Cx36
cloned from rat brain (Söhl et al., 1998), which encoded a protein
of 321 amino acids with a predicted molecular mass of 36,020 Da.
Cx36 was expressed at P0 but not detected at prenatal day 21.
Cx36 expression increased to reach adult level at approximately
P10 and is maintained throughout adulthood.

Functional expression of Cx36 channels in transfected
COS-7 cells
To identify Cx36 channel protein and its cellular localization in
rat !-GCs, we raised a polyclonal antibody against a synthetic
peptide corresponding to the intracellular loop of the Wistar rat
retinal Cx36 protein (Hidaka et al., 2002). To characterize our
generated antibody against Cx36 and functional expression of
Cx36-intercellular channels, green monkey kidney cell line
COS-7 cells were transfected with pcD–Cx36. The affinity-
purified antisera were used to precipitate lysates from COS-7
wild-type or pcD–Cx36-transfected cells. The anti-Cx36 antisera
labeled a protein with an apparent molecular mass of 36 kDa,
which corresponds to the predicted molecular weight of the rat
Cx36 protein. In Western blotting, an immunopositive band mi-
grating at 36 kDa was detected in the transfected cells (Fig. 6A,
lane 2), whereas in COS-7 wild type the 36 kDa band was not seen
(lane 1). pcD–Cx36-transfected clones were characterized by im-
munofluorescence examination and yielded a prominent punc-
tate immunolabeling pattern of connexin-expressing cultured
cells on contacting membrane (Fig. 6C), whereas COS-7 wild
type showed no immunoreactivity (Fig. 6B). Some transfected
clones showed cytoplasmic vesicular Cx36 immunoreactivity
(Fig. 6C).

The occurrence of functional intercellular channels in pcD–

Cx36-transfected COS-7 cells was investigated with intracellular
injection of the fluorescent dye LY (molecular weight, 457 Da),
because gap junctions are permeable to small molecules with !1
kDa. Figure 6E shows LY diffusion into neighboring cells from
the injected COS-7 among pcD–Cx36-transfected clones (n " 11
of 19), whereas no dye coupling was seen in COS-7 wild type (n "
0 of 20) (Fig. 6D).

Detection of Cx36 protein by immunoblotting
Immunoblotting analysis using our anti-Cx36 antisera demon-
strated that a single protein band with an apparent molecular
mass of 36 kDa was strongly labeled in lysates from adult rat
isolated retina (Fig. 6A, lane 3), adult olfactory bulb (lane 4), and
P0 developing cerebral neocortex (lane 6). A faint immunoreac-
tive signal of the 36 kDa protein was seen in the hippocampus
(lane 5) and the superficial layers (cerebral white matter) of the
neocortex (lane 7) of adult animals, when obtained in the exper-
imental condition similar to that of developing brain. No labeling

Figure 5. Synchronized spiking in !-GCs of the same type. A, B, Simultaneous membrane
voltage responses were recorded from a pair of inner-type !-GCs under simultaneous applica-
tion of depolarizing current injection through dual recording pipettes, after blocking chemical
synaptic transmission pharmacologically (see Materials and Methods). The two simultaneously
recorded cells (A, cell 1; B, cell 2) generated synchronization of spikes (asterisks) within a time
delay of 4.4 msec. Action potentials in one cell produced transient depolarizations in the other
cell (arrows). These cases would be when spikes in one cell were raised with a time delay of over
1.5 msec after generation of spikes in the other cell. C, D, Membrane voltage responses of the
two cells in more detail.

Figure 6. Expression and localization of gap junction channel Cx36 in COS-7 cells and neu-
ronal tissue. Antisera recognizing Cx36 channels was raised, using the predicted sequence of rat
retinal Cx36 protein, the nucleotide sequence of which is available from GenBank/EMBL under
accession number AJ296282. A, Western blot analysis of proteins from COS-7 cells and rat tissue
homogenates (10 "g), probed with affinity-purified anti-Cx36 antisera (see Results). The pro-
files show a single immunoreactive band with an apparent molecular mass of 36 kDa (arrow-
head) in pcD–Cx36-transfected COS-7 cells (COS, pcD; lane 2), whereas in COS-7 wild type the
band was not seen (COS, Cont; lane 1). A single 36 kDa band was seen in adult rat retina (Rt, Ad;
lane 3), olfactory bulb (OB, Ad; lane 4), and P0 developing cerebral neocortex (CC, P0; lane 6). A
faint signal was detected in the hippocampus (Hipp, Ad; lane 5) and the neocortex (CC, Ad; lane
7) of adult animals. No labeling in the heart (lane 8) was seen. The molecular mass is indicated
on the left. B, C, Punctate immunofluorescence pattern of Cx36 expression on contacting mem-
brane between cultured pcD–Cx36-transfected clones, stained by anti-Cx36 antisera ( C),
whereas no immunoreactivity in COS-7 wild type ( B) is shown. D, E, The formation of functional
intercellular channels inpcD–Cx36-transfectedCOS-7cells, revealedwithintracellular injectionofLY.
The dye diffused into five neighboring cells (arrows) from the injected cell among pcD–Cx36-
transfected clones ( E), whereas no dye coupling in wild type ( D) was shown. Scale bar: (in C) 50 "m.

10560 • J. Neurosci., November 17, 2004 • 24(46):10553–10567 Hidaka et al. • Electrical Coupling between Retinal Ganglion Cells

Figure 2.3: Tracer coupling between (A-B) homologous RGCs and (C-D) RGCs and amacrine cells. A)
Neurobiotin injected into central α-ganglion cell in rat was taken up to by lattice of surrounding α-ganglion
cells within its dendritic extent (scale bar, 100 µm). B) Dual recordings of two adjacent α-ganglion cells
under chemical synaptic blockade. Astericks denote nearly simultaneous action potentials. Grey region
is enlarged to highlight transient depolarization in one cell due to spike in second cell. (Figures adapted
from [119]) C) Neurobiotin injected into ON parasol cell in primate was taken up by two morphologically
distinct amacrine cell types labeled by arrows and arrowheads, respectively (scale bar, 25 µm). D) Camera
lucida drawings of amacrine cells that indicated G6-gly immunoreactivity and co-localized with arrows in
previous panel (scale bar, 10 µm). Note the long, polyaxonal structure indicative of a spiking amacrine
cell [164, 284, 65] (Figures adapted from [130]).
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evidence exists for the presence of gap junctions in the retina. These gap junctions provide a

direct, although potentially rectified, electrical connection between individual cells. Gap junctions

are composed of a family of protein subunits termed connexins [25, 24, 75, 110]. Within the

connexin family, connexin-36 [55, 282] has been localized to α-ganglion cells [119, 262], AII

amacrine cells [198, 94], photoreceptors and bipolar cells [95, 74]; the presence and location of

other connexins in mammalian retina is of current, intense interest [112, 73, 180].

Further evidence for electrical coupling arises from examining the fine temporal structure of

the cross-correlogram. The prevalence of narrow, bimodal cross-correlation (1-3 ms, species de-

pendent) is interpreted as a reciprocal interaction where by one cell drives a spike in the second cell

with a brief latency given by the time to each peak (Figure 1.1b, 2.1c). Bimodal cross-correlation

has been observed in OFF α [125] and OFF brisk transient [77] ganglion cells in rabbit, ON and

OFF Y cells in cat [181, 183, 184], ON parasol cells in primate (J. Shlens, F. Rieke; unpublished

observations) and OFF cells in salamander [41].

As mentioned earlier electrical coupling can be consistent with reciprocal interactions as

well as driving input1, however the converse is not ambiguous: reciprocal interactions must be

mediated by electrical coupling. Consistent with this hypothesis, pairs of cells exhibiting bimodal

cross-correlation are resistant to chemical synaptic blockade in salamander [41] (but unexpectedly

resistant to gap junction blockers), pharmacological blockade of the rod synapse using APB in

rabbit [77, 79], and can mutually excite each other through extrinsic stimulation [125, 183, 119]

(F. Rieke, C. Sekirnjak; unpublished observations). Also, the precise timing underlying synchrony

persists in pairs of α-ganglion cells in spite of antagonists for chemical neurotransmitters [119].

The fact that two distinct shapes of cross-correlation exist (i.e. unimodal [41, 4] bimodal [77, 181,

1For instance, some forms of unimodal cross-correlation are resistant to chemical synaptic blockade [41] but abol-
ished by gap junction blockers [4].
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125]) suggest that gap junctions mediate coupling in several types of circuits.

Evidence presented thus far substantiates electrical coupling between homologous RGCs

directly (Figure 2.2b) or through amacrine cells (Figure 2.2c). We now discuss individually evi-

dence for each type of circuit.

2.1.1 Homotypic electrical coupling between RGCs

Homotypic electrical coupling has been suggested in several studies as a potential mecha-

nism for correlated activity [125, 183, 119] (Figure 2.2b). In support of this hypothesis, neigh-

boring α-ganglion cells in rabbit are more intensely and extensively labeled when Neurobiotin is

injected in adjacent RGCs as opposed to amacrine cells [125]. Because amacrine cells are gap

junction coupled and have large arborizations [32, 328, 33], if amacrine cells mediated electrical

coupling, then one would expect that synchrony would extend beyond nearest neighbors in the

mosaic. This was not observed in OFF brisk transient α-ganglion cells in rabbit [125]. Rather,

synchrony was exclusively restricted to adjacent α-ganglion cells labeled with tracer [125]. This

might reflect the fact though that amacrine cells are largely inhibitory and extensions to the recep-

tive fields of RGC’s only occur under proper visual stimulation [147]. Lastly, the observed width

of the bimodal peak in rabbit α-ganglion cells is consistent with the latency observed between

pairs of neurons known to exhibit direct electrical coupling in the inferior olive [169].

Additional evidence arises from studies in rat demonstrating that pairs of α-ganglion cells,

which exhibit tracer coupling and synchrony, make gap junctions using connexin-36 at the inter-

sections of their dendritic arbors [119]. This is the only mammalian species in which coupling

between ganglion cells has been studied using anatomical techniques.
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2.1.2 Electrical coupling mediated through amacrine cells

Several lines of evidence support the hypothesis that electrical coupling can be mediated

through amacrine cells (Figure 2.2c,g). Tracer studies have consistently reported RGCs of a sin-

gle morphological cell type coupled to several distinct amacrine cell types [65, 130, 107, 301,

302, 306, 328, 125]; furthermore, individual amacrine cell types homologously couple with each

other [324, 301, 302].

Ultrastructural and immunolabeling studies have localized gap junctions [130, 119] and

connexin-36 [119], respectively, to the intersection between the dendrites of RGCs and amacrine

cells (presumptive amacrine cells in [119]). Furthermore, connexin-36 knockout mice lack the

tracer coupling between OFF α-ganglion cells and amacrine cells observed in wild type mice [306]

(see also [262]).

In several primate studies, two distinct types of amacrine cells (not AII amacrine cells [315,

130]) exhibited tracer coupling - one of which has been further studied [65, 130, 107]. This

amacrine cell contained immunnoreactive glycine-extended cholecytokinin (G6-gly) precursor [177].

These cells are large polyaxonal cells described in previous tracer dye studies [65] and unistrat-

ified [37], ”wispy” [174] and semilunar type 3 cells [154] described using Golgi methods (see

Figure 2.3d). The polyaxonal amacrine cells that contain immunoreactive G6-gly are labeled

when Neurobiotin is injected into parasol ganglion cells. In addition to making gap junctions with

parasol cells, G6-gly-IR cells also make inhibitory chemical synapses on to ON parasol cells (see

section 2.2.2).

Most of the evidence for the existence of electrical coupling mediated through amacrine

cells does not exclude direct interactions between ganglion cells, however there is some suggestion
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of this exclusivity in primate [65]. Specifically, (1) tracer dye spread from parasol cells to the ring

of adjacent nearest neighbors but not to a second, outer ring of parasol cells, as might be expected

through diffusion of the dye; (2) potential sites of coupling along dendrites have been observed

between amacrine and parasol cells but not neighboring parasol cells and (3) the diameter of

the amacrine dendritic tree approximates the range of RGCs that take up the dye. The observed

latencies in bimodal, cross-correlation in certain types of rabbit RGCs appear slow for direct RGC

interactions [77] (see also [41]).

2.2 Chemical synaptic input

Except for intensive ultrastructural studies, chemical synaptic input is harder to assay be-

cause no equivalent method to tracer dyes are known to elucidate circuits across chemical synapses

yet (but see [320]). Different cells make stereotypic synaptic connections throughout the retina

dictated by cell type and that these specific connections provide distinct, parallel pathways for

visual information [96]. Although both excitatory and inhibitory chemical synapses are extensive

in the retina and are critical for RGC light response [245], we focus our discussion on the role of

chemical synapses in correlated activity.

Physiological evidence indicates that chemical synapses do mediate some correlated activ-

ity. First, anti-synchrony has been observed between cells of opposite polarity [181, 182, 184,

273]. Inhibition is a strong indication of chemical synaptic activity (but see [130]). Second, cell

types that do not show tracer coupling exhibit synchrony such as X/β cells in cat [182, 301, 303]

and midget cells in primate [65, 53] (see also [119, 77]; but see [124]). Third, pharmacologi-

cal manipulations demonstrate that slower correlations are abolished or greatly diminished in the

presence of chemical synaptic antagonists at the rod synapse [77] and complete chemical synaptic
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blockade [41] (see Figure 2.1a), temporally shift in the presence of GABA antagonists [4] and

are preserved in the presence of gap junction blockers [4]. These results do suggest that chemical

synapses contribute to some forms of correlated activity.

Some observations of broad correlations are modulated in strength by the absolute level of

light [182]. In particular, broad correlations strengthen and widen with stimuli in the scotopic

range [182, 41]. In particular, at certain scotopic light levels, stimulus driven activity is entirely

mediated through the AII amacrine cells which provide electrical and chemical synaptic input

on to ON and OFF cone bipolar cells, respectively [93]. Correspondingly, at scotopic regimes

selective inhibitory inputs into OFF α ganglion cells and excitatory inputs to ON α ganglion cells

are highly correlated, a finding interpreted as divergence from an AII amacrine cell (F. Rieke &

G. Murphy, personal communication).

Excitatory correlation or synchrony could be driven by excitatory drive or decrements of

inhibition on to pairs of neurons. A decrement of inhibition would require chemical synaptic

activity. Some observations of correlated activity are consistent with this possibility. In recordings

from cat, quantum events at scotopic light level drive volleys of spikes in ON Y cells but periods

of quiescence in OFF Y cells [182]. Some observed synchrony between pairs of OFF Y cells at

scotopic light levels was a consequence of simultaneous periods of quiescence in pairs of OFF Y

cells and likewise consistent with inhibitory drive on pairs of RGCs.

Ultrastructural studies with electron microscopy and immunostaining have demonstrated

that 80% and 20% of synaptic input to peripheral ON parasol cells [130] and α-ganglion cells [317,

101, 153] come from amacrine and bipolar cells, respectively; this input arrives equally in proxi-

mal and distal dendrites. The proportion of synaptic input varies across retinal eccentricity and cell
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type. For instance, 50% of synaptic input in cat X cells is from bipolar cells [319]. Parasol cells

in parafoveal regions receive larger fractions of synaptic input from bipolar cells [157, 63, 179]

(but see [82]). Because both cell types are in a position to drive correlated activity, we now dis-

cuss specific evidence that bipolar and amacrine cells drive correlated activity through chemical

synapses.

2.2.1 Chemical synaptic input from the outer retina

The canonical circuit models the retina with a direct driving pathway from the photore-

ceptors through the bipolar cells to the RGCs [245]. From this perspective, one often thinks

of light-driven activity as a funnel - the convergence of many photoreceptors down to a single

RGC [131, 245], whose width is determined by retinal eccentricity and the size of the dendritic

arborization [310, 152]. At first glance, this perspective suggests that shared input from photore-

ceptor or bipolar activity can not mediate correlated activity. However, to truly address such a

question, one must examine the divergence or lateral spread of light-driven activity in the outer

retina (Figure 2.2d,e,f,h).

For example, several mechanisms laterally spread light-driven activity in the outer retina.

First, rod photoreceptors are electrically coupled to adjacent photoreceptors in cold-blooded ver-

tebrates [88, 76] and to adjacent cones in primates [255, 256] (Figure 2.2e). Second, horizontal

cells provide lateral inhibition between cones and rods and might act as a mechanism for anti-

correlation [245] (Figure 2.2h).

Despite the prevalence of convergence along the visual pathways in the retina, divergent

circuitry at each stage does provide a second circuit capable of generating correlated activity (Fig-

ure 2.2d,f). For instance, ultrastructural studies have demonstrated that a single S cone provides
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input on to 4 ON bipolar cells [253]. Divergence from bipolar cells on to RGCs is likewise pos-

sible (Figure 2.2f) (but note that mammalian bipolar cells are non-spiking [140]). Midget bipolar

cells synapse on to more than one midget ganglion cell [138] (also see [152]) and each S cone ON

bipolar cell synapses onto two BY ganglion cells [253].

Unfortunately, systematic evidence for divergence is lacking and mostly suggestive based

on dendritic coverage factors within each RGC type as well as the number of known RGC types.

Assuming a single bipolar cell synapses uniformly onto a contiguous spatial region of one lamina

of the IPL [245, 310], then the number of cells it would project to would be dictated by the

dendritic coverage factor of each RGC type. A coverage factor of 3 would imply that a single

bipolar cell would synapse potentially on to 3 RGCs of the same type plus any other RGC types

that synapse at that layer. For example, primate midget and parasol RGCs have coverage factors

of 1.0 and 3.0, respectively [65, 66], while cat α and β cells have coverage factors of 1.5 and 3.0,

respectively [311, 313]. Consistent with this fact, cat X cells exhibit stronger broad correlations

than cat Y cells [182].

2.2.2 Chemical synaptic input from amacrine cells

Because of their anatomical position, amacrine cells are well-situated to perform complex

visual processing including extra-classical receptive fields, object motion sensitivity and other

forms of adaptation [18]. Although amacrine cells provide a majority of synapses in the primate

IPL [155], the distribution of amacrine cell types synapsing on to RGCs is unknown. Amacrine

cells are the most diverse cell type in the retina comprising roughly 30 distinct morphological

types [171, 172]. Yet, only three known amacrine cells have been identified thus far to synapse on

to ON parasol cells: G6-gly-IR amacrines, cholinergic starbust amacrines and GABA-IR amacrine
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cells [130]. Notably, no individual amacrine cell type dominates in rabbit retina [171], although

given the unique dominance of a few RGC types in primate retina, the distribution of amacrine

cell types might differ [174].

Although the function of a few specific types of amacrine cells is well known (e.g. [116,

151]), in general the function of amacrine cells is poorly understood [18]. By default, amacrine

cells are considered inhibitory interneurons [171] but both excitatory and inhibitory synaptic input

have been identified: starburst amacrine cells provide cholinergic input onto ON parasol cells [175,

247, 130] while GABA-IR amacrine cells provide GABA input onto parasol cells in primate [156,

130] (see also [35]). In rabbit though, the application of cholinergic blockers failed to reduce the

strength of observed fast correlations suggesting that cholinergic pathways might not be involved

in correlated activity [77] (but see [4]).

Very little is known about the divergence of single amacrine cells onto RGCs. The size of

amacrine cell dendritic arborizations are the primary guide for determining the potential diver-

gence from individual cells. In rabbit, most amacrine cells have been systematically classified by

the size (and lamina) of their dendritic fields, the largest family termed wide-field have arboriza-

tions > 400µm [171, 172]. Amacrine cells with multiple axon-like arbors, termed polyaxonal,

have been identified in salamander [329, 58], mouse [164], rabbit [31, 32, 290, 305, 90, 91, 92],

ferret [3] and primate [284], are known or presumed to generate action potentials (for review, [164,

34]) and thus can potentially mediate temporally precise correlation on large spatial scales (Fig-

ure 2.2g). For instance, in the primate retina at least two polyaxonal amacrine cells have been

identified [284, 130, 65], both of which electrically couple with RGCs (Figure 2.3c). Elucidating

the role of amacrine cells and their neural circuitry will be a topic of future efforts [171].
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2.3 Miscellanea: other potential mechanisms

We remark on other potential mechanisms that might give rise to correlated activity. Al-

though evidence for these mechanisms is weak, we note them for completeness and refer the reader

to other references as needed.

Centrifugal fibers from the brain to the eye. These fibers have been documented in fish,

amphibians, birds, reptiles and several mammalian species [43, 241]. In order for this mechanism

to underlie correlated activity, the response latencies must precisely match the observed correlation

time scale, which would be quite “fortuitous” [183]. Notably, all varieties of synchrony observed

in vivo [184, 204] have also been observed in vitro [77, 41, 273] except for long range correlated

activity [204].

Non-synaptic mechanisms. The output activity of multiple cells might become corre-

lated through ionic current flow through a constricted extracellular space, termed ephaptic cou-

pling [134, 85]. Non-synaptic mechanisms have been identified as a potential source for coupling

of neighboring, tightly packed cells in the hippocampus [84, 249, 122, 111]. Consistent with this

mechanism is the role distance plays in determining the strength of synchrony. One difficulty with

this type of mechanism is resolving the fact that opposite polarity RGCs overlap in visual space

but exhibit anti-synchrony (for more discussion, see [182]).

Chemical synapses between ganglion cells. Only one observation of this mechanism

has been reported in catfish [252]. Although it is possible that chemical synapses exist in other

species, ultrastructural studies have not reported such evidence in mammalian species such as

primate and cat [153, 101, 130].
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2.4 Summary

We have surveyed evidence for potential mechanisms and circuits that might give rise to

correlated activity. In particular, we have reviewed evidence describing how specific RGC types

are electrically coupled to homologous RGCs and certain types of amacrine cells (Figure 2.2b,c).

In addition, we have discussed the range of circuits that provide chemical synaptic input including

bipolar and amacrine cells (Figure 2.2c-h).

Finally, we emphasized that while we did manage to describe many biophysical mecha-

nisms, we purposefully avoided an operational interpretation (e.g. reciprocal vs. driving input).

The difficulty of interpreting the operation of a circuit was discussed in regard to amacrine cir-

cuitry (Section 2.1.2) but likewise extends to other circuits (e.g. electrical coupling might provide

inhibition through rectification [130]). More research and a better understanding of the role of

individual cell types, especially amacrine cells, eventually will shed more light on these issues.

This chapter is taken from J Shlens and EJ Chichilnisky, (2007) Synchrony and concerted

activity in the neural code of the retina. In RR Hoy, GM Shepherd, AI Basbaum, A Kaneko and

G Westheimer (ed). The Senses: A Comprehensive Foundation, Elsevier Press.



Chapter 3

Observed correlated activity between retinal

ganglion cells

Whereas the previous section focused on elucidating mechanisms of correlated activity, we

now focus on what forms of correlated activity have been observed. Again, our discussion is

strongly influenced by notions of retinal organization of RGCs and this is particularly reflected

in our discussion of cross-correlations between pairs of cells. We continue this section by high-

lighting the distinction between pairwise and multi-neuron correlated activity with the goal of

examining what should multi-neuron activity look like given observed synchrony between pairs

of neurons. We find that this leads to a natural prediction of multi-neuron activity described by the

Ising model - the least structured model consistent with observed correlations. The success of this

class of models is quite striking - accurately predicting activity in hundreds of neurons [296, 274],

providing strong inferences about the underlying neural circuitry [273, 274] and exhibiting unex-

pected behavior only evident at large scales [259, 296].

22
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3.1 Mosaic structure dictates pairwise correlation structure

The most prominent feature of cross-correlograms is the variation of the sign and magnitude

of correlation across pairs of RGCs, evident in Figure 1.1 and 2.1. The goal of this section is to

demonstrate that variation in correlation strength can be understood in the context of the known

layout and architecture of RGCs in the retina. Pioneering studies by Brian Boycott and Heinz

Wässle demonstrated that the dendritic arborizations of individual types of RGCs tile the retina

independently (reviewed in [310]). Implicit in this observation is that the circuitry underlying

RGCs should be regular and uniform across populations of RGCs within a single cell type and

might be reflected in the correlated activity.

The strength of correlated activity within a single cell type systematically depends on the

distance between pairs of cells within a mosaic of RGCs. In Figure 3.1, we plot as ovals the

receptive field outlines of 118 ON parasol cell (see [52] for details); the location and size of

the RF outlines indicates the soma location and size of the dendritic arborization [310]. Below

this mosaic are the cross-correlograms for a single ON parasol cell with three other ON parasol

cells of varying distance in the presence of constant photopic illumination. Note that all pairs

of cells exhibit synchrony whose magnitude varies depending on the distance separating pairs of

cells. We can calculate an index that measures the relative frequency of synchronous events to

the amount of synchrony expected by chance within the central ±5 ms (for details, see [273]);

this index essentially measures the height of the central peak relative to the baseline rate. The

synchrony index plotted versus distance between pairs of ON parasol cells indicates that synchrony

is spatially localized within a single cell type, systematically depends on distance between pairs of

cells and is universal among all cells of the same type (see also [77, 181]). Universality means that
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the strength of synchrony is solely dictated by the relative locations of the two cells, indicating

that the circuitry underlying correlated activity is uniform across a mosaic of a single cell type.

Multiple RGC types, each receiving distinct input [96], tile the retina independently, sug-

gesting that correlations across different cell types differ depending on the types of cells consti-

tuting a pair. This is evident in pairs of OFF parasol cells in Figure 3.1. All pairs of OFF parasols

exhibit synchrony in the cross-correlograms but the strength of synchrony is systematically weaker

then pairs of ON parasol cells. Conversely, the cross-correlograms between mixed pairs of ON

and OFF parasol cells exhibit anti-synchrony. We emphasize that this is not light driven but is in-

trinsic to the circuit. Again, note that the strength of anti-synchrony systematically and universally

depends on the distances between each pair of cells within their respective mosaics (Figure 3.1).

The correlated activity for primate parasol cells is similar to reports of correlated activity

in higher mammalian species. Specifically, across species synchrony has always been observed

in pairs of cells of the same type that are nearby, while statistical independence (or lack of corre-

lation) is usually observed in pairs of cells separated by large distance [181, 77, 125, 273, 191].

Conversely, in several species pairs of cells of the same type but opposite polarity (e.g. ON and

OFF parasol cells) often exhibit anti-synchrony between nearby pairs but statistical independence

between pairs of cells far apart [181].

These general statements are not universal as pairwise correlations have been observed on

occasion between pairs of cells separated by large distances in vivo in the anesthetized cat [203,

204] and frog [129] and implicitly in gross electrode recordings along the optic nerve [6, 5, 160].

In particular, in the presence of a strong stimulus with contiguous spatial structure, one group

found that individual RGCs phase-locked oscillating at 80-90 Hz [203, 204]. Unfortunately, these
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observations have yet to be replicated in vitro [273, 77, 125, 4, 206, 239] and in vivo [181, 182,

183] (but see [129]). Although these observations are rare (see [204] for review), these results

do suggest that with appropriate stimulus manipulation, long range correlated activity might be

generated in the retina (for implications, see [285, 148, 129]).

3.2 Pairwise vs. Multi-neuron correlation

The last few decades of research has heavily relied on cross-correlations to examine the

interactions between pairs of neurons. Cross-correlation analysis is limited, however. Because

cross-correlograms solely focus on the activity of two neurons, it averages over the sea of activ-

ity in which a pair of neurons is immersed, ignoring distinct patterned activity indicative of the

complete neural circuit. Because this distinction can be subtle, we build an intuition for what

multi-neuron correlations look like and finally arrive at a precise definition of this activity.

Consider three recorded RGCs from the salamander in Figure 3.2a [261]. There exists

precise synchrony between pairs of neurons as demonstrated by the cross-correlograms. However,

a visual inspection of a section of the spike trains highlights that many of the synchronous events

between two neurons are actually subsets of all three neurons firing. How do we measure or

represent the timing of firing patterns across three neurons? One possibility is to compute a triplet

cross-correlogram (Figure 3.2b). This is a measure of triplet synchrony as a function of time

shifts in two of the three neurons; the prominent central peak reflects the preponderance that three

neurons fire nearly simultaneously, and the ridges reflect the fact that two of the three neurons fire

synchronously regardless of the spike time of the third neuron. The complexity of the triplet cross-

correlogram suggests that looking for features in the relative timing is difficult (but see [228]).

Furthermore, extending this analysis to a larger number of neurons seriously complicates this
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visualization. That said, the center of the triplet and pairwise cross-correlograms do demonstrate

that much of the interactions between neurons does occur simultaneously. Hence, for the rest

of the following sections, we simplify matters by solely examining the simultaneous behavior of

RGCs and return to relative timing issues in Section 4.3.2.

We can visualize the spatial structure of simultaneous multi-neuron firing patterns by exam-

ining how correlated activity is reflected in the mosaic structure of a single population of neurons.

In populations of primate ON and OFF parasol cells, we observe moments of time where large,

spatially contiguous groups of neurons fire simultaneously (± 5ms) in the presence of constant

illumination (Figure 3.2). These snapshots of activity demonstrate that observed synchrony be-

tween pairs of cells is a subset of larger patterns of concerted activity. Furthermore, these large

patterns of activity are dictated by the cell type and spatial layout of individual cells. In salaman-

der, for instance, it is estimated that up to 7 neurons participate in firing events which account for

up to 50% of all spikes recorded [261]. Thus, understanding the structure of correlated activity

requires examining the behavior of large numbers of neurons.

Examining simultaneous activity (as opposed to spatio-temporal patterns) permits a com-

plete characterization of all firing patterns by tallying the relative frequency of each observed firing

pattern. Each firing pattern can be expressed as a binary string (e.g. 10010) where a one (zero)

denotes the presence (absence) of a spike for each neuron within this brief period of time (e.g.

10 ms). The number of observations of each firing pattern normalized by the total number of ob-

servations over a long experiment provides a measure of the observed firing pattern distribution.1

We call this the observed firing pattern distribution pobs and across n neurons it consists of all 2n

1We assume that each firing pattern observation is independent of previous patterns and this neural system is fixed
and stationary over the course of the experiment. This is formally termed independently and identically distributied
(i.i.d.) data.
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firing patterns (Figure 3.3a, left). As can be observed in Figure 3.3, triplet synchrony occurs at

roughly the same rate as two neurons firing simultaneously, matching observations in salamander

(Figure 3.2a). Our goal in the following section is to account for this observed activity.

3.3 Accounting for multi-neuron activity

The firing pattern distribution pobs describes the simultaneous behavior of multiple neu-

rons and any characterization of these neurons must predict the relative frequency of observing

each firing pattern. Developing a parsimonious model to explain this activity has proven diffi-

cult (e.g. [189, 261]) because any prediction of a single multi-neuron firing pattern must take into

account interactions amongst all neurons.

Statistical independence provides a standard model for comparison to the observed firing

pattern distribution pobs. For example, the probability that 3 or 5 cells fire synchronously is ex-

ceedingly small given the individual firing rates and the assumption of statistical independence

(Figure 3.3a,c, far right bar). Thus, a model based on statistical independence provides a poor

prediction for the probability of observing firing patterns with many neurons firing. This discus-

sion can be made precise. Let us call x = {xi} the simultaneous firing pattern across n neurons.

The firing pattern is a binary string (e.g. x = 101) as described previously (Seciton 3.2). The

probability of observing a binary firing pattern x assuming statistical independence2 is

pstat−ind(x) =
n

∏
i

pxi
i (1− pi)(1−xi)

where p = {pi} are the individual firing rates expressed as probabilities. We term the distribution

2Since we are introducing our notation, a brief note is warranted for clarity: p(X) denotes the probability distribution
of the random variable X , while p(X = x) denotes the probability that X = x. For convenience we sometimes abbreviate
the latter as p(x), where X is implied.
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pstat−ind a type of null model that assumes statistical independence and the predictions of this null

model for all firing patterns can be seen in Figure 3.3a, right column. Note that we can precisely

test whether statistical independence is a good model by comparing the two distributions pstat−ind

and pobs.

Apriori we expect statistical independence to fail to predict the observed firing pattern dis-

tribution because we know that synchrony exists. Synchrony, by definition, is the observation of

deviations from statistical independence (see Section 3.1). In fact, this expectation can be verified

by visually comparing pstat−ind and pobs across all firing patterns (Figure 3.3a). Thus, a more

appropriate null model is to predict the firing pattern distribution given that synchrony is observed

between pairs of neurons.

To gain a better understanding of this statement, we discuss a didactic example. Consider

the observed firing pattern distribution pobs of three neurons. Pretend that we had instead recorded

from two out of three neurons at a time. For each pair of neurons we would measure the de-

gree of synchrony in the pairwise distribution quantified by three pairwise distributions: p(x1,x2),

p(x1,x2), p(x2,x3). The goal we now wish to achieve is to make a prediction of the complete

firing pattern distribution p̂(x) from these pairwise distributions. We emphasize that the sole re-

quirement of the prediction p̂(x) is that it contains the same degree of synchrony between each

marginal pair of neurons (e.g. p(x1,x2) = ∑x3 p̂(x)). It has long been known that this problem

is under-constrained3 and an infinite number of distributions (including pobs) can satisfy this re-

quirement. How we select such a distribution p̂(x) is the subject of the following section.

3For the case of 3 neurons, this problem can be recast in statistical mechanics terms. We wish to predict the N + 1
body correlations from the N body correlations. In this situation, triplet synchrony has elevated status when the pairwise
distributions p(x1,x2), p(x1,x2), p(x2,x3) are known. Triplet synchrony effectively measures the 3-body connected
correlation in the statistical mechanics literature. The frequency of triplet synchrony paired with pairwise distributions
are sufficient to reconstruct the entire 3 neuron firing pattern distribution. This notion is general for constructing the
N +1-body distribution from the N +1 body correlation and the N-body distributions [30].
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3.4 Using maximum entropy techniques to predict multi-neuron

activity

Intuitively, our goal is to select a distribution for multi-neuron activity p̂(x) consistent with

all pairwise distributions but assumes no prevalence of additional structure. This distribution pro-

vides a suitable null model that accounts for observed synchrony and can be compared against the

observed distribution pobs. One strategy borrowed from statistical mechanics [132, 133] and com-

monly employed in machine learning [26] is to select a distribution that obeys pairwise constraints

but maximizes the entropy:

p̂(x) = argmax
p(x)

[
H[p]+

N

∑
i=1

λi(E[ fi(x)]− ki)

]
(3.1)

where H[p] = −∑x p(x) log2 p(x) is the entropy of a distribution p(x) and λi are Lagrange mul-

tipliers enforcing selected constraints E[ fi(x)] = ki. There exists a closed form solution for the

maximum entropy distribution although the Lagrangian multipliers must be estimated numeri-

cally.4 Since entropy is a measure of randomness in a distribution, the maximum entropy distri-

bution corresponds to selecting a distribution that matches measured synchrony between pairs of

neurons but is otherwise least structured [8, 258, 178].

Example. If the selected constraints solely enforce single cell firing rates, then we recover

the statistically independent distribution pind . Hence, maximum entropy is a generalization of

statistical independence.

4The maximum entropy distribution is unique, concave everywhere and calculated using standard constrained max-
imization techniques such as gradient ascent [173] or iterative techniques [26]. Each constraint E[ fi(x)] = ki is a linear
function of the observed distribution pobs. For example, one constraint on synchronous activity between neurons x1
and x2 might be pobs(111)+ pobs(110) = p(x1 = 1,x2 = 1), where fi(x) is the sum of the two selected entries from the
observed distribution and ki = p(x1 = 1,x2 = 1).
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If the selected constraints enforce all pairwise correlations, then we generate a new null

model, ppair. The null model provides a prediction for multi-neuron firing patterns from pair-

wise correlations. By selecting non-redundant constraints, grouping Lagrangian multipliers, and

relabeling an absence of a spike as -1, one can re-express ppair as

ppair(x) =
1
Z

exp

(
n

∑
i=1

hixi +
1
2 ∑

i6= j
Ji jxix j

)
(3.2)

where hi and Ji j are the renamed Lagrangian multipliers and Z is a normalization constant (or

partition function [126]). Again, we note that {hi, Ji j} must be estimated numerically from data.

This distribution is recognized as an Ising model [258] (see also [62]), a type of Markov random

field [137]. The Ising model is the distribution that is the least structured distribution consistent

with observed correlations between pairs of neurons. This distribution holds special prominence

in several research domains: in basic statistical mechanics, Ising models provide an accurate de-

scription of equilibrium dynamics in physical media such as magnets [126]; in condensed matter

physics, Ising models are a common system for exploring phase transitions [30, 108]; in com-

puter science, Ising models are tractable representations of functional dynamics in neural net-

works [121, 123]; in statistics Ising models are a discrete, undirected Bayesian network [137].

Thus, by accounting for pairwise interactions, the resulting null model is a well recognized and

well studied distribution [10, 126].

3.5 Measuring the success of pairwise models

Accounting for synchrony between pairs of neurons provides an accurate account of multi-

neuron firing patterns. In the example of 3 and 5 neuron groups in Figure 3.3a, the entire firing
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pattern distribution is predicted by calculating the maximum entropy distribution consistent with

pairwise correlations (Figure 3.3a, middle column) [273]. The pairwise distributions look qualita-

tively similar to the observed distribuion. Likewise, the majority of the systematic deviations from

statistical independence from 10 neuron firing patterns are rescued by accounting for pairwise

correlations [259] (Figure 3.3b). On a quantitative level, the result shows that a firing pattern,

although living in 2n dimensional space, can be approximated with a parsimonious number of

parameters given by the number of pairwise measurements n2. In essence, we have performed

dimensional reduction by approximating the distribution with pairwise correlations. On a network

level, this result intonates that perhaps a more simple circuit could account for large scale activity

(see Section 3.6.3).

The success of these null models can be quantified using an average likelihood analysis or

equivalently an information theoretic analysis [258, 273]. In essence, these quantities measure

how probable it is that a proposed null model pmodel could give rise to an observed distribution of

firing patterns pobs. The Kullback Leibler divergence DKL(pobs || pmodel) provides such a measure

quantified in bits (see Appendix A.7). If we denote Dmodel ≡ DKL(pobs || pmodel), then Dind mea-

sures the total deviations in the observed distribution from from statistical independence [273]. In

essence, Dind is a cross-validated form of multi-information [258]. A natural measure of success

is to ask what fraction of the failures of statistical independence are rescued by a particular model:

1− Dmodel
Dind

. In the case of primate retina, 99% of the noise correlations in up to 7 neurons are res-

cued [273] while in salamander and guinea pig 90% of stimulus and noise correlations in up to

10 neurons are rescued [259]. Hence, solely accounting for synchrony between pairs of neurons

provides an accurate representation of multi-neuron patterns across species.
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Figure 3.4: Ising models of large scale firing patterns. A) Visualization of nearest neighbor Ising model
(or pairwise-adjacent maximum entropy model); thickness of red lines corresponds to strength of coupling
terms between RGCs (see Equation 3.2). B) Nearest neighbor Ising model predicts the distribution of the
number of neurons firing and the number of contiguous neurons firing across populations of 118 ON parasol
cells. For comparison, statistical independence based on individual firing rates (blue).

3.6 Explorations of large-scale activity

The spatial scale of firing patterns (Figure 3.2) requires examining whether we can likewise

explain larger scale activity in a population of neurons. Intuitively speaking, one would suspect

that as we look at larger numbers of neurons, we would expect that patterned activity should

become increasingly difficult to explain with statistical independence. Indeed, this has been quan-

tified and independently reported in primate, guinea pig and salamander [273, 259, 296]. Ac-

counting for this correlated activity with pairwise correlations however becomes technically more

difficult as estimating and validating a pairwise model becomes more difficult. Estimating the

parameters of the Ising model {hi, Ji j} becomes more difficult because the number of parameters

which must be fit grows quadratically [327, 120, 224] . More vexing, however, is the fact that lim-
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ited recording times and counting statistics systematically detriment the ability to quantitatively

assess the success of the model. The former can be overcome by resorting to extensively devel-

oped Monte Carlo techniques in the Ising model literature [288, 322]. The latter problems can be

overcome by examining other statistical features of the firing pattern.

3.6.1 Characterizing large-scale activity

Mechanisms such as wide-field amacrine cells [171, 172] suggest the possibility that cor-

relations can propagate over long distances in the retina [203]. Thus, although we have discussed

firing patterns patterns in n≤ 10 neurons, it is unclear how far, numerically and spatially, correla-

tions spread. For instance, the firing patterns in Figure 3.2 provide signs of this spatial and numer-

ical scale of correlated activity, although this is restricted to one of approximately two dozen cell

types in the primate retina [67]. Although techniques for recording from large numbers of neurons

are coming online [166, 266, 128], it is difficult to record long enough to accrue accurate statistics

on firing patterns for n > 10. We must resort to examining statistical features of the distribution

which are better approximated.

For instance, we can ask what fraction of total and spatially contiguous neurons fire simul-

taneously. This distribution measures the numerical and spatial scale of synchronous events in the

primate retina. In the presence of constant illumination noise correlations cause an average of X%

of the 118 ON parasol cells to fire; on average, these neurons fire in spatially contiguous groups

of X neurons within 10 ms. Furthermore, over 99% of the synchronous events involve less than

X% of the cells and are comprised of less than X spatially contiguous groups of neurons. If one

assumes that a mechanism underlying this activity is exctitatory, this spatial and numerical scale

bound the range of effective divergent circuitry.
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A second statistical feature one can examine is the entropy of the distribution to examine

how variability scales in the aggregate activity of population of neurons. A well known difficulty

with this approach is that entropy is difficult to estimate in finite data for large distributions (i.e.

large n) [214, 202]. Thus, an approach taken by [259] is to extrapolate the expected behavior

of the entropy at large n where the extrapolation is based off of known scaling behavior in Ising

models [150, 192]. Although this extrapolation necessarily fails at large n, this trend highlights

the fact that pairwise correlations when taken together can dramatically reduce the number of

allowable firing patterns in a distribution. One prediction is that in large populations of neurons,

there exist an effectively limited set of firing patterns that the populations of neurons can express,

although it is unclear how much of these reported correlations reflect the circuit or the strongly

correlated stimulus [259]. One implication of this result is that because large scale firing patterns

are so stereotyped, multi-neuron correlations might provide an ability to error check the coding

of visual information [72, 259]. Hints of this phenomena have been observed in further work

that identified families of firing patterns, corresponding to basins of attraction that consistently

reappeared across multiple stimulus presentations [296].

3.6.2 Signatures of a critical point

A second line of questions is to ask whether the strength of correlations have been optimized

by the biology for some purpose. In particular, does the large-scale activity of the retina represent

a system organized to maximize information transmission? The one term that is missing from the

Ising model (Equation 3.2) is the temperature T , a free parameter that scales the “energy” term

inside the exponential. Implicitly, for the pairwise model fit to the observed multi-neuron firing

patterns, the temperature is T = 1.
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One study measured how artificially manipulating the temperature by scaling all parameters

by this constant effect the variability of the network of neurons [296]. This study measured the

specific heat as a function of temperature and observed that a sharp peak exists at T = 1 and

this peak sharpens as larger numbers of neurons are examined. This sharp peak in the curve

suggests that the system might be poised at a critical point. Signatures of critical points have

also been observed in the power law distribution of avalanches of spontaneous neural activity in

cortical slices [22, 23]. Theoretical work has suggested that critical points might be optimal for

information transmission [22, 149, 296] because systems poised at critical points can dynamically

maximize their range of responses to stimuli of varying amplitudes and likelihood [149, 296].

Whether the correlated activity of the retina reflects this optimality will be the subject of future

investigation.

3.6.3 Inferring neural circuitry

The observation of patterned neural activity provides strong clues about the underlying

neural circuitry. This sentiment permeates our discussion of the structure of pairwise activity

(Section 3.1) and serves as a strong motivation for even investigating correlated activity [181, 182,

183]. We ask whether structure within multi-neuron correlations provides any clues about the

identify of the underlying neural circuit.

Consider a relatively simple mechanism that provides reciprocal interactions between ad-

jacent RGCs within a mosaic (Figure 2.2b,c; see Section 2). Such a neural circuit could generate

multi-neuron correlated activity through the propagation of activity through intermediary neu-

rons. A unique feature of this type of neural circuit is that knowledge of the correlation strengths

between adjacent neurons in a mosaic is sufficient for specifying the entire neural circuit and con-
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sequently the prevalence of all forms of multi-neuron correlations. In terms of the firing pattern

distribution, rather than requiring knowledge of n2 pairwise interactions, knowledge of n adjacent

interactions suffices to predict all activity - a vast simplification in the large neuron regime.

We can explicitly test whether this phenomenological model is consistent with this type

of circuit by examining whether only correlations between neighboring RGCs are sufficient for

predicting multi-neuron firing patterns. Note that we are additionally testing implicitly whether

synchrony between non-adjacent neurons is naturally predicted from synchrony between adjacent

neurons. Correspondingly, in terms of the Ising model (Equation 3.2), we are setting Ji j = 0 when

neurons i and j are not physically adjacent. This type of Ising model is termed a nearest-neighbor

Ising model [126].

In the case of up to 7 neuron firing patterns in primate retina, this pairwise-adjacent maxi-

mum entropy (or nearest neighbor Ising model) accounts for 99% of the reproducible correlations

in firing patterns of up to 7 neurons5. It is indistinguishable statistically from a full pairwise Ising

model. In larger populations of up to 118 ON parasol cells this pairwise adjacent structure contin-

ues to predict the correct statistics of firing patterns over 99% of the recording time (Figure 3.4).

Thus, a reciprocal mechanism is consistent with large-scale firing patterns (Figure 2.2b,c).

3.7 Summary

Until recently, the observation of correlated activity has been largely restricted to the in-

teractions between pairs of neurons. The structure of correlated activity across pairs of neurons

has demonstrated how circuitry is specific to each cell type and dictated by the mosaic layout of

5Unfortunately, higher order correlations can still be quite significant even when large fractions of the correlated
activity are accounted for by pairwise interactions [273].
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RGCs [184, 77, 273]. With the advent of large scale recording technology [166, 266], several

studies began to explore how the correlations expressed by multiple neurons [261, 178] are qual-

itatively distinct from correlations observed in pairs of neurons. Fundamental insights into the

structure of correlations [8, 258] have created new models for determining whether multi-neuron

correlations can be explained in a parsimonious manner [259, 273], although ignoring temporal

dynamics and the role of the stimulus (see Section 4.3.2). In particular, these new models have

created bridges with otherwise distinct fields of research [126, 123, 121], highlighted how neural

circuits exhibit distinct behavior at large scales [296] and provided strong inferences about the

underlying neural circuit [273].

This chapter is taken from J Shlens and EJ Chichilnisky, (2007) Synchrony and concerted

activity in the neural code of the retina. In RR Hoy, GM Shepherd, AI Basbaum, A Kaneko and

G Westheimer (ed). The Senses: A Comprehensive Foundation, Elsevier Press.



Chapter 4

Neural coding of visual information

Assessing the role of correlations in transmitting visual information from the eye to the

brain requires dissecting out the specific contributions correlations between neurons provide about

the visual world - a subject of intense interest [104, 191, 257, 206]. A complete understanding of

the role of correlations in information transmission in the retina contains broader implications as

quantitative insights are applicable across sensory modalities for discerning the role of extrinsic

and intrinsic influences on how information is processed. In this section we highlight the numerous

questions that arise when examining the role of correlated activity and in subsequent sections

we discuss the ensuing quantitative analysis of correlated activity in the retina with a particular

emphasis on the resulting biological implications.

The role of correlated activity is a rather broad topic with many perspectives for engaging

this issue. If the precise mechanisms underlying this activity were known, then arguably it would

be possible to assess the function of correlated activity in the retina (e.g. a signal for spatial con-

tiguity [148]). However, in the absence of such knowledge one must ask more general questions

41



42

which attempt to minimize assumptions about how the system works:

• How do correlations alter the receptive fields of RGCs? Do patterns of spiking activity

represent specific aspects of the visual scene? (Section 4.1)

• Does the aggregate activity of a population of RGCs provide information about a stimulus

that is not available in individual cell activity? (Section 4.2)

• How does the presence of correlated activity effect the ability to decode a visual stimulus?

(Section 4.2)

• What types of decoding strategies exploit correlation structure to reconstruct the stimulus

(Section 4.3)?

The diversity of questions reflects the intense interest in this field and the multitudes of compli-

mentary tools employed in addressing this broad topic (see [243] for an introduction). Before

discussing each specific questions, we must frame these issues quantitatively in the context of

several important issues.

Correlations in natural scenes. The statistics of the visual environment contain spatial

and temporal correlations over multiple scales [250, 278] and differ substantially from traditional

stochastic stimuli [251]. Although a complete characterization of natural scenes is unavailable,

the known correlation structure in the visual world can artificially induce correlations in the retina

on top of intrinsic correlations. Whether the structure of noise correlations change in the presence

of stimulus correlations is an area of active research [4, 129].

Optimal decoding of a neural response. The term ideal observer describes the best

possible performance any algorithm could achieve at reconstructing a stimulus from a system’s
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response (for review, see [294]). Unfortunately, this fuzzy notion is ill-defined without explicit

reference to a measure of error. Although information theory can place bounds on performance,

the optimal estimate of a stimulus under a particular error measure (e.g. maximum a-posteriori) is

often difficult to calculate efficiently (but see Section 4.3.2).

While these considerations formalize quantitative issues, at the same time reflect the sub-

tleties that arise when considering these issues. For instance, if the world is swamped with spatial

correlations (whose exact distribution is unknown), could the brain use noise correlations as a

special channel to extract unique features of the visual world [191, 70]? This question becomes

more nuanced if the structure of noise correlations change depending on the stimulus itself due to

adaptation in the underlying mechanisms [4, 129]. Thus, simply considering noise correlations as

setting the effective prior distribution from which the brain must extract the visual world, while a

useful starting point, might over-simplify the complexity of the situation.

How multiple target areas in the brain respond in the presence of correlations can of course

be quite distinct from the manner in which the retina encodes visual information. For instance,

it is well known that single neurons use a nonlinear encoding mechanism (i.e. thresholding),

however a majority of information can be extracted using a linear decoder [28]. This quantitative

discrepancy (i.e. linearity) between the encoding and decoding within a single neuron serves a

pedagogical purpose: asking questions about both, while equally important, are entirely distinct

mathematically. Thus, as we will see in subsequent sections, the choice of analysis one selects for

examining correlated activity ultimately reflects whether one examines how RGCs encode visual

information or conversely how the brain decodes the information from the optic nerve.

In the following sections we will approach many of these issues and questions with multi-
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tudes of techniques and quantitative tools. We will start from a mechanistic perspective by exam-

ining how RGC receptive fields might reflect underlying neurons and conversely, how correlated

activity alters the shape of receptive fields. We next move on to discussing how the statistics of

correlations have been examined non-parametrically with information theory. We forewarn the

reader that this section is the most demanding quantitative section of this chapter, but we do our

best to motivate these formulations and discuss the trade-offs for various types of analysis. Fi-

nally, we discuss strategies for decoding visual stimuli from retinal spike trains with a focus on

understanding the role of these correlations. This discussion will take us away from the retina

as modeling and other experimental work influence our perspective about how correlations are

exploited by any decoding algorithm, whether biological or artificial.

4.1 Consequences of correlations on neural responses

The receptive field is a fundamental characterization of the stimulus-response properties of

a neuron [308], because it characterizes the type of stimulus which causes a neuron to spike. One

method to explore the role of correlations in transmitting visual information is to examine how the

receptive fields of RGCs are altered by the presence of correlations. This perspective is motivated

by a mechanistic view which leverages strong assumptions about the types of interactions to gain

some prediction about how response properties of RGCs change due to correlations.

The types of changes one could observed in RGC response properties can range from

changes in the timing properties to spatial integration. For instance, one could imagine that a

single neuron might fire more reliably just after a nearby (correlated) RGCs fire. Implicit signs

of this increment in reliability exist [259, 273] and further analysis has demonstrated that one can

predict the spike times of RGCs far better when the spike times of nearby RGCs are taken into
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account (J. Pillow, personal communication). Likewise, it is easy to envision that the spatial area

of the RF should vary in the presence of correlations. This issue, however, depends on the type

of hypothesized mechanism. We discuss each mechanisms, reciprocal and common inputs, in the

following sections.

4.1.1 Reciprocal coupling might enlarge receptive field size

A simple hypothesis is that reciprocal coupling increases the size of the integration area

of individual RGCs [77, 33] - possibly as a means to boost sensitivity to spatial information at

low light levels [65]. A mechanistic interpretation is that a single RGC might fire in response to

stimulus-elicited activity in adjacent RGCs, thereby effectively growing its receptive field. Con-

sistent with this hypothesis, amacrine cells in lower vertebrates are electrically coupled and their

RFs are far larger than would be expected given their dendritic arborizations [292, 201, 118, 291].

This hypothesis has been explored in rabbit retina [33, 77]. In the rabbit the ON and OFF

brisk transient RGCs have comparably sized dendritic trees [222], however OFF brisk transient

RGCs exclusively exhibit noise correlations due to reciprocal coupling. If one assumes that both

cell types have consistent relationships between dendritic coverage and RF size, one can view

the ON brisk transient as a control for examining the effects of reciprocal coupling in OFF brisk

transient cells. Indeed, OFF brisk transient cells were systematically better fit by the sum of two

Gaussians, where the second Gaussian picked up the skirt of the receptive field. In addition, the

receptive field size of OFF brisk transient cells are larger, resulting in a nearly 4-fold increment

in RF coverage [78, 77]. A second line of experiments in OFF cells [33] found that the receptive

field size more closely matched the spatial extent of the dendritic arbors in α-ganglion cells, even

though these cells exhibited tracer dye coupling. Although these results do not measure the spatial
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contribution of correlated activity, they do suggest that receptive fields are not grossly extended

beyond their dendritic arborizations due to reciprocal coupling.

Preliminary work in primate parasol cells has also examined this question in the context of

a new line of statistical models (see Section 4.3.2). Briefly, a class of statistical models (gener-

alized linear models) can be fit efficiently to the stimulus and spike train of a recorded neuron.

This statistical model simultaneously fits a linear receptive field, and cross-currents to explain the

causal dependencies between neurons and the stimulus [298, 218]. In preliminary work this model

has been shown to be an accurate predictor of population activity of RGCs. The benefit of this

statistical paradigm is that one can neglect to include cross-currents in the model and measure

how the RF size is altered. As predicted, the RF size, in particular the surround, increases roughly

two-fold when cross-currents are neglected indicating that cross-currents effectively enlarge the

RF size (J. Pillow, personal communication).

4.1.2 Common input might provide fine spatial information

A second hypothesis is that correlated RGC activity reflects the electrical footprint of an un-

derlying interneuron, such as an amacrine cell (see Section 2.2.2). By this hypothesis synchrony

between RGCs is a surrogate for the spiking activity (or graded potential) of an underlying com-

mon input. An intriguing corollary to this hypothesis is that synchronous activity could reflect a

unique channel for visual information that conveys the tuning properties of the underlying com-

mon input. This multiplexing hypothesis, sometimes termed concerted coding, was first proposed

in [191, 189].

One test of this hypothesis is to examine the receptive field of synchronous spikes. If the

cells were independent, then the synchronized spike receptive field should approximate the sum
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of the individual receptive fields [261]. Surprisingly, in the presence of a minimally correlated

checkerboard stimulus, the synchronized spike RF of two reported correlated cell pairs in sala-

mander were smaller than their respective parent cell RF’s (see also [70, 300]). This result has

been extended to the receptive fields of statistically significant, synchronized firing patterns across

multiple neurons identified using a compression algorithm [261]. The receptive field of synchro-

nized firing patterns across 2, 3 or 4 neurons were consistently smaller than the sum of the parent

receptive fields. Hence, these results suggest that synchronized activity of multiple RGCs could

convey fine spatial information, and are consistent with the hypothesis that an underlying common

input provides a multiplexed signal through the correlated activity.

4.2 Information theory and statistics of correlations

One benefit of using a more general statistical theory is that we can minimize the number of

assumptions about the effects of correlated firing on conveying visual information. The trade-off

is that this comes at the sacrifice of understanding the specifics of the results. Part of the reason

for much excitement in recent years is that explorations and debates into correlated activity has

led to new understandings of correlations in general and new quantitative tools for disambiguating

the consequences of correlated activity [159, 258, 8]. We again remind the reader that this section

is quantitatively demanding.

This approach begins by attaching a statistical interpretation to experiments exploring the

stimulus-response relationship in the retina. Typically, one thinks of the retina as providing a

response r that is some deterministic function of the stimulus s. This response could be from a

single neuron or the activity of multiple neurons labeled r1, r2, etc. Unfortunately, this perspective

avoids a foundational observation of the neural response in all sensory systems: if we present the
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Figure 4.1: Information theoretic analysis of correlated activity. A) Average redundancy (negative of
Equation 4.2) expressed as a fraction of the total information conveyed for individual pairs of neurons in
the presence of a checkerboard stimulus. Same functional type (blue); ON-OFF cell pairs (green); Other
different functional types (red). B) Schematic highlighting how ignoring correlations can have no effect
(top row) or a detriment (bottom row) on decoding visual information. Each stimulus is equally likely.
Left column shows a correlated distribution. Right column shows distribution where the correlations are
ignored. Note that in the bottom right the overlap of the dashed line in within a neighboring box is indicative
of lost precision in identifying the stimulus. C) Fraction of information that is retained by decoding while
conditionally independent posterior distribution pind(s|r) is used instead of p(s|r). The x-axis measures the
strength of the synchrony. Figures adapted from [159, 206], respectively.
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same stimulus multiple times, we often record a range of neural responses. This variability ap-

pears non-deterministic (but see [1]) and thus a common strategy is to regard the neural response

as random, whose relative frequency and regularity are dictated by a conditional probability distri-

bution p(r|s) [243, 83, 163]. From this perspective, one can view each measurement as a random

sample from this distribution. The observation that the neural response is related to the stimulus

is reflected in the structure of the conditional distribution, or said more precisely, the differences

between p(r) and p(r|s). These changes can be quantified using mutual information I(S;R), a

non-negative measure of statistical dependence; it is zero if and only if the two variables are sta-

tistically independent (see Appendix A.7). An important feature of mutual information is that it

bounds the performance of any potential decoding mechanism, whether artificial or biological.1

The focus of neural coding is the (nonlinear) correlation between the stimulus s and the

neural response r, however the focus of our interest is the correlation between individual neural

responses r1 and r2. Of course, we must be mindful of the fact that the stimulus drives these neural

responses. For instance, the observation of statistical dependence p(r1,r2) 6= p(r1)p(r2) between

a pair of neurons (or I(R1;R2) > 0) does not necessarily reflect intrinsic mechanisms in the retina

because a stimulus might induce such correlations. Intrinsic correlations (i.e. noise correlations)

instead reflect the failure of independence when the stimulus is held fixed

p(r|s) 6= ∏
i

p(ri|s).

The failure of conditional independence is the statistical interpretation of noise correlations.2 We

1For instance, one might employ an algorithm to estimate the motion in the visual scene sest from a neural response
r. This algorithm could be a model for visual processing in MT cortex [100] or be a read-out method for a neural
prosthetic device [264]. Regardless, the fundamental property of mutual information guarantees that I(S;R)≥ I(S;Sest)
meaning that I(S;R) is an upper bound on the amount of information available to the decoding algorithm.

2We emphasize that, while useful for dissecting out the contributions of the circuit, the statistical distinction of
noise correlations is completely artificial from the perspective of a decoding algorithm in the brain. The brain can not
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can label the right hand side of the equation pind(r|s) ≡ ∏i p(ri|s). The quantity pind(r|s) is an

artificial construct that is quite useful for understanding the role of correlated activity, because

it provides a statistical model for what the neural response would be if the neural response were

conditionally independent (or as if noise correlations do not exist.). By the same token, if the

neural responses were conditionally independent, then the conditional mutual information would

be zero I(R1;R2 | s) = 0. Often, though, we are interested in the average conditional dependence

over a distribution of stimuli

I(R1;R1|S) = ∑
s

P(s)I(R1;R2|s). (4.1)

We will revisit this quantity multiple times in the following section as in effect, I(R1;R1|S) acts as

the information theoretic analog of the cross-correlation function, measuring the average strength

of noise correlations [257].

Before proceeding further, we must discuss a large caveat to applying these and subsequent

ideas to real data. Ultimately, our goal is to examine the structure of p(r|s) from a finite set

of measurements. A large base of literature has recognized that information theoretic quantities

derived from finite measurements of p(r|s) can be systematically biased [193, 297, 214]. Although

many novel estimation techniques have been developed recently (reviewed in [304]), one must

take caution and additionally evaluate any experimental conclusions based on whether information

theoretic quantities are estimated well [213].

In the following sections we discuss two complimentary approaches in the literature for

quantifying the effects of correlations using information theory. For each topic we discuss what

distinguish whether correlations are driven by a stimulus or the retinal circuit. Hence, it is highly suspect to believe that
the brain can recognize whether RGCs are conditionally independent [257].
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conclusions one can draw about the retina. Finally, because consensus has not yet emerged in this

field, we discuss limitations for applying any information theoretic analysis to decipher the role of

correlations.

4.2.1 Measuring additional information in correlated neural responses

One method for assessing the significance of correlations is to ask whether correlations en-

hance or degrade information about the stimulus. Consider the total information the correlated

response of two neurons provides about the stimulus I(S;R1,R2). If more information is available

about the stimulus by observing the simultaneous neural response, then in principle one could

build a better decoder of visual information using the joint statistics. On one extreme two neurons

could provide distinct information about the stimulus (e.g. two RGCs on opposite ends of the

retina), thus the total information these two neurons provide is the sum of the individual informa-

tions I(S;R1,R2) = I(S;R1)+ I(S;R2). However, a natural extension is to ask whether additional

information about the stimulus is provided by observing the simultaneous (joint) responses. This

difference has been defined as the synergy

Syn(R1,R2)≡ I(S;R1,R2)− [I(S;R1)+ I(S;R2)] . (4.2)

The synergy measures how much additional information is encoded in the joint response rather

than the sum of the individual neural responses [104, 103, 170, 39, 257]. This quantity is intu-

itively appealing and also follows from natural generalizations of mutual information [258] (see

also [187, 318]). The role of noise correlations becomes evident by rewriting the above equation

as

Syn(R1,R2) = I(R1;R2|S)− I(R1;R2). (4.3)
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Because mutual information is a non-negative quantity, the synergy must be bounded from above

by the average strength of the noise correlations (Equation 4.1) and from below by the average

strength of the overall correlations between the neural responses [257]. If the synergy is positive,

then pairs of neurons provide more information about the stimulus than the sum of its parts [39,

104, 170, 103].

If Equation 4.2 is negative, then the information neuron 1 provides about a stimulus dupli-

cates information that neuron 2 provides about the stimulus. Negative synergy has been termed

redundancy in the neural coding literature [257, 104, 240] and measures how much information

about the stimulus is duplicated between neural response.3 Redundancy has been systematically

examined in the salamander retina [239] (but for similar analysis see [200, 170, 103, 104]), a

species which exhibits little mosaic structure in RGCs [267]. In multi-electrode recordings of

salamander retina, 479 pairs of RGCs were presented various natural movies as well as white

noise checkerboard stimuli. In the presence of all stimuli, pairs of neurons exhibited substantial

spatially localized redundancy that tapered off with distance [239], roughly corresponding with the

spatial scale of correlations [191] (Figure 4.1a). Very few of the cell pairs exhibited synergy not

explained by sampling errors, thus by extrapolating to large populations of cells, one can surmise

that each bit of visual information is replicated 10-fold across the RGC population in salamander.

4.2.2 Are correlations necessary to identify the stimulus?

Examining differences in information highlights how much information is available about

the stimulus but it does not specify whether correlated activity is necessary to reconstruct the

3Redundancy used in this context is quite distinct from redundancy often used in information theory literature [271,
60]. In the information theory literature, redundancy is the failure to maximize the total amount of information which
could be transmitted down a noisy communications channel [159, 17, 21].
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stimulus. A second perspective is to examine the consequences of noise correlations on the ability

of the brain (or any system) to reconstruct the stimulus. Why this question is distinct can be

observed in the schematic in Figure 4.1b. In these two toy examples, the two neural responses

are correlated, however in the top row the correlations are necessary for decoding the identity

of the stimulus, while in the bottom row the correlations are not necessary. The subtle point to

glean from this example is that although noise correlations might increase our knowledge about

the stimulus, noise correlations might be unnecessary for identifying a stimulus [206].

This slight change in emphasis has important consequences on the ensuing analysis as the

focus now shifts to our uncertainty about the stimulus having observed a neural response. We

can make this notion precise by applying Bayes rule [83] to calculate the posterior distribution

of stimuli p(s|r) = p(r|s)p(s)
p(r) consistent with an observed neural response.4 To ask how noise

correlations affect the posterior distribution of stimuli, we can create an artificial posterior distri-

bution pind(s|r) derived from the conditionally independent distribution pind(r|s) using Bayes rule

pind(s|r) = pind(r|s)p(s)
pind(r) where pind(r) = ∑s pind(r|s)p(s). If pind(s|r) = p(s|r), then noise correla-

tions do not effect the posterior distribution and are unnecessary to identify the stimulus. We can

use the Kullback-Leibler divergence (see Appendix A.7) to assess how poorly one fares with an

approximate distribution pind(s|r) in lieu of the actual distribution p(s|r),

∆I(R1,R2)≡∑
r

p(r) DKL [p(s|r) || pind(s|r)] (4.4)

averaged over all neural responses. ∆I(R1,R2) was proposed by [206] (see also [219, 235, 205])

4We note for completeness that a particular distribution by itself does not specify a decoded stimulus. Commonly,
when dealing with a posterior distribution, one selects the maximum a-posteriori (MAP) or MMSE estimate of the
stimulus. The choice of the decoding estimator reflects an underlying choice of error function. More will be discussed
about this in Sections 4.2.3, 4.3.
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as an upper bound on how much information is lost about the identity of the stimulus by selecting

the conditionally independent posterior distribution over the correct posterior distribution (see

also [325]). If ∆I(R1,R2) = 0, then the posterior distribution of the stimulus is invariant to the

presence of noise correlations. However, as ∆I(R1,R2) increases, there is a greater potential cost

in bits of assuming conditional independence for reconstructing the posterior distribution. To

highlight the role of noise correlations (Equation 4.1), we rewrite this quantity as

∆I(R1,R2) = I(R1;R2|S)−DKL [p(r) || pind(r)] . (4.5)

Note the parallel with Equation 4.3 (see [9] for discussion). In particular, ∆I(R1,R2) is bounded

from above by the average strength of the noise correlations so long as all observed responses p(r)

occur in the marginal distribution derived from conditional independence pind(r) [257, 9].

Across about 1000 pairs of RGCs in mouse stimulated with a natural movie, the amount of

information lost about the posterior stimulus distribution was small compared to the total amount

of stimulus information in the pair of neurons [206] (see also [229, 230, 220, 211, 109, 16]).

Nearly all pairs exhibited less than a 10% loss in information about the stimulus with the vast

majority of pairs less than 5% (Figure 4.1c). Hence, when examining pairs of neurons one can

determine the posterior distribution with minimal cost if one assumes conditional independence

between pairs of neurons. It remains to be seen whether this result holds in larger groups of

neurons [159].
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4.2.3 Limitations of information theory

A profound limitation of information theory is that this class of measures do not inform us

how these neural responses are related, nor which features of the correlation are important to the

organism (but see [295, 81]). In particular, one limitation with any approach based on information

theory is that because derived quantities are in bits, it is difficult to interpret what the function of

these bits are. For instance, what if ∆I(R1,R2) = 1 bit, how does an incorrect posterior distribu-

tion effect a stimulus estimate? This single bit could have a profound or negligible influence on

pind(s|r) and concomitantly on any estimate of a stimulus sest . Ultimately, when one begins to

think about creating an estimate of the stimulus sest , information theory is insufficient for judging

the quality of decoding - a measure of absolute error must be considered. Given a particular error

measure (e.g. mean squared error), one could ask whether measured bits bound the magnitude

of error (for review, see [294]). Unfortunately, in the case of ∆I(R1,R2), only weak bounds have

been identified for limited cases (P. Latham, personal communication). In general, no bounds have

been identified, meaning that one bit could translate into potentially large deviations.

A second limitation with information theory is that it averages across an entire distribution

of neural responses. Although averaging over an entire distribution provides a measure that obeys

several central requirements in information theory [60], this average can obscure the contribution

of individual symbols within a neural code [80]. New methods have been developed for peering

inside this expectation [80, 39, 274] and preliminary results have demonstrated that individual

correlated neural responses in the retina provide surprising contributions to resolving the identity

of a stimulus [260]. These and future results must be weighed against the fact that the principal

theorems of information theory are solely derived from expectations across distributions [60], and
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peering inside the expectation can be fraught with complications [80, 46, 47, 27]. Thus resolving

the contributions of individual neural responses might ultimately require examining one’s ability

to reconstruct the stimulus.

4.3 Reconstructing the stimulus

For all of the limitations of information theory, one benefit of a non-parametric approach is

that it avoids making assumptions about what features and errors are important to a biological sys-

tem. In the context of an organism under evolutionary pressures, it is unclear if any single measure

of error is appropriate given multiple competing factors and the complex environment in which

the nervous system operates. That said, given the clear function of early sensory systems such as

the retina, reasonable criterion can be proposed to test whether neural systems are optimized to

their environment [242, 161].

Selecting a measure of error to judge the quality of an estimate of a stimulus is an archetyp-

ical example of parameter estimation, a field with a long history in statistics [163] and engineer-

ing [143, 199]. Not surprisingly, there exist an infinite number of error measures, however, it

is well established that for certain error measures and classes of estimators, one can derive the

optimal estimator, i.e. perform optimal decoding. For example, the Bayesian MMSE estimator

is optimal under a mean squared error loss function, while a maximum a-posteriori estimator is

optimal under more restrictive regimes or a zero-one loss function [143, 199].

The optimal decoder, even under a mean squared error, is often difficult in practice to calcu-

late, even for the relatively simple case of a single neurons (but see [237, 218]). Thus, one strategy

is to resort to regression techniques focused on functional approximations of the decoder under a
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particular error measure. In recent years, new statistical techniques have permitted the calculation

of optimal Bayesian decoders, however, these results must be qualified by several technical limi-

tations. Furthermore, in many cases novel statistical techniques have been pioneered in improving

the decoding ability for single neurons. Thus, historically a large literature base exists in single

neuron decoding (reviewed in [277]); only in the last few years have attempts to extend these ideas

to multi-neuron activity yielded insights into how correlations have contributed to coding of visual

information. We discuss both regression and Bayesian techniques (following [231]), highlighting

recent applications of decoding techniques to multi-neuron activity and showcasing novel methods

as yet solely applied to single neurons.

4.3.1 Regresssion

Regression refers to estimation techniques that attempt to minimize a loss function (typi-

cally, mean squared error) by exploiting functional approximations without any explicit calcula-

tion of the posterior distribution [143]. The seminal work of Bialek and colleagues [29] (see

also [72, 28]) demonstrated that a linear decoder that minimizes the mean squared error can

perform quite well at reading a neural code approaching the theoretical maximum dictated by

biophysical constraints. Linear decoding has since been applied in many neural coding contexts

outside of the retina because an analytical solution is tractable and easily calculated using standard

signal processing techniques (e.g. [127, 36, 113, 268, 49, 263]).

In the context of correlated activity, linear decoding techniques have been extended to de-

code the simultaneous activity of multiple neurons [309, 70]. In the presence of spatially uniform,

photopic stimulation, multiple RGCs in salamander of the same functional type provide duplicate

information about the stimulus but RGCs of distinct functional types provide independent infor-
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mation about the stimulus [309]. Conversely, authors in a separate study used a variant of linear

decoding to study the correlated activity of target neurons to RGCs in cat and found that such a

decoder could extract 20% more information about the stimulus when synchronous activity is con-

sidered. Linear decoding permits such analysis because of its analytical simplicity but is limited

by the fact that the optimal decoder need not be (nor probably is) linear.

Differences between the information extracted by linear decoders and non-parametric mea-

sures of information suggest that more sophisticated types of decoding strategies could extract

more information about the stimulus [7, 277] . Extensions have explored how higher-order terms [243,

89], artificial neural networks [309], kernel regression [276, 86] and curved manifolds [7] improve

the reconstruction of the stimulus. In addition, other lines of work have examined how optimizing

information theoretic error measures improve estimates of the stimulus [272, 213, 232]; one bene-

fit of the latter approach is that such techniques work well under non-Gaussian stimuli, a traditional

limitation of decoding techniques [272, 277]. Such techniques have been successful in studying

single neuron responses and applying them to examine multiple neuron responses might require

simplifying assumptions to minimize data requirements and make the solution computationally

tractable [232].

4.3.2 Bayesian methods

The diversity of regression techniques for neural decoding leverage off a a wealth of meth-

ods available for functional approximation and error minimization [238], but suffer from the fact

that they require the decoder to be a particular functional form. For instance, if the optimal decoder

is not a polynomial, approximating the decoder with successively higher-order polynomial terms

would be inefficient if not prohibitive [243, 213]. The optimal decoder can be calculated though
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Figure 4.2: Illustration of Bayesian decoding in populations of neurons. A) Schematic of point process
encoding model (generalized linear model). Each shaded region corresponds to the summed and exponen-
tiated response of a single neuron. Model parameters, the linear stimulus filter {ki} and post-spike currents
{hi j}, are estimated using maximum likelihood from neural data. B) Steps in Bayesian MAP decoding of
small image patch using responses of 512 simulated RGCs. Image presented briefly to simulated RGCs (0.1,
0.5 sec, respectively) and spike trains from cells summarized as spike rates in middle panels and Bayesian
MAP estimate of stimulus computed from spike trains from brief duration presentation (right panel). (c)
Bayesian MAP decoding on larger image which necessitates searching through larger 16,384 dimensional
stimulus space.
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through the application of Bayes rule to determine the posterior distribution of stimuli p(s|r) for

a given neural response r. An optimal estimator of the stimulus can subsequently be calculated

from the posterior distribution p(s|r); for particular error measures, such as mean squared error

(or zero-one loss), the optimal estimator is well known and computationally tractable using new

Monte Carlo techniques [102]. Furthermore, Bayesian estimates of the stimulus provide a natural

error bar based on the the width of the posterior distribution.

The limitation of a Bayesian estimate of the stimulus is that they require that the prior

distribution of stimuli p(s) and crucially the generative model p(r|s) be properly specified. Spec-

ifying the correct generative model p(r|s) must however be weighed against the difficulty in es-

timating parameters specifying the model. For instance, parameters of some neural models are

intractable [144], where as the parameters of other models are inefficient [117] of computationally

intensive [217] to estimate. Further complications arise when generating Bayesian estimates of

the stimulus because they involve high-dimensional integrals over stimulus space [83]. In spite of

these hurdles, progress has been made by using low dimensional stimuli [185, 142, 2] and exploit-

ing recursive techniques [333, 44, 19, 326, 42, 145, 275] to compute a Bayesian estimate of the

stimulus.

A new class of statistical models, termed generalized linear models (GLM’s) [186, 215],

has offered several promising new avenues, providing the necessary richness to reproduce the

dynamics and nonlinearities of single neurons [105, 136] and network correlations [217, 298], yet

the parameters of these models can be estimated efficiently using maximum likelihood [215, 298,

19]. For example, one proposed class of GLMs model populations of coupled neurons as a point
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process [69] with an instantaneous firing rate (or conditional intensity function),

λi(t) = exp

(
ki · x(t)+∑

j,s
hi j δ(t− t js)

)
(4.6)

where i indexes the firing rate of each neuron over time t; s indexes all observed spike times up

to time t; ki is each neuron’s linear stimulus filter and hi j is the post-spike effect from the j’th (to

the i’th) observed neuron. In particular, the parameter hii captures each neuron’s refractory effect

following a spike while hi j (for i 6= j) captures the effective pairwise coupling (or correlation)

between neurons. A diagram of this model is in Figure 4.2a. The set of parameters {hi j,ki} does

reflect some (unobserved) biophysical process, but because this is a phenomenological model,

biophysical conclusions derived from estimated parameters must be interpreted with care.

In addition to efficiently estimated parameters, GLMs offer the added benefit that the log-

likelhood function is concave in stimulus space (as well as parameter space) making it possible to

perform Bayesian decoding. Leveraging Monte Carlo techniques permits estimation of Bayesian

MMSE estimator and information theoretic quantities for populations of neurons, tasks otherwise

impossible using non-parametric techniques [231]. An example of the power of these decoding

techniques is demonstrated in simulation in Figure 4.2b in which the optimal stimulus was es-

timated for 1024 simulated RGCs across 16,384 stimulus dimensions. The power of the GLM

framework is that the Bayesian (or optimal) decoder can be computed for populations of neurons

but this must be weighed against several technical limitations. The first issue is that the prior stim-

ulus distribution must be well specified and log-concave [216] – both of these restrictions prevent

the presentation and analysis of natural scenes [278] and restrict attention to exponential distri-

butions. The final issue of course is that the encoding model could be wrong. For instance, if a
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neuron responded linearly to a stimulus (but see, e.g. [54]) and pairwise correlations were entirely

reciprocal (but see Section 2.2), this might be the appropriate model class. However, in spike of

these shortcomings, GLM’s can still provide a good approximation of RGC population activity

(J. Pillow, personal communication). These shortcomings, however, could be remedied with new

extensions incorporating latent common input [158] and other extrinsic factors [298].

4.4 Summary

The field of neural coding has grown tremendously in the last few decades (for early re-

view, see [226]) with the development of many new quantitative tools for the analysis of neural

data [243, 304]. In particular, much focus has shifted from understanding the information content

of a single neuron towards understanding the activity of populations of neurons, termed popula-

tion coding, and this change in emphasis has had a large impact on retinal physiology [190, 96].

In particular, new results have suggested that correlated activity in the retina could reflect special

channels for communicating visual information [191] or provide redundancy to safeguard against

errors in transmitting visual information [239]. While debate and discussion still resides in how

to properly analyze this activity [257, 159], the tantalizing possibility exists that observations of

weakly correlated activity in small scale systems could translate into dominant strategies used by

the early sensory systems to transmit visual information [17, 259, 273].

This chapter is taken from J Shlens and EJ Chichilnisky, (2007) Synchrony and concerted

activity in the neural code of the retina. In RR Hoy, GM Shepherd, AI Basbaum, A Kaneko and

G Westheimer (ed). The Senses: A Comprehensive Foundation, Elsevier Press.



Chapter 5

Structure of Multi-Neuron Firing Patterns in the

Primate Retina

5.1 Introduction

A central challenge in neuroscience is to understand how large circuits of neurons represent

and process information. For decades, studies of neural function were restricted to recordings from

single neurons, with the tacit assumption that the function of complex circuits could be deciphered

with such measurements (see [308]). However, multi-neuron recordings have revealed substantial

interactions that cannot be observed with single-neuron recording. For example, retinal ganglion

cells (RGCs) exhibit strong stimulus-independent correlated activity; the circuits mediating such

correlations and the consequences for visual processing are not fully understood [12, 135, 183,

191, 77, 261, 206, 257]. Such findings suggest interesting possibilities for circuit function, but at

the same time raise a major concern: will it be necessary to record from all the cells in a neural

circuit, and analyze all possible interactions, to determine how the circuit works? If so, a deep

63
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Figure 5.1: Patterns of connectivity. (a) A small random sample of the possible input patterns to a collection
of n = 8 cells. From top to bottom, 7 different hypothetical input patterns are shown, each terminating on
a different collection of target cells (circles). In general, the total number of distinct patterns is on the
order of 2n. (b) All distinct pairwise patterns, superimposed. Each color shows, superimposed, all pairwise
patterns across cells separated by a particular distance. An example of a single pairwise pattern from (a)
is indicated with an arrow. In general the number of distinct pairwise patterns is on the order of n2. In
this simplified diagram, the 28 patterns shown exclude wraparound and symmetric patterns. (c) All distinct
adjacent patterns, superimposed. Each color shows, superimposed, all adjacent patterns consisting of a
particular number of cells. An example of one adjacent pattern from (a) is indicated with an arrow. Again,
28 distinct patterns are shown, in general the number of distinct patterns is on the order of n2. (d) All
possible patterns that are both pairwise and adjacent, superimposed. 7 patterns are shown, a single example
is indicated with an arrow. In general, the number of possible patterns is on the order of n.

understanding of many neural systems may be out of reach for a long time.

In this context, any simplifying principles that can make the problem more tractable are of

great value. To illustrate this, consider the number of possible circuits terminating on a collection

of n neurons. The number of distinct circuits is determined by the number of distinct input patterns

that contribute to the circuit. Examples of distinct input patterns are illustrated schematically for

n = 8 cells in Figure 5.1a. Even with this small value of n, the entire collection of distinct patterns

is too large to depict easily; thus only selected examples are shown. In general, the number of

possible input patterns is ˜2n, a prohibitive complexity: for the collection of several hundred RGCs
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depicted in Figure 5.2a, 2n exceeds the number of stars in the known universe [165]. However,

two simple constraints on connectivity can dramatically simplify the problem. The first is pairwise

connectivity, in which each input pattern contacts only two cells. All pairwise patterns may be

depicted together in a single diagram (Figure 5.1b). The second is adjacent connectivity, in which

each pattern contacts all cells within its extent. This constraint also restricts the possibilities to a

set which can be depicted easily (Figure 5.1c). The pairwise and adjacent constraints each reduce

the number of possible patterns to ˜n2, a huge simplification. With both constraints, the number of

possible patterns is reduced to ˜n (Figure 5.1d). The practical consequences of this simplifcation

are profound: in principle, one can understand the function of the entire circuit simply by recording

from individual cells and pairs of neighboring cells.

The importance of these simplifying principles is illustrated in the retina. Recent work sug-

gests that synchronized firing among RGCs could originate in common input to multiple RGCs,

forming a multiplexed neural code in which the large and distinctive electrical “footprint” of a

presynaptic cell conveys a specific visual message to the brain [191, 261]. Other studies have

also suggested interactions in RGC light responses over large spatial scales [188, 210]. From

such observations, a picture of retinal connectivity emerges in which all possible interactions be-

tween large numbers of cells must be probed before the function of the circuit can be understood

(Figure 5.1a). On the other hand, several lines of evidence indicate that synchronized firing can

originate from pairwise, adjacent interactions: gap junction coupling between adjacent RGCs,

electrical coupling of neighboring RGCs via an intermediate amacrine cell, or common synaptic

inputs from bipolar or amacrine cells to neighboring RGCs [183, 41, 125, 119, 262, 65, 130, 306].

Thus, interactions among multiple RGCs over large spatial scales may simply reflect the combined

effect of pairwise, adjacent interactions (Figure 5.1d), which can be characterized using readily
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available experimental methods.

In this paper we test whether multi-neuron firing patterns are consistent with purely pair-

wise adjacent connectivity, or instead imply more complex circuitry. Until recently, two major

challenges have precluded such an investigation. First, one must be able to record simultaneously

from all cells in a circuit over a substantial area [100, 266]. Second, one must have a framework

within which to assess the significance of higher order interactions among the neurons in a circuit

[8, 258, 259]. We approach these issues with a combination of novel techniques. We apply new

512-electrode electrophysiological recording [100, 166] to the primate retina, which contains 1-2

dozen distinct RGC types that convey complete, parallel images of the visual scene to distinct tar-

gets in the brain, and which closely resembles the human retina [245]. In these recordings, distinct

cell types such as the ON and OFF parasol cells are easily identified (Figure 5.2a) [316, 236]. The

regular mosaic arrangement of these cells in the retina [221, 314, 78], combined with recordings

that sample almost all the cells of each type, make possible a direct test of pairwise and adjacent

connectivity. We perform this test by examining the spatial patterns of electrical activity in differ-

ent cells using the maximum entropy framework borrowed from statistical mechanics [132, 133],

as described in [8, 178, 258, 259]. The results indicate that patterns of electrical activity in groups

of parasol cells may be understood almost entirely based on pairwise interactions, restricted to

adjacent cells in the mosaic. This finding substantially simplifies our understanding of the retinal

circuit.

5.2 Methods

Action potentials were recorded from RGCs in isolated macaque monkey retina perfused

with physiological saline solution, using an array of 512 electrodes [166, 100]. The receptive



67

field of each RGC was identified using reverse correlation with a white noise stimulus. Cells

were segregated into distinct classes according to their receptive field characteristics; ON and

OFF parasol cells were identified by their size and response kinetics [54]. The receptive fields of

all ON and OFF parasol cells in one recording are shown in Figure 5.2a. These form an orderly

mosaic that tiles visual space with minimal overlap, as expected from previous work in primates

and other species [314, 78, 64]. The completeness of the mosaics indicates that the recordings

sampled most of the parasol cells in the 4×8 degree region of retina. For details of methods, see

Appendix A.

5.3 Responses of nearby RGCs are not statistically independent

To quantify functional connectivity in the retinal circuit, spontaneous activity of ON and

OFF parasol cells was recorded in the presence of steady, spatially uniform, photopic illumination.

Interactions between pairs of cells were probed by examining the cross-correlation in spiking

activity, that is, the probability that one cell fired as a function of time relative to the time of

a spike in the second cell. If the two cells fired independently, the cross-correlation would be

flat. Instead, nearby cells of the same type (ON or OFF) exhibited a strong tendency to fire nearly

synchronously, as shown by the pronounced peak at the origin with a width of about 10 ms (Figure

5.2B) . This synchronized firing in the absence of time-varying stimulation (also known as noise

correlations) resembles observations in other species, and indicates functional connectivity due

to common inputs and/or reciprocal connections in the retina [12, 135, 183, 191, 78, 119, 41].

Anti-correlation between ON and OFF parasol cells was also observed (data not shown; [181]),

however, subsequent analysis will be restricted to cells of the same type.

Pairwise synchrony was restricted to nearby cells. To quantify this tendency, spike trains
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functions for pairs of ON and OFF parasol cells shown shaded in black in (a). The firing rate of one cell is
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of ON and OFF parasol cells. For comparison, the black bar near the origin represents the modal separation
between cells in the mosaic (see Methods).
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from pairs of cells were binned at a resolution of 10 ms, yielding binary spike counts A and B as

a function of time. The probability of synchronous firing, P(A = 1,B = 1), was measured, where

1 denotes the occurrence of a spike. This probability was expressed relative to the probability

expected from statistically independent firing using a synchrony index:

S = log2
P(A = 1,B = 1)
P(A = 1)(B = 1)

(5.1)

The index is shown as a function of separation between pairs of cells in Figure 5.2c. Cells

separated by less than several hundred µm, corresponding to about 3 times the average cell-cell

separation in the mosaic, fired synchronously at rates well above chance (S=0). Cells that were

more widely separated did not. In summary, pairs of parasol RGCs in primate retina are function-

ally connected, and this connectivity is universal among cells of like type and spatially localized

[183].

The above observations provide significant constraints on functional connectivity between

RGCs. However, the connectivity of the circuit cannot be understood with these measurements

alone. First, the fact that pairwise synchrony extends over a distance of several cells in the mosaic

(Figure 5.2c) does not require that direct connections reach this far. Instead, synchrony might

be mediated by pairwise interactions, for example, gap junction electrical coupling, propagated

through several intermediate cells [125, 119, 262, 65, 130, 306]. Second, the observed pairwise

synchrony provides no information about higher-order interactions. To illustrate the distinction be-

tween pairwise and higher-order synchrony, consider two hypothetical mechanisms: (a) common

input from a spiking amacrine cell to more than two RGCs [191, 261], (b) direct gap junction elec-

trical coupling between pairs of RGCs (note that these candidate mechanisms are not exhaustive,
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but merely serve as examples). These mechanisms can produce very similar cross correlations in

pairs of cells, but very different concerted firing patterns in multiple cells. Specifically, in case (a),

a single spike in an amacrine cell could induce a spike in most or all of its RGC targets simultane-

ously. However, in case (b), the probability of the entire collection of RGCs firing synchronously

is relatively low. The distinction is fundamental: the mechanism of case (a) has been suggested

as a way to convey distinctive, multiplexed visual messages to the brain [191, 261]. This simple

example illustrates that pairwise synchrony provides only a limited picture of circuit connectivity.

Thus, probing the full extent of neural interactions requires measuring patterns of firing in many

cells simultaneously.

5.4 Triplet synchrony is explained by pairwise interactions

Consider three adjacent ON parasol cells labeled A, B, and C in Figure 5.2a. Each cell pair

exhibits strong synchronized firing (Figure 5.3a). To characterize the joint activity of the three

cells requires extending the notion of cross-correlation to three dimensions. The left plot in Figure

5.3b shows the probability of spikes in all three cells as a function of time shifts ∆T between cells

A and B, and A and C. The three extended ridges represent the preponderance of synchronous

firing in each of the cell pairs, regardless of the activity of the third cell, similar to Figure 5.3a

(for an alternative representation, see [228]). However, the prominent peak at the origin, with a

width of about 10 ms, indicates that all three cells often fired synchronously. The key question is

whether this multi-cell firing occurs at the rate expected from the known pairwise correlation (e.g.

mechanistic hypothesis (b) above), or alternatively, whether more complex patterns of interaction

are required to explain triplet firing (e.g. mechanistic hypothesis (a) above).

To distinguish these possibilities requires a null hypothesis: the probability of all three cells
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Figure 5.3: Triplet synchrony. (a) Cross-correlation functions for each pair from a group of three
adjacent ON parasol cells (labeled A,B,C in Figure 5.2a). Each cell pair exhibits strong synchrony
(S = 1.90,2.05,1.64 from left to right). (b) Three dimensional cross-correlation for triplet synchrony (left),
and maximum entropy pairwise prediction (right). Note that maximum entropy predictions computed for
different time offsets are not statistically independent.
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firing in the same time bin (∆t = 10 ms), given only the pairwise interactions. This is analogous

to the two-cell case, in which the null hypothesis was statistical independence and a synchrony

index much greater than zero revealed a departure from the null hypothesis. However, in the case

of three or more cells, the null hypothesis is not as simple, because the statistical independence

hypothesis,

Pind(A,B,C) = P(A)P(B)P(C) (5.2)

does not account for known pairwise correlations. Ideally, one would compare the observed

data to a null hypothesis which assumes nothing beyond pairwise correlations.

An approach borrowed from statistical mechanics, known as maximum entropy, solves the

problem uniquely [132, 133, 8, 178, 26, 258] (see Methods). Intuitively, the approach is to pose

a null hypothesis that assumes no prevalence of structure in firing patterns above and beyond the

observed pairwise interactions. Specifically, denote the joint distribution of responses of the three

cells by P(A,B,C), the pairwise joint distributions by P(A,B), P(B,C), and P(A,C), and the single

cell firing rates by P(A), P(B), and P(C). Our null model, Pnull(A,B,C), must satisfy the single-

cell and pairwise constraints. This problem is underconstrained because many different models

for the joint activity are consistent with these marginal constraints. The solution is to compute

a joint distribution, Ppair(A,B,C), which has the maximum possible entropy (i.e. least structure)

given that it satisfies the marginal constraints. Ppair(A,B,C) is a complete null hypothesis for

the observed firing patterns1. Note that in the two cell case, maximum entropy is equivalent

to statistical independence: Pnull(A,B) = Pind(A,B). The right panel in Figure 5.3b shows the

1Selecting the maximum entropy model corresponds to selecting the maximum likelihood model from the family of
distributions which satisfy the pairwise constraints; see Methods.
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maximum entropy pairwise prediction for all three cells firing at various time offsets. This model

accounts for the major features of the 3D cross-correlation, qualitatively consistent with the idea

that pairwise interactions alone can explain the temporal structure of synchronized firing in these

three cells.

To test the maximum entropy pairwise prediction quantitatively, analysis was restricted to

patterns of firing in the same time bin for all three cells (e.g. central peaks in Figure 5.3b). While

this analysis does not account for the possibility of complex temporal interactions, it captures

the spatial patterns of synchronous activity which dominate both the pairwise and triplet cross-

correlograms. A pattern index was computed which generalizes the synchrony index (Equation

5.1) to all spike patterns in three cells:

Q = log2
Pobs(A,B,C)
Pnull(A,B,C)

(5.3)

In this expression, Pobs(A,B,C) denotes the observed probability of a particular three-cell

firing pattern. Pnull represents a null hypothesis for the prevalence of different firing patterns.

The index Q indicates how frequently a particular firing pattern was observed, relative to the

prediction of the null model Pnull . Note that in the reduced case of two cells firing at the same

time (A = B = 1) and a null model of statistical independence (Pnull = Pind), Q is equivalent to the

index S in Equation 5.1.

First, the degree of triplet synchronized firing was established by examining deviations

from statistical independence. For this analysis, Pnull = Pind . The black symbols in the left panel

of Figure 5.4a show the value of Q computed for the firing pattern (1,1,1) in many cell triplets

randomly sampled from the mosaic of ON-parasol RGCs shown in Figure 5.2a. The index is



74

200 400 600

0

5

10

200 400 $00 %00 1000
!1
0
1
2
3
4
5

!"" #"" $"" %"" &"""
!&
"
&
!
'
#
(

200 400 600 800 1000
!1
0
1
2
3
4
5

200 400 600 800 1000
!1
0
1
2
3
4
5

OFF ParasolON Parasol

6 cells

3 cells

3 cells
pa

tte
rn

 in
de

x

distance between RFs (µm)

pa
tte

rn
 in

de
x

pa
tte

rn
 in

de
x

B

C

A

200 400 600

0

5

10

Figure 5.4: Pattern index for multi-neuron firing. (a) Pattern index Q (Equation 5.3) for firing pattern
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index using pairwise constrained maximum entropy as the null model. (b) Pattern index for all 8 firing
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symbols as (a). Blue symbols: pattern index obtained using the pairwise adjacent maximum entropy model.
For the latter, analysis was restricted to local groups of cells conforming to selection criteria described in
Methods and containing at least one non-adjacent cell pair.
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plotted as a function of the geometric mean of the distances between each pair of cells in the triplet.

As with the pairwise synchrony index (Figure 5.2c), Q is large for nearby triplets and approaches

zero for widely spaced triplets. Specifically, triplets of parasol cells fired synchronously up to

2Q ≈ 10 times more frequently than expected from statistical independence. Note that triplets

with a large mean distance can sometimes exhibit departures from independence if two of the

cells in the triplet are near one another. Similar results are shown for OFF parasol cells in the right

panel.

Second, to assess whether pairwise interactions alone account for triplet synchrony, the

predictions of the maximum entropy model using pairwise constraints were examined. In this

case, Pnull = Ppair. The values of Q for this model (red symbols) cluster near the horizontal line at

zero, that is, the probability of triplet synchrony is roughly equal to the probability expected from

pairwise interactions. Thus, the excess of triplet firing above what is expected from statistical

independence is accounted for by pairwise interactions.

5.5 All triplet firing patterns are explained by pairwise interactions

To test the maximum entropy pairwise prediction more fully, analysis was performed on

all simultaneous firing patterns for triplets of recorded cells. For example, all cells firing syn-

chronously is represented by (1,1,1), no firing is represented by (0,0,0). The distribution of all

8 possible firing patterns observed in a set of 3 ON-parasol cells is shown in Figure 5.5a. For

comparison, Figure 5.5c shows the firing pattern distribution expected from statstistical indepen-

dence (Equation 5.2), which deviates substantially from the data. Figure 5.5b shows the maximum

entropy pairwise prediction, which captures most of the structure in the data.
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bility distributions for each cell, see Equation 5.2). The likelihood of the data obtained from the pairwise
model was 0.99944, from the independent model was 0.94959, and from the empirical model was 0.99955.
Distributions in (B) and (C) were fitted to interleaved recordings from the same cells, distinct from the data
in (A) (not shown). (D-F) Same as (A-C), but for 5 ON-parasol cells. The likelihood of the data obtained
from the pairwise model was 0.99728, from the independent model was 0.92107, and from the empirical
model was 0.99836.
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To quantify these observations for each firing pattern separately, values of Q were examined

for all 8 possible triplet firing patterns. In Figure 5.4b, distinct values of Q for each firing pattern

in a triplet of cells are shown with different points. The band of points near the top reproduces the

data of Figure 5.4a, that is, the firing pattern (1,1,1). Other patterns occur with greater or lesser

frequency than predicted from statistical independence because strongly coupled cells tend to fire

together or not at all (see also Figure 5.5a,c) The departure from independence in all triplet firing

patterns, evidenced by the large vertical spread of black points, is almost entirely eliminated by

taking into account pairwise interactions (red symbols).

To provide a statistical summary of the performance of the pairwise model across all firing

patterns, the average likelihood of the observed data, Pobs, under different models was computed.

The likelihood indicates the probability of having observed the data given a particular model. In

general, more (less) accurate models exhibit likelihood values approaching 1 (0). To express the

likelihood in units that are invariant with respect to the length of the data sample, the average

(geometric mean) likelihood per time bin was computed (see Methods). The average likelihood

of the data in Figure 5.5a under the independent model (Figure 5.5c) was 0.94959, while the

likelihood under the pairwise model (Figure 5.5b) was 0.99944. Although this difference seems

modest, the multiplicative accumulation of probability over sequential time bins means that from

60 seconds of data collection one may conclude that the probability of the data having arisen from

the pairwise model is more than 10133 times larger than the probability of the data having arisen

from the independent model. In other words, the enormous difference between the predictive

power of the pairwise and independent models is easily distinguished even with modest data sets.

As a benchmark for the likelihood, an empirical model Pemp was obtained from the recorded

frequencies of all 8 firing patterns in a separate segment of recording from the same retina (the
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same recording that was used to fit Pind and Ppair above). Pemp represents an ideal model for the

observed data Pobs given the intrinsic reproducibility of the measurement. For the data in Figure

5.5a, the average empirical likelihood was 0.99955. For comparison to the ratio of likelihoods

above, the ratio of empirical to pairwise model likelihood was smaller than 2 with 60 seconds

of data. Note that the empirical likelihood of the data is not 1, reflecting a combination of finite

counting statistics and possible (small) non-stationarity in the neurophysiological recording. Also,

note that the empirical likelihood is an upper bound for the performance of any model; as expected,

it exceeds the likelihood associated with both the pairwise and independent models. The pairwise

model likelihood is very close to this upper bound, while the independent model likelihood is far

from it.

The average likelihood was examined for all triplets of cells recorded. The dark blue sym-

bols in Figure 5.6a show the likelihood of the observed triplet firing patterns assuming statistical

independence Pind , compared to the likelihood obtained with the empirical model Pemp. Again, the

likelihood under the independent model is much lower, confirming that the firing of RGCs departs

subtantially from statistical independence. In contrast, Figure 5.6b shows that the pairwise model

Ppair produces likelihood values nearly identical to those produced by the empirical model Pemp.

Thus, pairwise interactions explain the frequency of triplet firing patterns nearly as accurately as

a repeated measurement.

5.6 Multi-cell firing patterns are explained by pairwise interactions

The maximum entropy framework is easily extended to test for interactions in larger groups

of cells. For example, for 5-cell firing patterns, the observed firing pattern distribution Pobs(A,B,C,D,E)

is compared to a maximum entropy null model, Ppair(A,B,C,D,E), and a statistically independent
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was further restricted to groups that included at least one non-adjacent cell pair.
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model, Pind(A,B,C,D,E). Figure 5.5d-f shows these three firing pattern distributions for collec-

tions of 5 cells. As in the 3 cell case, the pairwise model prediction substantially captures the

structure of the observed firing pattern distribution, while the statistically independent prediction

does not.

As above, the pattern index was examined to quantify the quality of the predictions. Figure

5.4c shows values of Q for the independent and pairwise models, for groups of 6 cells randomly

sampled from the ON and OFF parasol mosaics of Figure 5.2a. Black symbols reveal large depar-

tures from statistical independence: values of Q as high as ˜10 indicate firing patterns occurring

˜1,000 more frequently than predicted by chance. Red symbols reveal that these departures are

almost entirely accounted for by pairwise interactions. This finding is supported by comparing

the likelihood of the observed firing pattern distribution Pobs under the models Pind and Ppair to the

likelihood obtained from the empirical model Pemp for groups of 4,5,6, and 7 cells2. In all cases,

the large systematic failures of statistical independence (Figure 5.6a) are explained by the pairwise

model (Figure 5.6b).

In summary, pairwise interactions explain almost all of the departures from statistical inde-

pendence in parasol cell signals, with a precision comparable to the reproducibility of the mea-

surements. This implies that the structure of multi-neuron firing patterns may be understood with

high accuracy based on pairwise connectivity, without postulating more complex interactions. A

possible mechanistic interpretation is that frequent multi-cell firing in the retina does not imply

widely diverging common inputs [261], but instead can arise from reciprocal connections between,

or common inputs to, pairs of cells (see Discussion).

2For this analysis and what follows, results from larger groups are not reported because of potential biases due to
high dimensionality of the data (see Methods).
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5.7 Multi-cell firing patterns are explained by pairwise, adjacent in-

teractions

The next step in simplifying our understanding of the circuit is to test whether pairwise

interactions are restricted to immediately adjacent cells, or instead must span larger distances.

The mosaic arrangement of receptive fields, which corresponds to the physical arrangement of

RGCs in the retina [314, 78], provides a uniquely useful measure of adjacency (Figure 5.2a), and

the maximum entropy approach provides a straightforward test of the hypothesis.

Specifically, consider a more restrictive null model for the distribution of firing patterns,

Pad j. This is the unique maximum entropy distribution subject to the single cell constraints

{P(A),P(B), · · ·} as before, and pairwise constraints {P(A,B),P(B,C), · · ·} obtained only from

immediately adjacent cells in the mosaic (see Methods). The pattern index obtained from many

cell groups with this model are shown with blue symbols in Figure 5.4c. To reduce the effect of

adjacent interactions present in the retina but missing in the group of cells analyzed, only groups

that uniformly cover a roughly convex area of the retina were considered (see Methods). As a re-

sult, the points cover only a small range of distances. Trivial cases in which all pairs are adjacent

were excluded. As with the more general pairwise model, the pairwise-adjacent model (turquoise

symbols) accounts for almost all the departures from statistical independence (black symbols).

Figure 5.6c shows that the likelihood of the data Pobs under the pairwise-adjacent model Pad j is

very similar to the likelihood under the empirical model from a repeated measurement Pemp. Com-

parison to Figure 5.6b shows that the pairwise and pairwise-adjacent model likelihoods are nearly

indistinguishable. In summary, pairwise interactions between adjacent RGCs in the mosaic are

sufficient to account for almost all multi-neuron firing patterns.
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(Equation 5.1) in pairs of parasol cells as a function of distance between their RFs (see Figure 5.2). Black
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and model predictions for each cell pair tested. In all panels, large open symbols represent cell pairs that
are adjacent in the mosaic; small symbols represent cell pairs that are not.
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These findings imply that firing patterns in parasol cells can be understood with high ac-

curacy using the simplest possible connectivity illustrated in Figure 5.1d, a dramatic reduction in

complexity. A possible mechanistic interpretation of this finding is that pairwise synchrony be-

tween non-adjacent cells in the mosaic (e.g. Figure 5.2b) do not necessarily imply long-distance

contacts, but instead may be explained by propagation via pairwise connections between adja-

cent cells (e.g. gap junctions). To test the propagation hypothesis, the synchrony index observed

in pairs of cells was compared to the index predicted from the pairwise-adjacent model fitted

to cell groups of size n = 7 (Figure 5.7). Over the entire range of distances between cells, and

across the range of synchrony index values observed, the observed and predicted synchrony index

were mostly similar, for both adjacent cell pairs and non-adjacent cell pairs. This is significant

because in non-adjacent cells, the pairwise-adjacent model only predicts synchrony as a conse-

quence of synchrony with intermediate cells. Note, however, systematic discrepancies are present,

particularly for non-adjacent OFF cells, suggestive of subtle departures from the pairwise-adjacent

model.

5.8 Measuring the accuracy of pairwise and pairwise-adjacent

models

To quantify how accurately the pairwise and pairwise-adjacent models explain interactions

between RGCs, the average log likelihood value L̄ shown in Figure 5.6 provides a natural mea-

sure. First, larger values of L̄ indicate that the observed data are more consistent with the model.

Second, it is easily shown (see Methods) that the value −L̄ is an estimate of the Kullback Leibler

divergence, D, between the observed firing pattern distribution, Pobs, and the model distribution.

The divergence is an information-theoretic quantity that measures the inefficiency of storing the
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Table 5.1: Accuracy of pairwise and pairwise adjacent models. Each numerical entry indicates the
percentage of departures from statistical independence captured by a specific model, for a given stimulus
condition, cell type tested, and time bin size (∆t). Results cited in the text were obtained with ∆t = 10 ms.
The range indicates the mean plus or minus 1 SD across several hundred cell groups tested, each consisting
of 3-7 cells (in the case of the pairwise model) or 4-7 cells (in the case of the pairwise-adjacent model). For
each model, the quantities shown are as follows. Pairwise model: (Dind −Dpair)/Dind . Pairwise-adjacent
model: (Dind −Dad j)/Dind . Empirical model: (Dind −Demp)/Dind .

condition cell type ∆t pairwise pairwise-adjacent empirical
constant illumination ON-parasol 10 ms 98.6±0.5% 98.3±1.0% 99.8±0.1%

5 ms 97.8±0.5% 97.5±1.0% 99.8±0.1%
20 ms 99.2±0.4% 98.9±0.9% 99.7±0.1%

OFF-parasol 10 ms 98.9±0.3% 98.2±1.3% 99.4±0.4%
5 ms 98.5±0.4% 97.4±1.5% 99.0±0.5%
20 ms 99.2±0.3% 98.6±1.3% 99.4±0.3%

white noise stimulus ON-parasol 10 ms 98.6±0.4% 98.4±0.9% 99.6±0.2%
5 ms 97.8±0.5% 97.5±1.0% 99.6±0.2%
20 ms 99.1±0.3% 98.9±0.9% 99.5±0.2%

OFF-parasol 10 ms 98.6±0.5% 98.3±0.9% 98.8±0.7%
5 ms 98.2±0.8% 98.0±1.3% 98.4±1.0%
20 ms 98.6±0.7% 98.3±1.0% 98.6±0.9%

observed firing patterns using a compression scheme optimized for the model probability distri-

bution [60]. Thus, larger divergence values (smaller values of L̄) correspond to a less accurate the

model.

The divergence of the independent model, Dind , quantifies the departures from statistical in-

dependence in the firing of different RGCs. A natural measure of the success of the models is the

degree to which they capture these departures from independence. The index (Dind −Dpair)/Dind

expresses the fraction of the departures from independence accounted for by the pairwise model.

On average, this value was ˜99% (see Table 5.1). Similarly, the index (Dind −Dad j)/Dind ex-

presses the fraction of departures from independence accounted for by the pairwise-adjacent

model. On average this value was ˜98%. As a benchmark, the index for the empirical model,

(Dind −Demp)/Dind , was ˜99%. The latter quantity represents the highest value that can be ex-

pected given the reproducibility of the data. The departure from independence accounted for by
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Figure 5.8: Likelihood test of pairwise and adjacent models with a fine-grained random visual stimulus.
Panels and symbols as in Figure 5.6.

each model was ˜99% of this benchmark value. In summary, both models almost entirely account

for the departures from independence observed in RGC firing.

To test whether these results depend strongly on the time scale of the analysis (10 ms time

bins), analysis was repeated with bin sizes two-fold larger and smaller. The results in Table 5.1

indicate that the predictive power of pairwise and pairwise-adjacent models is essentially constant

across this range of time scales.
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5.9 Multi-cell firing patterns in the presence of visual stimulation are

explained by pairwise, adjacent interactions

The data presented so far were obtained with steady spatially uniform illumination of the

retina, and thus reflect the circuitry that mediates spontaneous synchronized firing in RGCs. How-

ever, it is possible that some contributions to synchronized firing, such as diverging inputs from

amacrine cells, arise only in the presence of visual stimuli that vary over space and time. To test

this possibility, the maximum entropy analysis was applied to data collected in the presence of

the white noise stimulus used for the receptive field measurement (see Figure 5.8). This stimulus

provides a wide range of spatial and temporal variations in an experiment of reasonable duration.

Note that stimuli with a large spatial scale would be expected to introduce higher order corre-

lations by simultaneously activating multiple RGCs. This would confound the analysis because

synchronized firing could be produced by the stimulus, the retinal circuitry, or both [257]. This

problem was avoided by using a stimulus with independently modulating pixels that were small

relative to the parasol cell receptive field. In these conditions, the pairwise model captured ˜98%

of the departures from independence, the pairwise-adjacent model captured ˜98%, and the empir-

ical model benchmark captured ˜99% (see Table 5.1). Again, the models accounted for ˜99% of

the departures from independence that were reproduced by the empirical benchmark. Thus, even

in the presence of a dynamic, spatially varying stimulus, pairwise and adjacent models almost

entirely account for the departures from independence observed in RGC firing.
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5.10 Sensitivity of maximum entropy analysis for detecting

non-pairwise, non-adjacent circuitry

Pairwise and adjacent connectivity clearly can explain most of the observed interactions be-

tween parasol RGCs. However, without direct experimental manipulation, it is impossible to draw

firm conclusions about the structure of retinal circuits that underlies this statistical observation. A

first step, however, is to ask: how sensitive is the maximum entropy analysis to departures from

pairwise and adjacent connectivity? This question was approached by testing the sensitivity of the

analysis to artificial perturbations of the data, in two ways.

First, the analysis was applied to artificial data obtained from a purely pairwise (or pairwise-

adjacent) model, with varying amounts of common input added to simulate departures from the

model. Specifically, a maximum entropy pairwise distribution Ppair was fitted to the observed data

from a group of n = 7 RGCs. A hypothetical common input to all n cells was then simulated,

occurring randomly with probability 0 < r < 1 in each time bin, and generating a spike in each

RGC with efficacy expressed as a probability p. If (x1, . . . ,xn) is the binary firing pattern for n

cells, then define m = ∑i xi to be the total number of spikes in the firing pattern. The common

input alone would produce a particular RGC firing pattern containing m spikes with probability:

Pcommon =


rpm(1− p)n−m m > 0

(1− r)+ r(1− p)n m = 0

Pcommon is the probability distribution of firing patterns created by the non-pairwise common

input. The effect of this common input was simulated by calculating the distribution of firing
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Figure 5.9: Sensitivity of maximum entropy analysis. Each panel shows the sensitivity of the maximum
entropy analysis procedure for detecting a hypothetical non-pairwise, non-adjacent common input. The
hypothetical input occurs at a rate r and causes a spike in each of n = 7 RGCs with a probability p. Results
are shown for common input over a range of values of r and p added to simulations obtained with either the
pairwise (A) or pairwise-adjacent (B) model fitted to data. In each case, the abscissa indicates the average
evoked rate in the simulated RGCs, which is determined by r and p. The ordinate indicates the fraction
of the departures from statistical independence accounted for by the pairwise or pairwise-adjacent model.
Each gray trace shows the results obtained from a single group of ON-parasol cells; red traces indicate the
average across all 20 groups. In each panel, the rate of common input r required to reproduce the average
value observed in the original data was converted to the equivalent evoked rate and is indicated by a dashed
line.

patterns expected from the logical OR combination of spikes from the firing patterns produced

by the common input distribution, Pcommon, and the pairwise distribution, Ppair. This resulting

simulated firing pattern distribution contains structure with systematic departures from pairwise

interactions.

To assess the sensitivity of the pairwise model to common input, the degradation in per-

formance of the model was measured as a function of the putative input rate r in the simulation.

Specifically, a new pairwise model was fitted to the simulated data, and the fraction of departures
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from statistical independence accounted for was computed. In the case of r = 0 (no common in-

put), this value was 100%, because the pairwise model computed from the simulated distribution

exactly reproduces the original Ppair. As Figure 5.9 demonstrates, the pairwise model is indeed

sensitive to common input: this value systematically drops from 100% as the input rate r increases.

To assess the possible degree of common input in the recorded data, the difference between

the fraction of departures from independence accounted for by the empirical and pairwise model

was measured. This captures the failures of the pairwise model that are not accounted for by the

lack of reproducibilty in the data. This difference was then subtracted from 100%, and the input

rate r which produced an equivalent reduction was identified from the curves in Figure 5.9. This

procedure is diagrammed with dashed lines in Figure 5.9 and measures the rate of common input

that is consistent with the observed data.

With a common input of strength p = 1, an input rate of r = 0.0034 (equivalent to an evoked

spike rate rp/∆t in each target RGC of 0.34 Hz) produced a reduction in the fraction of departures

of independence accounted for by the pairwise model equal to the value observed in the data

(Figure 5.9a). The data are not consistent with a common input occurring at a rate higher than r,

because r subsumes any discrepancy between model and data. For comparison, the mean firing

rate of the recorded ON-parasol cells was 10.7 Hz. Similarly, for the pairwise-adjacent model, an

input rate of r = 0.0028 (equivalent to an evoked RGC spike rate of 0.28 Hz) produced a value

equal to the value observed in the data. As expected, for weaker common input (lower p), higher

evoked rates were consistent with the values observed in the data (Figure 5.9b,c). This is because

lower values of p produce a much smaller proportion of multi-cell firing patterns. In summary,

the data indicate that at most a small fraction of the observed spikes in RGCs could be produced

by widely diverging common inputs in the retinal circuit.



90

OFF ParasolON Parasol

pa
irw
ise
-ra
nd
om

pairwise-adjacent
20 40 60 80 10020

40

60

80

100

20 40 60 80 10020

40

60

80

100

pairwise-adjacent

Figure 5.10: Sensitivity of maximum entropy analysis for detecting non-adjacent interactions. Each panel
shows the fraction of departures from independence accounted for by the pairwise analysis restricted to
a random subset of cell pairs, equal in number to the number of adjacent cell pairs, as a function of the
fraction accounted for by the original pairwise-adjacent analysis. Each point represents the results for a
single groups of n = 7 ON or OFF parasol cells. Dashed lines indicate equality.

A second test of the sensitivity of the maximum entropy approach was focused on the

importance of adjacent interactions. The performance of the pairwise-adjacent model Pad j was

compared to the performance of an alternate model. The latter was the maximum entropy dis-

tribution subject to the same single cell constraints {P(A),P(B), · · ·} as Pad j, but with pairwise

constraints {P(A,B),P(B,C), · · ·} obtained from a randomly selected subset of k cell pairs, where

k is equal to the true number of adjacent cell pairs in the group. This pairwise-random model

uses the same number of constraints as the pairwise-adjacent model, but ignores the true spatial

layout of recorded cells. The fraction of the departures from statistical independence accounted

for by the pairwise-adjacent model, (Dind −Dad j)/Dind , is compared to the corresponding statis-

tic for the pairwise-random model in Figure 5.10, for collections of n = 7 ON and OFF parasol

cells. The pairwise-random model exhibits substantially reduced capacity to explain the depar-

tures from independence in the data, spanning a range of performance of roughly 20-95%, rather

than the values of roughly 97-99% exhibited by the pairwise-adjacent model. As expected, a few

of the values approach parity with the pairwise-adjacent model: by chance, some of the random
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samples will coincide with the truly adjacent pairs. These results indicate that the accuracy of the

pairwise-adjacent model is not an artifact of limitations in the analysis, but instead hinges critically

on the true spatial layout of recorded cells, confirming that adjacent interactions are of particular

importance in understanding multi-neuron firing patterns.

5.11 Discussion

Our central finding is that multi-neuron firing patterns in parasol RGCs of primate retina can

be explained accurately by purely pairwise interactions restricted to adjacent cells in the mosaic.

This is consistent with the simplest possible model in Figure 5.1, and provides a parsimonious

functional description of retinal network activity. A major practical implication for future work

is that large-scale visual signals conveyed from the primate retina to brain can be understood on

the basis of measurements from individual cells and pairs of adjacent cells. However, the limits

of this interpretation, and the implications for retinal circuitry, must be approached with caution.

Below, we first discuss several implications, and then return to consider the caveats.

First, the existence of multi-neuron synchrony in large collections of RGCs does not imply

complex circuitry. Previous work suggested that such synchrony reflects widely diverging input

from a presynaptic interneuron, such as an amacrine cell [261]. The present findings indicate

that, at least in parasol cells, functional connections between pairs of adjacent cells can explain

the observed synchrony. Note that this finding does not identify the mechanisms of synchrony.

Previous evidence implicates a combination of mechanisms: direct gap junction coupling between

neighboring RGCs [125, 119, 262, 41, 306], gap junction coupling through intermediate amacrine

cells [65, 130, 306], and chemical synapses providing common input from bipolar or amacrine

cells [181, 41] (and see [77, 125]). The present findings do not refine this picture, instead, they
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reveal the circuit organization of these mechanisms in large groups of RGCs. Specifically, the

following kinds of connectivity are not required to explain synchrony: (1) presynaptic common

input to multiple RGCs or non-neighboring RGCs in the mosaic, or (2) reciprocal connections via

intermediate cells that contact multiple or non-adjacent RGCs.

Second, the present results suggest that spatial scale of connectivity between RGCs is

smaller than the spatial scale of physiological interactions. Specifically, synchronized firing clearly

extended to pairs of cells that are not adjacent in the mosaic (Figure 5.2c), but this synchrony could

be explained by interactions between adjacent cells. Thus long-range contacts, such as gap junc-

tions at the tips of dendritic arbors (which overlap considerably in parasol cells [65]) or signals

propagating through wide-field amacrine cells, are not required to explain synchrony. Instead, syn-

chrony could be caused by propagation of signals through a chain of adjacent cells in the mosaic,

for example, through proximal gap junctions or narrow-field amacrine cells. Again, this finding

does not uniquely identify the mechanism.

There are several caveats to the interpretations above. First, as with any model, the con-

clusions one may draw about retinal circuits are limited by the fact that small non-pairwise or

non-adjacent interactions cannot be entirely excluded in any finite data set. The degree to which

the data quantitatively exclude such interactions are revealed by the sensitivity analysis presented

in Results. Second, there are theoretical limits on what can be concluded about circuitry based

on correlated firing patterns. For example, widely diverging Gaussian inputs can produce purely

pairwise multi-neuron statistics. Third, only spontaneous activity and responses to a simple, fine-

grained visual stimulus (white noise) were examined. It remains possible that more complex in-

teractions, over longer distances, occur in the presence of patterned visual stimulation with more

natural structure, as has been suggested in previous work [188, 210, 261, 148]. A test of this
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possibility will require shuffle-correcting to control for multi-cell synchrony induced by stimuli

covering multiple receptive fields. Fourth, analysis was restricted to parasol cells of the primate

retina, which are efficiently sampled in the present recordings. It remains possible that different

cell types, and retinas of different species, exhibit more complex interactions. Finally, the present

work focused on spatial patterns of activity at a single point in time. It remains possible that com-

plex temporal patterns are introduced by interactions that are not pairwise or not adjacent. These

are important avenues for future work, and the maximum entropy framework can be extended to

address many of these issues.

Although maximum entropy approaches have a long history in several fields, their appli-

cation in neuroscience is fairly new. Recent theoretical work has set the stage [8, 178, 258], and

one group has applied the approach to recordings from salamander and guinea pig retina and cul-

tured cortical networks, concluding that pairwise interactions explain roughly 90% of network

interactions [258, 259]. The present work provides several conceptual and technical advances.

First, analysis was restricted to interactions between known morphological and functional types

of RGC, in macaque monkey retina, and explained a substantially higher proportion of network

interactions (˜98-99%). Second, analysis was restricted to neighboring cells in the mosaic, pro-

viding a spatial constraint on pairwise interactions within each cell type. Third, the model was

cross-validated (constrained by one data set and evaluated on another) to avoid overfitting which

can produce accurate model fits that do not generalize. Fourth, responses were measured in the

presence of a steady, uniform stimulus and fine-grained white noise stimulus, rather than nautri-

alistic stimuli or modulating uniform stimuli; the latter have coarse spatial structure and and thus

would be expected to produce significant departures from pairwise statistics. Finally, sensitivity

analysis provided a bound on interpretation of the model in terms of network connectivity, and
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suggested that even fairly high prediction accuracy (e.g. 90%) can be consistent with substantial

non-pairwise interactions in the retinal circuit.

The present findings suggest an approach to understanding the function of many large cir-

cuits in the brain, to the degree that recording technology permits. For example, the possibility

of complex interactions between cells within and across columns in the neocortex [299, 59], or

between many hippocampal neurons involved in storing spatial memories [321], limits our ca-

pacity to understand these critical circuits. In the present work, an extremely simple pattern of

connectivity sufficed to explain widespread synchrony in the retina. In some systems, such as

gap-junction coupled networks in the thalamus and cortex (see [61]) or inferior olive [167], the

present approach may translate essentially unmodified to test whether electrical coupling can fully

account for network interactions. In other systems, interactions are likely to be more compli-

cated. For example, cortical neurons may exhibit highly specific interactions dependent on layer

and cell type [331, 332], resulting in complex firing patterns. The maximum entropy method is

readily extended to measure the complexity of the underlying circuits. Specifically, hypothesized

constraints on connectivity that emerge from anatomical considerations can be included in com-

putation of the maximum entropy distribution, allowing a direct test of whether they account for

recorded multi-cell firing patterns. For example, the approach could be used to test whether in-

teractions are restricted to small groups of cells (N = 2,3,4, . . . ), or to cells over a specific length

scale such as a cortical column. The approach factors out the influence of signals propagating

through intermediate cells, which otherwise would confound the analysis of group size or spatial

scale. Importantly, the methods can be used with measurements of spontaneous activity in circuits

such as acute slices in which natural exogenous stimulation is not possible. With the increasingly

widespread use of multi-electrode recordings and optical methods in vivo and in vitro in many
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nervous system structures (e.g. [208, 321, 59, 22, 225, 207, 40, 323]), the importance of under-

standing the complexity of network interactions has grown tremendously. Thus, extensions of

the present approach may prove useful for understanding functional connectivity in other neural

circuits.

This chapter is taken from J Shlens, GD Field, JL Gauthier, MI Grivich, D Petrusca, A

Sher, AM Litke & EJ Chichilnisky, (2006) The structure of multi-neuron firing patterns in primate

retina. Journal of Neuroscience, 26(32): 8254-8266.



Chapter 6

Islands of Large-Scale Concerted Activity in the

Primate Retina

6.1 Introduction

Synchrony between pairs of neurons is a prevalent mechanism exploited by early sensory

systems [162] and higher cortical areas [87]. In parallel, the observation of synchrony and corre-

lations in spike trains has provided strong clues about connectivity between pairs of neurons and

neural circuits in general [300]. Historically, these questions have been examined in detail using

paired recording techniques [227], however, with the advent of multi-neuron recording techniques,

these questions must be revisited in the context of more than two neurons [45]. Intuitively, such

recordings should provide vastly improved insight into how information is represented in a neu-

ral population as well as the underlying neural circuitry. Unfortunately, these issues are difficult

to explore because of the inherent high-dimensionality of the data and the difficulty in positing

plausible, constrained models of multi-neuron activity.

96
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Mammalian retina provides an important system to explore such issues because the conse-

quences of circuitry generating multi-neuron correlation has profound implications on the repre-

sentation of visual information. Furthermore, unlike higher cortical areas, the neuroanatomy of

the retina is well characterized and dedicated technologies exist for recording from large popula-

tions of neurons at a single cell, sub-millisecond resolution [166, 266]. Importantly, the electrical

activity of populations of retinal ganglion cells (RGCs) constitute the neural code for visual in-

formation from the eye to the brain [243]. Deciphering the structure of correlated activity in this

population code could have a tremendous influence on how visual information is represented. For

instance, the neuroanatomy of the retina suggests at least two theories on the origin of correlated

activity that have distinct consequences on the transmission of visual information.

Synchrony between a pair of cells could result from an underlying interneuron (e.g. amacrine

cell) and thus reflect a apertured view of a larger pattern of correlated activity driven by this com-

mon input. The “electrical footprint” of an interneuron could multiplex the activity of RGCs to

provide a mechanism for convey fine spatial visual information, spatial constancy or a looming

sensation [191, 189, 148, 129]. Conversely, synchrony could arise from electrical coupling known

to exist between neighboring RGCs [119, 125, 65, 130] and provide a mechanism for sensitivity at

low light levels [65]. Although both mechanisms should produce multi-neuron correlated activity,

the latter through the propagation of activity, an important distinction exists between the observa-

tion of both types of circuits. The former mechanism adds a level of complexity to a neural circuit

because it necessitates simultaneously recording from every RGC downstream of an interneuron to

characterize its activity. The latter mechanism is a rather parsimonious because the local strength

of interactions is sufficient to explain the activity of the entire population. Thus, characterizing the

spatial and numerical scale of correlated activity could provide important constraints about what
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types of circuit mediate multi-neuron activity and the consequences this activity has on coding

visual information.

Examining the complete structure of correlation in large neural populations is impossible in

a finite experiment because the number of potential firing patterns is too large to sample. This tech-

nical limitation, however, does not obviate the need to provide some characterization of large-scale

activity, as few results exist the literature [261, 128] although several predictions exist [259, 273].

We focus our attention on the spatial and numerical scale of simultaneous correlated activity of

complete populations of RGCs of a single known cell type because such statistics can be esti-

mated well in a finite experiment, constrain cell-type specific circuitry, and discern the quality of

quantitative models for this activity.

The characterization of the large-scale activity of a neural population motivates some at-

tempt to model the activity in a parsimonious manner. A parsimonious solution is to search for

models that reduce the inherent dimension of multi-neuron activity guided by some biological

structure. Often, dimensional reduction has been performed to account for temporal correlation

to make the estimation of the model tractable (e.g. [233, 298]). In these cases complex dynamics

of ionic channels are reduced to finite parameterizations of surrogate internal currents. In contrast,

in the case of spatial correlations, anatomical investigations guide dimensional reduction of the

underlying neural circuit. In this case, RGCs are known to couple with gap junctions to physically

adjacent cells of the same type [65, 119] (and other amacrine cells [65, 130]). Deriving a statisti-

cal model exploiting this dimensional reduction to predict the multi-neuron activity is subtle [261]

but by extending previous work [273], we find that such a model can explain the activity of the

complete neural population. This model corresponds precisely to a nearest neighbor Ising model

from statistical mechanics which permits an interpretation of the parameterization and allows us
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to visualize and quantify the strength of the complete network activity.

6.2 Methods

Action potentials were recorded extracellularly from retinal ganglion cells (RGCs) in iso-

lated macaque monkey retina perfused with a physiological saline solution on an array of 512

electrodes [166, 99]. The receptive field of each RGC was identified using reverse correlation

with a white noise stimulus. Cells were segregated into distinct functional classes according to

their receptive field characteristics. ON parasol cells, which project to the magnocellular or visual

motion-sensing, were identified by their size and response kinetics [54].

RGCs of a particular functional class independently tile all of visual space as expected

from previous anatomical studies [312, 310]. This feature is reflected in the nearly hexagonal

lattice of receptive fields outlines derived from Gaussian fits across four retinas (Figure 6.1). The

completeness of these mosaics reflect the fact that nearly all ON parasol cells have been recorded

in this region of 4 by 8 degrees of retina (n = 104, 66, 65 and 54 neurons, respectively). Data

from the first preparation have been used in prior work examining small-scale multi-neuron firing

patterns [273].

6.3 An archipelago of spontaneous multi-neuron firing patterns

A large body of literature has consistently demonstrated that pairs of RGCs are not statis-

tically independent and fire nearly simultaneously even in the absence of visual stimulation [12,

191, 41, 259, 129, 119, 206, 13, 4, 125, 77, 11, 181, 182, 183, 273] (e.g. Figure 6.2c). The ob-

servation of synchrony between pairs of cells, however, is an apertured view of larger patterns of

activity occurring in a neural population. To investigate such questions, we examined the spatial
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Figure 6.1: Islands of large-scale concerted activity in populations of primate ON parasol RGCs across
four preparations (a-d). Each oval represents the 0.9, 1.0, 1.2 and 1.0 SD outline of the Gaussian fit to
the receptive field in each preparation, respectively. If a neuron spikes within a 10ms moment in time, the
receptive field is colored red. Shown are six selected frames out of several hours of activity from each
preparation (Supplementary Material).
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organization of spontaneous activity across a single population of RGCs in response to constant,

photopic light. We visualized the population activity of all ON parasol cells by generating movies

of spiking activity (Supplementary Materials) in which each cell’s receptive field outline was col-

ored red during the presence of a spike within a brief time period (10 ms; width of cross-correlation

in Figure 6.2c). Selected movies frames of population activity are shown across four preparations

(Figure 6.1a-d, respectively).

Figure 6.1 highlights several important features of the simultaneous activity. The most

striking observation is that synchrony between a pair of cells (two cells colored red) is often a

subset of larger patterns of simultaneous activity. In particular, over several hours of recording,

firing patterns extend up to 46 neurons, or 44% of the population. Furthermore, a majority of

the firing patterns occur in spatially localized islands of activity consisting of up to 39 neurons, or

38% of the population. The spatial contiguity of the patterns indicate that the mosaic layout of this

neural population, dictated by the cell type, fundamentally shapes the structure of the correlated

activity.

Qualitatively, this activity bears resemblance to percolating activity often observed in other

physical media [126] exhibiting no pronounced moments in time when a repeated motif or stereo-

typed pattern of activity occurs. In particular, the lack of repeated, stereotyped events is quite

distinct other forms of large-scale, spontaneous in vitro activity observed including neuronal

avalanches [22, 23] and cortical songs [128]. This qualitative description can be made precise

by noting that no distinct boundaries exist in the population activity as indicated by translation

and angular invariance of correlations between pairs of cells. The strength of pairwise correlation,

measured by the correlation coefficient [270] is largely dictated by the distance between the pair of

cells and invariant to cell body location (Figure 6.2a). Likewise, additionally plotting this relation-
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ship as a function of angle between pairs of neurons indicates no direction that is systematically

favored (Figure 6.2b). The translation and angular invariance imply that no sharp boundaries exist

and this activity is spatially isotropic.

Systematically investigating all forms of correlated activity is beyond the goal of this pa-

per, thus we choose to focus our attention on the simultaneous activity that occurs on the time

scale of the width of the cross-correlation (Figure 6.2c). The time scale of 10 ms emphasizes the

significant synchronous peak in pairwise correlations as well as account for the refractory period

(Figure 6.2d). To assess the amount of correlations existing in the spatial structure, we calcu-

late the fraction of second-order correlations accounted for in the simultaneous activity within

10ms. Simultaneous correlations account for an average 83% of the variance about the free firing

rate in cross-correlations (Figure 6.2e). In contrast, simultaneous activity accounts for 42% of

the variance in the auto-correlation (Figure 6.2e) indicating serial correlation between successive

frames of binned time (Supplementary Materials). We ignore these temporal effects and focus the

remainder of this manuscript on characterizing the spatial organization of correlated activity.

6.4 Spatial and numerical scaling of correlations in a complete neu-

ral population

A precise characterization of all concerted activity in an entire neural population requires

examining the relative frequency of every firing pattern. In a population of n neurons there exist 2n

firing patterns making a complete characterization of the four preparations in Figure 6.1 infeasible

in a finite experiment (e.g. 2104 ∼ 1030 patterns). This technical obstacle does not obviate the

need to characterize the activity of large populations of neurons. Thus, we must resort to mea-
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suring features of the firing patterns leveraging our strong prior knowledge about the structure of

the neural activity and the types of retinal circuits which might mediate this activity [310, 245].

Ideally, these features of the firing patterns should be well estimated in a finite experiment, con-

strain hypothesized retinal circuits, sample the frequency of higher order correlations and discern

the quality of quantitative models [273, 259].

Simple features of the distribution permit us to ask what the spatial and numerical scale of

the interactions are. For instance, one could imagine that spatial correlations might extend beyond

our recording techniques if we had used more traditional multi-electrode technology [54], let alone

paired recordings [184]. To address this question we examined how the size of islands of activity

scaled as we systematically sub-sampled the number of contiguous neurons in a mosaic. The size

of an island is defined as the number of contiguous adjacent neurons firing simultaneously (see

Methods). For instance, in the bottom panel of Figure 6.1d, we find islands of size 10 and 3. We

summarize this distribution with the mean island size, expressed as a fraction of the number of

neurons sampled. This statistic asymptotes as one examines larger mosaics indicating that we cap-

ture the spatial scale of the correlated activity using our recording techniques (Figure 6.5a). Note

for comparison the average number of neurons recorded using previous multi-electrode technol-

ogy (n = 20) [54]. These curves lie on top of one another indicating that the size of islands, and

presumably the underlying neural circuits, are conserved numerically across retinal preparations.

Focusing on the spatial and numerical scale of the activity, we examine three features of the

firing patterns from the complete distributions: (1) the number of neurons firing, (2) the number

of neurons composing spatially contiguous islands and (3) the number of active adjacent links.

The first statistic is sometimes termed the summed population code ignoring the identify of which

neurons spiked [240]. The second statistic was discussed previously. An active adjacent link is
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defined as an edge connecting two spatially adjacent neurons in which both neurons are firing.

For example, in the bottom panel of Figure 6.1d, we find 13 neurons firing, islands of size 10

and 3 and 18 active adjacent links. The distribution of these features across the entire recording

are plotted for two preparations in Figure 6.3a-c and 6.4a-c (grey bars). Note that the number of

neurons in the ordinal axis is far less than the total number of neurons in each population. Thus,

at no moment in time are a large fraction of neurons or spatially contiguous neurons firing simul-

taneously. Cumulatively, in the preparation from Figure 6.3a, over 99.9% of the time, no more

than 31 neurons (30% of population) fire simultaneously and no more than 15 spatially contigu-

ous neurons (14% of population) fire simultaneously. (Please note in retrospect that the frames

in Figure 6.1 are judiciously selected to highlight the spatial scale of the activity.) The distribu-

tion of these features place a strong bound on the numerical and spatial scale of any excitatory

circuit driving this population of neurons. If one posits that an underlying interneuron projects to

a spatially contiguous group of ON parasol cells, this circuit drives no more than 15 neighboring

neurons simultaneously [191].

A common benchmark for examining the strength of correlations in a population of neu-

rons is to compare the observed correlations to predictions generated from statistical indepen-

dence [259, 273]. We can generate predictions of these statistics based on the measured firing

rates of all neurons expressed as probabilities. In Figures 6.3a-c and 6.4a-c, (blue curves), the dis-

tribution of these features from a statistically independent model differs sharply from the observed

features. The discrepancy, which can be as large as 10-100 fold, highlights the sensitivity of these

features to discriminate the presence of correlations as well as the strength of the correlations.

While these statistics are useful for characterizing the strength of the network activity,

one might want to look directly at the contributions of higher order correlations [126]. In the
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physics literature, one often makes the distinction of examining n-point correlations to calculate

the strength of n interacting elements. In our case, an n-point correlation corresponds precisely

the frequency at which n neurons fire simultaneously. We examine the spatial scaling of n-point

correlations across multiple sub-mosaics within our population of neurons. In Figure 6.5b we

plot the average and variance of n-neuron correlations across 33 sub-sampled mosaics. The curve

from statistical independence drops sharply in a linear fashion indicative of the fact that statisti-

cal independence vastly and systematically under-predicts the observed n-neuron correlation. The

fact that the n-neuron correlation curve decreases at a lesser rate reflects the strongly correlated

activity only evident in larger populations of neurons. We summarize this information by report-

ing the distribution of linear slopes fit to individual curves, although we note that the observed

n-neuron correlations do not necessarily decay linearly [126]. All of the statistics of large scale

firing patterns (Figures 6.3, 6.4 and 6.5) describe a population of neurons that contains a spatial

organization tightly coupled to the mosaic structure of the anatomy. Furthermore, the strength

of spatial correlations becomes evident at larger populations of neurons as evident in the grow-

ing systematic divergences from statistical independence. The subject of the remainder of these

sections is to attempt to account for this correlated activity.

6.5 Synchrony between adjacent neurons explains spatial activity of

complete neural population

One perspective is that these spatial correlations reflect divergent elements in the retinal

circuit (e.g. amacrine cells) which provide common input on to multiple RGCs and thus reflect

a mechanism for multiplexing visual signals across multiple RGCs [191, 261]. Implicitly, this

hypothesis necessitates measuring from all neurons in this circuit in order to characterize the cor-
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related activity. Conversely, a more parsimonious mechanism is that spatial correlations reflect the

propagation of spiking activity across pairwise circuit elements such as homotypic gap junctions

between neighboring RGCs [119, 125, 65, 130] or even synaptic or electrical synapses between a

single amacrine cell on to effectively two RGCs [65, 130]. One benefit of the latter type of circuit

is that correlated activity between neighboring cells would dictate all observable spatial correla-

tions. In theory, one could measure synchrony between pairs of neighboring cells and “stitch”

together the complete firing pattern distribution. The latter possibility is quite appealing for two

reasons. First, by predicting the complete firing patterns one would see that local interactions

dictate large-scale phenomena. Second, the number of pairwise measurements between adjacent

neurons grows linearly with the number of neurons vastly reducing the complexity of the neural

circuit and the dimension of the correlated firing patterns.

Quantifying such notions has proven difficult as determining how multi-neuron firing pat-

terns should be predicted from pairwise synchrony is subtle [261]. We review such ideas in the

case of three neurons x = (x1,x2,x3). The observed distribution Pobs(x) consists of 8 binary firing

patterns (e.g. triplet synchrony 111). The observed synchrony between each pair of neurons is

quantified by the pairwise distributions P(x1,x2),P(x1,x3) and P(x2,x3). The goal of this exercise

is to predict a joint distribution P̂(x) using our knowledge of P(x1,x2),P(x1,x3) and P(x2,x3) but

shrewdly avoiding assumptions about the prevalence of any additional structure beyond pairwise

interactions. One technique, borrowed from statistical mechanics [132, 133], is to select the distri-

bution which maximizes the randomness, or entropy, but matches the observed synchrony between

pairs of cells. The maximum entropy distribution is
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P̂(x) = argmax
P(x)

[
H[P]+

N

∑
i=1

λi(E[ fi(x)]− ki)

]
(6.1)

where H[P] = −∑x P(x) log2 P(x) is the entropy of a firing pattern distribution P(x) and

λi are Lagrange multipliers enforcing selected constraints (see Methods). This idea of predicting

higher-order correlations from lower-order correlations was introduced in [8] (but see [178]) and

extended in subsequent work [258, 259, 273]. In previous work, we found that the maximum

entropy distribution can predict 99% of the correlations in the complete firing pattern distribution

of up to 7 neurons from synchrony in adjacent neurons [273].

We extend such techniques to examine how well synchrony solely between adjacent RGCs

predict the entire population activity (see Methods). We term this the pairwise-adjacent model

Pad j. Again, we note that we can not compare the full firing pattern distributions Pobs and Pad j

because the number of firing patterns are too large, thus we examine features of these distributions

discussed previously (Section 6.4). In Figures 6.3a-c and 6.4a-c the pairwise-adjacent model (red

curve) predicts all three features of the observed distribution up to an accuracy of 10−3 implying

that cumulatively 99.9% of the firing patterns are accounted for by the pairwise-adjacent model.

This can be verified visually by examining movies simulated from independent draws from Pad j

for comparison to the observed activity (Supplementary Materials). Note that successive frames

in Pad j (but not Pobs) are independent.

A second form of validation is to measure how close Pad j is to the observed distribution Pobs

across all firing patterns in small subsets of neurons. The frequency of firing patterns of subsets of

neurons are well-estimated and not subject to inherent biases (see Methods). In particular, one can

calculate the average likelihood of observing the histogram of all firing patterns observed if the
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Table 6.1: Accuracy of nearest neighbor Ising model for small-scale firing patterns. Each numerical entry
indicates the percentage of deaprtures from statistical independence captured by a specific model, for a
given stimulus condition and time bin size (∆t). The range indicates the mean plus or minus 1 SD across
50 groups tested, each consisting of 7 cells.

condition ∆t pairwise-adjacent fully pairwise empirical
constant illumination 10 ms 97.5±0.8% 98.3±0.6% 99.8±0.1%

20 ms 98.3±0.6% 99.1±0.4% 99.7±0.1%
5 ms 95.6±1.4% 97.1±0.7% 99.8±0.1%

white noise stimulus 10 ms 97.4±0.5% 98.4±0.5% 99.6±0.1%

correct model were Pmodel [273]. The negative logarithm of this quantity is the Kullback-Leibler

divergence Dmodel ≡ DKL(Pobs||Pmodel) and expresses in bits/s the similarity of an observed distri-

bution to a candidate model Pmodel . To assess the success of a particular model, one can calculate

the fraction of deviations from statistical independence Pind accounted for by particular model,

1− Dmodel
Dind

, expressed as a percentage (Table 6.1). Across all four preparations. Pad j accounts for

97.5% ± 0.8% of the deviations from statistical independence in 50 mosaics of 7 neurons from

the population.

Previous work has demonstrated that slight deviations can mask large contributions from

higher order correlations or non-adjacent interactions [273]. To assess this possibility we compare

the full pairwise-adjacent model to two benchmarks: Ppair is a maximum entropy model which

accounts for synchrony between all pairs of neurons [273, 259]; Pemp is the actual data used to

train the maximum entropy models. Ppair and Pemp provide benchmarks, respectively, for mea-

suring the contributions from non-adjacent interactions and for measuring the reproducibility of

the experiment itself (i.e. cross-validation). Across 50 mosaics of 7 neurons, we calculate that

the empirical distribution Pemp and the fully pairwise model Ppair account for 99.8% ± 0.1% and

98.3% ± 0.6% of the deviation from statistical independence, respectively (Table 6.1). Hence,

some of the failures of the pairwise-adjacent model can be attributed to counting statistics and



113

A
firing rate (Hz)

observed

p
ai
rw

is
e-
ad

ja
ce

nt



m
od

el

5 10 15 20

5

10

15

20
B

adjacent non-adjacent

correlation coefficient

observed

p
ai
rw

is
e-
ad

ja
ce

nt



m
od

el

0 0.2 0.40

0.1

0.2

0.3

0.4

pr
ob

ab
ilit

y

error
-0.05 0 0.05

pr
ob

ab
ilit

y

error
-0.05 0 0.05

N = 104

error

pr
ob

ab
ilit

y

-2 0 2

C D N=274 N=5082

Figure 6.6: Validation of pairwise-adjacent model to first and second moments. Comparison of predicted
(a) firing rate and (b) correlation coefficient across cross-validated data sets. Line indicates equality. Dis-
tribution of errors between observed and pairwise-adjacent model for (c) firing rates and (d) correlation
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non-stationarity.

The lack of increased performance in the fully pairwise model suggests that Pad j generates

non-adjacent correlations through the propagation of correlation. We can investigate this question

by assessing the ability of Pad j to match the first and second moments (i.e. firing rate and correla-

tion coefficient) of the observed distribution (Figure 6.6). The variance of errors in the firing rate

and adjacent correlation coefficients reflects the precision of the model fit and natural variation

in cross-validated data (see Methods). Non-adjacent correlation coefficients (n = 5082) exhibit

similar variance but capture the general trend of observed correlation coefficients (Figure 6.6b and

6.6d, right panel), confirming that non-adjacent correlations are recovered eventhough they are not

explicitly accounted for in the pairwise-adjacent model.
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A closer examination of the pairwise-adjacent model does indicate systematic divergences

from the observed firing patterns emerging in low frequency firing patterns that require a pre-

cise characterization of higher-order correlations. In particular, the pairwise-adjacent model fails

to predict the frequency of large numbers of adjacent links and number of neurons firing (Fig-

ure 6.3a,c and 6.4a,c). Although these and other lesser frequency firing events comprise less than

1% of the observed activity, it appears that the pairwise-adjacent model systematically misesti-

mates these large n-correlation patterns. A closer examination of n-neuron correlations confirms a

small but growing prediction error as one examines larger mosaics of neurons (Figure 6.5d). The

emerging systematic failure could arise from misidentified adjacency, inherently non-adjacent in-

teractions or divergent common input.

In summary, we have observed that while not exhaustive, three lines of evidence support the

notion that synchrony between adjacent neurons Pad j captures a majority of observed spatial cor-

relations in the complete neural populations: (1) Pad j predicts a vast majority of several features

of the complete distribution (Figure 6.3a-c, Figure 6.4a-c); (2) Pad j predicts the correlation coeffi-

cient in non-adjacent RGCs and (3) Pad j predicts the complete firing patterns in up to 7 neurons.

We now investigate more closely the structure of the underlying network.

6.6 Identifying the dominant network organization governing popu-

lation activity

The pairwise-adjacent model suggests that correlations between neighboring neurons play

an important role in shaping network activity. We wish to make this role explicit and determine the

network architecture for the complete population of neurons. Ideally, we would like to quantify the
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role neighboring correlations play in determining the activity of the network as well as individual

cells.

The maximum entropy formalism implicitly measures the strength of connections between

neurons in the Lagrange multipliers used to enforce each imposed pairwise synchrony constraint.

Recent theoretical work [259] has demonstrated that a binary distribution with all pairwise con-

straints can be rewritten as

Ppair(x) =
1
Z

exp

(
n

∑
i=1

hixi +
1
2 ∑

i6= j
Ji jxix j

)
(6.2)

where x = (x1, . . . ,xn) is the binary firing pattern across n neurons, Z is a normalization constant,

and {hi,Ji j} are the renamed Lagrange multipliers (see Methods). Computing the maximum en-

tropy distribution is equivalent to computing the maximum likelihood estimate of {hi,Ji j} [62, 26].

Importantly, this distribution is recognized to be a form of an Ising model borrowed from statis-

tical mechanics, whose parameters lend themselves to a physical interpretation: hi the strength

of a local, external field imposed on neuron i and Ji j is the effective interaction strength between

neurons i and j after taking into account the propagation of correlation between intermediary

neurons [259].

We focus our attention on the interaction terms Ji j because this parameter reflects the intrin-

sic connection strength between neurons i and j and collectively encapsulate the network architec-

ture of the neural population. To more closely explore the structure of the network, we compute

the interaction terms Ji j for 100 mosaics of 8 neurons from one retina and plot the distribution of

Ji j (Figure 6.7a; compare with Figure 3b from [259]). The interaction terms are mostly positive

and form a bimodal distribution with one sharp peak centered about zero. To explain the shape
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and variance of this distribution, we plot these interaction terms as a function of distance between

receptive field centers (Figure 6.7b). We find a regular linear decay with distance (R2 = −0.77,

slope =−1.11x10−3 µm−1) and a sharp knee where interaction terms asymptote about zero. The

linear decay in the magnitude of the interaction terms with distance is consistent with the intrinsic

strength being dictated by receptive field or dendritic field overlap between RGCs [184, 65].

A natural question is to ask if the knee in the plot and consequently the two modes of the

distribution is consistent with an established biophysical mechanism [119, 65, 125]. For exam-

ple, if gap junctions between dendritic arborizations in adjacent RGCs subserve a majority of the

correlated activity, then one might predict that only neurons that are physically adjacent should

contain non-zero effective interaction strengths. We test this prediction by labeling whether in-

teraction terms arise from adjacent neurons, as identified with a shared edge in a Voronoi tes-

sellation (Figure 6.7c; see Methods). Importantly, this geometrical distinction marks the knee of

Figure 6.7b and labels each mode of the distribution of Ji j (Figure 6.7a). The variance in the ad-

jacent mode of the distribution (red) is largely explained by the systematic variation of Ji j with

distance (R2 = −0.77). The variance in the non-adjacent mode can be interpreted as estimation

error due to overfitting terms which should be zero. Thus, the pairwise model might provide too

many parameters to account for the observed activity (see Discussion).

We conclude several important points from this observation. The first point is that adjacent

interactions dominate the activity of the network as interaction terms Ji j are much larger than non-

adjacent interactions. The second point is retrospective in that we now recognize why the pairwise-

adjacent model Pad j performs as well as Ppair. By solely enforcing synchrony between adjacent

neurons in the maximum entropy model, Ppair effectively sets Ji j = 0 for pairs of non-adjacent

cells (or equivalently, sets all black points in Figure 6.7a to zero). Thus, the pairwise-adjacent
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model is equivalent to Equation 6.2 with only nearest neighbor interactions; we emphasize that a

nearest neighbor stipulation recovers the precise definition of the Ising model [126]. We visualize

the network of this neural population in Figures 6.3d and 6.4d by drawing a line in red between

receptive fields whose thickness is prescribed by the magnitude of each interaction term. Note

the homogeneity of the network across the entire population except for edge effects due to cells

not recorded. Thus, the network of the neural population is dominated by these nearest neighbor

interactions.

An intriguing prediction suggests that in large networks, the activity of individual cells is

dominated by all network interactions [259]. In contrast, we note that the measured correlation

coefficients are all uniformly small (R2 ≤ 0.4) indicating that no single neuron dominates the ac-

tivity of a second neuron. We test this prediction explicitly in our large populations of neurons

by calculating the average interactions from all other neurons hnet
i = 1

2 ∑i6= j Ji jx j and comparing

this quantity to the internal bias hi. The results are plotted in Figure 6.3d and 6.4d by coloring in

individual cells according to hnet
i − hi. Note that cells in the interior of the mosaic are uniformly

dominated by the activity of their neighboring cells in contrast to neurons at the edge of the mo-

saic (or near a mosaic hole). The edge effects are due to intrinsic biases in excluding neurons not

recorded. We summarize the dominant effect of the network for the entire Ising model by com-

paring hi and hnet
i for neurons internal to the mosaic (Figure 6.7d). Across all four preparations

we find that the activity of individual cells are uniformly dominated by network activity. Thus,

in large populations local adjacent interactions dominate the network as well as the activity of

individual neurons.
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6.7 Discussion

In this manuscript we have provided a first characterization of large-scale spatial correla-

tions of a complete population of ON parasol cells. Accounting for a large fraction of all correlated

activity, simultaneous activity is spatially isotropic and comprised of multiple islands of spatially

contiguous activity. The type of circuits which might mediate this activity are numerous [245],

however the observation of the numerical and spatial scale of correlated activity does place strong

bounds on any excitatory circuit. For instance, if spatial correlations are driven by any excitatory

circuit from an amacrine or bipolar cell, then such a cell does not drive more than ∼ 15 spatially

localized cells of the same type.

The issue of fan-out from an amacrine or bipolar cell becomes subtle in the context of vi-

sual stimulation. It is quite possible that inter-neurons become active in the presence of particular

light levels (e.g. AII amacrine cells) or specific features of the stimulus (e.g. starburst amacrine

cells) and consequently the spatial and numerical extent of the observed correlations might change

dependent on stimulus conditions. Assessing such questions is important but requires controlling

for correlations artificially introduced by the stimulus [227, 212]. As a first step, we examine

these questions under a white noise checkerboard stimulus designed so as not to artificially gen-

erate correlations between RGCs. Under these stimulus conditions the results in Figure 6.3 and

6.4 are largely unchanged (data not shown). More complex stimuli should be tested in future

examinations.

A consummate goal of neural coding research is to find tractable models to explain corre-

lations in observed spike trains. Much research has focused on explaining temporal correlations

through dimensional reduction techniques used to explain channel conductances [233, 298]. This
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work has followed the same spirit in applying dimensional reduction guided by our prior knowl-

edge of the neural circuit to simplify the observation of simultaneous activity in complete pop-

ulations of neurons. In particular, we have exploited the existence of known electrical coupling

between nearest neighbors in the mosaic to create a parsimonious and successful model of neural

activity. Dimensional reduction can be recognized by counting the number of effective parame-

ters in the distribution. In n neurons the distribution consists of O(2n) parameters; the pairwise

model O(n2) and the pairwise-adjacent model O(n). Importantly, the latter model Pad j contains

the same complexity as a model based on statistical independence Pind but is far more accurate at

predicting the firing patterns of a complete population, where small correlations dominate at large

scales. One might be able to reduce further all interaction terms to two parameters characterizing

the slope of the best fit line in Figure 6.7b.

One drawback of this investigation is the lack of time and stimulus (but see [233]). This

drawback could confuse these results because we average over a firing response distribution which

potentially introduces higher order correlations. The success of this dimensional reduction be

obscured in the presence of a stimulus that generates higher-order spatial correlation. For in-

stance, in the presence of full field monitor flicker, in mosaics of 10 neurons, the fully pairwise

model accounts for 95.5% ± 0.5% of the deviations from statistical independence even though

higher order correlations from the stimulus clearly dominate the activity of individual cell (com-

pare with [259]). Note, however, that the pairwise-adjacent model only recovers 81.1% ± 4.6%

of deviations from statistical independence. A naive interpretation would conclude that a fully

pairwise model successfully accounts for the activity but the small 10% could mask substantial

higher-order correlations. Hence, quantifying the failures of these models through the contribu-

tions of higher-order correlations must be interpreted with caution [273].
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The pairwise-adjacent model, or equivalently a nearest-neighbor Ising model, presents an

intriguing result, namely that global structure can be predicted from local interactions. Further-

more, these local interactions dominate the activity of individual cells when taken together. The

nearest neighbor structure of this network is identical to models used to explore phase transitions

in physical media [126, 30, 108] and pattern recognition in associative memory [123, 121] and

suggests that future work might explore whether a real population of neurons exhibit such fea-

tures [296].

A new class of models present opportunity to examine the structure of networks of neurons

while incorporating the stimulus-response relationship and dynamic properties of the neural pop-

ulation [298, 234]. This new class of models will permit one to explore whether the correlation

structure exhibited by a neural population can be explained by network interactions as well as the

stimulus-response relationship. Furthermore, a dynamic model of correlated activity will permit

examining whether complex features such as adaptation [51], gain control [265] or changes to the

structure of noise correlations (M. Chacron, personal communication) can be explained by a static

or adapting network.

This chapter will appear in J Shlens, GD Field, JL Gauthier, M Greschner, A Sher, AM

Litke & EJ Chichilnisky. Islands of large-scale concerted activity in primate retina. to appear.



Chapter 7

Conclusions and Future Directions

The first observations of correlated activity in RGCs [244, 12] followed by the founda-

tional work of David Mastronarde [184] opened the door to a rich field of research from exploring

mechanisms underlying retinal circuitry to exploring strategies for encoding visual information.

Furthermore, the recent advent of large scale recording technology has highlighted how traditional

notions of synchrony bely large scale networks of correlated activity which dominate retinal func-

tion [273, 259]. While this research has refined our understanding of how visual information

is signaled to the brain, this work has had larger implications in the field of neuroscience: pi-

oneering new sets of experimental tools for recording from populations of neurons [166, 266],

inspiring the development of new quantitative tools for the analysis and characterization of neural

populations [216, 273, 259, 304], refining our notions of how sensory information is represented

(efficiently) and processed by neural circuitry [191, 261], and finally highlighting how simple

biological mechanisms can produce complex information processing circuits [96, 190].

This detailed level of investigation has been made possible by earlier foundational work
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characterizing the anatomy, cell types and circuit layout of the retina (reviewed in [245]). This

groundwork made by previous generations of retinal anatomists and physiologists has framed the

types of questions examined currently and structures how we think about the structure of correlated

activity in the retina [273] and what function it subserves [96, 190]. Likewise, we suspect that the

research on the near horizon will provide a similar role to the next decade of work, thus we now

take this opportunity to revisit each section with particular attention to new methods and directions

in investigating correlated activity in RGCs.

Our understanding of mechanisms shaping correlated activity will be profoundly influenced

by new experimental techniques, in particular genetic manipulations, for dissecting neural cir-

cuitry. To be sure, established methods have yet to be exhausted: paired recordings, imaging and

extrinsic stimulation of RGCs should establish the types of chemical and electrical inputs mediat-

ing correlated activity (F. Rieke, C. Sekirnjak, personal communication); genetic knockouts of spe-

cific connexins highlight how electrical synapses influence aspects of correlated activity [74, 306].

Furthermore, new dyes could overcome limits of traditional tracer dyes [124] and elucidate pre-

viously undiscovered electrical synapses. Finally, an entire battery of genetic techniques have

been developed for selectively ablating particular cell types [280], identifying all mono-synaptic

targets from a neuron [320] and hyper/de-polarizing individual cell types through the application

of an exogenous neurotransmitter [289] or brief pulses of light [38, 293, 115]. These techniques

of course rely on expressing proteins in particular cells which ultimately require identification of

cell-type specific promoters. The application of such techniques provide exciting directions for

reshaping our understanding of what mechanisms and circuitry create correlated activity in the

retina.

Improving our understanding of mechanisms of correlated activity shapes our expectations
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about what types of correlations should be observed. Although several works have demonstrated

that correlated activity in populations of neurons can be understood rather parsimoniously [259,

273], many departures from this simple picture could arise in the future. Correlations within spe-

cific cell types are universal [273], however complexities and interdependencies could surface

when examining correlations between identified RGC cell types and even amacrine cells. Adap-

tation in single neuron’s correlations and strength of synchrony could be a novel mechanisms for

visual signaling; observations and mechanisms for such multi-neuron adaptation in retina have

been reported [4]. Evidence from other sensory systems suggest that such adaptation in intrin-

sic correlations optimizes the performance of sensory systems in the natural environment (M.

Chacron, personal communication). How such ideas shape our investigation of correlated activity

will be quite exciting as these open questions will shape the mechanisms searched for and the

types of coding strategies available to the retina.

Discovering new mechanisms and forms of correlated activity will of course drive new

questions about what implications such discoveries have on how the retina transmits visual infor-

mation to the brain. Addressing such questions requires the development and successful applica-

tions of new quantitative methods for the analysis and modeling of populations of neurons. While

new techniques from information theory abound [304], new parametric statistical models provide

particularly exciting directions both because of their efficient tractability in neural data [216, 298]

and numerous extensions for exploring and testing the response of entire networks to real visual

stimuli. These techniques permit examining what types of stimulus features are efficiently repre-

sented in the retina and provide concrete (non-trivial) predictions of how network activity should

adapt in various stimulus regimes. Furthermore, recent extensions to identify sources of latent

common input (e.g. amacrine cells) should increase our ability to infer and predict the structure
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of large scale correlated activity [158].

Explorations into correlated activity in the neural code of the retina is an exciting field

truly at the intersection of applications of traditional anatomy, state-of-the-art electrophysiology

and the forefront of new quantitative methods. While mastering all such techniques might be the

aspiration of all scientists, this hope must be tempered by the reality that steady progress in such

interdisciplinary research requires the diligent collaboration and cooperation of scientists from a

variety of backgrounds (and good funding.)

This chapter is taken from J Shlens and EJ Chichilnisky, (2007) Synchrony and concerted

activity in the neural code of the retina. In RR Hoy, GM Shepherd, AI Basbaum, A Kaneko and

G Westheimer (ed). The Senses: A Comprehensive Foundation, Elsevier Press.



Appendix A

Methods

A.1 Recordings

Preparation and recording methods are described elsewhere [166, 100, 54]. Briefly, eyes

were obtained from deeply and terminally anesthetized macaque monkeys (Macaca mulatta) used

by other experimenters in accordance with institutional guidelines for the care and use of animals.

Immediately after enucleation, the anterior portion of the eye and vitreous were removed in room

light and the eye cup was placed in a bicarbonate buffered Ames’ solution (Sigma; St. Louis, MO)

and stored in darkness at 32-34 degrees C, pH 7.4, for ≥ 20 minutes prior to dissection. Under

infrared illumination pieces of peripheral retina 3-5 mm in diameter, isolated from the retinal

pigment epithelium, were placed flat against a planar array of 512 extracellular microelectrodes,

covering an area of 1,800 x 900 µm. The present results were obtained from 30-60 m segments of

recording. The preparation was perfused with Ames’ solution bubbled with 95% O2, 5% CO2 and

maintained at 32-34 degrees C, pH 7.4.
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A.2 Spike sorting

The voltage on each electrode was digitized at 20 kHz and stored for off-line analysis.

Details of recording methods and spike sorting are given elsewhere [166]. Briefly, spikes were

identified using a threshold of 3 times the voltage SD. For each spike, the waveform of the spike

and the simultaneous waveforms on 6 adjacent electrodes were extracted. Three to five waveform

features were identified using principal component analysis. A mixture of Gaussians model was

fit to the distribution of features using expectation maximization [83]. The number of clusters

and initial conditions for the model was determined automatically using an adapted watershed

transformation [50, 248] . All clusters were visually inspected and when necessary, a mixture of

Gaussians model was instead fit using manually selected initial conditions. Clusters with a large

number of refractory period violations (more than 10% estimated contamination), or spike rates

below 1 Hz, were excluded from further analysis.

A.3 Stimulation and receptive field analysis

An optically reduced stimulus from a gamma-corrected cathode ray tube computer display

refreshing at 120 Hz was focused on the photoreceptor outer segments. The low photopic inten-

sity was controlled by neutral density filters in the light path. The mean photon absorption rate

for the long (middle, short) wavelength sensitive cones was approximately equal to the rate that

would have been caused by a spatially uniform monochromatic light of wavelength 561 (530, 430)

nanometers and intensity 9200 (8700, 7100) photons/µm2/sec, incident on the photoreceptors. For

the collection of parasol cells shown in Figure 5.2a, the mean firing rate during exposure to a

steady, spatially uniform display at this light level was 10.7 ± 3.3 Hz for ON cells and 17.1 ± 3.5
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Hz for OFF cells.

Spatio-temporal receptive fields were measured using a dynamic checkerboard (white noise)

stimulus in which the intensity of each display phosophor was selected randomly and indepen-

dently over space and time from a binary distribution. RMS stimulus contrast was 96%, stimulus

duration was 30 m. The pixel size (60 µm) was selected to accurately capture the spatial structure

of parasol cell receptive fields. For each RGC, the spike-triggered average stimulus was computed;

this summarizes how the cell integrates visual inputs over space and time [176, 52]. An elliptical

2-dimensional Gaussian function was fit to the the spatial profile; outlines in Figure 5.2a represent

1 SD boundary of these fits.

A.4 Identifying adjacent neurons in mosaic

Several statistics (e.g. Figure 6.3b,c) as well as the pairwise-adjacent model Pad j rely on

defining which cells are physically adjacent with one another. This geometrical notion of adja-

cency is meant to identify RGCs whose dendritic arborizations overlap and consequently might

reciprocally couple via gap junctions [65, 130].

In previous work, we developed a parametric routine for determining an adjacency matrix

based on examining the statistics of the distances between receptive field centers (normalized by

the radii and orientation of receptive fields) [273]. In this work we used a non-parametric technique

based solely on receptive field center locations. We defined every point in stimulus space as

“belonging” to a particular neuron if the point is closest to the neuron’s receptive field center. This

definition delineates boundaries shared by typically two receptive field centers bisecting regions

“belonging” to each cell. The set of boundaries demonstrated for one mosaic in Figure 6.7c is
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called a Voronoi tessellation [307] (see also [209]). A pair of cells that share a common boundary

are defined as adjacent. The Voronoi tessellation requires no user-defined notions of distance and

provides a rough approximation of the typical convex hull drawn by anatomists to trace out the

extent of an RGCs dendritic arborization [65].

The Voronoi tessellation provides a reasonable approximation of adjacency but fails in no-

table cases. Importantly, a Voronoi tessellation misidentifies adjacency if a hole exists in the

mosaic due to an unrecorded cell (e.g. Figure 6.3, bottom left). Likewise, the tessellation will

misidentify adjacency between cells along the edge of the mosaic because a boundary between

two cells exists a large distance from the actual mosaic. Thus, we add a secondary stipulation that

adjacency is solely defined by a shared edge within the convex hull of the mosaic receptive field

centers. This, for instance, excludes two cells in the upper right of Figure 6.7c from being labeled

as adjacent.

A.5 Maximum entropy

Maximum entropy methods are used in statistical inference to identify an unknown distri-

bution given several constraints which are insufficient to fully specify the answer. A parsimonious

unique solution is to select the distribution with the greatest entropy consistent with the constraints

[132, 133, 60]. The entropy indicates the average number of bits required to transmit the iden-

tity of samples from a distribution [60]. Mathematically, maximizing the entropy is equivalent to

selecting the maximum likelihood distribution consistent with the observed data [26].

Specifically, suppose the unknown distribution is P(x), where x is a vector. Assume that N
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constraints on the distribution are known:

E[ fi(x)] = ki, ∀i ∈ {1, . . . ,N} (A.1)

where E[·] is the expectation over the unknown distribution and fi(·) is an arbitrary function

of x. The maximum entropy solution is the distribution which maximizes entropy subject to the

observed constraints:

P̂(x) = argmax
P(x)

[
H[P]+

N

∑
i=1

λi(E[ fi(x)]− ki)

]
(A.2)

where H[P] =−∑x P(x) log2 P(x) is the entropy of a distribution P(x) and λi are Lagrange

multipliers. The second derivative matrix (or Hessian) of this equation is negative definite for all

x. Thus, no local maxima exist and the unique global maximum can be found with any constrained

gradient ascent optimization technique [238, 26, 173, 71, 178]. The functional form of the maxi-

mum entropy solution with pairwise constraints is an exponential distribution, which matches the

Ising model in statistical mechanics [117] and the Hopfield model of neural networks [123]. The

multipliers {λi} measure the magnitude and sign of interactions between pairs of neurons; in the

present work the estimated multipliers were universally positive (data not shown).

For the present analysis, spike trains were binned at a resolution of 10 ms; bins with 2 or

more spikes (fewer than 1%) were replaced with 1. The distribution P(x) is over all binary words

x expressed by M cells; this is a 2M element vector (see Figure 5.5). For example, for M = 3 cells,

P(x) is the probability distribution over the words {(0,0,0),(0,0,1), · · · ,(1,1,1)}. The constraint

is a linear function specifying which distribution values to sum to generate the observed marginal
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distributions, e.g. P(1,1) = P(1,1,1)+P(1,1,0). In matrix form all constraints can be expressed

as a N×2M sparse matrix with values of 1 selecting which elements of the joint distribution sum

to form the observed marginals. The exponential growth of the number of words with the number

of cells analyzed necessitates efficient algorithms to estimate the maximum entropy distribution

[26, 173], and effectively limits the number of cells that can be analyzed simultaneously. Any

constrained gradient ascent method can be used to find P̂(x) although in practice, specialized

algorithms exploiting Jensen’s inequality can be faster [26]. The search terminated when the

fractional change in entropy was smaller than 10−8.

A.6 Ising models

In the case of of simultaneous activity the firing pattern distribution of n neurons consists of

a set of binary random variables x = (x1,x2, . . . ,xn). A binary distribution which solely enforces

all pairwise constraints Ppair between individual neurons can be reformulated as the form of the

Ising model (Equation 3.2)by relabeling the absence of a spike as −1 [258, 259]. In this refor-

mulation the Lagrange multipliers {λi} parameterize the distribution and are renamed {hi,Ji j}

to extend a physical interpretation to the parameters. The maximum entropy distribution can be

recast as calculating the maximum likelihood estimate of the Lagrange multipliers (or Ising pa-

rameters). Calculating the maximum likelihood estimate of the parameters of the Ising model is

a special case of estimating the parameters of a discrete Markov random field [137] or equiva-

lently, a Boltzmann machine [121]. Many specialized algorithms exist for estimating paramters

of this class of graphical models using approximations of the likelihood [224, 120] and simulated

annealing [121, 117] — although the problem of estimating these parameters in large models is

recognized to be quite difficult and an area of active research [327].
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A drawback of these methods is that most optimization techniques require an explicit calcu-

lation of the probability distribution, which in turn requires normalizing across all possible firing

patterns. In the case of simultaneous activity the firing pattern distribution across n neurons con-

sists of a set of binary random variables x = (x1,x2, . . . ,xn) with over 2n elements. Hence, deter-

mining the normalization constant across the firing pattern distribution for the entire neural popula-

tion (e.g. 2104 ∼ 1030 patterns) is infeasible. Estimating the parameters of the Ising model requires

a method to make draws from the distribution according to the unnormalized probability distri-

bution. This can be achieved using Markov Chain Monte Carlo (MCMC) techniques [146, 102]

which can be exploited to draw samples from an unnormalized distribution. Traditional MCMC

sampling, however, can be laboriously slow because severe auto-correlation can exist between

individual draws from the distribution. Thus we use a specialized form of sampling for Ising

models [288] that exhibits better mixing properties.

To estimate the parameters of the Ising model at large n we employ MCMC to draw samples

of our estimated distribution and calculate the complete likelihood gradient for each set of param-

eters [224]. To assure appropriate convergence, we employ an adaptive learning rate a learning

rate that systematically decreases as a function of the number of trials, while in parallel increment-

ing the number of samples from the MCMC procedure to improve the fidelity of the likelihood

gradient. This procedure amounts to a form of simulated annealing commonly employed in neu-

ral networks literature [117]. These learning procedures are validated by the ability of the Ising

model to reproduce the selected constraints from the observed probability distribution. In the case

of the pairwise-adjacent model Pad j, this amounts to identifying to matching the firing rates of

individual neurons and the correlation coefficient between adjacent neurons (Figure 6.6c, 6.6d,

right panel). Note that some error still exists reflecting the convergence criterion selected and the
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variation across cross-validated data sets.

A.7 Kullback-Leibler divergence and likelihood

The Kullback-Leibler (KL) divergence is a measure in statistics [60] that quantifies in bits

how close a probability distribution p = {pi} is to a model (or candidate) distribution q = {qi},

DKL(p || q) = ∑
i

pi log2
pi

qi

DKL is non-negative (≥ 0), not symmetric in p and q, zero if the distributions match exactly and

can potentially equal infinity. A common technical interpretation – although bereft of intuition

– is that the KL divergence is the “coding penalty” associated with selecting a distribution q to

approximate the true distribution p [60].

An intuitive understanding, however, arises from likelihood theory - the probability that

one observes a set of data given that a particular model were true [83]. Pretend we perform an

experiment to measure a discrete, random variable - such as the simultaneous binned firing patterns

of multiple neurons. If we perform a long experiment and make n measurements, we can count the

number of times we observe each type of firing pattern, a histogram c = {ci}, where n = ∑i ci. This

histogram measures the relative frequency of each type of firing pattern. If this experiment lasts

forever, the normalized histogram counts ci
n reflect an underlying distribution pi = ci

n . Pretend

we have a candidate model for these firing patterns, the distribution q. What is the probability

of observing the histogram counts c if the model q actually generated the observations? This
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probability is given by the multinomial likelihood [83],

L ∝ ∏
i

qci
i

To gain some intuition, imagine that we performed n = 1 measurements - in this case, the like-

lihood would be the qi attributed to the single observed firing pattern. The likelihood L shrinks

mutiplicatively as we perform more measurements (or n grows). Ideally, we want the probability

to be invariant to the number of measurements - this is given by the average likelihood L̄ = L
1
n , a

number between 0 and 1. Matching intuition, as we perform more measurements, if ci
n → qi, then

the average likelihood would be perfect, or L̄ → 1. Conversely, as ci
n diverges from the model qi,

the average likelihood L̄ decreases, approaching zero. The link between likelihood and the KL

divergence arises from the fact that if we perform an infinite number of measurements (see [273];

Section 12.1 of [60]),

DKL(p || q) =− log2 L̄.

Thus, if the distributions p and q are identical, L̄ = 1 and DKL = 0 (or if L̄ = 0, DKL = ∞). The

central intuition is that the KL divergence effectively measures the average likelihood of observing

(infinite) data with the distribution p if the particular model q actually generated the data.

The KL divergence has many applications and is a foundation of information theory and

statistics [60]. For example, one can ask how similar a joint distribution p(x,y) is to the product of

its marginals p(x)p(y) - this is the mutual information, a general measure of statistical dependence

between two random variables [60, 271],

I(X ;Y ) = ∑
x,y

p(x,y) log2
p(x,y)

p(x)p(y)
(A.3)
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The mutual information is zero if and only if the two random variables X and Y are statistically

independent. In addition to its role in mutual information, the KL divergence has been applied

extensively in the neural coding literature, most recently to quantify the effects of conditional

dependence between neurons (Section 4.2) [258, 159, 9] and to measure how well higher order

correlations can be approximated by lower order structure (Section 3.5) [259, 273].
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