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Abstract 
Contextualized through the lens of field-wide debates of 

representation theories and embodiment theories which dictate 
assumptions about the nature of cognition, this dissertation presents 
research on two cognitive phenomena, representational shifts and event 
segmentation. Both phenomena intersect traditional divisions of cognitive 
processing spanning perception, attention, memory, and decision-making. 
A fundamental challenge in the behavioral cognitive sciences is designing 
experiments and contexts that elicit behavior that reflects cognitive 
processes. The title phrase, “Giving Responses Dimension,” reflects the 
strategy employed across the empirical chapters to elicit more informative 
behavior through dimensional responses, either by projecting discrete 
responses into abstract conceptual color space in the case of 
representational shifts, or by movement dynamics of responses extending 
over physical space with hand/mouse movements. 

The representational shift experiments show contextual influence 
on memory bias. In a rapid study-to-test paradigm, memory for hue is 
biased away from the basic color category of that hue. At a longer delay, 
memory is biased toward the color category of the hue. Labeling the 
category of a hue mitigates the size of the bias toward the category. Being 
forewarned of the memory test produced the same reduced bias. In both 
situations, the experimental context creates cues indicating which aspects 
of perceptual information may be most useful in the future. Memory was 
then biased to retain those aspects of the perceived items expected to be 
useful. 

The event segmentation experiments examine the decisions that go 
into responding to the event segmentation task. When asked to segment a 
video by marking off the end of “natural and meaningful activity units” of 
different sizes, people have some degree of consistency with themselves 
and others in terms of response timing. Quantifying this consistency has 
been the major mode of analyzing results from this task in the literature. 
By adding continuous response measures on top of or instead of the 
discrete responses, the decisions underlying those responses can be 
examined. The changes to the paradigm do not alter the basic patterns of 
individual trial to group segmentation consistency. When asked to predict 
the end of an activity unit, segmentation responses are predicted by the 
responder over a third of the time. When the segmentation response itself 
is continuous, participants employ diverse response strategies as well as 



 

 xviii 

exhibit sub-response threshold movements toward a segmentation 
response in addition to the full segmentation responses. These novel 
measures, reflecting decisions or reasoning about decisions, provide new 
insight into the behavior underlying a task with substantial importance for 
theories of event cognition. 

This dissertation, Giving Responses Dimension: Representational 
Shifts in Color Space and Event Segmentation Decisions in Physical Space 
Over Time, is submitted by Laura J. Kelly in 2018 in partial fulfillment of 
the degree Doctor of Philosophy in Cognitive and Information Sciences at 
the University of California, Merced, under the guidance of dissertation 
committee chair Evan Heit. 



 1 

Chapter 1 
 
Introduction 
 
1.1 Beyond Object Metaphors 
 

Does the language researchers use to discuss cognition bias the 
thoughts the researchers have about how cognition functions? This is a 
cognitive scientist specific version of the Whorfian hypothesis (Whorf, 
1956), the idea that a speaker’s habitual language affects his or her 
habitual thought processes. More broadly than just language, the idea of 
habitual experience creating habitual bias in perception, memory, and 
other developmentally plastic processes in each unique cognizer has been 
a guiding principle in how I approach my own research. 

Cognitive scientists are as subject to the influence of our own past 
experiences as our participants are. Only carefully examining the 
assumptions that go into scientific methods and theories allow us to push 
past incorrect, but ingrained, theories. Churchland (1981) goes so far to 
suggest progress in the cognitive sciences depends on researchers 
divorcing themselves from folk psychology terms. The basic divisions of 
cognition such as perception, attention, memory, reasoning, and language 
capacity are divisions that were drawn and cemented in the lexicon before 
we developed a scientific understanding of underlying mechanisms. 
Developing a unique scientific language could codify a change in the 
default conception of cognition and its functions. I will not propose a new 
language for cognitive science; this is a change that is slow and ongoing. 
In this dissertation, I will be questioning assumptions many of which 
default to treating cognition as divided into processes along the tradition 
division lines just outlined. In the present empirical work, these 
assumptions are investigated through the use of a finer-grain of 
measurement than previous research on the phenomena of interest, 
representational shifts and event segmentation. Cognitive science is 
currently evolving to be less the study of isolated components of a broader 
cognitive system and instead to be more focused on interactions between 
the traditionally defined processes. Referring to processes as nouns, e.g. 
the perception or the memory, gives the impression that there is a thing, a 
delineable item that is the cognitive process or result thereof. But what 
would that thing be? A memory is not a piece of mental paper that can be 
read, filed, retrieved, and re-read. A memory is a complex cascade of neural 
activation patterns unfolding over time. The thing we call a memory is the 
complex relationship between neural connections, transient firing activity, 
and millions of other memories making use of the same neural hardware. 

By using traditional component centered theoretical language, 
researchers may be biasing themselves to be too narrow in their 
assessment of the range of possibilities about the phenomena they study. 
If a researcher considers a memory to be an object-like representation in 
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the mind, then there are certain properties of objects that will be assigned 
to it, the memory, such as molecular cohesion and physical permanence 
that are not necessarily part of a cognitive object. If memory is instead 
thought of as a process, a cascade of neural firing in complex sequences 
and with complex consequences, the realm of measurable cause and effect 
around memory changes. From this perspective, drawing a line around 
some aspect of the larger cognitive system may be necessary for limiting 
the scope of investigation but such a defined section of cognition is not 
interesting in and of itself without the context of the rest of cognition. The 
line between perception and memory or perception and action is fuzzy at 
best and in some circumstances may not be a relevant distinction. 

The language of cognitive science is, however, currently very 
categorical in nature. If a researcher wants to be in conversation with other 
researchers, they need to use the common parlance. As much as cognition 
may not be as discrete as object metaphors imply, we need to discuss 
aspects of a cognitive system in some way. Therefore, the in this 
dissertation are frequently discussed using the terms assigned to them by 
other researchers. These terms are often object metaphors as is the case 
with the two theoretical phenomena under empirical study, 
representational shifts and event segmentation. 
 

1.2 Perception and Memory 
 

Perception is a process of taking sensory input and making sense of 
it in some way - combining individual signals from individual receptor cells 
into coherent patterns that hold meaning for the perceiver. For example, 
vision begins with electromagnetic waves being detected by cells in the 
eyes that are sensitive to particular wave amplitudes. Inferred from the 
signals sent from these cells, humans perceive color, shape, orientation, 
and more. As perceptual processing continues, the combination of co-
occurring low-level inferences produce more complicated higher-level 
inferences such as motion and depth. Perception in this way can be viewed 
as a dimension reduction process on new information. 

Memory is the information signal that has been transduced into 
neural activation patterns. Memory has traditionally been broken down 
taxonomically into different forms and stages. Initial signals are 
considered sensory memory. After perceptual processing, signals are in 
working memory until they are stored in long-term memory of which there 
are many types. Any further processing that happens on the signals are 
considered memory processes, for instance, memory maintenance, 
storage, and retrieval. 

Perception and memory are integral to each other. In the way I’ve 
presented it above, perception is a process that results in memory. But 
during perceptual processing, the signals are already sensory memory. 
Further, what is the difference between experiencing the external world vs. 
experiencing the reactivation of long-term memories? Is retrieving 
memories not perception of a sort as well? In the case of memory retrieval, 
the input to working memory processing is high dimensional neural 
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activations rather than exclusively low-level sensory input, but the 
processing in both cases involves finding meaningful patterns from the 
input. In fact, it is well established that reactivated memory is malleable 
and subject to change, resulting in altered memories later mistaken as 
memory of the original perception (Loftus & Palmer, 1974; Nadel, Hupbach, 
Gomez, & Newman-Smith, 2012). This is evidence of new pattern 
identification with input from long-term memory. Yet, likely because of 
traditional delineations of cognitive stages and processes involving largely 
independent memory retrieval processes, input from the senses or from 
memory are treated as substantively different. 

The empirical work in this dissertation falls in this area of joint 
perception/memory. With representational shifts, in Chapters 3 and 4, 
color hues are perceived, categorical labels are perceived and generated, 
category knowledge is retrieved, and, finally, newly stored memory of the 
hues is tested for accuracy. With event segmentation, in Chapter 6, ongoing 
visual and auditory stimuli, videos of simple activities, are perceived and 
broken up into meaningful parts by participants. This segmentation of the 
videos depends on both the newly perceived information and the 
perceiver’s existing knowledge of how the activities being depicted are 
usually conducted. These empirical investigations span multiple categories 
of cognitive processing that have traditionally been studied separately. 

 

1.3 Dissertation Roadmap 
 

1.3.1  Theoretical Issues of Representation and 
Embodiment 

 
Chapter 2 presents two core theoretical issues within the cognitive 

sciences: representation and embodiment. The diversity of views on these 
topics will be reviewed in detail. Representation is retaining information in 
mental symbols that represents, or stands in place of, aspects of the 
external world. Many researchers think it is a basic and necessary part of 
any cognitive theory while others question the concept’s utility. 
Embodiment is the extent to which a cognizer’s physical implementation - 
its brain, its body, perhaps even its environment - affects its cognition. The 
chapter reviews the three major types of embodiment theories according 
to Lawrence Shapiro’s taxonomy: conceptualization, replacement, and 
constitution embodiment (Shapiro, 2011). Additionally, there are 
researchers who reject embodiment completely. The chapter contains an 
integrative discussion of how some theoretical stances on each issue are 
complementary and others are mutually exclusive. Finally, the chapter 
concludes with a review of a currently active debate over whether 
embodied representation constitutes a paradigm shift in the Kuhnian 
(Kuhn, 1962) sense. 

 

1.3.2 Representational Shifts 
 

At any moment, we are perceiving a range of sensory information - 
visual, auditory, tactile, etc. Some sensory information is retained in 
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memory while other information is forgotten. As mentioned above, it is 
well known that human memory is often not accurate to objective records 
of past experiences (Loftus & Palmer, 1974; Nadel et al., 2012). Quantifying 
how memory is biased in comparison to original experience can provide 
insight into how information is distorted by the human cognitive system. 
Chapters 3 and 4 pursue this objective, reporting empirical investigations 
of the interaction between visual perception and online labeling through 
experimental testing of memory accuracy. Specifically, the chapters test 
claims of the Representational Shift Hypothesis (Lupyan, 2008): 
 

… when category labels are activated, they produce top-down 
feedback that activates visual features stored with the category on 
previous occasions. The features activated by top-down processing 
become coactive with features activated through bottom-up 
processing. As activation patterns continue to cycle, the active visual 
features settle on those that are consistent with both bottom-up input 
from the exemplar and top-down input from the category 
(McClelland & Rumelhart, 1981). This results in a mismatch between 
the stored representation of the studied item and the retrieval cue 
(the studied item presented during the testing phase), which in turn 
should produce more ‘new’ responses for old items (i.e., a lower hit 
rate). When category labels are less active, or when the top-down 
activity is interfered with, the representation of the visual input is 
closer to the bottom-up information presented than when labels 
produce top-down inferences about the category’s features. This 
results in a closer match between the studied item and the item 
presented at test (the retrieval cue), thus resulting in a higher 
proportion of hits (p. 349). 

 

The hypothesis explicitly claims that memory for sensory 
experience is altered by the concurrent labeling of a category during the 
original sensory experience. The difference occurs during the encoding of 
the memory trace. According to the hypothesis, a trace should be more 
biased away from the original percept if the category was concurrently 
labeled than if it was not. The bias is relative to category structure. These 
representational shifts are suggested to be in the direction of being more 
representative, or more typical, of the category. 

The empirical work presented in Chapters 3 and 4 use experimental 
designs that aimed to collect more graded information than had been 
collected in the original experiments. Within the well quantified dimension 
of color hue, a pattern of multiple lures that could be confused for the 
target hues were selected. The distribution of sensitivity scores, a measure 
of confusability of lures with the target, along a typicality gradient, the 
directional distance in hue from lure to target relative to better examples 
of the color category, allows for inferences about the direction and 
strength of memory test performance shifts from a balanced error pattern. 
Additionally, Chapter 3 addresses the encoding claim, finding little 
evidence of an effect of labeling on sensitivity by typicality soon after 
initial encoding. Chapter 4 addresses the labeling claim at a longer 
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timescale finding an effect. However, the effect is one of less bias when 
hues were labeled rather than more. 

Chapter 3 is published in Frontiers in Psychology (Kelly & Heit, 
2014). Chapter 4 is published in the Journal of Experimental Psychology: 
Learning Memory and Cognition (Kelly & Heit, 2017). Below are the article 
abstracts. 
 

1.3.2.1 Representational Shifts Made Visible: Movement 
Away from the Prototype in Memory for Hue1 

 
In four experiments, a total of 205 participants studied individual 

color patches and were given an old-new recognition test after a brief 
retention interval (0.5 or 5.0 s). The pattern of hue sensitivity (d′) revealed 
hue memory shifting away from the prototype of the hue’s basic color 
category. The shifts demonstrate that hue memory is influenced by 
categorization early in processing. The shifts did not depend on intentional 
categorization; the shifts were found even when participants made 
preference ratings at encoding rather than labeling judgments. Overall, we 
found that categorization and memory are deeply intertwined from 
perception onward. We discuss the impact of the results on theories of 
memory and categorization, including the effects of category labels on 
memory (e.g., Lupyan, 2008). We also put forward the hypothesis that 
atypical shifts in hue are related to atypical shifts that have previously 
been observed in face recognition (Rhodes et al., 1987). 
 

1.3.2.2  Recognition Memory for Hue: Prototypical Bias 
and the Role of Labeling2 

 
How does the concurrent use of language affect perception and 

memory for exemplars? Labels cue more general category information than 
a specific exemplar. Applying labels can affect the resulting memory for 
an exemplar. Here three alternative hypotheses are proposed for the role 
of labeling an exemplar at encoding: (1) labels distort memory towards the 
label prototype, (2) labels guide the level of specificity needed in the 
current context, and (3) labels direct attention to the label’s referent among 
all possible features within a visual scene. University students were shown 
hues on object silhouettes that they either labeled with basic color 
categories, made preference judgments about, or indicated the animacy of 
its category. Experiments 1 and 2 established that there are response shifts 
toward the category prototype regardless of labeling showing a pervasive 
                                                
1 The official citation that should be used in referencing this material is 
Kelly, L. J. & Heit, E. (2014). Representational shifts made visible: Movement 
away from the prototype in memory for hue. Frontiers in Psychology, 5. 
2 Copyright © 2017 American Psychological Association. Reproduced with 
permission. The official citation that should be used in referencing this 
material is Kelly, L. J. & Heit, E. (2017) Recognition memory for hue: 
Prototypical bias and the role of labeling. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 43, 955-971. 
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influence of category knowledge on response bias. They also established 
an effect of labeling whereby labeling decreases the magnitude of shifts. 
Experiment 3 and 4 investigated the uniqueness and necessity of language 
in causing the decreased shift – neither of which proved to be the case. 
Overall, category-relative bias was pervasive and labeling appears to direct 
attention to the feature resulting in less biased memory. The results 
highlight that the context at encoding affects how memory is formed. 

 

1.3.3 Event Perception 
 

Event perception is the extraction of meaningful structure from 
changes in stimuli over time. One way to quantify this structure is to 
segment ongoing activity into meaningful parts. A prominent account of 
this process is presented in the Event Segmentation Theory (Zacks, Speer, 
Swallow, Braver, & Reynolds, 2007), a theory specifying the structure of 
processing streams relating new sensory input to existing knowledge and 
predictions of that sensory input on the part of the perceiver as events are 
experienced in real time. While the theory will be presented in detail in 
Chapter 5 “Event Segmentation Theory and Empirical Evidence Review,” 
below are the major implications of the theory in the authors’ own words: 
 

The principal novel features of EST are that event models maintain stable 
representations of “what is happening now” and are updated based on 
transient increases in perceptual prediction error. The theory has several 
implications for perception and cognition: 

1. Most important, the theory implies that the segmentation of ongoing 
activity into discrete events is a spontaneous concomitant of ongoing 
perception and does not require conscious attention.  

2. Event segmentation is a mechanism of cognitive control. The gating 
mechanism resets event models and thus is the means by which the 
cognitive system exerts control over the disposition of processing 
resources and the updating of working memory.  

3. Event segmentation happens simultaneously on multiple timescales, 
though an observer may attend to a particular timescale. 

4. Event segmentation incorporates information from multiple senses. 
This results from the fact that the mechanisms in EST are general 
across sensory modalities and incorporate information from multiple 
modalities. 

5. Event segmentation depends on change. When the world is static, 
prediction is easy.  

6. Event segmentation depends on prior knowledge. Event models are 
constructed through the interaction of sensory input with stored 
knowledge (including the knowledge stored in event schemata).  

(Zacks et al., 2007, p. 277) 
 

This is a wide-reaching theory. The theory’s “novel features” of 
stable representations of current experience and discrete updating of 
those representations based on prediction error are based on a strongly 
representational theory of cognition. This theory is incompatible with less 
strong views of representation. The first two implications are bold claims. 
Human sensory experience is continuous, only limited by collective firing 
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rates of sensory receptor cells. As mentioned above, low-level perception 
is a process of dimension reduction, extracting patterns from sensory 
input with each reduced pattern feeding into another layer of reduction. 
The implications suggest the process of reduction ends with comparison 
to an event model and the signal only continues on to contribute to higher-
order processing if sufficiently different from the existing event model. 
The theory suggests that the world is perceived in component parts and 
these discretized scenes are what become memory. 

Chapter 5 reviews the EST in more depth, as well as the empirical 
evidence for ongoing segmentation, hierarchical structure, and memory 
effects. Each of the theory’s specific claims and corresponding evidence on 
these topics are evaluated relative to the theoretical dimensions of 
representation and embodiment presented in Chapter 2. 

Chapter 6 is an empirical investigation of the event segmentation 
task using continuous response measures to collect more information 
about the segmentation decisions made while performing the task. 
Specifically, participants’ predictions of event boundaries are elicited in 
Experiment 1 using a continuous response slider and the action dynamics 
of the segmentation decision are collected in Experiment 2 through 
tracking segmentation responses produced by dragging a slider across a 
track. The slider represents a novel use of mouse tracking in a single 
dimension rather than the more frequently utilized two dimensions. Mouse 
trajectories over space and time can be used to infer information about a 
participants’ decision-making from metrics such as velocity, acceleration, 
pauses, and reversals (Spivey, Grosjean, & Knoblich, 2005; Dale, Kehoe, & 
Spivey, 2007). 

Everyday perception is dynamic and extended in time. While the 
approach to measuring representational shifts employed in Chapters 3 and 
4 is more graded and less discrete than a target and a single lure used in 
previous research, the basic phenomenon under study is memory for a 
single feature, hue, of static stimuli. The measurements used to get a 
graded sensitivity distribution were forced choices between discrete 
options rather than direct graded responses. Following the same principle 
of gathering a finer-grained dependent measure, the experimental design 
implemented in Chapter 6 includes dynamic stimuli and a continuous 
response format, allowing for directly measured graded responses, 
increasing ecological validity. 

A future version of this work will be submitted for publication with 
my co-author Evan Heit. The following section is an abstract for the 
empirical chapter. 
 

1.3.3.1 Event Segmentation Decisions 
 

Does the event segmentation task reflect automatic segmentation in 
perceptual processing? When asked to segment a video by marking off the 
end of “natural and meaningful activity units” of different sizes, people 
have some degree of consistency with themselves and others in terms of 
response timing. Quantifying this consistency has been the major mode of 
analyzing results from this task in the literature. By adding continuous 
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response measures on top of or instead of the discrete responses, the 
decisions underlying those responses can be examined. The changes to the 
paradigm do not alter the basic patterns of individual trial to group 
segmentation consistency. When asked to predict the end of an activity 
unit, over a third of segmentation responses are reported as expected by 
the responder. When the segmentation response itself is continuous, 
participants used diverse strategies to transverse the response slider and 
exhibit sub-response threshold movements toward the response location 
in addition to full segmentation responses. Together, the two experiments 
show that the event segmentation task is reasoning task, not an exclusively 
perceptual task. These novel measures, reflecting decisions or reasoning 
about decisions, provide new insight into the behavior underlying a task 
with substantial importance for theories of event cognition. 
 

1.3.4 General Discussion 
 

Finally, in Chapter 7, I will review the material presented in Chapters 
2-6 and integrate across them. In particular, I will return to the theoretical 
issues of representation and embodiment raised in Chapter 2 and reflect 
on the empirical studies in Chapters 3, 4, and 6 through the lens of these 
broad debates in cognitive science. I will also make connections from the 
empirical results to object metaphors, pragmatic context, and event 
cognition, as well as discuss why these are important issues in cognitive 
science. The theoretical importance of giving responses dimension will be 
reiterated and the conclusion will contain my own views on representation 
and embodiment informed by the work of this dissertation. 
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Chapter 2 
 
Theoretical Issues of Representation and  
Embodiment 
 
2.1 Representation 
 

Representation is a much-contested topic centering around the 
questions: What are the cognitive objects in the mind? Do we create and 
store mental models of the world we interact with? If we do, how do they 
come to be? If we do not, how do we have detailed memory or language? 
There are contrasting problems of not knowing how symbols or symbol-
like mental objects can come to be and not knowing how higher order 
complex cognition could happen without something symbol-like. How can 
we understand the world without having a mental dictionary of meaningful 
objects, events, and processes with which to compare new experiences? 
Yet, how do we have or build such a dictionary? These questions have been 
being discussed and examined since psychology emerged as a field of 
study. In fact, these debates date at least back to ancient Greek philosophy 
with Plato’s ideals: all items in the world are imperfect exemplars of a 
category and the true perfect item – an ideal – is available only on a 
spiritual plane (Ross, 1951). The debate continues in recent literature with 
some theorists suggesting higher-order cognitive processes would not be 
possible without representations (Clark & Toribio, 1994; Goldinger, 
Papesh, Barnhart, Hansen, & Hout, 2016) and others suggesting they are a 
crutch preventing more nuanced theorizing (Barrett, 2011; Chemero, 2009; 
Wilson & Golonka, 2013). 
 

2.1.1 Definition 
 

Mental representations are traditionally used as “causally potent 
information carrying vehicles” in theories of cognition (Chemero, 2009, 
p.50). They are an abstract concept with different researchers defining 
them in different ways for each cognitive domain, such as active 
representation for working memory, more permanent storage 
representations in long-term memory, plan representations for speaking 
or acting in the immediate future, etc. With so many different cognitive 
‘things’ getting the same name, talking about the general idea of 
representation can be difficult. Connell & Lynott (2014) supply a useful 
taxonomic breakdown to divide these ideas of representation into the 
action and the object: representation and representing refer to current 
activation and processing, while concepts are the more stable long-term 
connectivity patterns. Regardless of how the terms are specifically applied 
by particular researchers, representation is mental and internal. These 
basic characteristics are the features on which I will focus the current 
discussion. 
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2.1.2  History 
 

The major shifts in psychological mainstream theory center around 
shifts in majority thought about representation. Edward B. Titchener, 
Wilhelm Wundt, as well as other introspectionists viewed the primary goal 
of psychology as understanding human conscious experience (Baars, 
1986). There is abundant meaningful content within conscious experience 
and introspectionists believed careful examination of conscious thought 
by highly trained psychologists would be fruitful for understanding that 
thought content. Introspectionists focused on a sub-set of representations 
that can be investigated consciously. However, since self-examination is 
not conducive to reproducible empirical science and psychology became 
more serious about being a science, the first major shift in psychological 
theories was away from introspectionism toward behaviorism.  

Behaviorism is characterized by careful, scientifically rigorous 
examination of external behavior. Internal, mental activity is discounted 
and believed unsuitable for study because it cannot be directly measured 
(Baars, 1986). Behaviorism research focuses on topics such as signal-
response theory and conditioning which do not make claims about what is 
occurring within an organism, instead documenting the input/output 
relationships and the change in those relationships based on observable 
factors such as training.  

After decades of behaviorism as the predominant theory in 
cognitive psychology, many researchers believed there was more going on 
than input and output to the system and began to study the ‘more’ as part 
of psychology. According to Baars (1986), “psychologists did not speak of 
‘mental representation’ at first, but of ‘memory’; not of ‘consciousness,’ 
but of ‘selective attention’; not of ‘the organization of meaning,’ but of 
‘semantic features’” (p. 142). Any mental processing that occurs between 
perceptual input and action-based output was of key interest to these 
researchers who were not eliciting enough explanatory power from the 
input and output patterns alone. The subsequent cognitive revolution 
opened up theoretical discussion by elevating cognitive processes to be the 
main objects of psychological study. Behavioral data continued to be 
collected, but the objective was no longer just predicting output. It was 
also inferring what cognitive processes were happening inside an 
organism. These processes were generally considered to be 
representational with sensory input resulting in mental information - 
information that stands for aspects of the external world that can then be 
computed upon by the brain. 
 

2.1.3 The Current Situation 
 

Much of cognitive science is still centered on processing within the 
brain. Extensive methods and theories have been build around 
understanding the contents of brain-based cognition – generally 
representations and concepts – as well as the processes those 
representations go through such as perception, working memory, long-
term memory, and so on. The major cognitive science and cognitive 
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psychology academic journals currently predominantly publish articles 
communicating research of this type. 

However, not all current empirical cognitive science is exclusively 
interested in brain-internal cognitive processing. In addition to some 
holdover introspectionism and behaviorism, there is a branch of 
psychology – ecological psychology – that views cognition to be of the 
complete agent-environment system rather than just within a cognitive 
agent. An agent-environment system is comprised of an agent, its 
environment, and, most importantly, the relationships between them 
including action opportunities. Therefore, ecological psychologists view 
the object of study as not just the processing within an organism’s brain.  
They are equally, if not more, concerned with the organism’s body, with its 
capacities for sensory input and action output, as well as the way those 
capacities interface with the organism’s environment. Radical Embodied 
Cognitive Science (RECS), a specific philosophical stance incorporating 
many tenets of ecological psychology, ascribes to this understanding of 
cognition as beyond the brain with the additional stance of being explicitly 
anti-representational (Chemero, 2009; Wilson & Golonka, 2013). RECS 
views cognition as consisting of continuous dynamic processes rather than 
a series of discrete states. 
 

2.1.4 Objects vs. Processes 
 

Representations are conceptually tractable as mental objects. 
Humans live in a world of physical objects and have extensive experience 
interacting with them. Drawing a metaphor between the manipulation of 
physical objects and the manipulation of mental objects has been fruitful 
in studying cognition for decades. Philosophically, however, there are a 
number of intractable issues with representation. The symbol-grounding 
problem (Searle, 1980; Harnad, 1987) is the philosophical problem of 
connecting the physical world with a theorized symbolic mental world – 
how does a mental symbol come to stand for something in the physical 
world? Universal grammar (Chomsky, 1957) is a famous example of 
considering the building blocks of symbolic understanding – in this case 
of linguistic syntax – to be innate. By pushing the advent of primitive 
symbols within an individual to biology rather than learning, the grounding 
issue is side-stepped. Another way to address the symbol-grounding 
problem is to view symbols as being learned and grounded in sensorimotor 
processes (Barsalou, Simmons, Barbey, & Wilson, 2003). To illustrate this 
hypothesis concretely, grounded cognition suggests that when we think of 
a Red Delicious apple, we do not just think of the association with the 
concept red but we actively simulate the shade of red we associate with 
that particular variety of apple in the same brain networks as we process 
sensory perception of the color. Both of these solutions are part of 
representational accounts of cognition. Neither biological universals nor 
grounded representations are universally accepted as a solution. Both 
solutions agree, however, that the symbol-grounding problem is in fact a 
problem researchers need to solve. 
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Ecological psychologists instead suggest that mental objects are 
just a metaphor - there are no mental objects. While relating cognition to 
the physical world makes it more comprehensible in some ways, it also 
obscures the continuous and process driven reality of the system. For 
ecological psychologists, rather than cognizers developing mental 
representations that hold meaning, meaning instead comes from mutuality 
relations – the causal dependencies between components of a system. The 
meaning in a mechanical clock comes out of causal dependencies amongst 
the spring, gears, and other internal machinery that result in even 
movement of the hands of the clock over time. Likewise, according to 
ecological psychology, the meaning of an action comes from the changes 
in opportunities for future action – affordances – for the organism. The 
continuously changing relational properties of a system are the 
informational content carrying ‘vehicles’ but they are not object-like and 
they are not exclusively internal. 

Contemporary cognitive science rarely takes a fully symbolic-object 
stance on representation. Traditional representations have what Clark and 
Toribio (1994) refer to as “quasi-linguistic combinatorial structure” (p. 
401), which are symbolic, discrete, and have algorithmic rules for 
processing. However, Clark and Toribio point out that even less object-like 
distributed patterns in connectionist networks are still representations. 
Not being able to point to a simple mechanism such as grandmother cells 
– single cells firing selectively in response to a particular stimulus such as 
one’s grandmother or a particular celebrity’s face (Quiroga, Reddy, 
Kreiman, Koch, & Fried, 2005) – as concrete, symbolic internal 
representations does not mean that the concept of internal representation 
is wrong. Within networks, patterns of activation can compositionally 
represent concepts less transparently and discretely than the cell storage 
idea. Clark and Toribio defend internal representation from the place of 
assuming they exist until non-representational researchers can explain 
how ‘representation-hungry tasks’ can be accomplished without 
representation. An example of a representation-hungry task would be 
selecting the valuable items from an array (Clark & Toribio, 1994, p. 419-
420). No perceptual cue encodes valuableness in the environment. Non-
environment sourced knowledge has to be used to accomplish the task. A 
valuableness concept needs to be applied to the perceptual information. 
Clark and Toribio challenge anti-representationalists to account for this 
ability without that internal concept. 

There has been empirical success for anti-representational theorists 
in what Clark and Toribio view as non-representation-hungry tasks. Robots 
have been created which can navigate complex environments successfully, 
and therefore display complex behavioral sequences, with just a few 
guiding equations (Brooks, 1991a, 1991b; Brooks, Breazeal, Marjanovic, 
Scassellait, & Williamson, 1999). This is an example of non-
representationally driven behavior. Another example is the expert catching 
of a fly ball. The perceptual input and time limitations make it impossible 
to account for the ability using the representational and computational 
method of representing the key variables such as wind speed, angle of 
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accent, etc., and calculating likely trajectories of the ball as well as the 
catcher’s own capabilities in terms of speed and reach. Instead, with 
practice, a baseball player can learn to simply manipulate their own speed 
and heading to keep the perceptual experience of the ball looking a certain 
way (Wilson & Golonka, 2013). This is viewed as non-representational as 
all the information needed in the moment is directly perceptually available. 
 

2.1.5  Conclusion 
 

The majority of current researchers likely at least tacitly agree with 
a representational stance of some sort. The debate over what those 
representations would look like in the brain is far from settled. As 
presented above, a vocal group of researchers continue to question the 
existence of representations at all.  
 

2.2 Embodiment 
 

As introduced above, the content of cognition is debated on another 
dimension beyond representation: the extent to which cognition is abstract 
or embodied. Embodied cognition – the idea that the biology and 
experience of the agent beyond its brain impact the contents of that agent’s 
cognition – is a relatively new theoretical stance. Shapiro (2011) reviews 
the state of embodied cognition identifying 3 main hypotheses: 
conceptualization, replacement, and constitution. These hypotheses each 
ascribe to some version of the body and/or environment beyond the brain 
influencing cognition. Each of these hypotheses also have a stance on 
representation which guides the theorized ways that the body and 
environment can influence cognition.  

The conceptualization hypothesis suggests representations are 
affected by the congizer’s physical form. It subsumes areas of research and 
theories dealing with how mental representations are affected by 
experience within a particular body and/or in a particular environment. An 
example of a research topic with theories of the conceptualization type is 
the area of language and thought which is concerned with whether, and 
how, the language an individual speaks influences their other cognitive 
processes and abilities. An embodied stance would be that the bodies with 
which we experience the world lead us to certain metaphors through which 
we scaffold our understanding of the world. This conception of embodied 
cognition is most similar to standard cognitive science, viewing cognition 
still to be mainly brain-based with representations being affected by the 
body and environment. 

The replacement hypothesis encompasses anti-representational 
approaches, such as Radical Embodied Cognitive Science (Chemero, 2009) 
mentioned above. The replacement hypothesis critiques standard 
cognitive science as having been treating the brain as if it is fundamentally 
different from the rest of world. The brain is part of the body and the 
world. It should therefore be governed by the same principles. One path to 
rectifying this historical divide is describing cognition in terms of 
dynamical systems (Spivey, 2007); the same dynamical systems that can be 
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used to describe any other physical processes. Brain networks may be 
specialized in their structure and capabilities, but ultimately they are 
physical processes. 

The third hypothesis, what Shapiro calls the constitution 
hypothesis, expands the domain of what is considered the mind and 
cognition. Rather than the mind being the product of the brain alone, there 
are such integral interactions with the body and environment that those 
components are most usefully thought of as also constituting the mind. 
When an organism moves to alter or enhance visual input, the movement 
is part of visual perception and a form of cognition (O’Regan & Noë, 2001); 
when a person takes notes to be viewed later, the notes are external 
memory and a form of cognition (Clark & Chalmers, 1998). The argument 
rests on how central non-brain components are to cognitive processes. If a 
process could not occur without those parts, then this hypothesis would 
count them as cognitive. In this conception of embodied cognition, 
cognition is extended beyond the brain and even beyond the body. 
Representation is still a core component of cognition but is not exclusively 
mental. Defining the scope of the domain of cognition – the brain; the brain 
and the body; or the brain, the body, and the environment – is a key 
theoretical discussion.  

These three subsets of embodied cognition span a wide range of 
theories, many of which are not compatible with each other. What all 
versions of embodied cognition have in common is they fundamentally 
challenge the idea that the brain is like a computer. The computer 
metaphor of the mind (Newell & Simon, 1976) is the idea that brains are 
computational and have parts which mimic computer components like a 
central processor (executive functions), RAM (working memory), disk 
storage (long term memory), and a set of peripherals such as keyboards, 
mouses, and screens (sensory and motor systems) that receive input or 
output the computationally transformed information. The computer 
metaphor has dominated theories of cognitive science since the cognitive 
revolution up until embodied cognition’s rise in the past few decades. It is 
still highly influential. Von Neumann computers are universal processors 
which at base process binary code and follow deterministic rules, 
regardless of the high-level veneers of programing languages and user 
interfaces. At the lowest level there is no ambiguity. These computers are 
also modular with processes within one delineated processing stream not 
affecting other processing streams unless specifically instructed to 
interact. Any universal processor coded with these computational rules, 
receiving the same input data will have the same output. Essentially, 
content is device-independent. Major models of general cognitive ability 
have been built on this premise including SOAR (Laird, Newell, & 
Rosenbloom, 1987) and ACT-R (Anderson, 1983). Embodied cognition, 
from its weakest to strongest iteration, suggests cognition is instead 
inherently device-dependent – content and processes are shaped by the 
brain, the rest of the body, and the environment. For embodiment theories, 
cognition is inherently bound to the format of input our bodies are able to 
interact with and the output our bodies are capable of producing. 
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2.2.1 Embodiment Through Experience 
 

Many successful cognitive models are based on building up 
information through experience. Statistical learning capabilities (Saffran, 
Aslin, & Newport, 1996; Meyer, & Baldwin, 2011), exemplar models of 
categorization (Goldinger, 1998; Nosofsky, 1988), and cognitive metaphor 
development (Gibbs, 2006; Lakoff & Johnson, 1999) all suggest knowledge 
is the product of repeated exposure to information of a particular 
structure which the cognizer slowly learns to recognize. Our bodies limit 
our perception – we only perceive information within our umwelt - our 
individual range of perception and interaction with the world (Barrett, 
2011). Physical structural relationships such as optical flow – the lawful 
relative motion of elements of a visual scene from the sensor’s perspective 
- lend stability to perception which agents can exploit (Gibson, 1979). 
Further, repeated experience with the same type of input lends stability to 
cognitive processing beyond the currently perceptually available 
information. 

Examples from face recognition expertise to color categorization to 
cognitive metaphor illustrate this stability through repeated exposure. 
Most humans develop expert abilities at distinguishing faces (Gauthier & 
Nelson, 2001) by learning what aspects of visual input is most important 
to distinguish similar faces from each other and what aspects can change 
while remaining the same face. Across a wide range of faces, humans can 
recognize basic emotions, i.e. detect an abstract similarity that is not 
implemented exactly the same on every face, even with only an image of a 
thin strip of face around the eyes (Baron-Cohen, Wheelwright, Hill, Raste, 
& Plumb, 2001; Baron-Cohen, Wheelwright, & Jolliffe, 1997). In the domain 
of color, Regier, Kay, and Khetarpal (2007) have shown that color 
categories across cultures are broadly predicted by optimized divisions of 
the perceptual signal visible to the human eye. Linguistic and cultural 
norms influence the categories constrained by the physically guided 
divisions. Seeing color with the human biological visual system creates 
some stability and the experience of having some colors treated as 
equivalent while others are treated as meaningfully different result in the 
phenomenon of categorical perception (Goldstone & Hendrickson, 2010), 
when a person can more quickly and accurately distinguish two hues that 
cross a color boundary than two that are within a color category even if 
the two hue pairs have the same distance between them in color space. The 
discrimination advantage is present only for people whose language 
encodes the color category distinction at a basic level, such as the English 
distinction between blue and green or the Russian distinction between light 
blue and dark blue that English does not have (Winawer et al., 2007). 
Finally, cognitive metaphors, while by no means universal, can be viewed 
as associative primitives within a language and culture. They are built from 
co-occurrences of concepts. For example, the future is forward metaphor 
captures a physical reality that most directed movement tends to be in the 
forward direction - the direction faced by the front of the body. The co-
occurrence of spatial direction and temporal flow creates a conceptual 
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basis for relating time to space (Lakoff & Johnson, 1980, 1999). The 
connection of a stable perceptual experience to an abstract concept gives 
the metaphor of moving towards a goal – a future state – have meaning. 
Each of these examples demonstrate instances where predictability of 
sensory input is increased through repeated exposure and that 
predictability influences perceptual processing. The established 
knowledge of stable patterns is then used to support abstract conceptual 
interpretations. 
 

2.2.2 Radical Embodied Cognition 
 

Radical Embodied Cognitive Science (RECS) (Chemero, 2009) is a 
philosophy that falls within the replacement hypothesis in Shapiro’s 
taxonomy of embodiment theories. It is the most extreme of the 
embodiment positions believing that not only is the domain of cognition 
extended beyond the brain but also that the brain is not a particularly 
privileged part of cognition. The entire agent-environment system, and the 
unfolding changes within it, are the domain of cognition. This theory, as 
mentioned above, is explicitly anti-representational. 

Many ecological psychology experiments never lead to theories 
about brain-internal processing mechanisms. The fly ball example 
introduced earlier is an example of this - the agent only needs to act in a 
way such that they continue to have a stable percept of the ball in order to 
catch it. From animal cognition research, there is a similarly non-brain-
based explanation for the complex behavior of the Portia genus of jumping, 
predatory spiders (see Barrett, 2011, ch. 4, for review). These spiders do 
not have much in the way of neural resources with brains the size of a 
pinhead. Yet they exhibit incredibly complex behaviors. Observing the 
hunting behavior of these spiders, it is easy to impose on to them a theory 
of mind, the ability to conceive of other agents having thoughts and goals. 
When the spiders are stalking their prey they take a round-a-bout route 
that might include paths that occlude their target. To accomplish this, 
don’t they have to have a mental representation of the spatial location of 
their target? Experiments have demonstrated instead that the successful 
route depends on a simple visual search pattern of tracing unbroken 
horizontal paths following the simple rules of reversing their visual path 
tracing back toward the target prey when a break is encountered and 
continuing to trace a path away from the target if that path is unbroken 
(Tarsitano & Andrew, 1999). If there is no clear path, the spider selects a 
salient secondary object to move towards then scan again (Hill, 1979; 
Tarsitano, 2006). From the observer’s perspective, this looks like the spider 
is carefully planning its actions as it stops and scans back and forth 
comprehensively. Yet in reality it is always just choosing the next path of 
motion using this rule. The Portia spider path selection is an example of a 
simple perception/action loop resulting in very complex, flexible behavior. 
The Portia spiders also exhibit other simple perception/action loops with 
complex ramifications while hunting. Portia spiders hunt other spiders. 
When being furtive, a Portia spider seems to dance across another spider’s 
web in ways that create vibration patterns that mimic natural, ignored 
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stimuli like a breeze on the web allowing them to sneak up on the prey 
spiders (Wilcox, Jackson, & Gentile, 1996). Alternatively, a Portia spider is 
able to lure a prey spider to itself by moving on the prey spider’s web in a 
way that is sensed by the prey as the struggles of a caught insect. This 
signal is accomplished by the Portia spider varying its movements to 
produce an appropriate vibration pattern. Again, this looks like it could be 
a planned, knowledge-based behavior. But rather than intentionally 
mimicking the patterns of other insects, the Portia spider simply varies its 
motion until it senses a different source of vibration on the web, a vibration 
indicating the prey spider is on its way to the hunting spider (Jackson & 
Wilcox, 1990, 1994). If the prey spider stops moving toward the Portia 
spider, it will again use trial and error to vary its movement patterns until 
they get the prey spider to continue towards them (Jackson & Wilcox, 
1994). Again, this behavior can be accomplished with simple 
perception/action loops and relies on the environmental cues rather than 
a cunning mentally represented plan.  

RECS builds on these types of findings to suggest that while the 
brain is clearly part of the agent-environment system, there is no reason 
to push all of cognition into the brain. From this perspective, the agent 
uses its capabilities - its sensory apparatuses, its locomotive capacities, the 
patterns of stability between its body and elements of the environment - 
to do most of the heavy lifting of everyday cognition. 
 

2.2.3 Embodiment and Representation 
 

Embodiment and representation are distinct but mutually 
influencing theoretical domains within cognitive science. The extreme 
stances, such as a rigid interpretation of the Computer Metaphor of Mind 
and Radical Embodied Cognitive Science, are endorsed by only a few 
researchers. Most researchers explicitly or implicitly take a position 
somewhere in between those extremes. The assumptions required of 
stances on representation and embodiment limit each other. For a 
researcher who does not take a strong stance on representation, a 
particular behavior might seem amenable to either being explained by 
representational means - what Chemero (2009) refers to as mental 
gymnastics - or by non-representational interactions of the agent-
environment system. However, these competing explanations have 
representational assumptions - each explanation is only compatible with 
the required representational assumptions of some of the various 
embodiment hypotheses and directly in conflict with the assumptions of 
other embodiment hypotheses. 

The conceptualization hypothesis relies on representation as a key 
theoretical construct. In this hypothesis, cognition remains strongly 
representational, but the representations have embodied properties as 
core features. Representations are coded using the same brain networks 
that are used in perception and action. The traditional view is revised from 
mental representations as amodal conceptual symbols referring to aspects 
of the external world. The embodied mental representations are inherently 
modal; they are dependent on the sensory modality of input during 
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formation. In this way, though it changes some aspects of what a mental 
representation is, the conceptualization hypothesis does not challenge the 
dominant view that representations are essential components of cognition.  

In the constitution hypothesis, representation remains a key 
component of cognition, but the representations are not defined as 
exclusively brain-based. The environment contains representations that a 
cognitive agent can access and use in a functionally similar way to the 
representations contained within the brain. For this hypothesis, mental 
representation is not necessarily different from the traditional view of 
mental representation. The distinguishing aspect is the expansion of what 
is viewed as a representation – mental and extended representations are 
both part of cognition. 

In the replacement hypothesis, representation is not considered a 
meaningful construct. What is called mental representation by other 
theories of cognition is a non-discrete component of a physical, causal 
system. To the extent that a visual stimulus creates a pattern of neural 
firing, the neural firing is not more important to understanding that 
cognitive system than the stimulus. It is the whole system - the stimulus, 
the sensory apparatus perceiving the stimulus, the body moving the 
sensory apparatus to gather more input from the stimulus and 
surrounding context, etc. - that makes up the object of study; neural firing 
patterns exclusive of the rest of the system is too narrow a focus. 

These types of embodiment have complex relationships with each 
other on the subject of representation. The constitution hypothesis is 
partially compatible with the conceptualization hypothesis. For 
constitution hypothesis theories, mental representations can be 
fundamentally influenced by the perceptual means of learning them as 
must be the case for conceptualization hypothesis theories. The 
constitution hypothesis goes further, suggesting that many components of 
meaning lay beyond brain networks in the body and environment. This 
extension of representation is not required of a conceptualization 
hypothesis theory. Meanwhile, the constitution hypothesis’s connection to 
the outside world and emphasis on a cognizer’s environment seem 
compatible with the replacement hypothesis. However, there is a 
fundamental divide over the value of theorizing with mental 
representations. Both the constitution and replacement hypotheses believe 
traditional mental representations lack enough explanatory power to be 
the complete picture of cognition. The constitution hypothesis expands 
representation to explain more of the world in cognitive terms. The 
replacement hypothesis rejects representation as meaningful and instead 
privileges ongoing processes over stable states of a system. Finally, the 
replacement hypothesis and conceptualization hypothesis completely 
disagree on representation. Yet, to the extent that there are brain network 
responses to changes in the agent-environment system, these brain 
responses would be constituted at least partially of the perception/action 
networks. The core idea of the structure of the world, as perceived by a 
cognizer, influencing mental knowledge is shared by both hypotheses. The 
divide between them is over whether that knowledge continues to contain 
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enough similarity to traditional ideas of representation in order to 
continue to use that word. 
 

2.3 A Paradigm Shift? 
 

Some theorists have suggested that embodied cognition has the 
potential to be a unifying theory within psychology (Glenburg, Witt, & 
Metcalfe, 2013). Others have strongly rejected that suggestion as 
overreaching (Goldinger, Papesh, Barnhart, Hansen, & Hout, 2016; Mahon, 
2014, 2015a, 2015b; Mahon & Caramazza, 2008). Goldinger et al. (2016) 
suggest the unifying theory claim is a proposal of a paradigm shift on the 
order of the movement from behaviorism to cognitivism. The unifying 
theory proposal applies to the general theory of embodiment across all the 
hypotheses discussed above: the body and environment are essential 
components of, or at the very least strong influences on, cognition. 
Changes to the domain of a scientific field, differences in the questions 
that are meaningful to explore, and the revision of previous terms to mean 
something new and incompatible with the previous meanings are 
signatures of paradigm shifts (Kuhn, 1962). In the previous section, it was 
clear that all branches of embodiment either revise or reject the traditional 
notion of representation, which according to the listed characteristics 
could be indicative of a paradigm shift. To be clear, Glenburg et al. (2013) 
do not make the paradigm shift claim explicitly though Goldinger et al. 
(2016) explicitly argue against it. Here I will explore the merits for and 
against viewing embodiment as a paradigm shift. 

In order to reject the claim of a paradigm shift for embodied 
cognition, theorists must defend a position that the phenomena of interest 
remain fundamentally unchanged within this new perspective. 
Embodiment theories each argue for some deviation from traditional views 
of cognition. Whether these proposed differences are enough to be 
considered a new paradigm remains to be seen. The specific critiques of 
Mahon and Caramazza (2008), and Goldinger et al. (2016) to the idea of a 
paradigm shift reject the proposed change in the nature of 
representations, and reject the expansion of the domain of cognition, 
respectively. 

Within the conceptualization hypothesis version of embodiment, it 
is often claimed that conceptual information is grounded (Barsalou, 1999). 
That is, knowledge is based on and in sensorimotor processing, and 
representations are inherently modal. An extensive research program 
investigating this hypothesis has been undertaken with key researchers 
including Glenberg and Kaschak (2002); Lakoff & Johnson (1980, 1999); 
and Hauk, Johnsrude, and Pulvermuller (2004), among many others. Mahon 
and Caramazza (2008) specifically challenge this grounded representation 
hypothesis. They put forth the suggestion that if the content of 
representations can abstract away and no longer depend on sensorimotor 
areas, the concepts become amodal representations that have little to 
nothing to do with anything beyond the brain. The critique argues that the 
keystone finding of sensorimotor areas being active while an individual is 
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thinking of action concepts such as kicking (Hauk et al., 2004) does not 
conclusively mean the sensorimotor brain areas are integral to conceptual 
processing; the sensorimotor areas could be activated through spreading 
activation from amodal representations. 

While this criticism may prove useful in restraining potentially 
overreaching ideas of conceptual processing being exclusively in 
sensorimotor areas, it does not refute the larger claim of the 
conceptualization hypothesis that bodily and environmental information 
is integrated into representations. A concept being abstracted away from 
an explicitly modal experience is not necessarily amodal - it may contain 
some influence of the concrete metaphors used to build up to that abstract 
concept. Concrete, simulatable concepts are learned easier and earlier than 
abstract concepts (Schwanenflugel & Akin, 1994). The conceptualization 
hypothesis suggests abstract concepts grow on top of and through appeals 
to concrete concepts, which are closely based on sensory information. The 
current focus on visualization technologies for big data to improve 
understandability illustrates the power of making information concretely 
perceivable. 

Another way to address the Mahon and Caramazza (2008) critique 
that representation can be amodal given the current empirical literature is 
to admit that amodal representation could be possible within an embodied 
account. The language and situated simulation (LASS) theory (Barsalou et 
al., 2008) claims there are two conceptual systems: one linguistic and one 
simulation. The linguistic network is shallow and mostly comprised of 
associations built out of word patterns. The simulation network is the deep 
conceptual network where grounded concepts are represented. The two 
networks are interconnected, but associations within the linguistic 
network, being more narrow in scope, are more quickly activated than 
associations in the simulation network. This would seem to suggest a 
separation between words and sensory experience. Abstract concepts 
could have a larger linguistic component than concrete concepts. 

Louwerse (2008, 2010) also uses this framework of a dual network 
expanding it to suggest that many sensory relations such as typical spatial 
layouts are encoded into linguistic distributions and therefore would be 
found in a linguistic network without needing to appeal to a simulation 
network. A set of experiments demonstrate that images and words both 
evoke language and simulation factors but the ratio of reliance on one 
network over the other changes with the stimulus format (Louwerse & 
Jeuniaux, 2010). Language and simulation are both present but rather than 
language relying on simulation for its meaning, the language network can 
encode some information that would seem to be simulation based. 

The separation of language networks from sensory networks is an 
appeal to traditional cognitive science. It would appear that the effect of 
embodiment for these theories is bounded to particular types of 
processing and that linguistic representations are of the amodal type. In 
particular, the influence of simulation on language can be seen as being 
encoded into the connective structure of linguistic representation 
networks rather than being essential components of individual 
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representations. This conception would not be considered a radical 
paradigm shift - most of cognition can still be theorized to work the same 
way as before embodied cognition was proposed. If embodiment is 
exclusively of this type then the body and environment are merely an 
interesting influence on cognition. Cognition theories would continue to 
be about the same information, attempt to answer the same questions, and 
use terms with the same meaning. 

There is, however, an argument to be made that these results are 
not indicative of amodal representations: language is experienced in a 
sensory fashion like all other input into a brain. Language is seen, heard, 
or, in the case of braille, felt. Finding that language is highly interconnected 
is unsurprising since linguistic elements are frequently experienced in the 
context of other linguistic elements. The language network can be viewed 
as a build up of sensory information like any other visual, auditory, or 
haptic domain. The rich interconnectedness of language could explain 
effects such as the Barsalou et al. (2008) finding of faster processing for 
language network associations. The limited range of possible input for 
language, comparatively much narrower than the general range of sensory 
input, creates a more densely interconnected modal network. 

Taking a different tack at critiquing embodiment, Goldinger et al. 
(2016) characterizes embodied cognition to be about body states, 
environmental states, and in some cases about rejecting representations. 
The critique also argues that dozens of findings within cognitive 
psychology do not rely on modal representations, nor are these findings 
substantially influenced by the type of body containing the cognitive mind. 
There is a strong online processing bias to this characterization, ignoring 
embodied theories that focus on the creation of embodied knowledge - the 
latent relationships not currently part of an active state. Connell & Lynott 
(2014) suggest that concepts are build up of repeated co-occurrences in 
active representation resulting in stable connectivity patterns. The history 
of the cognizer, in a body, within particular environments, guides the 
development of these concepts. The continued experience of the cognizer 
continues to influence these concepts that, while stable in a broad sense, 
are not fixed in the narrow sense. The change of the stable state over time 
is determined by ongoing embodied experiences. 

This idea of history within a body does not fit within the narrow 
definition of embodiment Goldinger et al. (2016) argue against. In fact, just 
the idea of an embodied history can challenge most of the identified 
cognitive findings argued to be unaffected by embodiment. For example, 
in the cases of frequency effects, exemplar models of categorization, and 
familiarity of faces facilitating perception, it is the history of perceiving 
these things that drive the effects and the theoretical explanations. 
Further, many of the identified findings are in classic cognitive psychology 
topics studied in research laboratories. The narrow range of stimuli used 
in a controlled experiment limits the possible environmental influence on 
results by artificially keeping the environment constant. When elements of 
a situation are intentionally controlled in order to be statistically ignored, 
it is not a fair test of whether those elements affect the examined 
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processes. Classic results that could appear to lack an embodied 
component are judgment and decision-making biases such as the anchor 
effect (Tversky & Kahneman, 1974), and the hindsight bias (Fischhoff, 
1975). In both of theses biases, judgments are affected by the information 
taken in prior to the judgment - information context effects. A similar 
effect, estimating distance and incline grade (Proffit, 2006) from the 
bottom of a hill is affected by the current energy level of the person making 
the judgment. The judgment is influenced by information that is stored in 
the body, not represented in the brain. The anchor and hindsight bias 
effects may show embodied influences if tested in a context in which they 
would be identifiable.  

Even if embodiment can be considered a paradigm shift, taking an 
embodied view does not mean all results will change and be directly 
affected by the overarching idea that the body bounds perceptual input. 
Familiarity and frequency are determined by the long-term environment a 
cognizer is situated within. The relative frequencies of particular bands of 
x-ray waves in their raw form will never be familiar and never have 
consequences for categorization among human perceivers because they 
are beyond routine human sensory capacities. An organism is only able to 
gather input from within its umwelt - its range of sensory experience; other 
information is not directly perceivable and needs to be transformed in 
order to be perceived, such as taking x-rays and printing them to have 
contrasts within the human visual spectrum. Goldinger et al. (2016) 
suggest that if embodied cognition is the observation that we have bodies, 
that is profoundly uninteresting. I would argue instead that it would be 
profoundly uninteresting if the study of cognition is the study of human 
behavior exclusively within artificially controlled settings. Using an overly 
narrow definition of embodied cognition to argue against the general 
theory of embodiment is a rhetorical mistake. 

Further, one signature of a paradigm shift is the changed meaning 
of scientific terms. Goldinger et al. (2016) reject the replacement 
hypothesis out of hand as incoherent. Representation is such an integral 
component of traditional cognitive theories. A cognitive theory without 
representation seems impossible while entrenched in the assumptions of 
that paradigm. In the conceptualization hypothesis, the concept of 
representation is stretched a bit to include sensory information. That 
stretch does not necessitate the reconceptualization of the field, a true 
paradigm shift. The constitution hypothesis also stretches representation, 
including more things as representational. This is a substantial difference 
in what a cognitive representation is when compared to traditional 
cognitive science. Whether this difference is enough to be consider a true 
change in the term’s meaning, or if it is an adjustment, is debatable. The 
replacement hypothesis, however, in rejecting the term representation is 
asserting a fundamental change in what brain network connections mean. 
What traditional cognitive science calls mental representation and the role 
they fill in cognitive theories is rejected. Network connections and network 
activations are not quasi-symbolic mental objects. If the word 
‘representation’ were applied to the network attributes within the 
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replacement hypothesis, representation would not mean the same thing as 
it does in traditional theories. 

Similarly, within embodiment the meaning of the term cognition 
itself changes to encompass more processes than was traditionally 
considered the domain of cognition. Non-embodied cognitive science 
remains entrenched in the view that perception is cognitively impenetrable 
(Firestone & Scholl, 2015; Pylyshyn, 1999). This means that there is a 
distinction between perceptual mechanisms and cognitive mechanisms 
within the brain. For all versions of embodiment, cognition is not 
exclusively the processing that occurs after perception and before action. 
It is more expansive with substantial interactions across these traditional 
divides. It is unclear how to distinguish where perception, cognition, and 
action transition with each other. In fact, finding points of transitioning 
between these categories of processing is no longer a meaningful and 
interesting question.  

In embodied cognitive science, action-perception loops can be seen 
as the programming language of the brain. Through action-perception 
loops, brains develop processing structures that support functional, 
meaningful future action. Processing structures do not need to be symbolic 
in that they do not have to stand for something. They can simply be the 
built up response to stimulation that unfolds to produce meaningful action 
without there being a spot in the brain one can point to as the 
‘representation’ of that stimulus. Within the replacement hypothesis, the 
physical networks of the brain are viewed as causally related structures 
corresponding to brain-external aspects of the agent-environment system. 
While it might be possible to point to something representation-like, the 
delimitation of the brain processing from all of the other situated 
environmental processes is not meaningful. This version of embodiment 
acknowledges that brains are not universal processors. The mind is not 
simply software that can be implemented on any sufficiently powerful 
hardware. The hardware of cognition – the brain within the body within an 
environment – affects the contents of cognition. Because this conception 
of processing is radically different from traditional symbol-and-rule 
processing, or even the more modern connectionist distributed symbols 
with complex interaction networks, researchers entrenched in the 
traditional paradigm would view the repurposing of the processes as 
incoherent. In a way, the rhetorical argument against the replacement 
hypothesis in the Goldinger et al. (2016) critique is evidence for a change 
of meaning substantial enough to be considered a paradigm shift. 

Whether embodiment could be a paradigm shift is an open question. 
Embodiment remains a large range of hypotheses with some having 
representational commitments that are a narrow tweak from traditional 
cognitive science to others having broad fundamental changes such as in 
the amply named Radical Embodied Cognitive Science. A theoretical stance 
on cognition which includes the agent-environment system would ask 
vastly different questions from those cognitive scientists asked in the past. 
The full context becomes a key component of all theories rather than part 
of a specialized niche of research. It is safe to say that at least the 
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replacement hypothesis, and possibly the constituent hypothesis, would 
represent a paradigm shift. Whether these hypotheses will win out and 
become standard within cognitive science over the non-embodied theories 
remains to be seen. 
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Chapter 3 
 
Representational Shifts Made Visible: 
Movement Away from the Prototype in  
Memory for Hue3 
 
3.1 Introduction 
 

Memory, reasoning, and categorization have traditionally been 
distinguished as separate topics and separate areas of research (Hayes et 
al., 2014; Heit & Hayes, 2005; Heit et al., 2012). It could be argued that 
categorization is either an automatic process as in categorical perception, 
where conscious reasoning is not recruited and any effect of categories on 
perception would appear to be due to the activation of categorical memory, 
or alternatively, categorization is an explicit process as in categorical 
decision tasks where a more deliberative process of reasoning may be at 
work. But the dichotomies of implicit vs explicit and memory-based vs 
reasoning-based categorization are too extreme; instead, a continuum is 
likely to exist. We suggest that that these cognitive activities are intimately 
intertwined. As Churchland (1981) pointed out, the terms we have from 
folk psychology, the ways we culturally divided cognitive processes prior 
to having scientific evidence to inform those divisions, are not necessarily 
sensible. As research advances in psychological and neurological 
understandings of cognitive processes, these traditional terms and 
divisions need to be broken down. The memory, reasoning, and 
categorization distinctions are losing their usefulness as separate 
constructs due to the likelihood of common underlying mechanisms. 

In this paper, we will be looking at a task that involves both memory 
and categorization. Experimental participants either label hues with basic 
color categories or make preference judgments about the hues. Then, 
memory for these hues is tested immediately. Participants have memory 
of categories and, through categorization, bring that memory to bear on 
newly formed encodings. In the way categorization and memory are often 
discussed, categorization is the act of applying knowledge while memory 
is the substance of that knowledge. Yet using memory edits memory itself, 
as has been shown with memory reconsolidation (Nadel et al., 2012) and 
retrieval induced forgetting (Anderson et al., 1994). Memory and 
categorization cannot be treated as fully distinct cognitive topics but are 
interdependent. 

The distinction between perception and memory is also a vague and 
possibly false distinction. Perception is the transduction of light, sound 

                                                
3 The official citation that should be used in referencing this material is 
Kelly, L. J. & Heit, E. (2014). Representational shifts made visible: Movement 
away from the prototype in memory for hue. Frontiers in Psychology, 5. 
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waves, chemicals, pressure, and heat into electrical signals in the nervous 
system. Memory refers to the storage of that information. Milliseconds 
after a stimulus has been experienced, researchers consider it remembered 
in iconic memory, some of which passes on to working memory and 
possibly to long-term memory. There has been a debate about how far top-
down conceptual knowledge can impact perception with some researchers 
arguing that perception is cognitively impenetrable (Pylyshyn, 1999) and 
others arguing that cognitive expectations affect perception very early in 
processing (Churchland, 1988; Hsieh et al., 2010). 

One of the main phenomena of interest in the cognitive penetrability 
debate is categorical perception, where categorical knowledge affects how 
people perceive the surrounding world. Categorical perception has been 
examined in many domains including phoneme perception (Liberman et 
al., 1957), faces (Levin & Beale, 2000), and color (Winawer et al., 2007), (see 
Goldstone & Hendrickson, 2010 for a full review). In categorical perception, 
there is no deliberative reasoning – categorization is implicit and 
automatic, having an effect without people needing to actively decide on a 
category. Here, categorization appears to be based on implicit memory of 
frequent categorizations. 

Categorical perception has been explained diversely: as a pull 
towards the prototype (Luypan, 2008), a truncation at the boundaries of a 
category (Huttenlocher et al., 1991), or an expanding of perceptual space 
(Goldstone, 1994, 1998). None of these accounts of categories on 
perception would explain the novel result we present here: With rapid 
presentation and test of hues there is an atypical bias – a push away from 
the prototype, a pull towards the boundary, or a seemingly incompatible 
change of perceptual space. While this result is novel for hue memory, a 
similar effect has been observed in immediate recognition of exaggerated 
faces (Rhodes et al., 1987). During perception, people appear to bring 
categories to bear on the content of perception but the influence is not 
uniformly one of attraction toward the prototype. 

Our own investigation was spurred by the argument that labels 
affect the memory of perception when the labels coincide with perception 
(Lupyan, 2008). Specifically, for an effect that was metaphorically referred 
to as a representational shift, it was claimed that labels cause memory 
traces to be prototypically shifted from the raw percept by exerting a top-
down influence of the labeled category on the perceived item. The label 
activates the category prototype, which interacts in real time with the 
bottom up perception resulting in a mixed encoded memory trace. 
Specifically, these experiments looked at whether there was an advantage 
to remembering objects that were labeled or judged in terms of preference 
(liking). The participants either labeled object categories including chairs, 
lamps, and tables (two categories per experiment) or made a like/dislike 
preference judgment in alternating blocks during study. Participants only 
saw the objects for 300ms and had 700ms to respond to discourage 
labeling in the preference judgment trials. After all study trials, 
participants were then tested on their memory for the items using the 
original objects as well as a matched lure for each original item in a 
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new/old recognition task. Participants less accurately remembered 
previously seen items if they had been categorically labeled, which was 
taken as evidence that the representation of the labeled objects was shifted 
– it no longer matched up to the originally perceived item. Other 
researchers (Blanco & Gureckis, 2013; Richler et al., 2011) have taken issue 
with this interpretation in terms of representational shifts, instead 
suggesting that perceived items are remembered better because preference 
judgments require a greater depth of processing than category labeling. 
They introduced non-labeling conditions such as chair orientation (Blanco 
& Gureckis, 2013) and screen position (Richler et al., 2011) that only require 
superficial processing of the objects. These conditions performed similarly 
to the category labeling condition introduced by Lupyan (2008). To these 
researchers, the strength of the memory accounts for the differences in 
recognition memory. 

The controversial claim from Lupyan (2008) that there are 
prototypical representational shifts has not been demonstrated directly. 
Only a decrease in accurate recognition of previously seen items has been 
shown, which could mean a shift toward the prototype, away from the 
prototype, or simple forgetting without a directional change in the memory 
trace. Hence, previous research on representational shifts has not provided 
clear evidence that representations have shifted, much less in what 
direction they have shifted. To get at this question we will present a 
paradigm that is a conceptual replication of Lupyan (2008) using the same 
judgment conditions at target presentation, category labeling and 
preference judgments, and using a similar memory test, same/different 
judgments rather than new/old recognition judgments. The main 
differences are in stimuli and timing. We present the targets as well as four 
matched lures varying systematically in category typicality and distance 
from the target. These stimuli will allow us to quantify the direction and 
magnitude of any representational shifts that occur. If a shift is in the 
typical direction as predicted by Lupyan (2008), the new array of test 
stimuli will allow it to be seen. 

Previous work on representational shifts has examined memory for 
objects such as lamps and chairs. In our own work, we focus on color 
space, which is more quantifiable and better-defined than object space. 
Color is a continuous uniform physical space made up of different 
wavelengths of light. Color is also a rich psychological space that is divided 
into superordinate, basic, and subordinate categories. There are focal or 
prototypical colors within categories as well as boundaries where one 
category meets the next that are shared amongst speakers of the same 
language, and to some extent across languages (Berlin & Kay, 1969; Regier 
& Kay, 2009). As such, color space is a fertile testing ground for examining 
how categorical knowledge distorts basic perception. 

Taking account of the psychological landscape of the color domain 
and people’s ability to detect fine alterations from one color stimulus to 
the next, we were able to directly test the color that has been encoded 
through a recognition test, and how different, if at all different, the 
encoded color is from the originally presented color. By moving from 
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object space to hue space, we constrain the potential directions of memory 
shifts toward or away from the prototype. By testing memory of the target 
as well as four matched lures differing in distance and direction in hue 
space relative to the prototype, we have the opportunity to measure the 
sensitivity (d’) of hue memory at different locations relative to the target. 
Sensitivity serves as a measure of confusability and strength of confidence 
in having seen something at the point in hue space. Where d’ is high, people 
can reject lures that they have not seen. Where d’ is low, this means that 
lure items nonetheless seem relatively familiar, as if there is a false 
memory representation at that point in hue space. Moreover, if d’ is lower 
in one direction, relative to the prototype, compared to the other direction, 
this implies that the representation in memory has shifted along the hue 
dimension. Our paradigm allows us to see the shift as well as quantify its 
direction and strength. 

Additionally, the representational shift hypothesis focuses on 
encoding. However, the paradigm used in the original paper (Lupyan, 2008) 
as well as the versions of the paradigm used in subsequent work (Blanco & 
Gureckis, 2013; Richler et al., 2011, 2013) have an extended study phase 
presenting all items twice prior to a test phase of all items resulting in a 
delay of minutes between presentation and test. This format does not 
isolate effects down to the time of encoding. Our paradigm focuses on 
immediate memory to more closely address encoding. We use a 
same/different judgment as the memory test either 500ms after target 
presentation (Experiments 1a and 1b) or 5000ms after target presentation 
(Experiment 2a and 2b). This prevents interference of other hues on the 
representation of the key item between study and test. 

We now present four experiments, two main experiments and two 
direct replications. Experiment 1a was designed to test the memory for a 
color soon after encoding. The delay between original presentation and the 
same/different judgment was 500ms. We found an atypical shift—an 
unexpected finding based on previous research which had suggested that 
the shift would be towards the prototype—with no difference between 
judgment conditions. In Experiment 2a, the delay was increased to 5000ms 
to test if the predicted prototypical shift could be observed at a longer 
delay and if there was an effect of judgment condition that developed over 
time. The atypical shift and lack of judgment condition effect were 
reproduced. Due to some participants being excluded from Experiments 
1a and 2a as well as the unexpected direction of the representational shift, 
we conducted direct replications of both experiments with higher power, 
in Experiments 1b and 2b. 

 

3.2 Experiment 1a 
 

In a conceptual replication of Lupyan (2008), we presented 
participants with hues to be judged either by category or by preference. In 
a departure from the previous paradigm that had separate study and test 
phases, test occurred immediately after study within a trial. Given that the 
representational shift hypothesis is one of shift at encoding, shifts should 
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be immediately detectable. Additionally, rather than having one matched 
lure for each studied item, there were four lures spanning both potential 
directions of movement relative to the prototype and two distances in hue 
space. Using sensitivity (d’) as the dependent measure, we determined 
whether memory shifted at all, if it shifted towards the prototype or away 
from it, and the approximate distance of the shift in hue space. In 
particular, lower d’ values indicate a higher false-alarm rate to lures. So, 
for example, if representations shift towards the prototype, there will be 
greater likelihood of false-alarming to typical lures compared to atypical 
lures, and d’ will be lower for typical items than for atypical items. 

 

3.2.1 Method 
 

3.2.1.1 Participants 
 

Thirty-six students at the University of California, Merced 
participated in these experiments for course credit. All participants 
reported normal vision and normal color vision. Their color vision was 
tested using the CITY colorblindness test (City University, 2002) following 
the main experiment. The research was approved by the University of 
California, Merced Institutional Review Board and verbal consent was 
obtained from each participant. 

 

3.2.1.2 Materials 
 

The color stimuli were calculated in CIE L*CH color space then 
translated to CIE L*ab color space. The stimuli were from two color 
categories, red and green. Focal colors, treated as the category prototypes, 
were obtained from Sturges and Whitfield (1995). Saturation and 
brightness were held constant at the focal saturation and focal brightness. 
Within these color categories, four target colors were selected for a total 
of eight target colors across the two categories. All target hues were of 
similar typicality relative to the prototypes though explicit typicality 
measures were not collected. The targets were neither extremely typical 
nor atypical of their color category. From each of the target colors, four 
variants were created, two closer to the prototype and two further away 
from the prototype. These variants served as the recognition test lures. 
The hue distance between each hue in the set of 5 test hues, the target and 
four lures, was equal. The hue distances were normalized for the different 
color spaces with green encompassing a larger number of degrees than 
red. All variants within a set did not cross the prototype or the color 
category boundaries. The calculated colors can be found in Chapter 4, 
Section 7.2. 

Dell Ultrasharp U2410 monitors were used to display the stimuli 
and the color calibration profiles were created using a X-rite i1 Display Pro 
color calibrator. The stimuli were created using Adobe Photoshop to 
convert the calculated colors to a RGB device specific color profile for each 
monitor, resulting in uniform presentation across the three monitors. 
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Using a photometer, the experimental cubicles were found to have similar 
intensities of light from the overhead fixtures. 
 

3.2.1.3 Procedure 
 

There were two target judgment conditions. Participants chose 
between the basic color categories, green and red, for the categorical 
judgment and between like and dislike for the preference judgment. The 
categorical judgment response keys were counter-balanced across 
participants whereas the like/dislike response keys were in left to right 
order as it is a natural mapping. The second judgment of each trial was a 
same/different judgment. The participant was to judge whether the second 
hue presented during the trial matched the first hue that had elicited the 
category or preference judgment. 

Each trial consisted of a fixation cross (1500ms), the target hue 
(300ms), a question mark eliciting a button push judgment (up to 700ms), 
a blank screen (500ms), and a response screen with a test hue also eliciting 
a button push judgment (up to 4000ms). The participant’s response 
immediately ended the response-eliciting screens. The trials were 
portioned into blocks of 80 trials consisting of all 8 target colors being 
paired with each of their 5 test hues (the original hue and the 4 lures) for 
2 trials. Each block had one type of judgment (categorical or preference) 
being the response to the question mark. There were 4 blocks, alternating 
between the judgment types. The order of the blocks was counter-balanced 
across participants. 

Prior to the main trials, participants were trained on 6 yellow and 
purple stimuli trials, then completed 2 short blocks of 10 trials, one block 
of category judgments and one block of preference judgments to allow 
participants to get into the rhythm of responding quickly before the key 
trials began. These short blocks contained the red and green stimuli and 
were not indicated to be practice trials to the participants. 

 

3.2.2 Results and Discussion 
 

We excluded 12 participants, 8 for low color naming accuracy (<80% 
correct) in spite of color vision screening, as well as 4 for failing to follow 
instructions. Failing to follow instructions in this and subsequent 
experiments included a very high rate of ‘like’ judgments >90%, a low 
response rate at either the judgment or test portion of a trial (<80%), or 
always responding with ‘same’ at test. Including these participants does 
not change the pattern of results. Here, we report results based on the 24 
remaining participants. In this and subsequent experiments, individual 
trials were excluded if categorization at study was incorrect or participants 
did not respond at both the study and test portions of a trial. 

The analyses relied on the d’ measure of sensitivity used in signal 
detection theory (Stanislaw & Todorov, 1999). The d’ measure has been 
used in recent studies of representational shift (Blanco & Gureckis, 2013; 
Richler, Gauthier, & Palmeri, 2011; Richler, Palmeri & Gauthier, 2013) 
though false alarm rates alone were used in the original paper (Lupyan, 
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2008). Compared to analyses based on raw scores such as false alarm rates, 
d’ not only takes account of variations in hit rate but has the advantage of 
being a better match for the underlying Gaussian nature of recognition 
data (see Macmillan & Creelman, 2004, for a general overview, and Heit & 
Rotello, 2014, for a more recent discussion). For the analyses, we calculated 
two overall hit rates per participant one for each condition and used these 
along with the four lure false alarm rates per condition to calculate d’ 
values. By using d’ rather than raw false alarm rates, we are controlling for 
the general response rate of an individual in a condition in addition to 
calculating how well they can differentially respond to the target vs. the 
lures. 

In this case, we had one set of test items that were the same as the 
originally presented item. Same judgments on these items were considered 
hits and different judgments were considered misses. We also had 4 sets 
of items that were different from the original hue varying in hue space 
distance (1 step or 2 steps) and in direction of typicality (more typical or 
more atypical of the color category). Same judgments in response to these 
items were false alarms and different judgments were correct rejections. 
We calculated d’ by subtracting the z-score of the proportion of false 
alarms from the z-score of the proportion of hits. In the case of 
proportions of 0 and 1, z-scores cannot be calculated due to the normal 
curve expanding to infinity at its tails. We used the standard correction of 
including or excluding half a hit or half a false alarm where appropriate 
(Snodgrass & Corwin, 1988). The hit and false alarm rates for all 
experiments are reported in Table 3.1. The d’ measure was calculated for 
each of the four levels of the test hue variations and for each of the two 
judgment conditions by subject. 

A significantly lower level of sensitivity, namely a lower d’, was 
taken to be evidence of the direction of a shift. Lower d’ corresponds to 
more false alarms or more non-targets confused to be the same as the 
target. So, for example, if there is lower d’ as a result of more false alarms 
for prototypical items, this suggests a prototypical shift – the memory 
traces are treated as more similar to the more typical test items than the 
less typical items. Likewise, lower d’ for atypical items suggests an atypical 
shift. No difference, or a symmetrical sensitivity, would imply that memory 
does not shift relative to the category typicality gradient. The 
representational shift hypothesis (Lupyan, 2008) suggests that there 
should be an interaction of typicality and condition with a lower d’ for the 
more typical lures than the atypical lures, only in the category labeling 
condition. There should be no typicality effect, or at least a smaller effect, 
for the preference condition. The depth of processing account (Blanco & 
Gureckis, 2013; Richler et al., 2011) predicts a main effect of condition with 
no typicality effect; the sensitivities should be symmetrical. The key 
prediction of this account is more accurate memory, a higher d’, for items 
in the preference condition which is suggested to be more deeply 
processed than the items in the category labeling condition. 
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Table 3.1  

Hit and False Alarm Rates by Experiment and Judgment Conditions 

   Hue Type 

Experiment Condition -2 -1 Target 1 2 

1a Category 0.638 0.770 0.805 0.730 0.518 

 Preference 0.693 0.770 0.811 0.698 0.573 

1b Category 0.660 0.791 0.816 0.750 0.589 

 Preference 0.636 0.801 0.827 0.731 0.615 

2a Category 0.646 0.782 0.743 0.655 0.490 

 Preference 0.600 0.739 0.715 0.624 0.491 

2b Category 0.574 0.618 0.729 0.597 0.511 

  Preference 0.576 0.651 0.662 0.595 0.482 

Note. All numbers are proportions of hits to misses or false alarms to correct rejections. The 
target column represents the hit rate while the other columns represent the matched lures. Sign 
denotes towards (+) or away (-) from the prototype and number (1, 2) denotes steps distant from 
the original hue. 

 

To test whether there was a difference in d’ by condition (color vs 
preference judgment), distance from the original hue (1 step vs. 2 steps in 
hue space) or by direction of typicality (typical vs. atypical), we ran a 2x2x2 
ANOVA. The results can be seen in Figure 3.1. There was no effect of 
condition, with labeling the category or making a preference judgment not 
differentially affecting hue sensitivity. There was a main effect of distance, 
F(1,23)=29.59, p<0.001, η²=0.184. The distance of two units had a d’ mean 
of 0.672 while the d’ mean of the distance of one unit was 0.259, indicating 
that there was less sensitivity to a hue change when the test hue was closer 
to the original hue, as one would expect. This finding indicates that the 
hues that are less different in color space are less detectable. Therefore 
any shift that has taken place with the color hues is subtle and within a 
few degrees of hue space. 

The key finding was a main effect of typicality, F(1,23)=12.92, 
p<0.01, η²=0.100. The d’ mean of more typical test hues was 0.612 and the 
d’ mean of hues less typical of the color category was 0.318, indicating that 
participants were less sensitive to changes in hue if the hue was atypical 
of the color category. In other words, participants were more likely to false-
alarm to atypical test items than to typical test items. Based on prior 
theoretical work, the prediction was actually the opposite, that there would 
be less sensitivity, and therefore a representational shift, in the typical 
direction. 
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Figure 3.1. Sensitivity of hue discrimination in Experiment 1a. Lower d’ values 
indicate more confusion of hues at a particular level of the hue factors, here 
denoted with sign for towards (+) or away (-) from the prototype and with 
number (1, 2) for steps distant from the original hue. Here, d’ is lower in the 
atypical (-) direction than in the prototypical. It is also lower at 1 step removed 
from the originally presented hue than at 2 steps. There is no difference by 
condition. Error bars represent the standard error of the means. 
 

Additionally, there were two marginal components of the ANOVA, 
an interaction of condition and distance, F(1,23)=3.11, p=0.091, and an 
interaction of distance and typicality, F(1,23)=3.11, p=0.112. Due to the 
unexpected result, the marginal findings, as well as the number of 
participants excluded resulting in a small final sample size, we view 
conducting a direct replication as important to having confidence in our 
results (see Cesario, 2014 for discussion of the importance of direct 
replication). 
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Figure 3.2. Sensitivity of hue discrimination in Experiment 1b. Lower d’ values 
indicate more confusion of hues at a particular level of the hue factors, here 
denoted with sign for towards (+) or away (-) from the prototype and with 
number (1, 2) for steps distant from the original hue. Here, d’ is again lower in 
the atypical (-) direction than in the prototypical direction. It is also lower at 1 
step removed from the originally presented hue than at 2 steps. There is no 
difference by condition. Error bars represent the standard error of the means. 
 

3.3 Experiment 1b 
 

3.3.1 Method 
 

Sixty-seven students participated using the same criteria as in 
Experiment 1a. All materials and procedures were the same. 
 

3.3.2 Results and Discussion 
 

We excluded 22 participants, 10 for low color naming accuracy 
(<80% correct) in spite of color vision screening, as well as 12 for failing to 
follow instructions. Including these participants does not change the 
pattern of results. Here we report findings based on the 45 remaining 
participants.  

The results are shown in Figure 3.2. Conducting the same 2x2x2 
ANOVA on the d’ scores, there was again no effect of condition. We 
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replicated the significant main effect of distance, F(1,44)=83.58, p<0.001, 
η²=0.242, indicating that again it was easier to distinguish items further 
from the original with the d’ mean of 2 units being further from zero at 
0.652 than the mean of the 1 unit hue distance items at 0.203. We also 
replicated our typicality main effect, F(1,44)=10.39, p<0.01, η²=0.048, with 
the atypical direction mean of 0.336 and the typical direction mean of 
0.519. Again, participants were less sensitive to changes in hue if the 
change was away from the category prototype. None of the interactions 
were significant including the previously marginal results. 

With this replication we can have more confidence in concluding 
that the representational shift is occurring in the atypical direction. 
 

3.4 Experiment 2a 
 

The representational shifts at a half second delay between 
presentation and test in Experiments 1a and 1b were in the atypical 
direction. Lupyan (2008) had argued that labeling should have an effect of 
increasing the typicality of a representation at encoding. Here, we 
increased the delay between presentation and test to 5 seconds to see if a 
labeling effect or a reversal in the direction of the shift emerged with more 
processing time. 

 

3.4.1 Method 
 

Forty students were recruited as in the other experiments. The 
materials and procedure were the same as in Experiments 1a and 1b with 
the exception of increasing the delay of the blank screen between the 
original hue presentation and the test hue presentation from 500ms to 
5000ms. 

 

3.4.2 Results and Discussion 
 

We excluded 21 participants for low color naming accuracy (<80% 
correct) in spite of color vision screening. Including these participants does 
not change the pattern of results. Here, we report results based on the 19 
remaining participants. 

We conducted a 2 (color vs. preference judgment) x 2 (1 hue step vs. 
2 hue steps) x 2 (typical vs. atypical direction) ANOVA on d’ as in the 
previous experiments. Figure 3.3 shows the d’ means and error at each 
level of the ANOVA. There was no effect of condition. We found a main 
effect of distance (F(1,18)=54.18, p<0.001, η²=0.297) with the 2 units of hue 
distance being more detectable (mean = 0.513) than the 1 hue step (mean 
= 0.057). We also again found a main effect of typicality (F(1,18)=21.99, 
p<0.001, η²=0.204) with more atypical hues being less detectable (mean = 
0.1) than more typical hues (mean =0.47). No interactions were significant. 
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Figure 3.3. Sensitivity of hue discrimination in Experiment 2a. Lower d’ values 
indicate more confusion of hues at a particular level of the hue factors, here 
denoted with sign for towards (+) or away (-) from the prototype and with 
number (1, 2) for steps distant from the original hue. Here, d’ is again lower in 
the atypical (-) direction than in the prototypical direction. It is also lower at 1 
step removed from the originally presented hue than at 2 steps. There is no 
difference by condition. Error bars represent the standard error of the means. 
 

As in Experiments 1a and 1b, there was no effect of condition and a 
significantly lower sensitivity in the atypical direction, pointing again to a 
shift away from the prototype. However, there was again a relatively high 
number of exclusions resulting in a low final sample size. We again 
conducted a direct replication. 
 

3.5 Experiment 2b 
 

3.5.1 Method 
 

We recruited 62 participants using the same criteria as the previous 
experiments. All materials and procedures were the same as in Experiment 
2a. 
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Figure 3.4. Sensitivity of hue discrimination in Experiment 2b. Lower d’ values 
indicate more confusion of hues at a particular level of the hue factors, here 
denoted with sign for towards (+) or away (-) from the prototype and with 
number (1, 2) for steps distant from the original hue. Here, d’ is again lower in 
the atypical (-) direction than in the prototypical. It is also lower at 1 step 
removed from the originally presented hue than at 2 steps. There is a difference 
by condition with less sensitivity in hues that were preference-judged over hues 
that were category-labeled. Error bars represent the standard error of the 
mean. 
 

3.5.2 Results and Discussion 
 

We excluded 14 participants, 7 for low color naming accuracy (<80% 
correct) in spite of color vision screening and an additional 7 for failing to 
follow instructions. Including these participants does not change the 
pattern of results. Here, we report results based on the 46 remaining 
participants.  

We again conducted the same 2x2x2 ANOVA on the d’ 
measurements (Figure 3.4). There was a main effect of judgment condition 
in this experiment unlike the 3 others, F(1,45)=6.26, p<0.05, η²=0.067. 
Preference-judged items (mean=0.249) were less detectably different from 
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the original than color judged items (mean=0.500). In other words, there 
were more false alarms, and more shifting, for preference judgments than 
for labeling judgments. There was also a main effect of distance 
(F(1,45)=30.60, p<0.001, η²=0.103), replicating the finding that items 2 hue 
steps distant from the original (mean = 0.496) are more detectable than 
items 1 step distant (mean = 0.252). We also replicated our previous main 
effect of typicality (F(1,45)=7.48, p<.01, η²=0.043) with more atypical items 
being less detectable (mean = 0.293) than more typical items (mean = 
0.456). Again, no interactions were significant. 

Whereas d’ is a direct measure of discrimination, for completeness 
we conducted post-hoc analyses of the raw false alarm rates using the 
same 2x2x2 ANOVA. (See also Table 3.1.) In all of the previous experiments 
reported here, the pattern of results was consistent with the ANOVA 
conducted on d’ scores. In this experiment, while the false alarm rates of 
the foils continued to show the typicality effect, F(1,45)=8.688, p<0.005, 
and the distance effect, F(1,45)=31.1, p<.0001, the main effect of condition 
was not significant when false alarm rate was the dependent variable, 
F(1,45)=0.006, p=0.939. The main effect of condition in the d’ analysis was 
driven by taking into account the participants’ high labeling condition hit 
rates. 

Overall, we replicated the direction of the shift. That is, extending 
the time between study and test from half a second to five seconds did not 
change the atypical nature of the representational shift. Here we observed 
a difference between conditions for the first time. Category-labeled hues 
were more distinguishable from the original than those that were 
preference-judged. We hesitate to draw too strong a conclusion from this 
difference since it was only found in one of the four experiments and the 
false alarm analysis implied that the condition effect depends on the hit 
rate rather than the false alarm rate. Interestingly however, with only a 
main effect and no significant interaction, the category labeling increased 
sensitivity to hue differences overall, rather than in a particular direction 
towards or away from the prototype. 

 

3.6 General Discussion 
 

In our experiments, we found less sensitivity to differences between 
a studied hue and an unstudied test hue that is less typical of the category. 
In other words, participants were more likely to false-alarm to atypical 
items than to typical items. We take this as evidence that there are 
representational shifts and that they are away from the prototype. 
Additionally, there may be a judgment condition effect that emerges over 
time, with category labeled hues being more easily detected as different 
from the original hue. There is no interaction of the condition and the 
typicality direction indicating that while category labeled hues might be 
more detectable, it is not due to shifting. Instead, we can speculate that 
labeling a color allows participants to reduce bias in either direction 
equally. 
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3.6.1 Representational Shifts, Depth of Processing, or 
Transfer Appropriate Processing? 

 

The representational shift hypothesis (Lupyan, 2008) predicted that 
(1) there are representational shifts, (2) the shifts happen at encoding, (3) 
shifts are in the prototypical direction, and (4) category-labeled items are 
more strongly shifted. Our paradigm was able to show that there are 
representational shifts and that they occur very quickly, possibly at 
encoding. However, we found atypical shifts instead of the predicted 
prototypical shifts. Additionally, we found shifts for both category labeling 
judgments and preference judgments, indeed in Experiment 2b with 
stronger shifts in the preference condition. Given these results, we 
question whether the representational shift hypothesis as detailed by 
Lupyan is the appropriate explanation here. 

Depth of processing (Blanco & Gureckis, 2013; Craik & Tulving, 
1975; Richler et al., 2011) does not fit the present results either. If 
preference judgments require greater depth of processing, and depth of 
processing leads to better memory, then preference judgments should lead 
to more sensitivity to hue changes. In fact, we found that preference 
judged hues led to either indistinguishable sensitivity or less sensitivity 
than category-labeled hues. Therefore, the depth of processing account of 
the representational shifts is not satisfactory either. 

Instead, we point to transfer appropriate processing (Morris et al., 
1977) as a potential framework in which to understand the results. In 
transfer appropriate processing, relevant details to the task at hand are 
processed with more depth than details that are less appropriate at the 
time of encoding. Perhaps preference judgments have an inherently greater 
depth of processing compared to basic categorization, but the content of 
that depth is not necessarily what is needed for greater sensitivity in the 
present task. Directing processing into a comparison of the hue against 
preferences and making a valence judgment may distract from the 
encoding of the exact hue while color labeling concentrates processing on 
the appropriate aspect of the hues for greater sensitivity. Rather than 
greater raw processing, the right kind of processing leads to more exact 
memory. 

 

3.6.2 Atypical Shifts 
 

Counterintuitively, the representational shifts at a rapid test pace 
were in the atypical direction. Previous research on categorical knowledge 
effects on memory mostly suggests that if memory is altered 
systematically from the original percepts it should be in a prototypical 
direction (e.g, Heit, 1997). Categories serve to generalize our knowledge 
and to highlight similarity among distinct exemplars. What purpose could 
be served by atypical shifts? While we will not claim to have a final answer 
to this question, we speculate that it is related to perceptual expertise 
processes. 
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A domain where a similar atypical representational shift has been 
found is in recognition of faces. This has been called a distinctiveness 
effect (Rhodes et al., 1987). Participants were faster to recognize 
exaggerated faces over the original facial proportions that were in turn 
recognized faster than more generic versions of the faces. The authors 
argued the most distinctive features of a face are what are encoded into 
memory with the more generic portions not encoded as strongly. Gist 
memory (Reyna & Brainerd, 1995) can be used to fill in the representation. 
When a person then goes to use the encoding to recognize a face, the 
exaggerated face matches the distinctive features better than the true face. 

Hue is much less complex than faces – just a single dimension of a 
single feature – and yet, we found a similar bias away from the prototype. 
Rather than encode the one feature veridically, participants appear to have 
encoded a shifted hue. Perhaps the mechanism that underlies the 
caricature effect is a magnification of the atypical effect we observed 
through multiple features all moving atypically. While the details of how 
this one feature case relates to the more complex case of faces is unclear, 
our results call into question the explanation that we simply encode the 
distinctive features of a face as they are without the more generic aspects 
to achieve an exaggerated encoding. 

There has been a long debate over whether faces are in some way 
special in object processing (Farah, 1996; Gauthier & Logothetis, 2000; 
Kanwisher et al. 1997; McKone et al., 2007; Toveé, 1998). The majority of 
humans, those without a specific deficit called prosopagnosia, are 
considered to be experts at facial recognition. In the domain-general 
expertise explanation of face processing effects, visual object domains 
other than faces such as cars and birds can be processed in similar ways 
with experience (Gauthier et al., 2000). Bukach et al. (2006) advocated the 
use of an expertise framework to understand category specialization. 
Colors are generally associated with a basic level of categorization (Berlin 
& Kay, 1969; Rosch, 1975). When forced by a task to make fine subordinate 
distinctions, a different strategy appears to emerge. Movement in the 
atypical direction in our experiments was relative to basic categories. 
Perhaps the fine-grained categorization process is overcompensating for a 
more natural generalization and homogenization process that occurs when 
the participant is functioning at the basic category level. The detailed 
memory of hue demanded of participants in this task was not a typical 
activity. But for faces, fine-grained distinctions are a basic need. This may 
indicate that expert processing techniques can be flexibly recruited in real-
time to a task and do not depend exclusively on trained distinction making 
within a domain. 

 

3.6.3 Online Role of Labels 
 

While the prototypical shifts predicted by the representational shift 
hypothesis were not found and the mechanism underlying the shifts 
proposed by that hypothesis was not supported, the larger framework of 
the label-feedback hypothesis (Lupyan, 2012) is not something we are 
looking to challenge. In the label-feedback hypothesis, language is a 
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pervasive online influence on cognition in the tradition of Whorf (1956). 
Language is an inherent part of the complex multidimensional system of 
the normal human adult mind, not something that is switched on and off 
depending on the task. Instead, labels serve to up-regulate the influence of 
linguistic knowledge online while verbal interference down-regulates that 
influence. 

One interpretation of the current results would be compatible with 
the label-feedback hypothesis. Namely, the influence of the labels on 
memory occurs online and serves to increase the sensitivity of an 
individual’s ability to detect change in the labeled category. In this account, 
the up-regulation of language’s influence in the labeled case allows 
processing to focus in on the hue resulting in more accurate memory. 
Sloutsky (2003) discussed the role labels have in directing attention during 
category learning to relevant similar features among items in a labeled 
category. Extending the logic from learning itself to the use of learned 
categories, if labels are features of the category, invoking them will draw 
attention to the dimension(s) on which the category similarity and 
distinctions are judged. While labeling did not have the effect of pulling 
items toward the category prototype in this task, labeling could have a 
more general modulating influence on encoding. 

An alternative explanation could be somewhat consistent with the 
label-feedback hypothesis but from the opposite direction. The basic 
categories of color could be essentially automatic (Grill-Spector & 
Kanwisher, 2005) having language’s influence close to ceiling. The 
preference judgments may serve to distract processing from reaching the 
level of depth it naturally would regardless of the color label because 
preference valence needs to be the focus of directed attention (Simons, 
2000). Preference judgments would be down-regulating the influence of 
linguistic category knowledge. 

We are agnostic given the present evidence whether labeling has an 
added effect, the preference judgments have a distracting one, or some 
combination of the two is at play. Disambiguating the competing 
interpretations would be an interesting direction for further research. 
Either way, attention appears to be directed at the relevant dimension for 
the memory test when colors are labeled while attention is on a different 
dimension when preferences are being elicited. 

 

3.6.4 Categorical Perception 
 

Our results can also speak to recent developments in the categorical 
perception literature. Categorical perception is the effect of enhanced 
discrimination performance when the items being discriminated are across 
category boundaries. This has been attributed to changes in perception 
(Harnad, 1987), particularly the enhanced distinctiveness of learned 
category differences (Goldstone, 1994). Roberson, Hanley, and colleagues 
(Roberson et al., 2009; Kikutani et al., 2010) proposed a different account 
suggesting that category labels play a crucial role in categorical perception, 
with different labels facilitating greater accuracy and faster reaction times. 
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Hanley and Roberson subsequently updated their account. 
Conducting a reanalysis of a series of two alternative forced choice 
categorical perception tasks discriminating between colors or faces 
(Hanley & Roberson, 2011), they found an asymmetry among the within 
trials that are traditionally treated as a single condition. On trials where 
the target item was more typical of the category, or a better exemplar, 
compared to the foil, participants had a similar proportion correct to 
between category trials. On trials where the target item was more atypical 
of the category, a poor exemplar, than the foil, participants performed 
much worse. These poor exemplar trials account for the overall categorical 
perception effect. Hanley and Roberson account for this finding through 
the relative reliability of labels applied to the items. If participants labeled 
a hue blue when the hue was on its own, the participant who remembers 
'blue' rather than the actual color will be more likely to choose the better 
example of that category - even if the hue they saw was not the best 
example of the category at test. The items around a boundary are more 
ambiguous and can be labeled in different ways based on context. 

Hendrickson et al. (2012) use a category learning paradigm to 
investigate the label ambiguity hypothesis (Hanley & Roberson, 2011). They 
find that there is a pre-categorization asymmetry in addition to the 
enhanced effect after category learning. If the asymmetry exists prior to 
learning labels, label ambiguity alone cannot account for the asymmetry. 
They put forward an account based on unsupervised learning of clusters 
regardless of labeling. 

Our experiments did not contain a classic categorical perception 
task since we only conducted within category trials. We also did not utilize 
a two alternative forced choice paradigm. However, the same/different 
task similarly requires participants to compare their memory for a 
stimulus to the test items. Rather than use all items as both target and foil, 
we had set targets with foils in both the typical and atypical direction. 
Therefore, each target hue was both a good exemplar (atypical trials) and 
a poor exemplar (typical trials) compared to the current foil. The research 
above would suggest that there should be enhanced performance on good 
exemplar, or atypical trials. This is the opposite of what we found. 
Sensitivity to differences decreased when the test hue was less typical of 
the category. The label ambiguity hypothesis cannot account for this 
result. 
 

3.6.5  Conclusion: Memory, Categorization and Reasoning 
are Intertwined 

 
We examined the effect of active category labeling on hue memory 

creation. Memory even at 500ms after initial perception is affected by 
categorical structure, regardless of active labeling. Given the short time 
scale and the reliable influence of category typicality, it seems safe to 
conclude that memory and categorization are inextricably intertwined in 
this task. While our experiments did not look at learning, labels are known 
to facilitate the learning of categories (Lupyan et al. 2007; Sloutsky & 
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Fisher, 2012), which is considered to be a reasoning process. In so far as 
categorization: is based on past experience, is ubiquitous in its influence 
on memory, and is developed at least in part through reasoning, the 
historically distinct topics of memory, categorization, and reasoning would 
appear to be comprised of common elements. As the topics continue to be 
considered together, the interrelations and underlying processes will 
become clearer. 
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Chapter 4 
 
Recognition Memory for Hue: Prototypical 
Bias and the Role of Labeling4 
 
4.1 Introduction 
 

What are the consequences of labeling for perception and memory? 
Traditionally, language was treated as a separate system within human 
cognition as it is uniquely human, whereas memory, attention, and 
perception are held in common with evolutionary ancestors (Chomsky, 
1975; Fodor, 1983; Pinker, 1994). However, there is increasing evidence 
that language uses the same underlying subsystems as other cognitive 
processes (Perfors, Tenenbaum, & Regier, 2011; Tomasello, 2009). Within 
such accounts of cognitive processing, interaction between language and 
memory no longer needs to be the product of separate processes taking 
place concurrently. Rather, the processes themselves may overlap in their 
implementation with a high degree of mutual influence. 

Linguistic knowledge and non-linguistic knowledge are intimately 
tied together. To communicate about knowledge, the most pervasive and 
efficient form of information transfer is through language. Categories are 
structured knowledge about groups of objects, actions, or whatever 
phenomena are able to meaningfully hang together. In everyday behavior, 
category labels are used to refer to phenomena in the world as people 
communicate with one another and themselves. Most models of 
categorization (e.g. Heit, 1992; Nosofsky, 2015) do not assign any special 
influence to the act of applying category labels. The topic has started to 
garner considerable interest (Blanco & Gureckis, 2013; Hanley & Roberson, 
2011; Lupyan, Rakison, & McClelland, 2007; Lupyan, 2008; Richler, 
Gauthier, & Palmeri, 2011; Richler, Palmeri, & Gauthier, 2013; Roberson & 
Hanley, 2010). If the act of labeling systematically affects concurrent 
perception and subsequent memory, it could have pervasive influence on 
knowledge built out of our experience with the world. 

In the present paper we address the issue of how labeling a 
perceived hue, e.g., calling an orange-red hue "red," affects subsequent 
memory for that hue, particularly whether there are systematic shifts in 
memory responses relative to the category typicality structure. We 
compare labeling to other judgments made at encoding in order to examine 
the specific effects of labeling on memory for percepts and to examine 
whether these effects are unique to labeling. 
                                                
4 Copyright © 2017 American Psychological Association. Reproduced with 
permission. The official citation that should be used in referencing this 
material is Kelly, L. J. & Heit, E. (2017) Recognition memory for hue: 
Prototypical bias and the role of labeling. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 43, 955-971. 
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4.1.1 Memory Distortion 
 

Memory is remarkable in its capacity. People are capable of 
distinctly remembering hundreds of objects (Brady, Konkle, Alvarez, & 
Oliva, 2008) and scenes (Konkle, Brady, Alvarez, & Oliva, 2010; Shepard, 
1967) after relatively brief exposure. At the same time, memory is not 
necessarily accurate to experience even when a person is very confident of 
that memory. After hearing an intense verb to describe a car crash - 
smashed - participants reported remembering broken glass – a marker of 
a more intense crash – even though there was no broken glass in the video 
of the crash they had watched (Loftus & Palmer, 1974). Whereas memory 
is clearly not analogous to video recordings capturing unaltered snippets 
of audiovisual reality, documented distortions like the eyewitness 
testimony example have systematic structure. A false alarm – remembering 
something as old when it is new – in memory for a list of words is more 
likely if the word is semantically related to the rest of the words in the list 
(Roediger & McDermott, 1995). The word habitually used to describe the 
middle color of a traffic light (yellow – “gelb” - in German, and orange – 
“oranje” - in Dutch) influences the memory of the light's hue (Mitterer, 
Horschig, Musseler, & Majid, 2009). In situations that are selected for their 
contrast between reality and description, language is able to influence 
memory. 

How is memory affected by everyday application of language during 
perception? In situations where language and perception match, does 
language affect memory for that perception? For instance, as we examine 
in the present experiments, does labeling a specific hue as "red" change the 
memory for that hue? A specific hue and the general category of red do 
not contain the same information. The label "red" applies to the hue, but it 
also applies to a range of other similar hues. The mismatch between 
information the label can apply to and the specific item the label is being 
applied to at a particular point in time could potentially lead to systematic 
memory distortions. However, that a label can apply to a broad range of 
category members does not necessarily mean the label in context activates 
category information with enough strength to alter processing of 
perceptual input. 

 

4.1.2 How Could Labeling Affect Perception and Memory? 
 

If there were a pervasive influence of labeling on perception and 
memory, even when the labels agree with the perceptual input, what would 
this influence be? Here, we explore three alternative hypotheses: (1) labels 
distort memory towards the label prototype, (2) labels guide the level of 
specificity needed in the current context, and (3) labels direct attention to 
a label’s referent among all possible features within a visual scene. 
 

4.1.2.1 Labels Distorting Memory 
 

The representational shift hypothesis (Lupyan, 2008) makes the 
conjecture that memory is systematically biased towards the category 
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prototype when category labels are active at the same time as when 
relevant perception is taking place. Specifically, the representational shift 
hypothesis suggests that perceptual information is perceived equivalently 
regardless of labeling, then while the information is processed, there is 
memory distortion from top-down category information being co-activated 
with the bottom-up perceptual information. The category information is 
broader than the specific exemplar being perceived. Labeling causes the 
category information to be more strongly activated than if the category 
was activated through the perceptual information alone. The general 
category information and the specific exemplar interact in online 
processing, shifting the memory of the original percept towards the 
prototype of the category – the overlapping information between percept 
and category is more active than idiosyncratic aspects of the current 
exemplar. It is that shifted representation that is stored in long-term 
memory. In other words, the orange-red hue labeled as "red" would be 
remembered as more red. However, this pervasive prototypical distortion 
of memory based on labeling has been questioned (Blanco & Gureckis, 
2013; Richler, et al., 2011, 2013). The representational shift hypothesis, if 
correct, would represent an accumulating influence of existing knowledge 
biasing new knowledge towards existing ideas about how the world is 
structured. 

 

4.1.2.2 Labels Guiding Specificity 
 

Another possible effect is that the label serves as a cue as to what 
level of encoding specificity is needed. For example, the very question of 
whether a hue is red or green may suggest that the diagnostic level of detail 
needed to distinguish the hues for these labels is all that is needed in the 
current environment, rather than more detailed information such as 
whether a hue is an orange tinted red or more of a purple tinted red. In 
this view, an item only needs to be processed sufficiently to be confident 
the item is in one category and not the other when choosing between two 
labels, as was the case in related work (Richler, et al., 2011). A superficial 
orienting task, such as indicating the direction a chair is facing (Blanco & 
Gureckis, 2013) or the location of the item on the display screen (Richler 
et al., 2011), could also lead to poor memory for the exemplar. These tasks 
were designed to influence the strength of a memory through tasks 
requiring low depth of processing. Under this account, labeling does not 
have a systematic influence on memory traces so much as simply being a 
task that may not require specificity. 
 

4.1.2.3 Labels as an Attentional Focus 
 

More broadly, labels may serve as a general cue for attention. When 
a stimulus or a scene is visually perceived, there are many features initially 
processed into iconic memory. Guiding the focus of attention to regions 
within a scene guides the content of accessible working memory for that 
scene. This was demonstrated in a classic study (Sperling, 1960) by briefly 
showing participants a display of many rows and columns then 
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immediately cueing a specific row. Participants were able to remember any 
single row that was cued, but they could not remember the whole array. 
Focusing attention to a particular row allowed that information to be 
secured into memory while the perception of the rest of the display was 
lost. Likewise, using a label concurrently with visual perception would 
focus the strength of memory encoding towards the features relevant to 
the label. Under this account, labeling a percept in terms of its color would 
encourage attention to featural information related to color, but labeling 
would not be unique in this role, and it should be possible to cue color in 
other ways as well. 
 

4.1.3  Existing Evidence for Systematic Bias 
 

Labeling bias as discussed here has been investigated in several 
recent studies using an old/new recognition paradigm (Blanco & Gureckis, 
2013; Lupyan, 2008; Richler, et al., 2011). A set of items is presented in a 
study block, during which time participants are (or are not) asked to label 
each item. Next, these items and matched lures are presented during a test 
block. There are challenges associated with using this paradigm to test the 
representational shift hypothesis, which predicts that memory is shifted 
systematically towards the prototype (Lupyan, 2008). Poor recognition 
memory, in the form of misses on an old/new recognition test, need not 
mean that memory for that item is more prototypical. The memory could 
be more prototypical, less prototypical, or simply not strong enough to 
produce recognition regardless of movement in representational space. 
Returning to our earlier example, if a participant studies an orange-red 
hue, a failure to later recognize that hue may or may not mean that the 
representation had shifted towards the red prototype. 

In our own prior work (Kelly & Heit, 2014), we had focused on the 
claim (Lupyan, 2008) that memory shifts during the encoding process. 
Therefore, we tested immediate memory with narrow study-to-test time 
scales, 500ms and 5000ms. Memory for hue was tested using the old study 
items as well as four matched lures that systematically varied relative to 
the color’s prototype. It was the responses on the lure items, either shifted 
towards or away from the prototype, that were crucial for examining 
whether and how a representation had shifted. We found that at these 
tested time scales, memory test responses are systematically biased 
relative to the category structure, and, surprisingly, are biased away from 
the prototype. 

These shift patterns may not hold at other timescales. It seems 
possible that, at a timescale of minutes, memory response distortion 
during recognition would be prototypical rather than atypical. In fact, 
much of what is known of memory including gist memory (Reyna & 
Brainerd, 1995) and false recognition of close associates in word lists 
(Roediger & McDermott, 1995) suggests that memory is broadly influenced 
by category knowledge and that influence is generally in a prototypical 
direction. 

Additionally, at the brief timescales investigated in Kelly and Heit 
(2014), there was not a distinctive effect of language. There was a small 
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effect of category labeling that emerged by 5000 ms but was not present 
at 500 ms. Encoding hue into immediate memory was not apparently 
affected by online labeling. To determine if online labeling influences 
processing of hue over time, particularly as memory traces get encoded 
into long-term memory, here we used a hybrid of our earlier method with 
a longer study-to-test delay based on the timing used by other researchers 
(Blanco & Gureckis, 2013; Lupyan, 2008; Richler, et al., 2011). 

In related work, Bae, Olkkonen, Allred, and Flombaum (2015) 
investigated hue estimation (rather than recognition) at 0ms and 900ms, 
finding varying amounts and direction of bias depending on target hue. 
However, the Bae et al. experiments did not have a labeling manipulation. 
Also, Persaud and Hemmer (2014) looked at bias in color recall memory 
using active labeling immediately before recall, estimating the hue on a 
color wheel. They found memory to be biased towards the prototype or 
mean hue value. However, there was no comparison condition without 
labeling, and labeling itself occurred just before the response. Hence 
neither of these studies allow us to address questions about the influence 
of labeling at encoding and whether any effect found is unique to labeling. 

 

4.1.4 Shifts of What Exactly? 
 

The key issues of whether memory truly shifts, and if it does shift, 
how it shifts relative to the prototype is not discernible from an old/new 
recognition paradigm with a single matched lure as described above. A 
different paradigm, one that probes memory at multiple locations, can 
shed some light on whether the hypothesized shifts are a possibility. If 
memory test responses are systematically shifted, the role of language in 
causing those shifts then becomes more interesting. Even showing shifts 
in memory test responses does not demonstrate that memory itself is 
shifted – it could be that shifts are introduced at retrieval rather than 
encoding. However, the mechanism debate is premature without first 
demonstrating shifts in memory responses. 

Yet, mechanisms of shifts in addition to whether shifts exist have 
already been debated. The representational shift hypothesis (Lupyan, 
2008) describes a phenomenon that is specific to overt labeling of 
percepts. It does not predict that merely knowing a category will cause 
prototypical shifts of exemplar memory, but that using the label of the 
category actively changes the processing of perceptual input. This leads to 
the following prediction: Labeled images will be stored more prototypically 
and the original image will therefore be less likely to be recognized during 
a memory test. This would be due to a change in the encoded percept. The 
specificity of encoding view predicts a different mechanism: less 
specificity in the memory trace and therefore less recognition of the 
original labeled images (Blanco & Gureckis, 2013; Richler et al., 2011). The 
best guess would be a more prototypical guess. Memory probed at multiple 
locations on a typicality gradient would be predicted to have the same 
result by both these accounts: labeled items are expected to be more 
prototypical than un-labeled items. The directed attention account would, 
in opposition to the other accounts, predict less shifting for labeled items 
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than un-labeled items. This decrease in shifting would be due to more 
specificity in encoding due to the tested aspect of the item having been 
highlighted when originally perceived. Shifts in the response for the second 
and third hypotheses would not necessarily be shifts of the actual percept 
but could reflect relative susceptibility of a memory trace to the influence 
of a category prototype at response. For example, a potential mechanism 
that could underly the directed attention account is described by a 
prominent model of spatial memory, the Category Adjustment Model, 
CAM, (Huttenlocher, Hedges, & Duncan, 1991; Huttenlocher, Hedges, & 
Vevea, 2000; Huttenlocher, Hedges, Lourenco, Crawford, & Corrigan, 2007). 
CAM predicts shifts in spatial memory based on the strength of a memory 
trace with less specific exemplar memory filled in with category 
information at retrieval. Applying the principles of CAM to hue memory, 
memory traces would be encoded as originally perceived but less specific 
memories should result in more shifted responses while more specific 
memories would result in less shifted responses. 
 

4.1.5  Experiment Rationale 
 

We conducted a series of four experiments using a hybrid of 
paradigms from Lupyan (2008), and Kelly and Heit (2014). The aim of the 
work was to investigate whether there is a systematic bias predicated on 
labeling categories when encountering a percept. To give a preview, 
participants were presented with colored silhouettes and made two types 
of judgments about them (with different pairs of judgments in each 
experiment; see Table 4.1). Afterwards they were given a five-alternative 
forced choice memory test for the hue of the silhouette among slightly 
different hues; see Figure 4.1 for an example display. Experiments 1 and 2 
established that shifts were taking place. Additionally, the experiments 
investigated whether overt labeling of categories leads to a different 
pattern of shifts than a comparison condition, in Experiment 1 with the 
preference judgment comparison condition as in Lupyan (2008), then in 
Experiment 2 with another categorization task, an animacy comparison 
condition. Experiments 3 and 4 explored the role of language in shifts. 
Experiment 3 explored whether the effect of language is unique and 
Experiment 4 explored whether overt color labeling is required to produce 
the effect. This sequence of experiments allowed us to test for systematic 
shifts relative to category structure, to determine the direction of those 
shifts, and to examine the role of online labeling in producing shifts at the 
timescale of about five minutes between study and test. 
 

4.2 Experiment 1 
 

To look for shifts in memory responses after a few minutes of 
processing, we employed the basic design of the original representational 
shift paradigm (Lupyan, 2008): a study phase during which participants 
viewed target items and made categorization or preference judgments 
about them, immediately followed by a surprise test phase where 
participants identified which items they had seen previously. Rather than 
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display targets and a single matched foil in isolation at test, we tested 
participants on an array of five hues: the original hue along with two hues 
more typical and two hues less typical of the color category. The richer 
false alarm possibilities make the direction and magnitude of a response 
shift observable. 

In line with Kelly and Heit (2014), we used color categories rather 
than object categories, such as chairs and lamps, used in the studies by 
other researchers because color has a better-defined representational 
space. We focused on the single dimension of hue, leaving two directions 
of possible shift: away from or towards the prototype of a color category. 
Color is a domain where memory has, in some cases, proven accurate to 
experience (Perez-Carpinell, Baldovi, de Fez, & Castro, 1998), and is a 
domain where categories affect perception (Kay & Kempton, 1984; Winawer 
et al., 2007). The possible veracity of perception coupled with the 
demonstrated distortion of perception in different settings make color an 
ideal testing ground for whether overt language can cause systematic 
memory distortions. 

Experiment 1 began to address both of our aims: establishing 
whether there are directional shifts in memory test responses and, should 
shifts be found, investigating the role of language in those shifts. 

 

4.2.1 Method 
 

4.2.1.1 Participants 
 

Thirty-eight undergraduate students were recruited from UC 
Merced’s participant pool.⁠5 All participants were monolingual or early (by 
age 10) bilingual English speakers. They had not otherwise participated in 
color-based experiments in our lab. Participants had normal or corrected 
to normal vision. They were also tested to have normal color vision, using 
the CITY test (City University, 2002) at the conclusion of the experimental 
session. 

 

4.2.1.2 Stimuli 
 

Forty silhouettes were created in Adobe Photoshop for the study 
phase. Twenty silhouettes were living things such as a giraffe and a 
butterfly, and 20 silhouettes were non-living things such as a pan and an 
airplane. Eight main target hues, 4 reds and 4 greens, were selected. The 
selected colors had the lightness and saturation values of their category’s 
focal color (Sturges & Whitfield, 1995). The hues were evenly distanced 
from each other within hue space centered on the category focal color hue. 
The semi-random (see Appendix A for details) creation of colored 
silhouettes preserved color and animacy balances while counterbalancing 
the color/shape pairings across participants. The animacy features of the  

                                                
5 A preliminary version of this experiment was presented in a conference 
proceedings paper, Kelly and Heit (2013). We have omitted one participant 
due to missing information on native-English speaking status. 



51 

Figure 4.1. Stimulus presentation. (a) During the study phase, participants saw 
a single silhouette as they made a judgment. (b) During the test phase, 
participants selected from an array of 5 hues for a particular silhouette shape. 
The question reads, “What color was this shape when you saw it earlier?” 

 

silhouettes were not required in the current experiment but were necessary 
for an animacy judgment condition used in Experiments 2-4. Six additional 
colored silhouettes were developed for practice trials, using the colors 
yellow and purple as well as different shapes than those used in the main 
task. 

For the test phase, four variations of each of the 8 target hues were 
created at intervals of 2° along the hue dimension in CIE L*ab color space 
(see Appendix A for details). This resulted in an evenly spaced test scale 
for each silhouette of two hues closer to the prototype, the original hue, 
and two hues further from the prototype. The typicality of the hues was 
empirically tested in a norming experiment using an independent 
participant sample, which is reported in Appendix B. 
 
4.2.1.3 Procedure 
 

The experiment consisted of two main parts: a study phase and a 
test phase. Each participant encountered 6 practice study trials, then 80 
study trials followed by 40 test trials. 

For the study phase, participants were instructed in the two types 
of judgments: color categorization, “What color is this?” (“1” and “2” for 
red and green, with color/key assignments counterbalanced across 
participants) and preference, “Do you like this?” (“3” for like or “4” for 
dislike), the conditions used in Lupyan (2008). The trials were presented in 
8 alternating judgment blocks (e.g., a block of red/green, followed by a 
block of like/dislike), 10 trials per block, with the starting condition 
counterbalanced. Each silhouette was judged twice by each participant for 
the same judgment type (e.g., if the giraffe was judged for color the first 
time it appeared, the giraffe would again be judged for color the second 
time it appeared).  Each silhouette was judged in each condition, between  
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participants. The participants had been instructed to remember the 
silhouettes as they would show up more than once but were not explicitly 
told of a memory test. Each trial consisted of a fixation cross (1500 ms), 
the silhouette to be judged (300 ms), a question mark eliciting the 
judgment for that silhouette (up to 700 ms), and a blank screen (up to 1000 
ms). The trial ended after a response was given. If the trial timed out a “Too 
Slow” message briefly appeared on the screen before a new trial started. 
The timing and block design of the study phase closely followed the 
procedure of Lupyan (2008) Experiment 1. 

After the study phase, participants were then tested for hue 
memory. The memory trials consisted of a circular array of the 5 hue 
variants of a particular silhouette (Figure 4.1). The array consisted of the 
hues in graded clockwise order with the most typical hue rotated to a 
random position on each trial, resulting in a consistent appearance of 
selecting from a gradient of hues but avoiding position effects that would 
be present in a line. Each of the 5 positions had a location label 1 through 
5 that participants entered on the keyboard to make a selection. There was 
no time limit imposed on the memory test responses, with an inter-trial 
interval of 1500ms. 
 

4.2.2 Results and Discussion 
 

In spite of screening for color vision deficiencies, 4 participants 
were excluded for low (<80%) color categorization accuracy. Six additional 
participants were excluded for response patterns suggesting a lack of 
engagement such as always pressing the same response key. As a result, 
28 participants were included in the analyses. The same pattern of results 
was maintained when all 38 participants were analyzed. The included 
participants had a color categorization accuracy of 90.56%.⁠6 

The first consideration was whether there were the hypothesized 
systematic shifts. Responses on the memory test were transformed to a 
consistent -2 to +2 scale, with -2 corresponding to choosing the item 4° of 

                                                
6 No individual hues were more accurately categorized than the others (See 
Appendix A for details). 

Table 4.1       
Proportions of Responses by Typicality Level at Test       

  Condition Least Typical Less Typical Original More Typical Most Typical 

Exp. 1 Color 0.155 0.155 0.191 0.236 0.263 

  Preference 0.127 0.159 0.173 0.234 0.307 
Exp. 2 Color 0.170 0.163 0.171 0.223 0.273 

 Animacy 0.125 0.143 0.177 0.202 0.354 
Exp. 3 Color 0.182 0.132 0.177 0.208 0.302 

  Animacy 0.192 0.143 0.150 0.240 0.275 
Exp. 4 Preference 0.170 0.127 0.181 0.192 0.330 

  Animacy 0.165 0.146 0.180 0.208 0.301 
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hue space more distant from the prototype than the original, 0 choosing 
the original item, and +2 choosing the item 4° closer to the prototype than 
the original. The proportion of responses for each of these hue types by 
condition are reported in Table 4.1. 

Participants showed a systematically biased memory for hue toward 
the prototype. We conducted two-tailed, one-sample t-tests comparing the 
mean typicality of responses for each judgment type against the value 0 
representing the original hues. The color categorization mean was 0.29 
(standard deviation 0.42) which is significantly more prototypical than the 
original hues, t(27)=3.75, p<0.001, Cohen’s d=0.71, BF10=38.97. Here and in 
subsequent reports, the Bayes factor, calculated using JASP (Love et al., 
2015), represents the evidence of the alternative hypothesis (H1) against 
the null hypothesis (H0), with values above 1 being evidence for H1 and 
values between 1 and 0 being evidence for H0. To interpret the current 
value, a BF10 of 30-100 is considered very strong support for the alternative 
hypothesis (Jeffreys, 1961). The preference judgment condition mean was 
0.44 (standard deviation of 0.42) which is also significantly more 
prototypical that the original hues, t(27)=5.57, p<0.001, d=1.05, BF10>1000. 
A Bayes factor above 100 is considered decisive support for the alternative 
hypothesis. Here, we provide direct evidence for shifts toward the 
prototype at a study to test delay of approximately 5 minutes. In an effort 
to verify the assumptions of these analyses, we examined the response 
distributions for both color judgments and preference judgments. Each 
distribution failed a test for non-normality, the Shapiro-Wilk test, p-values 
>0.05. The distributions were each not statistically different from a normal 
distribution. 

This design did not have a measure of hue/shape pair memory. The 
memory test does not distinguish random guessing due to no memory for 
the hue when a shape is displayed at test and true biased memory. We 
conducted a control experiment reported in Appendix B. Participants in 
that experiment had a 67% accuracy rate of categorizing a gray silhouette 
cue as having been red or green at study – effectively a cued recall task. 
Participants clearly have some memory of the pairings but it is not at 
ceiling. To determine whether there were differences in accurate hue 
memory across the encoding tasks, we analyzed the proportion of 
objectively correct responses (the Original column in Table 4.1) by 
condition. There was no difference in these proportions (paired, two-tailed 
t(27)=0.92, p>0.05, d=0.17, BF10=0.29), indicating that the conditions 
contained equal original hue responses with any differences between 
conditions being within the pattern of the lure responses. Across all four 
experiments, the findings illustrate that simply looking at these accurate 
responses to the original hue is not as informative as looking at the whole 
pattern of false alarms. 

In order to investigate potential condition differences, we tested the 
mean response typicality of the labeling and preference conditions against 
each other using a two-tailed, paired-sample t-test. The difference between 
conditions (label condition mean: 0.29 and preference condition mean: 
0.44) was not significant, t(27)=1.97, p=0.059, d=0.34, BF10=1.08. With a 



54 

Bayes factor just above 1, a difference between the conditions is only 
weakly evident. The null hypothesis of no difference is not supported, 
leaving the condition difference inconclusive. A chi-square analysis 
comparing the distribution of responses at each typicality level between 
the two conditions was also non-significant, !"(4, N=1160)=3.51, p>0.05. 
Since the t-test yielded a p-value close to the significance level of 0.05 and 
with an inconclusive Bayes factor, it is natural to speculate as to whether 
there is a difference that we do not have enough power to detect. However, 
note that the shift was actually weaker for the labeling condition, the 
opposite pattern of results from those proposed by the representational 
shift hypothesis (Lupyan, 2008). If this pattern holds, color labeling would 
actually lead to weaker rather than stronger shifts in comparison to 
another kind of judgment. Moreover, labeling does not uniquely cause 
shifted response patterns. This finding cannot support the specific 
formulation of memory distortions hypothesized by the representational 
shift hypothesis. The other possibilities of labels guiding specificity or 
focusing attention could be compatible with the demonstrated systematic 
bias. 

Finally, we collected reaction times (RTs) for both judgment 
responses and memory test responses with measurement beginning at 
stimulus presentation - either the single item in the study phase or the 
array of items in the test phase. The color judgment RTs (median 
425.62ms) were significantly faster than the preference judgment RTs 
(median 520.10ms) according to the Wilcoxon Signed-Rank Test (V=71, 
p<0.002) which is appropriate for comparing paired sample non-normal 
distributions. This replicates a reaction time difference reported in Lupyan 
(2008). The additional processing time needed for preference judgments 
has been taken as indicative of more depth of processing in the preference 
condition (Blanco & Gureckis, 2013; Lupyan (2008); Richler et al., 2011, 
2013). There was no significant difference for color memory RTs (median 
3444.20ms) and preference memory RTs (median 3982.33ms), V=185, 
p=0.695. 

Overall, the main finding of Experiment 1 was that responses shift 
relative to category structure at the retention interval of a few minutes. 
This happened regardless of the orienting task being color labeling or 
preference judgment. Additionally, there was not a significant difference 
between the two orienting conditions. The pattern of results, though not 
conclusive, lean toward less bias for labeled hues, the opposite pattern 
from what the representational shift hypothesis would predict. The 
possible roles of labels setting a minimum level of specificity and of labels 
focusing attention to particular features are not distinguished by 
Experiment 1. Preference judgments are not categorical and specific in the 
same way as category label judgments are. The level of specificity needed 
to make a preference judgment is less clear than discriminating between 
two well-defined categories in the color label condition. Which features 
preference judgments cause participants to focus on is unclear and likely 
subject to individual differences with some participants focusing on liking 
or disliking the color, the shape, the animal or object concept indicated by 
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the shape, or a holistic view of more than one of these dimensions. An 
alternative contrast condition which is a more defined categorical task 
would help to clarify these issues. 
 

4.3 Experiment 2 
 

In Experiment 1, we demonstrated that there are prototypical shifts 
using a serial study/test paradigm. To replicate the prototypical shifts and 
explore potential orienting task differences further, Experiment 2 was 
similar to Experiment 1 but replaced the preference judgment condition 
with an animacy judgment task. Judging the animacy (living or non-living) 
status of a silhouette is a categorization task like the color judgment. 
Responding to animacy is a task which people – even infants – can perform 
easily (Mandler & Bauer, 1988). 

The key information from the stimuli for the animacy task is the 
shape of the silhouette rather than the color. In preference judgments, it 
is possible that color plays a significant role in the judgments. Liking or 
disliking an item is a holistic judgment which would likely take into 
account the combination of the hue and shape. The separation of key 
information – hue for color judgments, shape for animacy judgments – for 
the two orienting tasks helps increase the difference between tasks. The 
minimum specificity alternative would suggest little to no difference 
between conditions: distinguishing between red and green takes little 
specificity of hue processing and distinguishing between living and non-
living shapes requires no specificity of hue processing. The directed 
attention alternative would predict higher accuracy for hue in the color 
judgment task, where hue is highlighted over shape. The results of this 
experiment can confirm the pattern found in Experiment 1 which is 
inconsistent with the representational shift hypothesis and lay 
groundwork for distinguishing between specificity and directed attention. 
Although this experiment alone cannot conclusively distinguish between 
the specificity and directed attention accounts, a difference between 
conditions would be more easily explained by the directing attention 
account. 
 

4.3.1 Method 
 

Forty undergraduate students were recruited as in the previous 
experiment. Participants answered the judgment questions “What color is 
this?” and “Is this a living thing?” in alternating blocks during the study 
phase. Otherwise, the stimuli and procedure were the same as in 
Experiment 1. 

 

4.3.2 Results and Discussion 
 

Twelve participants were excluded for low (<80%) color accuracy, 
low (<70%) animacy accuracy, or response patterns such as always pressing 
the same response key. Hence, 28 participants were included in the 
analyses reported, although the conclusions are the same based on data 
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from all the participants. The included participants had 94.38% color 
accuracy and 88.84% animacy accuracy. 

Participants showed systematic biased memory for hue in both the 
label and animacy conditions. The prototypical shifts observed in 
Experiment 1 were observed again. The color condition mean was 0.27 
(standard deviation of 0.50) which is significantly more prototypical than 
the original hue value 0, t(27)= 2.86, p<0.01, Cohen’s d=0.54, BF10=5.54. The 
animacy condition mean was 0.52 (standard deviation of 0.36) which is also 
significantly more prototypical than 0, t(27)=7.54, p<0.001, d=1.43, 
BF10>1000. Both distributions failed the Shapiro-Wilk test, with both p-
values >0.05. Comparing the proportion of accurate responses (Original 
column, Table 4.1), there was no difference by condition (paired, two-tailed 
t(27)=0.20, p>.05, d=0.04, BF10=0.20). Again, there was no evidence that any 
differences by condition are due to having more memory for hue/shape 
pairings in one condition over the other. 

We again found color labeling does not uniquely cause response 
shifts, and further, it leads to weaker shifts than another kind of judgment. 
The animacy mean response typicality 0.52 was statistically different from 
the labeling mean response typicality 0.27, t(27)=3.12, p<0.01, d=0.59, 
BF10=9.53, with animacy-judged hues shifting more strongly in a 
prototypical direction than color-judged hues. The Bayes factor between 3-
10 indicates substantial support for a difference (Jeffreys, 1961). A chi-
square analysis comparing the distribution of responses at each typicality 
level between the two conditions (see Table 4.1 for response rates) was also 
significant, !"(4, N=1120)=10.916, p<0.05. These results point to different 
patterns of bias for the two encoding conditions with labeled hues being 
less biased towards the prototype than non-labeled hues. 

Reaction times (RTs) followed the same pattern as in Experiment 1. 
Color judgment RTs were significantly faster (median: 444.71) than 
animacy judgment RTs (median: 528.93) according to a Wilcoxon Signed 
Rank Test, V=0, p<0.001. Whereas animacy is a categorization task like 
color, the categorizations are at different hierarchical levels with color at 
a basic level and animacy at a superordinate level. The longer RTs for 
superordinate categorizations compared to basic categorizations is 
expected (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). There was 
no statistical difference between the conditions for memory test RTs, 
V=142, p=0.171 (color median: 4221.55, animacy median: 4677.50). 

Experiment 2 replicated the prototypical shift finding from 
Experiment 1 using an alternative orienting task. Responses on a memory 
test for hue systematically shift at this timescale. Again, both orienting 
tasks tested led to bias towards the prototype. Here the strength of shifts 
between conditions was significantly different with animacy judgments 
leading to more biased memory than color labeling. The prediction of the 
representational shift hypothesis, that overt labeling strengthens category 
prototype information during encoding, was again not supported. Still, this 
experiment does not conclusively distinguish between the directing 
attention and specificity hypotheses for the role of labeling. The condition 
difference here could be due to attention focusing on the color and 
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separately the shape in the color and animacy judgment tasks respectively. 
Alternatively, labeling color could set a minimum specificity of encoding 
that was greater than for the animacy condition for which the hue was 
irrelevant. In Experiment 3, we employed a non-label manipulation to 
further distinguish between the alternative accounts. 
 

4.4 Experiment 3 
 

Why would labeled hues have a tendency for weaker shifts than in 
conditions without labeling? One possible explanation is that the labeled 
feature is processed to a minimum specificity for distinguishing between 
the alternatives. Since the labels used here (green or red; living or non-
living) are broad category labels, this could result in lower accuracy than if 
a more stringent sub-category criteria were applied. Another possibility is 
that labels direct attention to the appropriate features causing hue to be 
remembered with greater accuracy in the color labeling condition. 

In Experiment 3, participants were informed of the upcoming 
memory test, including being shown a display of how narrow the 
differences between hue options are at test. By informing participants of 
the hue memory test prior to the orienting tasks and showing them how 
highly specific the hue test would be, the knowledge of this test could 
define the focus of attention and the specificity of encoding during the 
study phase of the experiment. If the effect of labeling is actually an effect 
of attention to highlighted features, the higher accuracy found in the color 
condition in Experiment 2 should be achievable in the animacy condition 
if attention were directed to the hue feature by an alternate means. 
Therefore, both orienting conditions should produce weak shifts. If instead 
labeling sets the specificity of processing in the relevant dimension, 
alerting participants of a need for greater specificity than distinguishing 
between the label options would result in less shifting than the color 
labeling condition in Experiment 2. 

Additionally, this manipulation of the instructions allows the 
question of labeling uniquely decreasing shifts to be examined. Eliminating 
the difference between the labeling and animacy conditions with an 
instructional (that is, a non-label-based) manipulation would suggest that 
labeling is not the only way to increase hue memory accuracy. 

 

4.4.1 Method 
 

Thirty-eight undergraduate students were recruited as in the 
previous experiments. The initial instructions, both presented verbally 
from the experimenter and written on-screen, informed participants of the 
hue memory test that would follow the judgment task. The on-screen 
instructions displayed an example test question in order for participants 
to experience the small variation in hues displayed at test. Otherwise, the 
stimuli and procedure were the same as in Experiment 2 using the 
categorization and animacy conditions. 
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4.4.2 Results and Discussion 
 

Eight participants were excluded using the same criteria as 
Experiments 1 and 2. Therefore, 30 participants were included in the 
analyses. Excluding participants did not change the pattern of results. The 
remaining participants had a color categorization accuracy of 91.42% and 
an animacy categorization accuracy of 88.00%. 

We again found evidence of systematic prototypical shifts in the 
memory test response patterns for both the labeling and animacy 
conditions. The condition means were again significantly shifted toward 
the prototype (one sample, two-tailed t-tests against original hue value of 
0: color mean = 0.32 (SD = 0.43), t(29)=4.07, p<0.001, d=0.74, BF10=88.57; 
animacy mean = 0.26 (SD = 0.43), t(29)=3.36, p<0.01, d=0.61, BF10=16.41). 
Shapiro-Wilk tests did not indicate non-normal distributions, p-values > 
0.05. Comparing the original hue response rate by condition again yielded 
a null result (paired, two-tailed t(29)=1.21, p>0.05, d=0.22, BF10=0.38). 

Contrary to the possibility that the mitigating effect of labeling is 
unique to language, the conditions were not significantly different from 
each other (two-tailed, paired-sample t-test: t(29)=0.63, p>.05, d=0.12, 
BF10=0.23; chi-square test: !"(4, N=1200)=3.845, p>0.05; see Table 4.1 for 
response rates). The inverse Bayes factor (BF01) is 4.27, which is considered 
to be substantial evidence for the null hypothesis that the conditions are 
not different. Forewarning the participants of the memory test affected 
participants’ processing, seemingly in a similar way to the effect of 
labeling. 

In Figure 4.2, it is clear that the mean response typicality for both 
conditions in this experiment mirror the color categorization condition 
mean response typicality in Experiment 2. This pattern was verified as 
statistically significant by conducting a 2 x 2 ANOVA with judgment 
condition within-subjects and instructional condition between-subjects 
(across experiments). There was an interaction of judgment and 
instructional conditions, F(1,56)=6.752, p<.02,	η"=.10, BFForward=4.08. The 
Bayesian analysis for the full model of both main effects and the 
interaction was inconclusive at BF10=1.01, but the interaction term BFForward 
of 4.08 indicates that just the interaction, not the full model, has 
substantial support against the null. This suggests that the instructional 
manipulation selectively and significantly changed the average typicality 
of the selected hue in the animacy judgment condition while not having 
much of an effect on the color labeling condition. Although we 
acknowledge the possible limitations of cross-experiment statistical 
comparisons, we note that participants for the two experiments were 
drawn from the same pool and recruited in the same manner. This pattern 
is more consistent with the hypothesis that labeling directs attention to 
the relevant feature rather than setting a minimum specificity of 
processing. 

Reaction times again followed the same pattern as Experiment 1 and 
2 with significantly different RTs for the judgment responses (color 
median: 470.68, animacy median: 549.69, Wilcoxon Signed Rank Test, V=6, 
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p<0.001) and no statistical difference in RTs for the memory test responses 
(color median: 3840.95ms, animacy median: 3920.65, Wilcoxon Signed 
Rank Test, V=247, p=0.777). Reaction time differences have been taken as 
a proxy for depth of processing, and the repeated longer processing time 
for animacy would indicate more depth of processing. However, the 
combination of reaction time differences and a lack of difference in 
memory bias across conditions suggest there is not a linear relationship 
between length of processing and bias at least as is relevant to hue 
memory. Either processing time is not a good measure of depth of 
processing or depth of processing is not explanatory for the memory bias 
results. 

Telling participants to attend to hue decreases hue memory 
response bias in this paradigm. The difference between orienting tasks 
disappears with both conditions leading to more accurate memory for hue. 
This lends support to the idea that rather than overt labeling selectively 
recruiting category knowledge in this paradigm, labeling acts as a cue to 
encode the hue feature of the exemplar with more precision. When making 
an animacy judgment the shape of the stimulus was most important for 
the task. Participants demonstrated they could, under suitable task 
instructions, attend to both hue and shape by maintaining a similar level 
of animacy judgment accuracy while also increasing their accuracy in hue 
memory. 

 

4.5 Experiment 4 
 

Finally, we put the preference and animacy judgment conditions in 
the same experiment leaving out color labeling altogether. It has been 
suggested that language is a component of conceptual processing that can 
be up-regulated or down-regulated based on task demands (Lupyan, 2012). 
Specifically, engaging the language network for a task can globally recruit 
language related processing to a task. Labeling color specifically enhanced 
hue memory response accuracy, decreasing shifting relative to non-labeled 
stimuli in Experiments 1 and 2. Color labeling could have a specific effect 
of increased accuracy on labeling trials but could also have a global effect 
of priming color category knowledge driving the overall shifts observed in 
all experiments and conditions. If color labels are not overtly engaged, will 
systematic response shifts still occur? If categorization affects perception 
only when relevant linguistic categories are explicitly engaged, it would 
suggest a loose coupling of perception with conceptual effects led by 
language. If categorization affects perception regardless of linguistic 
engagement, it would suggest a stronger coupling of perception with 
conceptual information. Preference judgments and animacy judgments do 
not require participants to attend to the colors and their labels. The color 
and silhouette pairs were chosen to be arbitrary and not semantically 
indicative of each other. These conditions without a color labeling 
condition and without foreknowledge of a color memory test provide a 
context that does not require participants to attend to hue during the study 
portion of the experiment. 
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Figure 4.2. Mean typicality of response by condition. The dotted line represents 
the hues originally shown to the participant while the bars indicate the average 
typicality of the items with more typical hues to the right. This orientation 
visually displays the magnitude of the response shifts in hue typicality space. 
 

4.5.1 Method 
 

Forty undergraduate students were recruited as in the previous 
experiments. Participants answered the judgment questions “Is this a 
living thing?” and “Do you like this?” omitting the color categorization 
condition. Otherwise, the stimuli and procedure were the same as in 
Experiment 1 and 2 with the hue memory test again a surprise following 
study. 
 

4.5.2 Results and Discussion 
 

Three participants had low animacy accuracy (<70%) and were 
excluded from the analysis leaving a sample size of 37. Excluding these 
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participants did not change the pattern of results. Included participants 
had an animacy accuracy of 89.93%. 

We again found evidence for systematic prototypical response 
shifts. The response means for each condition were both significantly 
different from the target response (two-tailed, one-sample t-tests against 
the original hue value of 0: preference mean = 0.38 (SD = 0.42), t(36)=5.69, 
p<0.001, d=0.94, BF10>1000; animacy mean = 0.34 (SD = 0.43), t(36)=4.97, 
p<0.001, d=0.82), BF10>1000. The response distributions for both 
conditions again were not significantly different from normal according to 
the Shapiro-Wilk normality test p>0.05. There was no difference by 
condition for the objectively correct original hue response rate at test 
(paired, two-tailed t(36)=0.06, p>0.05, d=0.01, BF10=0.18 ). 

The mean typicality of response for the two conditions were not 
different from each other (paired sample, two-tailed t-test: t(36)=0.68, 
p>0.05, d=0.11, BF10=0.22; chi-square test: !"(4, N=1120)=1.294, p>0.05, 
see Table 4.1 for accuracy rates). Again, looking at the inverse Bayes factor, 
BF01=4.55, there is substantial evidence for the null hypothesis that there 
is no difference in magnitude of prototypical shifts between the two 
encoding conditions. 

The reaction times tell a similar story to the previous experiments. 
There was a significant difference between the more quickly responded to 
animacy condition (median: 523.36ms) and the preference condition 
(median: 560.82ms) according to the Wilcoxon Signed Rank Test, V=518, 
p<0.02. This provides evidence that there is more depth of processing in 
preference judgments than animacy judgments. There was no significant 
difference in memory test RTs (animacy median: 4099.75ms, preference 
median: 3813.05ms, Wilcoxon Signed Rank Test, V=338, p=0.846). 

With no directing of attention to color either through instructions 
or through an overt labeling condition, participants did not have any 
indication that paying attention to color was important for a future task. 
The results of the memory test in this case continued to show systematic 
shifts of hue memory responses towards the prototype. Overt language 
was not required to obtain shifts relative to the category structure. The 
lack of an effect of condition is consistent with these encoding conditions 
equally not calling attention to hue. The shifts occurring regardless of 
color labeling indicates a strong influence of category knowledge in this 
task with overt priming of the labels not needed. 

 

4.6 General Discussion 
 

In these experiments we set out to investigate (1) if recognition 
memory for hue is systematically shifted toward the prototype, (2) how 
overt labeling of colors affects the directional shifts and (3) if any effect of 
overt labeling on the shifts is unique. These questions were specifically 
investigated within a context of labels matching their referents to expand 
beyond known influences of language on memory when the language is 
contrastive. 
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Consistently, we have demonstrated that there is systematic bias to 
responses on a five-alternative forced-choice recognition memory test. 
Participants on average chose hues that were more prototypical of the 
basic color category than the hue that they had originally seen in all 
conditions in all four experiments. This result replicates the existence of 
response shifts we had previously demonstrated (Kelly & Heit, 2014). 
However, at the present timescale tested of a few minutes, the direction of 
the shifts was towards the prototype rather than away from the prototype 
as had been seen at the previous 500 and 5000 millisecond timescales.  

The present findings are novel evidence of prototypical shifts in hue 
memory test responses. By demonstrating the existence of prototypical 
response shifts at this time scale in all conditions, the results provide 
strong evidence of a systematic influence of categorical knowledge on hue 
recognition memory. Whether the prototypical response shifts are a 
demonstration of true shifts of encoded memory traces, or if they are due 
to response bias after memory is retrieved is still up for debate, a debate 
our additional results inform. Our further analyses and manipulations 
from experiment to experiment began to investigate the role of labeling in 
influencing the response shifts. 

With regard to the role of language, we found that labeling does not 
produce stronger typical shifts than comparison conditions. Participants 
chose more typical hues at test when they had made preference or animacy 
judgments about a silhouette than when they had labeled the color 
category. The results do not support a special role of overt labels as top-
down category prototypical attractors for memory traces prior to encoding 
as proposed by the representational shift hypothesis (Lupyan, 2008). 
Instead, labeling color categories had the opposite effect decreasing the 
magnitude of the shifts relative to other orienting tasks. This pattern was 
also not predicted by the specificity hypothesis, which would predict weak 
memory traces susceptible to the category information at response. 

We followed up these findings by testing whether the label effect 
was driven by the third hypothesis, labels directing attention, while also 
more directly testing the specificity hypothesis. Our manipulations, 
informing participants of the upcoming memory test and showing 
participants an example test display, separated the minimum specificity 
needed by the task and the directing of attention to hue from the act of 
labeling (Experiment 3). Participants knew they needed to attend closely to 
hue with a high level of specificity and map that knowledge onto the shape 
cues. The manipulations eliminated the difference between conditions, and 
the response shifts in the two foreknowledge conditions of Experiment 3 
were consistent with the color labeling condition of Experiment 2. 
Foreknowledge improved accuracy in the animacy condition but did not 
alter performance in the color labeling condition. This is consistent with 
the directing attention explanation of the label effect – participants when 
labeling color pay more attention than they would when the shape is 
diagnostic for their labeling task resulting in more accurate memory. If the 
specificity of processing idea were true, we would expect to have seen an 
improvement in hue recognition accuracy for the color labeling condition 
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as well since the example display makes clear much more specific 
knowledge of the hue is needed in the memory task than simply 
differentiation between green and red. 

Additionally, Experiment 3 speaks against the idea that labeling has 
a unique effect on hue memory response shifts. While the previous 
experiments clearly did not support the idea of labels as prototypical 
attractors magnifying directional shifts, they could indicate labels uniquely 
decrease shifts. When given foreknowledge of the hue memory test, 
participants showed reduced shifting in the animacy condition matching 
the memory performance of the color labeling condition. This evidence 
speaks against the general hypothesis that labeling causes unique changes 
in the memory responses. 

Finally, we tested whether explicit labeling during the task was 
required for the response shifts (Experiment 4). Lupyan (2012) suggested 
the influence of language can be up-regulated or down-regulated in the 
overall perceptual processing network. In terms of the present 
experimental design, color labeling in one condition would attune the 
system to the labeled categories and produce the overall category-relative 
shifting effect regardless of the trial condition. As mentioned earlier, hue 
memory has been shown to be both accurate (Perez-Carpinell et al., 1998) 
and potentially distorted (Kay & Kempton, 1984; Winawer et al., 2007). We 
conducted a final experiment using the same paradigm comparing the two 
non-labeling conditions with no overt mentions of the hue color labels and 
with the hue memory test a surprise. There continued to be an overall 
prototypical bias in hue memory indicating that explicit labeling during the 
task is not required to produce the effect. 

Together, the results show a pervasive, systematic influence of 
category knowledge during a hue recognition memory test resulting in 
prototypical response shifts. Further, category-consistent labeling has an 
effect of decreasing bias, is not unique in producing the decreased effect, 
and is not required to produce category-relative response shifts. Labeling 
appears to efficiently direct attention to a particular feature of a stimulus 
relevant to that label resulting in increased memory accuracy for that 
feature. 

 

4.6.1 Shifts of What? 
 

As can be seen in Table 4.1, in no condition across all four 
experiments did participants choose the original hue at even chance levels. 
Four lures and the original hue at test means the percentage each item 
would be chosen at random was 20%. In all conditions, the most typical 
lure, followed by the second most typical lure was chosen most often. They 
were the only items chosen above chance. 

As mentioned in the introduction, there are two possible 
interpretations of the response shifts. One possibility is memory traces 
themselves shift. While they do not shift only, or more strongly, when 
labeled, it is possible that all of the representations are shifting towards 
the prototype. In this interpretation, labeling the color category reduces 
the amount of shift of the memory trace by calling attention to the color 
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feature of the silhouettes during initial encoding. Encoded memory would 
be influenced by the prototypical category information, with the labeled 
hues less influenced. The other possibility is memory is not shifting so 
much as there is a strong typical response bias that can overwhelm the 
memory trace. With no memory of the hue, or a memory not specific 
enough to distinguish between the hue options at test, participants tend 
to choose the hue that is most typical of the color category, which is also 
the central tendency of all hues of that color category presented during the 
experiment. Within this interpretation, labeled hues would have a stronger 
memory trace and would be less subject to the influence of the category 
during retrieval. In both cases, memory is improved rather than distorted 
by the act of labeling during encoding. 

 

4.6.2 Limitations 
 

Although our results of bias and mitigation of bias are notable 
within the scope of our investigation – hue space with basic color labels – 
we acknowledge that this does not necessarily translate to pervasive bias 
in perception and memory during everyday life. The current experiments 
constituted a laboratory-based investigation with some unnatural controls. 
Colors usually vary in brightness and saturation in addition to hue. They 
are normally seen under different lighting conditions. Objects will vary in 
dimensions other than shape and hue. Therefore, natural contexts and 
situations might not result in the same shifts we observed above. 

For our paradigm, color space was a superior domain in comparison 
to object space due to its well-defined parameters and known average focal 
or prototypical coordinates for the basic color categories in English. 
However, color is one feature rather than a whole object and may behave 
differently. Additionally, since color belongs to the class of categories that 
have cross-boundary categorical perception effects, shifts may happen 
more readily or may be more exaggerated than in other potential test 
spaces. 

Labeling itself is a somewhat unnatural task. Not much time is spent 
overtly labeling the objects and features encountered in everyday life. More 
often labels are used as part of a broader discourse about the context 
speakers find themselves within. So while labeling has an effect of 
minimizing bias with the current paradigm one could imagine with a 
different paradigm language having less of an attention directing effect. 
How language affects perceptual processing in natural perception of the 
world is not directly addressed by our controlled laboratory-based task. 

Acknowledging these limitations, our aim with this set of 
experiments was to address the specific question of memory accuracy 
when labels are applied continuing a recent line of inquiry (Blanco & 
Gureckis, 2013; Kelly & Heit, 2014; Lupyan, 2008; Richler et al. 2011). As 
discussed below and in the existing literature, the demonstrated shifts 
have theoretical implications that reach beyond this isolated laboratory 
task. 
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4.6.3 Prototypical vs. Atypical Shifts 
 

Kelly and Heit (2014) showed atypical shifts for all items in all 
conditions using the same hues as were used in the present experiments. 
The experiments focused on testing the prediction of prototypical shifts 
occurring during initial processing (Lupyan, 2008). In Kelly & Heit (2014), 
the memory test was an immediate test after the encoding task at 500ms 
or 5000ms with the encoding and test tasks interwoven. Participants were 
asked if the just previously displayed and judged hue, using color labeling 
and preference judgment conditions, was the same or different from the 
subsequent hue displayed while the participant responded. Kelly and Heit 
(2014) showed that shifts are a measurable phenomenon and that there 
was not evidence for the predicted prototypical shifts at this short 
timescale. It did not clarify whether shifts were exclusively atypical or what 
the role for labeling would be in a long-term memory task. 

In the present experiments, we used a hybrid of the original 
paradigm from Lupyan (2008) and the paradigm we developed to detect 
shifts. We continued to use the domain of hue and kept the four lures 
rather than one, but reverted to the serial study block followed by test 
block structure. The present experiments were meant to test for 
prototypical shifts at a timescale similar to those used in studies finding a 
label effect and to investigate the role of language. Using this hybrid 
paradigm, prototypical shifts were evident. 

We have not yet experimentally investigated the relationship 
between these two sets of results. It could be that one of the above 
parameters or task demands accounts for the difference in shift direction. 
We favor the longer time delay and the addition of an intervening task in 
the present experiments as the factors driving the differences. Kelly and 
Heit (2014) investigated immediate memory for hue. The present 
experiments required further processing of hue into long-term memory 
and necessitated retrieval. There are other instances of changing memory 
responses after time delays. The sleeper effect is a change in attitudes over 
time (Pratkanis, Greenwald, Leippe, & Baumgardner, 1988) with a 
persuasive message being followed by a discounting cue resulting in 
immediate low persuasion with higher persuasion over time. Pratkanis et 
al. suggested this is caused by two memories with differential decay 
combining to influence the result. Immediately the discounted message is 
not trusted but because the cue for the discounting information decays 
faster, the message becomes more trusted over time. Another example is 
a change in attributional judgments over time (Jacoby, Kelley, Brown, & 
Jasechko, 1989). Fame was attributed to names that were not the names of 
famous individuals after a delay. The names were initially presented on a 
list of non-famous names. After a day, participants did not remember the 
source list for the names but the names were familiar resulting in reports 
of the names being famous. This suggests memory for a stimulus retains 
its context immediately but can lose context over time. This could be 
decoupling of an association or it could be applying categorical criteria at 
response that produce different categorizations than had been applied at 
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encoding. The context of many similar hues may be task parameters that 
cause distancing or atypical estimation bias. The delayed recall may result 
in a loss of that context with participants choosing hues that are more 
familiar and more typical. 

 

4.6.4 Broader Implications 
 

Representational shifts have been a subject of debate in the past 
several years because their existence would have far reaching implications 
for theories of categorization, memory, the influence of language on 
thought, and beyond. Previous work has discussed such implications from 
the point of view of the original representational shift hypothesis and the 
minimum specificity view. With the current experiments, it is clear neither 
previous theory accounts for our data. Below we discuss how the revealed 
memory response shifts, with weaker shifts due to labeling as a 
consequence of directed attention, might affect our understanding of other 
cognitive processes and phenomena. 

 

4.6.4.1 Category Structure 
 

Semantic memory can be conceived of as being made up of memory 
traces or exemplars (Heit & Barsalou, 1996; Mack, Preston, & Love, 2013; 
Nosofsky, 1986; Palmeri & Nosofsky, 2001). Each trace is a building block 
that contributes to overall knowledge of the world. Small shifts during 
trace creation could represent a bias in the build-up of exemplars 
underpinning categories, particularly if the shifts are biased by the existing 
category structure. The newly formed shifted representations become part 
of the categories that influenced their shifting. These exemplars would 
proceed to influence the exemplar distribution making up the category. 
Rather than categories being an accumulation of raw statistical experience, 
the distortions in new exemplars would systematically affect the content 
of categories. The affected category distributions would proceed to 
influence shifts in future experiences creating a feedback loop. Even if the 
bias seen in the current experiments was exclusively introduced at 
response, memory of the response could override the previous memory or 
create another as has been shown in memory reconsolidation research 
(Nader & Einarsson, 2010). 

If new representations prove to be systematically shifted towards 
the prototype, the bias would be to maintain the pre-established categories 
through increased similarity at the expense of other possible knowledge 
organizations. If the representations were to shift systematically away 
from the prototype, as reported in Kelly and Heit (2014), the bias would 
undermine the current organization and support new ways of 
conceptualizing a semantic space. We have now shown both directions of 
shifts in different experimental conditions suggesting a dynamic, 
pervasive influence of past experience and existing categories on new 
representations. The context surrounding perception affects the direction 
of shifting and therefore the bias introduced to categories in memory. 
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There appears to be a dynamic influence of the environment on the 
interplay between perception, memory and language in real time. 

 

4.6.4.2 Estimation Bias 
 

As mentioned in the introduction, the Category Adjustment Model 
(CAM; Huttenlocher et al., 1991, 2000, 2007) appears to be consistent with 
the observed shifts. CAM is a model of estimating spatial location from 
memory which puts the introduction of bias during response. Items are 
encoded with some level of specificity as they are perceived. Then this 
exemplar information and the relevant category information combine 
while estimating and producing a response. The category information has 
more influence on less specific exemplars.  

Applying a generalization of CAM to the current results, the hue 
exemplars given more attention would be encoded with more specificity in 
the bottom-up exemplar information, resulting in less ambiguity able to be 
affected by top-down category information. In the present results, when 
hues were featured at study either through labeling hues or through 
instructions to attend to hues, the exemplars were remembered with less 
bias, consistent with the bottom-up/top-down trade-off of CAM. 

While the current results are broadly consistent with CAM, there are 
issues with applying the model directly. Specifically, CAM assumes that 
encodings are unbiased. Yet in Kelly and Heit (2014) we found atypical 
shifts near encoding. One possibility is encoding is not unbiased but can 
be influenced by tasks and other online cognitive processes. See Bae et al. 
(2015) for an application of CAM to color working memory at and near 
encoding. 

To emphasize, we are not claiming that our results are exclusively 
accounted for by the CAM framework or that our results distinguish CAM 
from other competing models. We are seeking to illustrate that our results 
can be reasonably fit into an existing well-developed categorization 
framework. It is likely they can fit into others as well, such as a 
straightforward exemplar activation model, Minerva II (Hintzman, 1984), 
or a model that incorporates existing category information, the integration 
model (Heit, 1994). 

 

4.6.4.3 Language and Thought 
 

Knowing a language with color category distinctions leads to 
categorical perception effects – faster, more accurate discrimination of 
items crossing a category boundary than equi-different items, by some 
objective measure, that are within a category – while not having distinct 
categories in a language leads to an absence of categorical perception 
effects (Roberson, Hanley, & Pak, 2009; Winamer et al., 2007). This is an 
example of language relativity, the idea that the language(s) an individual 
speaks affects the way in which they conceptualize the world (Whorf, 
1956). 

Labels guide and facilitate category formation (Lupyan et al. 2007; 
Gureckis & Goldstone, 2008). In the experiments reported above, all 
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memory is shifting relative to the category prototypes. It is not a giant leap 
to suggest that because English has the categories red and green, hue 
memory moved relative to those categories. In Greek which divides blue 
into two basic categories (Winamer et al., 2007), light blue and dark blue, 
or in Korean which divides green into two basic categories (Roberson et al., 
2009), bright green and dull green, it is likely that hue memory would move 
relative to those different prototypes and category boundaries for 
speakers of those languages. This is a question that could be tested 
empirically. 

Presently in addition to the overall shift toward the prototype and 
away from the boundary in line with linguistic category knowledge, there 
was a distinct role of overt labeling increasing memory accuracy. Online 
labeling appeared to direct attention to color, producing more accurate 
encoding. In this role of language, the things and situations a language has 
labels for, and perhaps habitually draws attention to, would be regularly 
encoded with more accurate detail than the things and situations that do 
not have labels. 

Rather than being able to tell a simple story of language distorting 
reality towards the semantic knowledge encoded in the language, we have 
two opposing language effects. Globally, language helps guide 
categorization producing a memory distortion effect yet also has a local, 
online effect of enhancing veracity, at least in the way language was used 
in the present task. 

 

4.6.5 Conclusion 
 

We have provided novel evidence for prototypical response shifts in 
memory for hue. These shifts can be seen and measured in a 
unidimensional testing space. Existing category knowledge influences and 
biases recognition memory responses. Category-consistent labeling as well 
as other means of drawing attention to a particular dimension of an object 
systematically enhances the accuracy of recognition memory for that 
dimension. The evidence does not suggest that perceptual processing of 
bottom-up information is hijacked by top-down prototypical knowledge 
activated by labels. Nor does the evidence suggest that labeling causes 
shallow percepts sufficient to determine the appropriateness of the label 
and no more. There are pervasive influences of existing knowledge on 
recognition. Language plays a role in modulating those influences. It is 
clear that even when language is consistent with a percept at encoding, 
language influences how percepts are subsequently remembered. 

 

4.7 Appendix A 
 

The stimuli for this set of experiments were complex. More detail 
on the specific items and hues is reported here. Additionally, to alleviate 
concerns that individual hues might be eliciting different categorizations, 
we reanalyze encoding data from the main experiments to detect if there 
are any differences in judgments by hue. 
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Table 4.2. 
Item Randomizations 
Set # Silhouette Hue Condition 

1 2 A B C D 
Set 1  d Seahorse g1  d r2     d Color  d Other  d Other  d Color 
  Butterfly g2 r3 Color Other Other Color 
  Giraffe g1 r4 Color Other Other Color 
  Moose g2 r2 Color Other Other Color 
  Seal g2 r2 Color Other Other Color 
  Sunglasses g3 r2 Color Other Other Color 
  Sailboat g3 r3 Color Other Other Color 
  Car g1 r4 Color Other Other Color 
  Watering Can    d g1 r3 Color Other Other Color 
  Hammer g4 r1 Color Other Other Color 
Set 2 Rat r4 g1 Color Color Other Other 
  Fish r2 g4 Color Color Other Other 
  Cat r3 g3 Color Color Other Other 
  Parrot r2 g3 Color Color Other Other 
  Bat r4 g3 Color Color Other Other 
  Scissors r3 g4 Color Color Other Other 
  Shirt r1 g4 Color Color Other Other 
  Airplane r3 g1 Color Color Other Other 
  Sword r3 g4 Color Color Other Other 
  Lamp r2 g3 Color Color Other Other 
Set 3 Snail g3 r4 Other Color Color Other 
  Horse g2 r3 Other Color Color Other 
  Cow g2 r4 Other Color Color Other 
  Polar Bear g2 r1 Other Color Color Other 
  Rabbit g3 r1 Other Color Color Other 
  Genie Lamp g4 r3 Other Color Color Other 
  Key g3 r2 Other Color Color Other 
  Cloud g2 r4 Other Color Color Other 
  Pan g4 r1 Other Color Color Other 
  Badge g4 r1 Other Color Color Other 
Set 4 Camel r4 g4 Other Other Color Color 
  Penguin r1 g1 Other Other Color Color 
  Kangaroo r1 g2 Other Other Color Color 
  Rhino r3 g1 Other Other Color Color 
  Gorilla r4 g3 Other Other Color Color 
  Balloon r2 g2 Other Other Color Color 
  Anchor r1 g4 Other Other Color Color 
  Trophy r1 g1 Other Other Color Color 
  Satellite Dish r2 g1 Other Other Color Color 
  Office Chair r4 g2 Other Other Color Color 
Note. Living items for the animacy condition are italicized. 

 

4.7.1 Item Randomization 
 

Forty silhouette shapes were created with 20 living things and 20 
non-living things listed in Table 4.2. Eight stimulus lists were created 
rather than a full randomization. Five living things and 5 non-living things 
were assigned to each of 4 sets. Each silhouette shape was randomly 
assigned a green and a red target hue. Two of the sets were green for each  
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Table 4.3 
Hue Coordinates in LCH and Lab Color Spaces 

Hue L* C H L* a b 
g1--   42.842 42.909 135 43 -30 30 
g1- g2-- 42.842 42.909 139 43 -32 28 
g1 g2- 42.842 42.909 143 43 -34 26 
g1+ g2 42.842 42.909 147 43 -36 23 
g1++ g2+ 42.842 42.909 151 43 -38 21 
  g2++ 42.842 42.909 155 43 -39 18 

Focal Green 42.842 42.909 157.039 43 -40 17 
g3++   42.842 42.909 159 43 -40 15 
g3+ g4++ 42.842 42.909 163 43 -41 13 
g3 g4+ 42.842 42.909 167 43 -42 10 
g3- g4 42.842 42.909 171 43 -42 8 
g3-- g4- 42.842 42.909 175 43 -43 4 
  g4-- 42.842 42.909 179 43 -43 1 
r1--   41.221 79.347 14 41 77 19 
r1- r2-- 41.221 79.347 18 41 75 25 
r1 r2- 41.221 79.347 22 41 73 30 
r1+ r2 41.221 79.347 26 41 71 35 
r1++ r2+ 41.221 79.347 30 41 69 40 
  r2++ 41.221 79.347 34 41 66 45 

Focal Red 41.221 79.347 36.143 41 64 47 
r3++   41.221 79.347 38 41 62 49 
r3+ r4++ 41.221 79.347 42 41 59 53 
r3 r4+ 41.221 79.347 46 41 55 57 
r3- r4 41.221 79.347 50 41 51 61 
r3-- r4- 41.221 79.347 54 41 46 64 
  r4-- 41.221 79.347 58 41 42 67 
Note. The bold hues were shown at study. The focal hues are for reference; 
Participants did not see the focal hues. 

 

participant and one of the green sets would be in the color categorization 
condition and the other would be in the preference (Experiment 1) or 
animacy condition (Experiments 2 and 3). For example, reading Table 4.3, 
in condition 2C, Set 1 and Set 2 are red and green, respectively. They are 
both in the preference/animacy condition. In Experiment 4, the same lists 
were used with the preference condition using the ‘color’ lists from the 
chart and the animacy condition using the ‘other’ lists. 

 

4.7.2 Color Calculations  
 

The hues were calculated in L*CH color space then translated into 
L*ab color space for input into Adobe Photoshop. The device-independent 
colors were translated into RGB device-dependent color values via 
individual monitor color profiles created for three Dell UltraSharp U2410 
monitors by a X-rite i1 Display Pro color calibrator to ensure color 
constancy across screens.  

In L*CH color space, hue is represented by degrees of a circle. The 
target hues were chosen both clockwise and counter-clockwise from the 
focal colors reported in Sturges and Whitfield (1995). The saturation (C) 
and lightness (L) were held constant at the focal values. 
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4.7.3 Hue Accuracy Analysis 
 

An assumption of our study is that participants could consider the 
displayed hues to be members of their intended category. We did a cross-
experiment analysis of color naming accuracy to determine if any hues 
were less likely to be named accurately. Not every participant saw every 
hue in the naming condition – i.e., in Table 4.3, the green sets 2 and 3 are 
each missing one of the four green targets, a product of randomization. 
We limited the analysis to just those participants who saw the full range 
of hues in the naming condition. We also continued to exclude participants 
with low accuracy and/or response patterns indicating lack of engagement. 
Within this group, accuracy across all hues was 92.7% with individual hue 
accuracies ranging from 88.9% to 95.6%. Because Experiment 3 had 
different instructions before the naming task, which could potentially 
influence performance during the encoding task, we included instruction 
condition as a factor. In a two-way ANOVA on naming accuracy, with the 8 
target hues as a within-subject factor and 2 instruction conditions as a 
between-subject factor, there was no difference in naming accuracy by hue, 
F(3.95, 169.71)=0.71, p>0.05,	η"=0.02, BF10=0.02, using the Greenhouse-
Geisser correction for violating the sphericity assumption. Based on the 
inverse Bayes factor, BF01=47.46, there is very strong evidence that there 
are not differences by hue. There was no main effect of instruction 
condition nor was there an interaction effect (both p>0.05). These results 
indicate that participants were able to reliably identify less typical hues as 
members of the intended category as well as they could identify the more 
typical hues.  

Similarly, there was no significant differences in proportions of 
‘like’ responses by hue in participants seeing all hues in the preference 
condition in Experiments 1 and 4, F(3.87, 116.09)=1.54, p>0.05, η"=0.05, 
BF10=0.15, again using the Greenhouse-Geisser correction. This result 
indicates that there were also no systematic biases in preference 
judgments for the different hues, e.g., participants did not like the "redder" 
reds better. 
 

4.8 Appendix B 
 

Two additional experiments were conducted, a control experiment 
accessing memory for the color category of a silhouette at test, and a 
norming experiment confirming that our calculated typical and atypical 
foils were in fact more or less typical of the color category than their target 
hue. 

 

4.8.1 Category Memory Test 
 

In the experiments reported above, participants made judgments 
about colored silhouettes and were tested on their hue memory in fine 
detail choosing among five hues spaced apart 2 degrees in L*CH color 
space along the circular hue dimension, approximately just noticeable 
differences. Each shape was presented in the original hue seen by the 
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participant along with that target’s foil hues. However, by giving 
participants the category information at test and forcing a response among 
these slightly different hues, out-of-category errors were not possible. 
Therefore, there is no measure of memory for the color category itself. 
Perhaps participants had no memory of the color of the silhouette at all 
and were guessing completely, with a typicality bias. To investigate color 
and shape bindings in our materials, we conducted a post-hoc control 
experiment examining color category memory for the silhouettes at test. 
We used the same study procedure as Experiment 2, replacing the five-
alternative forced-choice recognition memory test with a cued category 
memory test. 
 

4.8.1.1 Method 
 

4.8.1.1.1 Participants 
 

69 undergraduate students were recruited from UC Merced’s 
participant pool using the same criteria as in Experiments 1-4.  

 

4.8.1.1.2 Stimuli 
 

The study portion of the experiment used the target hues as in 
Experiments 1-4. The test portion of the experiment used gray (L*ab hue: 
82,0,0) versions of the silhouettes. 

 

4.8.1.1.3 Procedure 
 

Participants underwent the instruction and study procedure of 
Experiment 2. They made color and animacy judgments, and they had no 
foreknowledge of a memory test. Immediately after study, there was a 
memory test block. Each trial consisted of a light gray version of one of the 
silhouettes. Participants indicated if the silhouette had been green or red 
earlier with a button push. All forty silhouettes were tested, with the order 
randomized for each participant. The response keys were the same as the 
color-labeling task during study, which were counterbalanced between 
participants. After completing this task they continued on to the typicality 
task reported below. 
 

4.8.1.2 Results and Discussion 
 

10 participants had color categorization accuracies below 80% 
and/or animacy categorization accuracy below 70%. These participants 
were excluded resulting in a sample of 59 participants. 

Overall, responses were 67% correct. There was an overall 
significant difference between the percent correct and chance (one sample 
t-test, mu=0.5, t(58) = 12.06, p<0.001, d=1.57, BF10>1000). We used a 2 x 2 
Repeated-Measures ANOVA with color (red, green) and condition (color, 
animacy) as within-subject factors to investigate whether these factors 
affect color category memory. There was a main effect of color, F(1, 
58)=5.09, p<0.05, η"=0.08, BFForward=1.55, with silhouettes correctly  
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Table 4.4.  
Response Rates by Condition and Hue 
Category 

Judgment 
Condition 

Hue 
Category 

Proportion 
Correct  

(Std. Dev) 
Color Green 0.62 (0.17) 

 Red 0.69 (0.15) 
Living Green 0.67 (0.16) 

 Red 0.68 (0.15) 
Overall   0.67 (0.16) 

 

remembered as red more often than correctly remembered as green, 
though the Bayesian analysis suggests the difference is only slightly more 
likely to occur if the effect is included in the model. There was no main 
effect of condition, F(1, 58)=1.43, p>0.05, η"=0.02, BFForward=0.23 nor an 
interaction effect, F(1, 58)=2.82, p>0.05, η"=0.05, BFForward=1.01. Encoding 
condition did not affect the memorability of the color category of a 
silhouette, in fact the Bayesian analysis favors the null hypothesis with a 
1:0.23 or ~ 81% likelihood the condition factor will not improve the model. 
 

4.8.2 Typicality Norming 
 

Color display can be difficult to control. The focal, or the most 
prototypical, colors we used as the basis for determining all other hues 
and determining the direction of ‘towards the prototype’ were device 
dependent values translated into device independent space as discussed 
in Appendix A. This transformation along with issues of ambient lighting 
could result in inaccurate focal hue coordinates. We calibrated the displays 
and only used experiment rooms with approximately equal light intensity. 
But, to address concerns that our final displayed hues may not follow the 
typicality gradient assumed, we conducted a norming experiment. 
Participants were shown the hues used in Experiments 1-4 and asked to 
rate their typicality. We then analyzed these to determine if hues we 
calculated to be less typical of the category than their target hue and hues 
we calculated to be more typical than their target hue are in fact less and 
more typical. 
 

4.8.2.1 Method 
 

4.8.2.1.1 Participants 
 

The same sixty-nine undergraduates who participated in the 
category memory test above completed this experimental task. 
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4.8.2.1.2 Stimuli 
 

The 24 hues were calculated and calibrated as described in 
Appendix A. Rather than silhouettes, the hues were displayed on uniform 
squares. The hues were displayed on the same monitors and in the same 
experiment rooms as were used in Experiments 1-4. 

 

4.8.2.1.3 Procedure 
 

Each trial consisted of a hue square with the question: ‘How typical 
is this of the color red[green]?’ above the square, and the response 
instruction: “Please respond on a scale of 1 to 5. 1 – Very Typical, 3 – 
Medium Typical, 5 – Not Typical At All” below the square. Each hue was 
displayed twice, and the hues were displayed in blocks by color category. 
Therefore, there were two blocks, one red and one green, each consisting 
of 24 trials. The blocks were counterbalanced between participants. The 12 
hues of a color category were randomized twice, with all hues being 
displayed once before a second randomized order was displayed in the 
same block. This task occurred after the category memory task and was 
followed by the CITY color blindness test (City University, 2002). 

 

4.8.2.2 Results and Discussion 
 

One participant had a response pattern indicating confusion with 
the task instructions. This participant was excluded along with the 
exclusions from the category memory task above resulting in a sample size 
of 58. 

In order to determine relative typicality for each set of 5 hues, one 
target and its four foils, a difference score was computed subtracting the 
average typicality of the two foils we label more typical from the average 
typicality of the two foils we label less typical, for each set of five hues 
used in the memory test. Positive difference scores were consistent with 
our assumed typicality structure. There was an overall average difference 
of 0.68 which is significantly above 0, t(57)=12.69, p<0.001, d=1.67, 
BF10>1000. Red hues had a larger mean difference of 1.04 which was 
different from 0, t(57)=13.00, p<0.001, d=1.71, BF10>1000, while green hues 
had a mean difference of 0.32 which was also significantly different from 
0, t(57)=4.87, p<0.001, d=0.64, BF10>1000. 

These results indicate that even if our displayed hues were not 
perfectly representative of the calculated device-independent hue, they 
were on an appropriate atypical to typical gradient to meet the needs of 
our experimental design. 
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Chapter 5 
 
Event Perception and Event Segmentation 
Theory 
 
5.1 Introduction 
 

Event perception is the cognitive process of understanding sensory 
input changes. It is part of a wider range of event-based cognitive 
processes which allow cognizers to comprehend and interact with 
systematic changes over time. This is contrasted with processes like object 
perception which deals with individual items and can be considered in a 
context free manner to some extent. In event cognition, context is an 
essential component of perception. Event cognition is a central set of 
phenomena to be explained by any theory of cognition that takes seriously 
the flow of information through time. Cognitive science as a field is taking 
more seriously the need for incorporating context and causal 
dependencies as key variables when examining cognitive processes. Classic 
static stimuli, such as pictures of objects or single words, are special cases 
in natural behavior. Meaningful stability can be found not just in static 
objects but also at higher levels of abstraction within the dynamics of 
events, e.g., a constant rate of change, or a consistent action sequence 
ending in a consistent result. Utilizing new methods, we can meaningfully 
detect and measure these patterns. 

A prominent theory of event perception, the Event Segmentation 
Theory (EST), proposes that an essential component of perceiving events 
is discretizing - creating segments from - the continuous flow of input to 
a cognizer’s sensory apparatuses (Zacks, Speer, Swallow, Braver, & 
Reynolds, 2007). There is a growing body of empirical work investigating 
event segmentation and other aspects of event cognition both with 
behavioral methods and cognitive neuroscience methods (see Radvanskey 
& Zacks, 2014 for extensive review). A subset of this work will be reviewed 
here. 

In the next section, the EST will be presented in greater detail. In the 
review of the theory, Section 5.2, the term representation has been used 
without comment in the way it has been used by Zacks and his colleagues.  
However, as discussed in Chapter 2, representation is a loaded term in the 
cognitive sciences, and is the subject of a long history of theoretical and 
philosophical debate. Underlying this theory are fundamental assumptions 
about the nature of cognition that are not settled in the wider field of 
cognitive science. The EST’s assumptions are discussed in Section 5.3, 
outlining how these assumptions make it a representational model and 
consistent with a conceptualization version of embodied cognition. The 
empirical work supporting the EST will be discussed in light of the current 
range of perspectives on the two theoretical dimensions of representation 
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and embodiment, questioning the assumed stances of the theory on each. 
Finally, this review section will conclude with an evaluation of whether the 
assumptions of the EST in these domains are justified by the current 
empirical evidence. 

 

5.2 Event Segmentation Theory 
 

The Event Segmentation Theory (EST) is currently the most 
prominent theory of event perception. It was originally proposed in 2007 
and has not been substantially altered. In fact, a more expansive theory of 
event cognition, the Event Horizon Model (EHM) has been proposed more 
recently using the EST as a basic framework (Radvansky & Zacks, 2014). 
The EHM expands the model to make more specific predictions about the 
influence of segmented events on memory. Given the EST’s longevity, how 
well it has stood up to subsequent empirical testing is of key interest for 
furthering the event perception research literature. 

The EST is a psychological model which relates sensory inputs, 
working memory representations, and long-term memory representations 
to explain how events are understood in real time. The theory was 
developed to account for data from behavioral and neurological empirical 
studies. It has been partially implemented in a connectionist network 
model (Reynolds, Zacks, & Braver, 2007). Since its proposal, the EST has 
been the major theoretical framework through which new event perception 
experiments have been conceived and interpreted. Therefore, the 
assumptions made in the EST have become the assumptions made by many 
researchers conducting event perception research. 

 

5.2.1 Definitions and Model Description 
 

The Event Segmentation Theory is a cognitive model of perception 
pertaining to a particular class of things that are referred to as events. 
Specifically, to the EST an event is “a segment of time at a given location 
that is conceived by an observer to have a beginning and an end” (Zacks & 
Tversky, 2001). Additionally, it is concerned with “events that involve goal-
directed human activity and are of modest duration (seconds to tens of 
minutes)” (Zacks et al., 2007). This means that events are relative to a 
cognizer in a particular time and space that are immediately experience-
able. A two-week vacation may be described as an event in everyday 
language, but it is too long of a time span to be dealt with in this theory. 
As will be explained in detail further on, this is a theory about working 
memory, which has a limited duration.  

Perception is defined as “a roughly hierarchical process in which 
sensory information is successfully transformed into representations that 
form the basis for action” (Zacks et al., 2007). In the model, perception is 
the step of processing to which sensory input is constantly supplying 
information. The results of perceptual processing are predictions of the 
“near future.”  

During perceptual processing, sensory input is being combined with 
information from the event model. In the EST, an event model is a working  
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Figure 5.1. Schematic depiction of the Event Segmentation Theory. Reproduced 
from Zacks et al. (2007, p. 274). 
 
memory representation that is encapsulated from continuous sensory 
input. It is a representation of a prediction of what is expected to be 
happening now that is robust to transient variability of input and 
corresponds to current transient neural activity (separate from sensory 
input). The event model is formed from a combination of sensory input at 
the point in time the event model initiates as well as input from long-term 
memory representations which the EST calls event schemata. The event 
schemata capture shared features of previously encountered events which 
inform the sensory input to create the current event model. They are 
theorized to be implemented in permanent synaptic changes.  

A final key concept of the EST is prediction error. As can be seen in 
Figure 5.1, sensory input and the current event model feed into perceptual 
processing. Perceptual processing creates a prediction for upcoming time 
points which is compared to the subsequent perceptual processing. When 
there is a significant mismatch between the prediction and actual sensory 
input, the error signal initiates a reset of the event model. This allows 
sensory input to feed into the working memory representation and 
combine with event schemata to create a new event model which will, if all 
goes well, reduce the prediction error. These points of high prediction 
error are considered to be event boundaries. 
 

5.2.2 Key Claims 
 

The EST claims the of gating working memory representations from 
continuous sensory experience results in experience of events being 
discretized. The segmentation of continuous experience into mixed 
bottom-up sensory and top-down stored-knowledge working 
representations is an ongoing process and is occurring at multiple 
timescales simultaneously. Further, these multiple timescales are 
hierarchically organized with shorter timescales containing discretized 



78 

events within larger events. The theory claims segmentation is a 
mechanism of attention by conserving cognitive resources and focusing 
them on event boundaries. The boundaries are moments of new 
information that are more relevant to the individual than moments 
between boundaries. The EHM building on the EST framework, makes 
specific predictions about how the EST processes will impact long-term 
memory. The EST has discrete event models being stored into memory. The 
degree of interference or facilitation for an element of an event should 
therefore be relative to the number of event models in which the element. 
If an element is not part of the current event model, it should be less well 
remembered than other elements that are part of the current model. If an 
element is part of multiple event models that have been stored in memory, 
it should be more easily remembered than an element that was only in one 
event model that is not the currently active event model. 

 

5.3 Assumptions 
 

The EST/EHM takes an explicit stance that representation is 
exclusively internal. Radvansky and Zacks (2014) explicitly view the Event 
Horizon Model as amenable to embodied theories. In fact, an experiment 
looking at fMRI activation during reading found sensorimotor area 
activation corresponding to appropriate portions of the text (Speer, 
Reynolds, Swallow, & Zacks, 2009). 

On the spectrum of embodiment stances, reviewed in Chapter 2, the 
strongly representational nature of the Event Horizon Model overall, and 
Event Segmentation Theory in particular, limits the possible embodiment 
stances. The EST/EHM is not compatible with the replacement hypothesis 
such as RECS due to the assumption of mental representation. The 
EST/EHM is, however, somewhat sympathetic to the constitution 
hypothesis. Event models are formed using a combination of perceptual 
input and long-term memory, making what constitution hypotheses 
consider external representations highly influential. However, the world 
does not serve as long-term memory representations in its own right. The 
gating mechanism cuts off external perception privileging the influence of 
brain-internal long-term memory influences. Given that embodiment is 
explicitly endorsed as relevant, event models are influenced by the 
environment, including the cognizer’s own body, and event models form 
the basis of event memory, the theories are implicitly in agreement with 
the conceptualization hypothesis. Therefore, the EST/EHM are embodied 
theories but are not consistent with a paradigm shift away from traditional 
cognitive science assumptions. 

 

5.4 Empirical Review 
 

Event cognition is fundamental to the ability to interact 
meaningfully with the world. Many aspects of event cognition, such as 
predicting extended consequences beyond the immediate physical 
environment or understanding conventionalized gestures, appear to be 
representation-hungry (Clark & Toribio, 1994). At the same time, much of 
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event cognition would seem to fit well with the concept of mutuality 
relations, i.e., having a change in one aspect of the system result in 
relational changes throughout the system. The explanation of catching a 
fly-ball as being a perceptual task rather than a reasoning and physics 
calculations task is a clear example of exploiting these relations without 
needing representations. To examine whether the assumptions of the EST 
are warranted, namely that while the body and environment may influence 
them, mental representations remain the privileged content of cognition, 
this next section will present and discuss empirical findings relying on 
both behavioral and neuroscience methodologies. Specifically, three claims 
of the EST/EHM are examined below: events are segmented into discrete 
temporal chunks in an automatic, ongoing fashion during perception; 
event processing is organized in a hierarchical format; and event 
segmentation structure impacts memory for events. 

 

5.4.1 Segmentation 
 

5.4.1.1 Segmentation: Empirical Evidence 
 

The EST “implies that the segmentation of ongoing activity into 
discrete events is a spontaneous concomitant of ongoing perception and 
does not require conscious attention.” (Zacks et al., 2007, pg. 277). The 
theorists suggest this interpretation is supported by imaging and 
behavioral data. In particular, when participants passively viewed movies 
of everyday tasks there is a correlation between the fMRI activation 
changes of that passive viewing with activation watching the same videos 
while actively segmenting them (Zacks et al., 2001). After viewing the 
movie the first time with no task, participants were asked in a second and 
third viewing of the movies to indicate the smallest meaningful units of 
activity and to indicate the largest meaningful units of activity, with one 
granularity of segmentation per viewing. 

In the right column of the graphs within Figure 5.2, the boundaries 
identified by participants proceed a change in activation by ~10 seconds 
for both smaller and larger meaningful units. The left column shows 
activation change from watching the movies with no task. There were 
similarly timed activation changes relative to the event boundaries 
identified by participants during the active task. However, these activation 
changes were much smaller than the changes observed in the active task. 
The participants seem to be augmenting certain localized activation during 
segmentation rather than showing completely different patterns. This 
pattern of activation is suggested to be indicative of ongoing segmentation 
during passive perception. 

Movement is one source of visual input thought to be causing 
segmentation. In order to fully specify the motion characteristics of stimuli 
used for segmentation, Zacks (2004) had a square and a circle move around 
inside a two-dimensional space. The square and circle either moved 
randomly as generated by an equation or were recordings of user-
controlled ‘intentional’ shape-object movement. The movement sequences  
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Figure 5.2. Time courses of focal brain activity in a subset of activated location. 
Reproduced from Zacks et al. (2001, pg. 652). 
 

generated a range of movement characteristics such as object position, 
velocity, speed, acceleration, as well as secondary characteristics such as 
relative position and relative speed between the two objects. In Experiment 
1, participants viewed the videos after a single practice video and the 
movement characteristics accounted for 14-16% of the variance in 
segmentation points. Experiment 2 gave participants more experience with 
how the object movement was generated. In this case, movement 
accounted for 26-40% of the variance in fine-grained segmentation 
locations and 12-24% of coarse-grained segmentation locations. Zacks, 
Swallow, Vettel, & McAvoy (2006) found a link between object speed and 
the MT+ complex but not the pSTS using the same object videos. The 
correlation between object speed and brain activity was stronger in the left 
hemisphere than in the right. No other movement characteristic showed a 
statistically reliable correlation with these areas. In a whole brain analysis 
there were a few small areas that had a reliable relationship with different 
movement characteristics. The MT+ complex and pSTS on both 
hemispheres showed increased activity following a coarse-grained 
segmentation, and in some cases, showed anticipatory activation before 
fine-grained segmentations. Motion characteristics were shown to account 
for a sizable portion of the variance in segmentation locations. 

Indications of increased processing at event boundaries come from 
behavioral measures. In reading comprehension tasks, there is an increase 
in reading time associated with changes in key aspects of the situation 
model, particularly changes in time, space, causation, characters, and goals 
(Rink & Weber, 2003; Zwaan, Magliano, & Graesser, 1995; Zwaan, 
Radvansky, Hillard, & Curiel, 1998). Manipulating a clause to indicate a 
significant amount of time passing, e.g., ‘an hour later’ vs. ‘a moment later,’ 
increased the reading time of the same passage and was predictive of that 
clause being identified as an event boundary (Speer & Zacks, 2005). During 
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passive movie viewing, participants’ pupil diameter and saccade frequency 
increased at times later identified as event boundaries (Swallow & Zacks, 
2004, as cited in Kurby & Zacks, 2008). These findings are used to support 
the EST’s proposed event model flushing and rebuilding at event 
boundaries. 
 

5.4.1.2 Segmentation: Discussion 
 

Taking a contrary stance to examine the underlying assumptions 
about representation and embodiment, each set of evidence claimed to 
support segmentation presented above can be questioned. In the case of 
the passive viewing activation spikes, the causal relationship between 
relative activation levels is unclear. Some passive process is occurring 
which results in activation differences in these key areas as shown by the 
taskless viewing results. The amplification of existing activation changes 
with active segmentation is not necessarily an amplification of a process 
that is already occurring. A person does not need to discretize events in 
other situations to be capable of discretizing events from a continuous 
stream when asked to do so. When presented with the task of segmenting 
a video, if participants are not going to choose at random, but instead are 
going to have some systematicity, picking up on moments of change seems 
like a reasonable way to approach the task. Passively having consequences 
for processing as a result of changes in perceptual input is not equivalent 
to the elaborate EST components of constructing discrete event models. 
Evidence has not yet shown the passive activation increases to be 
exclusively attributable to the same process as the active segmentation; 
the passive activation increases could be due to an existing process that 
gets commandeered for the active task.  

Similarly, motion characteristics accounting for a portion of 
segmentation response variance and correlating with fMRI activation 
changes does not decisively mean that motion changes result in discrete 
segmented working memory event models. When tasked with creating a 
response structure, relying on structure in the perceptual input stream 
seems more in keeping with the task than responding at random. A 
continuous perception and representation of events, with no moment of 
closing out one working memory model and building a new one, could be 
consistent with these results. Directly perceiving the environment, in the 
Gibsonian and RECS sense, would require neural changes in reaction to 
changes in the perceptually available environment. The evidence does not 
eliminate these other possibilities. 

Finally with regards to the segmentation and reading results, the 
input during reading is inherently different from the input during other 
forms of visual perception. Language is a symbolic system. Letters, words, 
sentences, and paragraphs all have distinct, segmented structure. Finding 
evidence of segments in processing resulting from inherently segmented 
input does not provide much evidence about whether we segment 
continuous perception. Information is incrementally added to the existing 
knowledge of the narrative. At the same time, the key input changes used 
in these studies tend to be types of words rather than clearly segmented 
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grammatical changes. When reading moves beyond the surface structure 
of text, many theories suggest situation models are created simulating the 
deeper meaning, but it is unclear how segmented situations models are 
Situation models are theorized to be rich, sensory simulations of events 
(Zwaan, 2004). Updating that simulation, even if it is being continuously 
updated, rather than discretely replaced as in the EST, requires processing 
and time. A slow down in gathering static information while the previous 
information is being processed is independently possible without the 
proposed working memory flushes. The processing of new information 
could have a heavier processing load that renewing information already 
active in the perceiver. Active, automatic segmentation is an unsupported 
leap beyond this simpler process. 

Collectively, the evidence presented is consistent with automatic 
segmentation if you make the assumptions of the EST. However, nothing 
in these experiments precludes the possibilities of continuous event 
perception, and, if representation is theorized, continuous event 
representation. 

 

5.4.2 Hierarchical Structure 
 

5.4.2.1 Hierarchical Structure: Empirical Evidence 
 

Event Segmentation Theory claims that perception is hierarchically 
organized with more fine-grained events within the larger coarse-grained 
events. The event model creation loop of prediction, prediction error, and 
model updating is theorized to be occurring at multiple time-scales 
simultaneously. From behavioral segmentation tasks, a hierarchy can be 
inferred. Comparing distributions of fine-grained event segmentation to 
coarse-grained event segmentation by the same individuals for the same 
videos, there tend to be fine-grained event boundaries just before coarse-
grained event boundaries (Hard, Tversky, & Lang, 2006; Zacks, Tversky, & 
Iyer, 2001). Event boundaries at a finer timescale are related to the larger 
event boundaries identified in the coarse segmentation task. From 
experiments using reading, Abbott, Black, & Smith (1985) showed that 
reading about fine-grained tasks primed retrieval of the coarse-grained 
tasks of which they were part. The opposite priming pattern was not found. 
This is interpreted within the EST as consistent with shorter timescales 
more rapidly transitioning between event models with multiple of these 
shorter events constituting the longer timescale events. 

Recent work using fMRI has been used to support the assertion of 
multi-timescale, hierarchical processing of ongoing events. Baldassano et 
al. (2017) used a data driven approach to determine event boundaries from 
the fMRI data of participants watching a video. The model identifies 
distinct brain regions processing information at different time scales. The 
algorithm looked for stable activity patterns which were considered to be 
the distinct events. Sensory areas had faster transitions between more 
stable patterns while higher-level brain areas had longer, fewer stable 
patterns. Additionally, comparing the event transitions identified by the 
model to event segmentation behavior in humans, there was a strong 
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correspondence of the higher-level brain area transitions to the human 
identified boundaries. The lower-level areas such as V1 had many more 
transitions, most of which did not correspond to the human segmentation 
data. The higher-order patterns appear to correspond to the behavioral 
segmentations while the lower level perceptual areas tend to correspond 
to the changes within ongoing events. 

 

5.4.2.2 Hierarchical Structure: Discussion 
 

The hierarchical structure claim of the EST is not particularly 
controversial as far as representation and embodiment are concerned. 
There is structure in the world as well as structure in the brain. Identifying 
something as a mental representation or not a mental representation does 
not change the fact of structure existing. A mental representational view 
would have external structure encoded into representations with the brain 
network structures producing the segmentation process. A non-
representational view would instead suggest that all structure has direct 
consequences on the unfolding processes in the brain and in the 
environment - there would be no distinction for internal vs. external 
structure. Similarly, participants reacting to the same structure at different 
timescales is consistent with all of the embodiment stances in addition to 
traditional non-embodied cognitive science. With a limited task such as 
viewing a static perspective and clicking a button, there are not many 
opportunities to distinguish between external and internal processing. 

The fMRI data is more interesting for investigating these 
assumptions. Clearly, there are processes occurring in different brain 
locations for the different time-scales of processing. There is a relationship 
such that low-level sensory areas transition more often between stable 
states than later processing areas thought to coincide with comprehension 
of the unfolding events over longer time periods. These transitions could 
be distinct event representations feeding into the level above, each being 
tested against the current event model prediction. Or these patterns could 
be continuous hierarchical processing with each level being more abstract 
from the levels below but directly accessible to perceptual input. A major 
issue with using the Baldassano et al. (2017) analysis as evidence of 
segmented and discrete event representations with a hierarchical 
organization is that segmentation and discretization are assumed by the 
algorithm. The algorithm identifies periods of relative stability and periods 
of change within the neural activation patterns. To the extent that there is 
structure in the environment, corresponding structure in neural activation 
would be expected regardless of whether those neural activations are 
representational or are brain-based causal reactions to changes in the 
agent’s environment.  

Hierarchical organization, particularly at the neural level, appears 
to be factually a component of event perception. The findings from both 
behavioral and neuroscience experiments are largely agnostic to the 
theoretical concerns of representation and embodiment. The findings are 
certainly consistent with the EST but they do not distinguish its 
assumptions along these two dimensions from the other possibilities. 



84 

5.4.3 Memory 
 

5.4.3.1 Memory: Empirical Evidence 
 

The Event Horizon Model makes predictions of the consequences 
for memory if the proposed event perception architecture of the EST is 
true. If sensory information is only periodically allowed to affect working 
memory event models, and long-term memory event schemata are formed 
from those event models, then sensory information from event boundaries 
should be memorable while information between boundaries should not 
be as memorable. Additionally, information from before the last event 
boundary should be less accessible than information about the current 
event. The EHM specifically predicts that memory is hindered by 
intervening unrelated event models while it is facilitated by information 
being consistent across multiple event models. 

Memories for items in previous events after an event boundary are 
diminished in comparison to memory of objects within the current event. 
This reduced memory has been shown in reading words (Bower & Rinck, 
2001; Glenberg, Meyer, & Lindem, 1987; Morrow, Greenspan, & Bower, 
1987; Morrow, Bower, & Greenspan, 1989; Rinck & Bower, 2000; Speer & 
Zacks, 2005), reading picture stories (Gernsbacher, 1985), and watching 
videos (Swallow, Zacks, & Abrams, 2009). It has also been shown for 
perceiver-initiated event boundaries in the case of a participant walking 
from one room to another, in real or virtual space, with memory for objects 
in the previous room being diminished in comparison to memory for 
objects if the participant moved within the same room (Radvansky & 
Copeland, 2006; Radvansky, Krawietz, & Tamplin, 2011; Radvansky, 
Tamplin, & Krawietz, 2010). This location updating effect has even been 
found when participants merely imagined moving into another space 
(Lawrence & Peterson, 2016). A facilitation effect has been found for the 
same information encountered across multiple events such as moving 
rooms, switching windows on a computer, and moving through different 
narrative contexts while reading (Pettijohn, Thompson, Tamplin, Krawietz, 
& Radvasky, 2016). The EHM interpretation of the results across these 
studies suggest past event models are less accessible than current event 
models since the event model is stored and rebuilt at segmentation points, 
but that items present across multiple event models are facilitated by 
being encoded more times into long term memory. 

Memory for event sequences is also affected by the structure of 
event boundaries. When shown a video that was either (1) intact, (2) had 
frame deletions from an event boundary, or (3) had frame deletions 
between event boundaries, participants were worse at remembering the 
order of events in only (2) the event boundary deletion condition (Boltz, 
1992; Schwan & Garsoffky, 2004). Additionally, from experiments with 
dementia patients compared with cognitively-normal older adults (Zacks, 
Speer, Vettel, & Jacoby, 2006), participants who performed a segmentation 
task that conformed to the segmentation patterns of knowledgeable 
individuals performed better on an event order memory task. These results 
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show a deficit with improper segmentation, and are used to support the 
idea that event memory is made up of discrete representations and that 
the representations are a byproduct of regular perception. 

In an attempt to separate out the introduction of new information 
from processing of event boundaries, Pettijohn and Radvansky (2016) 
introduced foreshadowing of event changes prior to the event boundaries. 
When an event was foreshadowed, there was no increase in reading time 
at the event boundary. Using memory probes, the memory patterns 
predicted by the EHM were unaffected by foreshadowing, which could 
indicate event segmentation reliably occurs even if the processing load is 
diminished. 

Complementing the behavioral data, an fMRI study found different 
network activation patterns for previous event objects and current event 
objects that seem to coincide with long-term and working memory 
networks (Squire & Zola-Morgan, 1991). Further, Baldassano et al. (2017) 
found the identified longer timescale event pattern endings—but not the 
short timescale pattern endings—were predictive of increases in 
hippocampal activation. The strength of the hippocampal response was 
predictive of the strength of a similar pattern recorded when participants 
were recalling the events of the video from memory. The authors suggest 
the spike in activation is the beginning of the process of storing the 
previous event in long-term memory.  

 

5.4.3.2 Memory: Discussion 
 

Memory is clearly affected by the structure that is routinely used by 
participants to guide their segmentation decisions. The assumption of 
discrete event representations being the unit of memory is not so clearly 
supported by the empirical data. In the case of memory being less available 
after event boundaries, the boundaries have been found to be moments of 
change within the perceptual stream. When the information being 
remembered is no longer active in perception, more of the elements of an 
event that were concurrently perceived are likely to also be no longer 
active. Memory being facilitated by items crossing multiple event 
boundaries could be explained by having a more diverse set of 
concurrently perceived event elements that can serve as cues for retrieval. 
More integrated elements of a network are more easily accessed than more 
isolated elements. 

Turning to the issue of representation, memory is what Clark and 
Toribio (1994) call a representation-hungry process - representations are 
an appealing explanation for how information can be stored across time in 
the brain. The fMRI data in particular seem to lend credence to the idea 
that current events are represented in working memory while previous 
events are represented in long-term memory. The reactivation of 
previously perceived information without the information currently being 
directly perceivable in the environment is evidence that information is 
stored in the brain. Coming from a perspective where mental 
representation is not an explanation but a placeholder (Chemero, 2009), 
non-representational memory storage could be a build up of activation 
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patterns that correspond to perceptual experience that becomes stable 
through repeated exposure, e.g., Hebbian learning. The activation of some 
part of the pattern through a cue, either in the environment or from other 
neural activation patterns, leads to the activation of the stable collective 
pattern. This has a flavor of mental representation, but is non-symbolic 
and has quasi-stable activation patterns rather than discrete, consistent 
elements. 

Embodiment has only been cursorily investigated in event memory. 
An agent walking through a door being a self-imposed event boundary 
suggests that physical action is able to affect event memory. Whether this 
is merely the body being the instigator of perceptual prediction error or a 
more integrated reflection of change within the agent-environment system 
has not been investigated. Memory being affected by the context that the 
information was perceived within both originally and subsequently is at 
the very least suggestive of conceptualization hypothesis. The extent to 
which information is stored in the environment or cued in synchrony with 
perceivable change in the environment are future avenues to explore. 

 

5.5 Conclusion 
 

Understanding event cognition is a central part of understanding 
cognitive systems. All information is perceived in a context. The 
interaction between that context and the information of interest changes 
what knowledge is internalized. The dynamic nature of event perception 
brings together many isolated topics that have been studied across 
cognitive science from object perception to reasoning to coordinated 
action. 

The Event Segmentation Theory (and the accompanying Event 
Horizon Model) is the most developed theory of event perception in the 
cognitive science literature. EST/EHM is a squarely representational theory 
aligned with the conceptualization hypothesis within embodied cognition. 
While an impressive array of data has been collected within the EST/EHM 
framework testing specific predictions of the models, these core 
assumptions about representation and embodiment have not been directly 
investigated. This empirical review and discussion makes it clear that while 
the EST/EHM has a specific stance on these issues, the current empirical 
literature does not distinguish the chosen stances from the other 
possibilities. 

In fact, some aspects of the EST are amenable to other stances on 
representation and embodiment. In broad strokes, the predictive 
processing account of cognition put forward by Clark (2013, 2015) could 
be seen as an embodied, less object-like representational sibling of the EST. 
The main incompatibility is in the EST’s focus on discretization. The claim 
of the EST, “Event segmentation happens simultaneously on multiple 
timescales” (Zacks et al., 2007, pp. 277) is vague. As mentioned above the 
authors bound the timescales between seconds and tens of minutes, but 
how many simultaneous timescales are possible? If the are time scales are 
very narrowly spaced, the theory would approach continuity. The Clark 
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framework, not limiting its preview to the time bounds the EST adopts, is 
able to apply the general idea of prediction error as the information driving 
change in neural activation.  

Future empirical work should investigate these issues to both 
contribute to the specific understanding of event cognition and to 
contribute to the larger field-wide debates of representation and 
embodiment. In Chapter 2, embodiment was discussed as a potential 
paradigm shift. That some stances would constitute a paradigm shift 
makes distinguishing between these viewpoints imperative. Changing 
paradigms changes the questions that are relevant - if the assumed stance 
of the EST/EHM does not end up being supported, the empirical data being 
collected could end up testing hypotheses that ultimately do not advance 
our understanding of event cognition. 
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Chapter 6 
 
Event Segmentation Decisions 
 
6.1 Introduction 
 

Event perception is the cognitive process of perceiving change and 
filtering that change for meaning. Traditionally, psychology has focused 
on static perception, i.e., the perception of isolated images or sounds that 
are tightly controlled. This focus has been a productive way to learn about 
perception, by controlling the stimuli and any relationships between the 
stimuli researchers isolate the cause of differences in behavior to those 
changes that were carefully orchestrated. But everyday perception is not 
static. Even static objects produce change for a perceiver. As a person 
moves they are in dynamic, relative, spatial relationships with any static 
objects as well as any non-static features of the environment, i.e., mutuality 
relations. 

Some change is meaningful for a perceiver and some is not. While 
sitting in the grass on a sunny day, a light breeze will cause sensations 
across a person’s skin and a leaf to tumble a few feet within their field of 
vision. The breeze can stop without it meaningfully changing the 
environment for the person. A child’s laughter may turn into a shriek as 
they fall and scrape their knee while playing a game. This change has 
meaning for the caretaker who now needs to check on the severity of the 
injury and offer comfort. At the level of perceptual change, both situations 
are events. But the second situation is an event at a level that corresponds 
to semantic and pragmatic meaning changes, high-level events.  

A predominant tack for investigating event perception in cognitive 
psychology has been through the lens of the Event Segmentation Theory 
(EST; Zacks et al., 2007) which proposes event segmentation as an ongoing 
passive process of taking continuous sensory input and discretizing it into 
working memory models. Chapter 5 outlines this theory in detail. 
Therefore, the present chapter will only discuss the claims of the theory 
that are relevant to the current empirical work. Readers are encouraged to 
read Chapter 5, Section 2 if they are unfamiliar with the EST. This theory 
is primarily concerned with meaningful, high-level events. 

According to the EST, perceptual processing is actively predicting 
future sensory input in working memory from a combination of recent 
sensory experience and long-term knowledge. As predictability of input 
decreases and prediction error increases, the likelihood of segmentation 
also increases. EST argues that the process of segmentation is an automatic 
and necessary part of perceptual processing. In order to make sense of the 
information being received from a perceiver’s environment, the perceiver 
breaks the input down into distinct units in real time. 

The main evidence for this claim of the EST comes from the event 
segmentation task, a task in which participants indicate meaningful 
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changes in activity within a dynamic stimulus such as a video. As discussed 
in Chapter 5, Section 4.1, the behavioral task of segmentation and the 
perceptual process of segmentation have been primarily linked through a 
single paradigm (Zacks et al. 2001) that is not unassailable in its argument 
that the behavioral task is a satisfactory proxy for the proposed perceptual 
process. Essentially, a BOLD signal is found corresponding to event 
boundaries in both passive viewing of a video and active segmenting while 
viewing of the same video within an fMRI scanner. A weaker signal was 
found during the passive viewing. The conclusion that event segmentation 
is the process occurring in the passive viewing is a logical leap. The active 
segmentation task could be picking up on a passive segmentation process 
as suggested by the EST. Alternatively, when actively segmenting, 
participants need to base decisions to segment on something in the videos, 
with change being an obvious choice. Processing information does not 
necessarily require segmentation; therefore, these results do not directly 
support the EST in the way that is frequently claimed in the literature. 

The decisions that participants make while engaging in the event 
segmentation task have been glossed over in the existing reports of 
experiments using the task. The goal of this chapter is to highlight the 
decision-making process that participants engage in during the task. 

 

6.1.1 Experiment Roadmap 
 

In two experiments, this chapter will investigate the traditional 
event segmentation task behavior through continuous response measures. 
In Experiment 1, participants are tasked with the traditional event 
segmentation procedure, using a keypress to mark the end of an activity 
unit. Half of the participants exclusively do this task. In a second condition, 
the remaining participants both mark the end of units with a keypress and 
continuously report their current expectation of the end of the activity unit 
using a slider response with the computer mouse. In Experiment 2, the 
event segmentation task is again employed. Here, the keypress response is 
replaced with a slider response—the participant is asked to mark the end 
of activity units by bringing the slider marker from the left end of the track 
to the right end of the track. This response method extends the duration 
of a response and deviations from a ballistic rightward movement can 
provide insight into participants’ segmentation decisions. Together the 
experiments are designed to explore the decision space around the event 
segmentation task. 

 

6.2 Experiment 1 
 

How do people reason about event segmentation? The event 
segmentation task has been a key experimental paradigm used by 
researchers examining event perception. Much of the evidence for the 
highly influential EST comes from variations on the basic task. According 
to the EST, segmentation is an automatic process triggered by prediction 
error; when unexpected incoming sensory information is perceived, a 
segmentation process takes place transitioning from one event model to 
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another in working memory and storing the previous model in long-term 
memory. This theorized event segmentation process is an internal process. 
The behavior of indicating transitions between event units is a much more 
complex process requiring perception of transitions, the decision to 
respond, and the response behavior itself. Further, the event segmentation 
task asks participants to respond to activity units of different sizes, adding 
a selection process among identified transitions. This filtering requires 
deliberate decisions that coincide with some aspects of the video (or other 
stimuli that unfolds over time such as a written story). Automatic 
perception and deliberate decisions are very different cognitive processes 
yet in this literature they are often conflated. 

In this experiment, there are two aims: (1) gathering new 
information about the relationship between event segmentation behavior 
and the self-reported predictability of a participant’s own segmentation 
behavior while (2) replicating the event segmentation task to confirm the 
behavior observed here is similar to behavior in previous versions of the 
task. The measure of predictability is a continuous report of a participant’s 
current expectation of the end of the current activity. The EST claims event 
segmentation occurs when there is high uncertainty. Therefore, taking the 
EST literally, and viewing the task as a close proxy for the perceptual 
process, participants should give a segmentation response when they are 
reporting a low expectation value. For the EST, segmentation is the result 
of comparing sensory input to the current event and finding high 
prediction error. Therefore, unexpected events need to occur for an event 
segmentation to take place. Participants should not anticipate 
segmentation points. If instead a participant predicts his or her own 
segmentation behavior, they should be simultaneously reporting a high 
expectation value when they give the segmentation response. With this 
response pattern, participants would be making predictions that include 
predictions of the ends of activity units. Predictable unit ends being 
behaviorally anticipated would suggest that the response behavior does 
not align with the EST’s perceptual prediction claim.  
 

6.2.1 Method 
 

6.2.1.1 Participants 
 

92 UC Merced undergraduate students participated in this 
experiment receiving 1 credit in the participant pool system. They were 
adults (18+) with normal or corrected-to-normal vision. Three participants 
were excluded before data analysis for not following instructions during 
the laboratory session. 

We pre-registered a target sample size of 80 participants with a 
stopping rule of the target sample size plus any additional participants 
already scheduled. The target sample size was increased if there was an 
issue during data collection that indicated the data would not be usable 
and  if a participant did not have  at least one  button press on more than  
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Figure 6.1. Experiment 1 response slider. The slider marker starts in the 
center and moves along the track in response to the cursor x position. As the 
marker is moved to the right to report higher expectation the color 
background gets more red. 
 

one trial. In either case, another participant was added to the sample in the 
same condition as the original participant7. 

 

6.2.1.2 Materials 
 

The stimuli for this experiment were videos of everyday activities. 
The videos are the same as were used in Experiment 2 of Zacks, Speer, 
Vettel, and Jacoby (2006). The videos are shot from a single camera angle 
in a continuous shot. The one practice video is of a man building a boat 
out of toy blocks. The four experimental videos were of different 
individuals, one per video, (1) doing laundry, (2) putting together a tent, (3) 
planting flowers in a flower box, and (4) washing a car. More detail on the 
videos is described in Zacks et al. (2006). The video display size was 600 x 
400 pixels. 

The slider used in the continuous response condition is displayed 
in Figure 6.1. The marker initiated at the mid-point of the track for each 
video trial. The track responds dynamically to the movement of the 
marker. It has a graded colored background from grey on the left to red on 
the right that is revealed to the left of the marker. To the right of the 
marker, the track has a washed-out version of the background. Revealing 
the more densely red portion of the slider corresponds to a higher 
expectation of the end of the current activity unit. The movement of the 
marker is tied to the x-cursor position, therefore participants only needed 
to move the cursor, they didn’t need to select and drag the marker. The 
slider was centered under the video and had a width of 400 pixels. 

The experiment was displayed in full screen mode on Dell 
Ultrasharp U2410 monitors with a 1920 x 1200 resolution. 

                                                
7 These criteria were introduced in a correction to the original pre-
registration after data correction began. The original criteria were used to 
trigger exclusion and replacement of participants who did not meet the 
standard rather than keep trials in which they participated. 
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6.2.1.3 Procedure 
 

The experimental session began with up to four participants being 
greeted in the main laboratory room. Participants read an informed 
consent form and gave verbal consent to participate. Each participant was 
assigned to one of four experiment rooms, which they entered, shutting 
the door behind them. The participant sat at a computer and read through 
the segmentation instructions. The sequence of the experiment from that 
point was a practice video, an opportunity to ask any additional questions 
of the experimenter, a block of two main video trials, a repeat of the 
instructions with a change in the requested size of the unit of activity being 
marked, the same practice video, another opportunity to ask questions of 
the experimenter, another block of two video trials with new videos, and 
finished with a series of open response debriefing questions. 

Each participant was assigned to either the button press only (BPO) 
response condition or to the button press and slider (BPaS) response 
condition. Regardless of condition, the participants were instructed to 
identify “natural and meaningful units of activity” and to press the 
spacebar when a unit of their definition ended. In the button press and 
slider condition, participants additionally used the mouse to move a slider 
marker on a horizontal track. They were instructed to indicate if they 
thought the end of the current activity unit was imminent on the sliding 
scale. The left end of the slider track corresponded to certainty that the 
current activity unit would be continuing, and the right end of the track 
corresponded to certainty that the current activity unit would end very 
soon. 

All participants participated in both of instruction grains, one per 
block. The coarse-grain instructions asked them to mark off the “LARGEST 
natural and meaningful units of activity” while the fine-grain instructions 
asked them to mark off the “SMALLEST natural and meaningful units of 
activity.” Each participant was randomly assigned to an instruction order. 
The four experimental videos were seen once by each participant and were 
in a random order. Therefore, all videos were watched at both grains and 
in both grain instruction orders across- but not within-participants. 

 

6.2.1.4 Response Collection 
 

A video trial began after a participant pressed the spacebar to 
moved forward from the previous instruction screen. The videos were set 
to autoplay. During the trial, measurements of the x- and y-coordinates of 
the cursor were collected every 50ms with a timestamp. In the condition 
with the slider response measure, the slider marker position was also 
recorded at the same 50ms intervals. The button presses and mouse clicks 
were also recorded with a timestamp relative to the start of the video. 

 

6.2.2 Results 
 

In each trial, participants either watched a video and pressed the 
spacebar when they decided a “natural and meaningful unit of activity” 
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had ended, or did the watching, the key pressing, and also moved the 
mouse to report on a slider their current expectation of the end of an 
activity. Pragmatically, the slider corresponded to their expectation of 
needing to press the spacebar. Participants did their assigned task(s) for 
four videos of everyday activities, two marking the largest activities and 
two marking the smallest activities.  

To preview the results, the analysis and results fall into two broad 
categories by dependent variable: discrete keypress responses and 
continuous slider trajectories. In the analysis of the keypress responses, 
participants marked off more small activities than large activities. Using 
group aggregates, the patterns of segmentation were not related across the 
fine- and coarse-grained activity sizes for the same video. However, at the 
trial level, most trials had substantial similarity in the location of keypress 
responses to other trials of the same video and instruction grain. The 
keypress times of a trial were more similar to other trials of the same 
response group - trials that only required keypress responses had more 
similar patterns to other keypress only trials compared to trials that 
collected the keypress and slider responses. Trials that collected both 
responses were more similar to other trials that had collected both 
responses. Using the continuous trajectory data, a number of movement 
types were evident and will be discussed qualitatively. Relating the 
trajectories to the keypresses, there were two predominant patterns: Either 
participants knew the activity end was coming, reported high levels of 
expectation and pressed the spacebar while the slider was in the high 
range; or participants pressed the spacebar when reporting a random level 
of expectation.  

 

6.2.2.1 Segmentation Metrics 
 

6.2.2.1.1 Event Duration 
 

Variable 
A key measure in the event segmentation task is the length of events 

identified. Average event duration is the length of the displayed video in 
milliseconds divided by the number of segmentation responses recorded 
during a trial plus one8. Therefore, if a participant gave one segmentation 
response, the average event duration would be half the length of the video. 

 

Hypotheses 
If the instruction manipulation worked, participants should 

segment more in the fine-grain instruction condition when they were to 
mark the smallest units of activity than in the coarse-grain instruction 
condition when they were to mark off the largest units of activity. 
Therefore, the hypothesis is: The average event duration is longer in 
coarse-grained  segmentation  than in  fine-grained  segmentation  with  no 

                                                
8 This was initially incorrectly pre-registered as the denominator being the 
number of segmentations. A correction was posted. 
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Figure 6.2. Boxplot of log event duration by instruction grain and response 
condition. 
 

differences by condition. Testing this hypothesis with a linear mixed 
effects model, the hypothesis would be supported with a significant main 
effect of grain, driven by longer average durations in coarse trials than fine 
trials, with no interaction of grain and response condition. If a difference 
by response condition is observed, however, a follow-up hypothesis is: The 
simple effect of grain is significant in the BPO response condition. This 
prediction is based on the BPO condition being more similar in procedure 
to previous experiments in which the effect has been found. 

 

Analysis 
Average event duration was used as the dependent variable in a 

linear mixed effects (LME) model. The LME models throughout this chapter 
were run in R using the lme4 package (Bates, Mächler, Bolker, & Walker, 
2014). The planned model has seven fixed effect terms. The three main 
effect terms are instruction grain, response condition, and instruction 
grain order. The four interaction effect terms are grain by condition, grain 
by grain order, condition by grain order, and the three-way interaction of 
grain by condition by grain order. The model also has two random effects: 
participant and video. Only the grain variable is a within-subject 
manipulation, and therefore, the participant effect has random intercepts  
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Table 6.1    
Log Event Duration Linear Mixed Effect Model, 
Experiment 1  

 
Converged Model 

 Dropped 10 High 
Leverage Points 

 

   
Fixed Effects Estimate SE  Estimate SE  
Intercept 10.514 0.115 *** 10.476 0.118 *** 
Grain 0.572 0.131 **  0.592 0.128 ** 
Response Condition 0.371 0.184 *   0.325 0.183 . 

Grain Order -0.118 0.186  -0.186 0.188  
Grain by Response 
Condition -0.469 0.221 . -0.478 0.225 . 
Grain by Grain Order -0.234 0.219  -0.264 0.213  
Response Condition by 
Grain Order -0.265 0.354  -0.385 0.355  
Grain by Response 
Condition By Grain Order 

0.235 0.372  0.074 0.502  

      
Random Effects Variance SD  Variance SD  
Participant (n = 82)       
Intercept 0.583 0.763  0.560 0.748  
Grain 0.525 0.724  0.529 0.728  
Video (n = 4)       
Intercept 0.022 0.148  0.025 0.157  
Grain 0.034 0.184  0.028 0.168  
Response Condition 0.012 0.109  0.012 0.109  
Grain Order 0.015 0.124  0.019 0.136  
Grain by Response 
Condition 0.056 0.237  0.055 0.234  
Grain by Grain Order 0.053 0.230  0.034 0.184  
Response Condition by 
Grain Order 0.010 0.099  0.014 0.118  
Grain by Response 
Condition By Grain Order 

- -  0.420 0.648  

      
Residual 0.172 0.414  0.161 0.401  
Number of Trials 318  308  
*** = p<0.001, ** = p<0.01, * = p<0.05, . = p<0.1 

 

and random slopes by grain. All independent variables were within-item 
manipulations; therefore, the video factor has random intercepts and 
slopes by the full set of seven fixed effects terms. 

The dataset was filtered of trials that contained no segmentation 
responses. Six participants were excluded that did not have at least one 
trial in each level of grain instruction, required for a slope estimation by 
grain for  each participant.  The resultant  data set  consisted of  318 trials  

 



96 

Table 6.2   
Log Event Duration by Response Condition Linear Mixed Effect Models, 
Experiment 1 

 Button Press Only  
Button Press  
and Slider 

 

Fixed Effects Estimate SE  Estimate SE  

Intercept 10.325 0.137 *** 10.704 0.155 *** 
Grain 0.811 0.197 **  0.349 0.129 **  
Grain Order 0.028 0.269  -0.245 0.244  
Grain by Grain 
Order -0.348 0.320  -0.121 0.312 

 

       
Random Effects Variance SD  Variance SD  

Participant n = 40  n = 42  
Intercept 0.603 0.777  0.575 0.759  
Grain 0.578 0.761  0.481 0.694  
Video (n = 4)      
Intercept 0.011 0.103  0.036 0.190  
Grain 0.080 0.284  0.001 0.027  
Grain Order 0.031 0.176  0.000 0.010  
Grain by Grain 
Order 0.111 0.334  0.129 0.360 

 

       
Residual 0.154 0.392  0.181 0.426  
Number of Trials 159  159  
*** = p<0.001, ** = p<0.01 

 

across 82 participants. The model fit to the original event duration 
calculation has residuals with strong heterogeneity of variance. Therefore, 
the dependent variable was transformed to be the log of the average event 
duration, reducing the heterogeneity. All fixed effect predictor variables 
were deviation coded, resulting in the intercept being an estimation of the 
grand mean. To get convergence, the three-way interaction was dropped 
from the video random factor. See Table 6.1 for effect estimates. 

In the pre-registration, we planned to use the log-likelihood method 
of dropping a term from the model then comparing the fit of the new 
model to the original. This method is not appropriate however because the 
interaction term(s) take on the variance accounted for by the main effect 
terms when the main effect is excluded from the model. Therefore, the 
lmerTest package (Kuznetsova, Brockhoff, & Christensen, 2017) was used 
to test the model with all effects in place. Using the Satterthwaite method 
for approximating degrees of freedom, there is significant intercept, 
t(12.61) = 91.551, p< 0.0001, a main effect of instruction grain, t(6.38) = 
4.369, p = 0.0041, and a main effect of response condition, t(54.36) = 2.022, 
p = 0.0481. There was a marginal interaction of grain and response 
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condition, t(11.41) = -2.125, p = 0.0562. See Figure 6.2 for a boxplot of the 
average event duration by grain and condition in log milliseconds. Using 
the Kenward-Roger method for approximating degrees of freedom, the 
main effect of response condition is, in contrast, marginal, t(47.79) = 2.002, 
p = 0.05099. Exploring this further by removing the ten data points with 
the most leverage and re-running the model, the effect estimates change 
slightly. With the Satterthwaite method, the main effect of response 
condition is marginal, and the interaction of grain by response condition 
is significant; with the Kenward-Roger method, both effects are marginal. 
Further, without the high leverage points, the full model, including random 
slopes for the 3-way interaction by video, was able to converge. The 
intercept and main effect of grain are significant while the main effect of 
response condition and the grain by response condition interaction are 
both marginal. The response condition main effect and the grain by 
response condition interaction do not appear to be reliable. Follow-up tests 
of a simple effect of grain is reliable within both the BPO condition, t(6.364) 
= 4.119, p<0.00549 and the BPaS condition, t(37.2) = 2.716, p = 0.00995, 
see Table 6.2 for effect estimates. 
 

6.2.2.1.2 Overlap 
 
Variable 

Following Newtson (1973), overlap is the amount of synchronous 
segmentation between a fine-grain and coarse-grain time series for the 
same video. In order to calculate this agreement, the duration of a video is 
divided into 1-second bins. Each trial is coded into a binary-binned time 
series. If a segmentation response (or more than one) is recorded within 
the bounds of a bin, the bin is coded as a segmentation point. Because 
videos by grain are between-subjects in the current experiment, the group 
binned time series are used for comparison. To get a group binned time 
series, all trials of a video at a grain are summed bin-wise creating a count 
time series. The mean count and standard deviation is calculated. Bins with 
a count higher than one standard deviation above the mean are coded in 
the group time series as group segmentation points. The count of matching 
segmentation bins in the fine- and coarse-grained group binned time series 
for the same video is the amount of observed overlap. Expected overlap is 
the joint probability of the two counts.  

The full dataset and each subset have different group segmentation 
probabilities. Therefore, the observed and expected overlap were 
calculated separately for the full sample, the BPO condition, and the BPaS 
condition. 
 

Hypotheses 
The previous experiments using the event segmentation task have 

found more overlap than expected by chance. Therefore, the confirmatory 
hypothesis is: There is more overlap than expected by chance in the full 
sample. This would be demonstrated with a significant chi-squared 
goodness of fit test. If this prediction is not found, the follow-up 
hypothesis is: The BPO condition will have more overlap than expected by  
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Table 6.3 
Observed and Expected Overlap by Comparison Group and Video, 
Experiment 1 
Group Laundry Tent Garden Carwash 
Full 10 (12.86)   8 (  9.50) 11 (13.69) 24 (16.95) 
Button Press Only   9 (  9.14) 13 (16.42) 11 (  9.55) 18 (15.89) 
Button Press and Slider 13 (13.22) 12 (15.60)   9 (12.41) 13 (  5.77) 

 

chance. This hypothesis would be confirmed by a significant chi-squared 
goodness of fit test using the overlap scores calculated using only the BPO 
condition. 

Additionally, the two conditions are expected to be equivalent in 
terms of segmentation response patterns. Comparing the overlap scores 
calculated on each response condition, this hypothesis would predict no 
significant effect in a chi-square test of independence. 
 

Analysis 
The observed and expected segmentation counts from the group 

discretized time series (see Table 6.3) were submitted to a chi-squared 
goodness of fit test. For each chi-squared statistic the reported p-value is 
based on 2000 simulations. The full data set did not have observed overlap 
than differed from chance, !" = 4.3346, p = 0.2429. The BPO response 
condition alone also did not have observed overlap that differed from 
chance, !" = 1.2134, p = 0.7596. However, the BPaS response condition 
alone did have a pattern of observed overlap that statistically differed from 
chance, !" = 10.841, p = 0.01999. The pattern of observed and expected 
values does not, however, show a consistent pattern - one video had more 
observed segmentations than expected and three had less observed than 
expected. 

The observed group segmentation counts were compared by 
response condition using a chi-squared test of independence. There was 
not a significant difference in segmentation quantity between the two 
response conditions, !" = 1.6131, p = 0.6842. 

 

6.2.2.1.3 Segmentation Agreement 
 

Variable 
Segmentation agreement is an adjusted correlation measure 

between the segmentation patterns observed in a single trial and the 
segmentation pattern of the group. It is computed as described in an article 
by Kurby and Zacks (2011, footnote 1). As described above, the binned time 
series is a series of one second bins equal in length to the video. Each bin 
is coded 1 for at least one segment during the second and 0 for no 
segmentations during the second. Group segmentation probabilities are 
computed by adding all trials of a video at an instruction grain bin-wise, 
i.e., calculating the group binned time series, and dividing each bin’s count 
by the  total number of trials.  The point-biserial  correlation (#) of a single  
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Table 6.4  
Segmentation Agreement Linear Mixed Effect Model, 
Experiment 1, Full Sample Comparison 
Fixed Effects Estimate SE  
Intercept 0.481 0.019 *** 
Response Condition -0.122 0.044 *   
Grain Order -0.018 0.033  
Response Condition by 
Grain Order 0.013 0.066      
Random Effects Variance SD  
Participant (n = 88) 
Intercept 0.016 0.126  
Video (n = 4)    
Intercept 0.000 0.020  
Response Condition 0.004 0.060  
Grain Order 0.000 0.014  
Response Condition by 
Grain Order 0.001 0.031      
Residual 0.023 0.151  
Number of Trials (n= 328) 
*** = p<0.001, * = p<0.05 

 

trial time series and the group segmentation probabilities is then 
computed. That correlation is adjusted to account for the different number 
of segmentations produced across trials. The minimum correlation (#$%&) 
possible between a trial with the number of segmentations observed and 
the group probabilities is subtracted from the observed correlation. This 
value is divided by the range of possible correlations calculated by the 
maximum possible correlation (#$'() minus the minimum possible 
correlation. 
 

)*+,+ =	 # −	#$%&
#$'( −	#$%&

 

 

This adjusted correlation was computed using three group 
segmentation probabilities: the full sample, the BPO condition, and the 
BPaS condition. A trial in the BPO condition compared to the BPO group 
segmentation probabilities is a within-condition segmentation agreement 
score. The same BPO condition trial compared to the BPaS group 
segmentation probabilities is a between-condition segmentation 
agreement score. 
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Figure 6.3. Boxplot of segmentation agreement (full sample) by response 
condition. 
 

Hypotheses 
Segmentation agreement is a correlational measure of how well 

participants agree on event boundaries and has been found in previous 
experiments using the event segmentation task. Therefore, the 
confirmatory hypothesis is: There is significant segmentation agreement 
between trials and the full sample, the trial’s own condition, and the other 
condition. This hypothesis is based on the premise that the two response 
conditions have the same segmentation task with the keypress and will 
have similar behavior. 
 

Analysis 
The full sample segmentation agreement for each trial was used as 

the dependent variable in an LME model. The model has three fixed effect 
terms: the main effects of response condition and of grain order, and the 
interaction of the two. There are two random effects: participant and video. 
The participant effect has random intercepts. The video effect has random 
intercepts and random slopes by the full fixed effects model of three 
terms.  

The dataset was filtered of trials that contained no segmentation 
responses. This resulted in 328 trials across 88 participants. The model 
run on the segmentation agreement scores produced residuals that have 
homogeneity of variance and are normally distributed. As in the event 
duration LME model, the fixed effect predictor variables were deviation 
coded,  resulting  in the  intercept  being  an estimation  of the grand mean.  
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Table 6.5  
Condition Relative Segmentation Agreement Linear Mixed Effect Models 
Experiment 1 

 Within Condition  Across Condition  Difference Scores  
Fixed Effects Estimate SE  Estimate SE  Estimate SE  
Intercept 0.539 0.016 *** 0.293 0.015 *** 0.249 0.011 *** 
Response Condition -0.046 0.034  -0.066 0.043  0.017 0.032  
Grain Order -0.021 0.032  -0.008 0.029  -0.013 0.021  
Response Condition 
by Grain Order 0.024 0.065  0.007 0.059  0.030 0.043  
          
Random Effects Variance SD  Variance SD  Variance SD  
Participant (n = 88) 
Intercept 0.017 0.129  0.009 0.096  0.003 0.053  
Video (n = 4) 
Intercept 0.000 0.004  0.000 0.013  0.000 0.000  
Response Condition 0.000 0.020  0.004 0.065 BPaS 0.001 0.034  

      BPO 0.000 0.016  
Grain Order 0.000 0.001  0.000 0.020  0.000 0.010  
Response Condition 
by Grain Order 0.000 0.019  0.002 0.044  0.001 0.025  
          
Residual 0.021 0.146  0.026 0.161  0.023 0.153  
Number of Trials (n= 328) 
*** = p<0.001 

 

See Table 6.4 for effect estimates. A boxplot of the segmentation 
agreement scores by condition is in Figure 6.3. 

Using the Satterthwaite method for approximating degrees of 
freedom, there is significant intercept, t(12.27) = 25.561, p<0.0001, and a 
main effect of response condition, t(7.67) = -2.776, p=0.0251, see Figure 
6.4. There was no change in this pattern of results if degrees of freedom 
are estimated using the Kenward-Roger method nor is there a change if the 
model is re-run without the 14 points with the highest leverage in the 
original model.  

The same LME model structure was run on the within-condition 
segmentation agreement scores. Using the Satterthwaite method, only the 
intercept was significant, t(31.01) = 33.358, p<0.0001, see Table 6.5. This 
did not change using the Kenward-Roger method, nor if the 2 points with 
extreme leverage values were excluded. 

Finally, the LME model was run on the across-condition 
segmentation agreement scores as well. The same pattern was seen: using 
the Satterthwaite method, only the intercept was significant, t(11.965) = 
19.372, p<0.0001, see Table 6.5. This pattern of results did not change 
using the Kenward-Roger method, nor if the 2 points with extreme leverage 
values were excluded. 
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Figure 6.4. Ballistic movements in Experiment 1. The ballistic movement type 
is characterized by rapid changes in reported expectation.  
 

With the significant response condition main effect in the full-
sample segmentation agreement model, a follow-up examination of the 
meaningfulness of the effect is warranted. There was no reliable difference 
by response condition when using the condition specific group 
segmentation probabilities for calculating the correlations. However, 
calculating a difference score of the within-condition segmentation 
agreement minus the across condition segmentation agreement for each 
trail, it was submitted as the dependent variable in an LME model with the 
same effect structure9 ⁠had a significant intercept, t(11.678) = 22.481, 
p<0.0001, see Table 6.5. The within condition segmentation agreement is 
higher than the across condition segmentation agreement. No other effect 
showed a difference. 
 

6.2.2.2 Trajectories 
 

In addition to the discrete key press responses, the forty-six 
participants in the BPaS condition gave a slider response with a continuous 
trajectory. There were a wide range of response patterns. I identified three 
movement types: ballistic (Figure 6.4), gradual (Figure 6.5), and stepwise 
(Figure 6.6). Ballistic movements are characterized by rapid changes in 
slider location taking one or two 50ms time intervals to move a substantial 
distance on the slider track, i.e., movements with high velocity. Gradual 
movements are movements in one direction on the track that take place 
over many 50ms time intervals, i.e., movements with low velocity. Stepwise 
movements are ballistic or gradual movements10 that pause at a value other  
                                                
9 To get convergence, the random intercept was not correlated with the 
random slopes in the video random effect. 
10 The ballistic and gradual movements within a stepwise strategy were 
not coded as ballistic, participants needed to make separate movements 
of those types to be coded in those separate categories. 
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Figure 6.5. Gradual movements in Experiment 1. The gradual movement type 
is characterized by small adjustments in reported expectation values from one 
measurement to the next.  
 

Figure 6.6. Stepwise movements in Experiment 1. The stepwise movement type 
is characterized by extended stopping points along the slider track. Additionally, 
the graphed trial which logged 6 segmentation responses is an example of the 
expectation response and keypress response being decoupled.  
 

than 0 or 400. Table 6.6 contains a summary of the number of trials that 
fit each movement type including trials with mixed movement strategies. 

Overall, in Experiment 1, participants most often used a stepwise 
strategy. This can be seen as deciding to move the slider higher or lower 
on the expectation scale and reaching a set point until they decide to adjust  
the expectation level again. Essentially, they chose to use the continuous 
slider measurement as a discrete response on a continuous scale. The 
second most used strategy was ballistic responses. One possible 
interpretation  of this  movement type  is  a participant  decided  to respond  
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Table 6.6          
Response Movement Types,  
Experiment 1 

 First Block Second Block   First 
Block 

Second 
Block 

All 
Trials Movement Fine Coarse Fine Coarse Fine Coarse 

Ballistic Only 3 13 5 7 8 20 16 12 28 

Gradual Only 0 4 0 3 0 7 4 3 7 

Stepwise Only 16 13 22 19 38 32 29 41 70 

Ballistic/Gradual 0 1 1 0 1 1 1 1 2 

Ballistic/Stepwise 8 8 7 8 15 16 16 15 31 

Gradual/Stepwise 5 5 4 4 9 9 10 8 18 

All 4 2 1 1 5 3 6 2 8 

None 6 4 10 0 16 4 10 10 20 

Number of Trials 42 50 50 42 92 92 92 92 184 

Summarized          
Any Ballistic 15 24 14 16 29 40 39 30 69 

Any Gradual 9 12 6 8 15 20 21 14 35 

Any Stepwise 33 28 34 32 67 60 61 66 127 
 

Table 6.7       
 

Segmentation Statistics by Slider Movement Type, 
Experiment 1 

 

Movement Type 

Mean 
Number of 
Responses 

Range 
Number of 
Responses 

Mean Event 
Duration 

(ms) 

Mean 
SegAg  

Mean 
SegAg  

Mean 
SegAg 

Trial 
Counts 

Full Within Across  

Ballistic Only 6.14 (1-27) 60608.59 0.33 0.40 0.19 28 

Gradual Only 6.86 (0-19) 53196.82 0.38 0.45 0.21 7 

Stepwise Only 7.44 (0-56) 67758.61 0.35 0.41 0.24 70 

Ballistic/Gradual 25.50 (18-33) 17703.60 0.58 0.71 0.40 2 

Ballistic/Stepwise 13.06 (1-58) 49987.54 0.42 0.53 0.26 31 

Gradual/Stepwise 17.78 (1-59) 47506.17 0.54 0.65 0.32 18 

All 17.38 (3-39) 39746.69 0.43 0.53 0.29 8 

None 5.50 (0-18) 60999.47 0.30 0.42 0.16 20 
Note. SegAg = Segmentation Agreement  

 

and waited until they moment they wanted to report higher or lower 
expectation levels. Alternatively, participants could be coordinating their 
slider movements with their decisions to respond with a keypress. Only a 
few trials reflect a gradual movement strategy, and even then, most 
gradual movement is accompanied by another movement type in the same  
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Figure 6.7. Expectation values at segmentation response. The panel on the left 
is the prediction of a histogram based on the Event Segmentation Theory. The 
panel on the right is a histogram of the Experiment 1 data. 
 

trial. The low velocity movements could be interpreted as a participant 
tracking his or her estimation of the length of an activity unit, getting 
higher in expectation of the end of the event over time. 

The different movement types had different patterns for keypresses 
and the derived variables based on keypresses, mean event duration and 
mean segmentation agreement. Participants who employed one movement 
strategy tended to have less segmentation responses than participants who 
used multiple movement types, see Table 6.7. Additionally, in spite of there 
being more ballistic and stepwise only trials overall, the participants who 
used multiple strategies had a higher correlation with the other trials 
across all the segmentation agreement calculations. 
 

6.2.2.2.1 Expectation Values at Segmentation 
 
Variable 

In the BPaS condition, the participants reported a continuous 
expectation level of the end of the current activity unit with a slider while 
concurrently reporting the ends of activity units when appropriate with a 
keypress. The expectation values are the marker’s slider track locations 
transformed from 0-400 pixels to a 0-100 scale. Relating the two responses 
to each other, the average expectation value of the measurements within a 
300ms window prior to a segmentation response was calculated. This time 
window was selected to account for the delay between deciding to make a 
segmentation response and the response being made. 
 

Hypotheses 
If participants are able to predict event structure, expectation values 

at the time of segmentation responses should display a systematic pattern. 
If activity ends are unexpected, as predicted by the EST, the activity unit 
ends should be low and variable, see left panel of Figure 6.7 for illustration. 
If activity unit ends are instead predictable, expectation values at 
segmentation should be high. Additionally, if activity ends are predictable, 
grain is expected to have an influence on expectation values such that 
coarse-grained segment responses should correspond to higher 
expectation values  than fine-grained expectation values.  Larger activities  
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should be more predictable than smaller activities. This hypothesis would 
be supported by a main effect of grain. 
 

Analysis 
The expectation values at segmentation were highly variable. The 

model has 3 fixed effects: instruction grain, instruction grain order, and 
the interaction. The random effect of participant has correlated random 
intercepts and random slopes by grain. The random effect of video has 
correlated random intercepts and random slopes by the full fixed effect 
structure. 

The data were filtered of trials that did not have much movement, 
which is defined as different values from one measurement to the next, 
above .1% of trials. 7.48% of trials were trimmed with these criteria. There 
were 1830 remaining values across 45 participants. The means and 
standard deviations before and after trimming are reported in Table 6.8. 
As can be seen in Figure 6.7, the predominant response was high 
expectation values at button press, 38.74% (untrimmed: 36.4%) of 
responses occurred with expectation values above 80 out of 100. The 
remaining responses appear to occur at random points on the slider. 

To improve normality, the values were squared. This transformation 
made the model residuals more normally distributed, but they still were 
not normal. Because the dependent variable is bounded, the residuals have 
heterogeneity of variance. The linear mixed effect model is not the ideal 
model for this data. However, according to Bartlett (2014), fixed effects 
estimates are robust to violations of heteroscedasticity though the random 
effects should be interpreted with caution. To get convergence, the random 
slopes for video by the interaction term was dropped. The estimates of the 
model are available in Table 6.9. Using the Satterthwaite method, the model 
only had a significant intercept, t(16.80) = 9.823, p<0.0001. 

 
 

Table 6.8  
Expectation Values at Segmentation Responses, 
Experiment 1, Mean (Standard Deviation) 

Untrimmed Laundry Tent Garden Carwash 
Fine 52.93 (29.32) 62.82 (31.51) 57.07(26.56) 69.97 (29.59) 
 n=300 n=391 n=363 n=247 
Coarse 71.32 (32.46) 53.17 (33.48) 53.93 (36.41) 63.75 (31.56) 
 n=158 n=116 n=194 n=209      
Trimmed Laundry Tent Garden Carwash 
Fine 53.58 (31.47) 62.95 (31.65) 58.49 (28.92) 71.96 (30.28) 
 n=258 n=387 n=302 n=225 
Coarse 71.32 (32.46) 52.82 (34.76) 53.93 (36.41) 62.92 (32.02) 
 n=158 n=106 n=194 n=200 
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Table 6.9   
Squared Expectation Values at Segmentation Response 
Linear Mixed Effects Model,  
Experiment 1 
Fixed Effects Estimate SE  
Intercept 4523.20 460.48 *** 
Grain 349.22 495.92  
Grain Order 604.84 922.85  
Grain by Grain Order 1145.59 900.05  
    
Random Effects Variance SD  
Participant (n = 45)    
Intercept 5325132 2307.6  
Grain 5981995 2445.8  
Video (n = 4)    
Intercept 299689 547.4  
Grain 173508 416.5  
Grain Order 1213628 1101.6  

    
Residual 7286966 2699.4  
Number of Segmentation Responses (n= 1830) 
*** = p <0.001 

 

6.2.3 Discussion 
 

A number of metrics used in previous reports of event segmentation 
tasks were calculated and statistically tested as described above including 
average event duration, overlap of group segmentation time series, and 
segmentation agreement. 

The average event duration was found to differ by instruction grain 
as expected. Coarse-grained events were, on average, longer than fine-
grained events. The difference was larger in the button press only (BPO) 
condition than in the button press and slider (BPaS) condition as visualized 
in Figure 6.2. Average event durations were longer in the BPaS condition 
than in the BPO condition. The effects of response condition and response 
condition by grain were statistical trends so this pattern should be 
interpreted with caution. In light of the interaction pattern, follow-up 
testing was conducted, finding the difference by instruction grain was 
reliable in both response conditions. This pattern of results indicates both 
response conditions were affected by the instruction grain manipulation 
though it may have been more effective in the single response BPO 
condition than the dual response BPaS condition. 

The overlap of group segmentation points across instruction grains 
for the same video was not greater than expected by chance, the pattern 
that has been found in previous research. The full sample and BPO 
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condition did not have a pattern that differed from chance. The BPaS 
condition had a pattern that differed from chance, but it was not in a 
consistent direction. In spite of not replicating patterns seen in previous 
research, these results are not particularly concerning. The overlap 
calculated variable is quite far from the raw data, relying on group averages 
and arbitrary cutoffs to create the binary group time series. The videos 
being only seen once by each participant at a single grain makes the group 
comparison necessary. In Experiment 2, the videos will be seen at both 
grains and the within-participant version of overlap, discrete hierarchical 
alignment (Zacks & Tversky, 2001), is used instead which compares single 
trial time series to each other which is a more powerful test. 

The segmentation agreement is the correlation between each trial 
segmentation time series and the group segmentation probabilities time 
series of the same instruction grain and same video, adjusted to reflect the 
different range of possible correlations given the number of segmentation 
responses of the trial. Each trial time series was compared to three 
segmentation probability time series: all trials, the trial’s own condition 
(referred to as within), and the other condition (referred to as across). All 
three of these segmentation agreement calculations have mean 
correlations, i.e., the intercept estimate of the LME models, between 0.29 
and 0.54 indicating that a portion of the pattern of segmentation is shared 
across trials of the same video and grain instruction. 

The BPO response condition trials to have a higher correlation with 
the all-trials group segmentation probabilities than the BPaS trials 
correlation to the same group segmentation probabilities. Again, a possible 
explanation for this is the dual response required in the BPaS condition 
increased behavioral variability in the discrete segmentation task. 

93.6% of trials correlated better with their own response condition 
than with the other response condition. This did not differ by response 
condition. It is to be expected that probabilities calculated including a trial 
would correlate better with that trial than probabilities not utilizing the 
trial. However, the mean difference from the LME model is 0.249 which is 
more than can be accounted for by trial’s inclusion in the calculation. The 
conditions had somewhat different segmentation patterns. 

In addition to the discrete button press response, the BPaS response 
condition collected continuous slider trajectories. The expectation values, 
which indicate the participants’ expectation of an imminent end to the 
current activity unit as they have defined it, reflect a participant’s level of 
expectation while the upcoming action of the video is unknown. There were 
a diverse set of slider movement patterns including ballistic, gradual and 
stepwise movement in addition to participants who did not move the slider 
at all. The diversity of strategies suggests participants are not all 
approaching the task in the same way. The diversity of trajectories may 
reflect different decision-making strategies. Quantitatively, the slider 
patterns show not all activity ends were expected or unexpected. The 
expectation values do not appear to have varied by grain. Over a third of 
segmentation responses occurred while the expectation response was high, 
i.e., in the top fifth of the slider track. These responses seem to reflect 
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anticipated transitions from one event to another. The remaining values 
are approximately evenly spread across the rest of the range of values. In 
some cases, participants may have been surprised and reacting to 
prediction error, but many participants appeared to not correlate their 
expectation value responses with their keypress responses, see Figure 6.6. 
 

6.3 Experiment 2 
 

The standard event segmentation task features a discrete response 
measure - a button press. In Experiment 1, a continuous measure of 
predictability was elicited on top of the standard discrete response 
measure. In this experiment, the discrete response was replaced with a 
continuous segmentation response. 

Responding by moving a marker along a horizontal slider track 
extends the previously discrete keypress response into time and space. 
Mouse tracking is a methodology that has been successfully employed to 
gain new insight into tasks that traditionally use discrete responses such 
as phonological competition (Spivey et al., 2005) and categorization (Dale 
et al., 2007). Abrams and Balota (1991; Balota & Abrams, 1995) showed that 
responses are not purely the product of some pre-action process. With 
reaction time data, researchers often discount the behavior of responding 
as a psychological variable. However, different cognitive variables can 
affect response characteristics such as force and acceleration. The patterns 
of response using a continuous response method for the segmentation 
task itself will open this additional area of variation, allowing different 
insight into the task. Most mouse tracking studies have two or more 
response options spread out on the screen allowing direction of movement 
to be indicative of competition between the choices. Here instead, the 
response is a go/no-go response where the response is either segmentation 
or nothing. The continuous measure allows deeper insight into the 
decision-making and response behavior. For example, a button press 
response would have no way to detect sub-threshold responses that will 
be evident in the slider responses. 

 

6.3.1 Method 
 

6.3.1.1 Participants 
 

85 UC Merced undergraduate students participated in the 
experiment meeting the same criteria as in Experiment 1. They received 1 
SONA credit. 

7 participants were collected before an error in the experiment 
program was detected. The slider values were not directly being recorded. 
The x-cursor position and the slider value are synchronous, however, with 
both recording the same location along the x-dimension using a different 
relative point. The slider position for the affected datasets were recovered. 
The slider values were recorded directly for all other participants. 
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Figure 6.8. Experiment 2 response slider. The first panel is the starting condition 
with the slider marker on the left. As the slider moves toward a segmentation 
response on the right the darker colored bar is revealed. When the slider marker 
gives the segmentation response by hitting the right end of the track, the 
segmentation response counter increases, the slider track becomes grey and a 
RESET warning appears. When the slider marker returns to the left end of the 
track the slider resets to the starting condition. 
 

Due to time constraints, this experiment was not pre-registered. 
Instead, a target sample size and stopping rule was registered after data 
collection was in progress. The target was to get at least 80 participants. 
At the time of registration, there were 29 participants already collected and 
up to a total of 93 would be collected. The target was to be overshot in 
scheduling to account for possible exclusions and missed appointments. 
 

6.3.1.2 Materials 
 

Three of the videos from Experiment 1 were used in the current 
experiment: toy block boat building (the practice video), tent building, and 
carwashing. 

The slider for this experiment is based on the slider used in 
Experiment 1 but edited to encourage a respond-and-return behavior. It is 
visualized in Figure 6.8. The slider marker begins each trial at the left most 
point on the track, i.e., a value of 0. The slider has a graded background 
from grey on the left to green on the right, displayed in full color to the 
left of the marker. To the right of the marker, the background is washed 
out as in the Experiment 1 slider. There is a counter to the right of the 
slider starting at 0. When a participant responds by moving the marker all  
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Table 6.10     
Still Frame Selection Statistics 

 Boundary 

 Practice Tent Carwash 
Statistic Coarse Fine Coarse Fine Coarse Fine 
Highest 
GSP 0.2105 0.325 0.375 0.32 0.381 0.6 
Lowest 
GSP 0.0263* 0.1* 0.0625 0.12 0.0476 0.1 
Median 0.0526 0.125 0.0625 0.12 0.0476 0.02 
Count 80 99 112 87 154 107 
       
 Non-Boundary 

 Practice Tent Carwash 
Statistic Coarse Fine Coarse Fine Coarse Fine 
Lowest 
GSP 0 0 0 0 0 0 
Highest 
GSP 0.0263* 0.1* 0 0.04 0 0 
Median 0 0.075 0 0.04 0 0 
Count 115 83 243 195 278 243 
Note.  GSP = Group Segmentation Probability as calculated from the Experiment 1 BPO 

condition. *There was an issue with the practice images that the boundary and non-
boundary distributions overlapped; this did not affect the main trials. 

 

the way to the right end of the slider track, i.e., the slider value of 400, the 
counter would increase by 1. A red box with white letters reading RESET 
would appear below the slider and the slider track would change color to 
grey. When the marker was brought back to the right end of the track, the 
reset box would disappear, and the slider track would return to its initial 
color scheme. 

For a memory test, the fifteenth frame from every second of each 
video was extracted as still images. Using the button press distribution 
generated in the button press only condition of Experiment 1, the most 
segmented seconds and the least segmented seconds were identified. 
Specifically, using the group segmentation probabilities for each video at 
each grain, the 80 seconds with the highest segmentation probability were 
selected as well as any additional seconds with the same segmentation 
probability as the 80th item in the list. The same procedure was used to 
select at least 80 still images with the lowest segmentation probability for 
each video at a grain. See Table 6.10 for the quantities and probabilities. 
The corresponding frames to those selected seconds were used as the 
sample distributions from which memory test images were selected, with 
the highest probability images treated as event boundaries or 
segmentation points, and with the lowest probability images treated as 
non-boundaries or continuing points. Images from the appropriate 
distributions were randomly selected for each participant to create three 
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pair types: boundary vs. boundary (BB), boundary vs. non-boundary (BN), 
and non-boundary vs. non-boundary (NN). 
 

6.3.1.3 Procedure 
 

The procedure was similar to Experiment 1, with only the 
differences reported here. Video was within-participant in this experiment. 
The same three videos (1 practice, 2 experimental) were used in both the 
fine- and coarse-grained blocks. The video order was consistent within-
participant but randomized across participants. A memory test block was 
added after each segmentation block. 

The memory test used the still images from the videos chosen from 
the most and least segmented seconds as described above. The number of 
possible images for each video at the grain of the proceeding segmentation 
block exceeded the number of images needed. Each trial displayed two 
images side by side each ~36.5% of the screen width with ~1.5% of the 
screen as blank space between them. The left image was labeled 1 and the 
right image was labeled 2, with the labels centered below its image. 
Participants were asked to indicate with presses of the 1 and 2 keys which 
of the images came earlier in the video. The trial ended after a button press 
or after 4 seconds. There was a 250ms blank screen between the trials. 
Each block consisted of 75 trials, 15 practice trials followed by 60 trials 
from each experimental video for a total of 150 trials across the whole 
experiment. Each trial set contained equal numbers of each type 
introduced in the materials section: BB, BN, and NN. The trials were blocked 
by video in the same order as the participant had seen the videos and the 
presentation of the three types of image pairs was randomized within each 
block by video. 
 

6.3.1.4 Response Collection 
 

The response collection scheme for the video trials reported in 
Experiment 1, BPaS condition, was used. The memory trials recorded 
button presses and reaction times. 

 

6.3.2 Results 
 

In each trial, participants watched a video and moved the mouse 
across a slider track when they decided a “natural and meaningful unit of 
activity” had ended. The slider marker started on the left end of the track. 
When they decided an activity was at its end, they moved the slider marker 
to the right end of the track to give the response. When the right end was 
reached, a counter next to the response end of the track would increase by 
one, the slider track would change from colored to grey and a red square 
with white letters would appear telling the participant to “RESET” the slider 
bar. The participant would need to bring the slider marker back to the left 
end for the slider track to become colored and the “RESET” alert to go away. 
The counter would not increase if the right end was reached again without 
first going all the way to the left. Participants marked as many or as few of 
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these activity ends as they wished. There were two videos each seen twice, 
once marking small activity ends and once marking large activity ends. In 
between the switch in instruction grain, participants were tested on their 
knowledge of the order of activity in the videos they had just watched 
using stills from the videos11. They pressed the 1 or 2 key to respond. This 
test was repeated with different video still pairs after the second round of 
video segmentation. 

There was one response method: the slider. First, the analysis seeks 
to confirm that the slider response segmentation patterns are comparable 
to keypress response segmentation patterns. To approximate the keypress 
response of Experiment 1 and of previous research, the first measurement 
at the response end of the slider, i.e., 400, was treated as the segmentation 
point. Therefore, by deriving discrete segmentation points, there are once 
again two types of analysis, analysis on the segmentation points and 
analysis of the movement trajectories. To preview the results, as expected, 
participants marked the end of more small activities than large activities. 
The segmentation pattern of individual trials had substantial similarity to 
the other trials of the same video marked at the same activity size. Across 
the two viewings of the same video, a participant was more likely to mark 
an activity end within the same second in both videos than would be 
expected if they were responding at random. By participant, the 
segmentation points of the two instruction grain trials were closer in time 
than expected by chance. For the trajectory data, participants used the 
same movements types as in Experiment 1. However, the new role of that 
slider as the only response modality required to use the slider to 
participate in the core task of marking off the activity unit ends. A number 
of strategies were employed across- and within-participants. Analyzing the 
trajectories statistically, the length and speed of movement towards the 
segmentation response within a half second of the segmentation response 
was not different depending on the activity size being marked or whether 
it was the first or second viewing of the video. 
 

6.3.2.1 Segmentation Metrics 
 

6.3.2.1.1 Event Duration 
 
Variable 

Instead of button presses, the segmentation response was given by 
bringing the slider to the left end of the track. In between responses, 
participants were asked to reset the slider. Therefore, segmentation times 
were the first measurement of the highest slider value, 400, and 
subsequently any first measurement of 400 after a 0 value had been 

                                                
11 An order memory test was included as a component of this experiment. 
Discussion of it as part of the experiment procedure is of course relevant 
to understanding the context of the segmentation task for the participant. 
However, the inferential analysis of the memory results is not reported 
here. 
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recorded. Otherwise, the average event duration was calculated as in 
Experiment 1.  

 

Hypotheses 
The hypothesis is again that there are longer average event 

durations in the coarse-grain instruction condition than in the fine-grained 
instruction condition. As in Experiment 1, this is a manipulation check. If 
participants followed instructions there should be more responses when 
they were asked to identify smaller events. 

 

Analysis 
Average event duration was used as the dependent variable in a LME 

model. The model has three fixed effect terms: two main effect terms of 
instruction grain and block, and the interaction term of the two. The model 
also has two random effects: participant and video. Both the grain and 
block variables are within-subject variables; however, they co- vary with a 
single participant seeing one grain in each block. Therefore, the participant 
effect has random intercepts and random slopes by grain. The variables 
were fully crossed by item, therefore the video effect has random 
intercepts and slopes by the full set of three fixed effects terms. 

The dataset was filtered of trials that contained no segmentation 
responses. Subsequently, one participant was excluded that did not have 
at least one trial in each of the grain instruction levels, which is required 
for a slope estimation by grain for a participant. The resultant data set 
consisted of 333 trials across 84 participants. As in Experiment 1, the 
model fit to the original event duration calculation has residuals with 
strong heterogeneity of variance. Therefore, the dependent variable was 
transformed to be the log of the average event duration. All fixed effect 
predictor variables were deviation coded, resulting in the intercept being 
an estimation of the grand mean. See Table 6.11 for the effect estimates. 

Using the Satterthwaite method for approximating degrees of 
freedom, there is significant intercept, t(36.02) = 127.251, p < 0.0001 and 
a significant main effect of instruction grain, t(39.87) = 6.646, p < 0.0001. 
The main effect of block was marginal, t(4.41) = 2.181, p = 0.0882. Using 
the Kenward-Roger method for approximating degrees of freedom, the 
degrees of freedom and some of the t-values are estimated to be a bit lower 
resulting in p-values are all slightly higher. Using this method, the main 
effect of block is also marginal, t(4.27) = 2.181, p = 0.0903. Exploring this 
further, removing the three data points with the most leverage and re-
running the model, the effect estimate decreases resulting in lower t-values 
by both methods and higher p-values. The marginal effect of block appears 
to depend on those high leverage points. 
 

6.3.2.1.2 Segmentation Agreement 
 
Variable 

Segmentation agreement was calculated as in Exp. 1 using the full 
sample. 
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Table 6.11 
Event Duration and Segmentation Agreement Linear Mixed Effects Models, 
Experiment 2 

 
Event Duration 

  
Segmentation 

Agreement 
 

Fixed Effects Estimate SE   Estimate SE 
Intercept 10.548 0.083 ***  0.462 0.015 *** 
Grain 0.626 0.094 ***  -0.035 0.018  

Block 0.256 0.118 .  -0.042 0.024  

Grain by Block -0.292 0.353   -0.005 0.074  
        
Random Effects Variance SD   Variance SD  

Participant (n = 84) 
Intercept 0.496 0.704   0.006 0.079  

Grain 0.605 0.778   0.007 0.084  

Video (n = 2)        

Intercept 0.001 0.036   0.000 0.015  

Grain 0.001 0.027   0.000 0.012  

Block 0.011 0.103   0.001 0.025  

Grain by Block 0.050 0.225   0.007 0.085  
        
Residual 0.108 0.328   0.014 0.118  

Number of Trials 333   329  
*** = p<0.001, . = p<0.1 

 

Hypothesis 
As suggested in previous research, participants who are watching 

the same videos and share an understanding of the action in the video are 
likely to segment in a similar pattern leading to high segmentation 
agreement. This would be evidenced by a significant intercept. 

 

Analysis 
The segmentation agreement scores were the dependent variable in 

an LME model. The model had the same structure as the Experiment 2 
event duration model: three fixed effects—grain, block, and grain by 
block—and two random effects—participant and video. The participant 
effect had random intercepts and random slopes by grain. The video effect 
had random intercepts and random slopes by all three fixed effects. 

The residuals were normally distributed. There was some 
heterogeneity of variance with more negative residual values for the lower 
fitted values and more positive residual values for higher fitted values. No 
tested transformation fixed this issue, however, as mentioned previously 
Bartlett (2014) shows that fixed effects are robust to this assumption 
violation. Using the Satterthwaite method, the model had a significant 
intercept, t(12.054) = 40.506, p<0.0001 and no other significant fixed 
effects,  see  Table  6.11  for  effect  estimates.  This  did  not  change  using  
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Table 6.12   
Hierarchical Alignment Linear Mixed Effects Models,  
Experiment 2 

 Discrete  Continuous  
Fixed Effects Estimate SE  Estimate SE  
Intercept 1.410 0.163 *** -2937.834 1057.429 * 
Grain Order -0.463 0.406   -342.125 2093.599  
        
Random Effects Variance SD   Variance SD  
Participant n=84   n= 75  
Intercept 1.351 1.162   41840670 6468  
Video (n = 2)        
Intercept 0.002 0.046   111305 334  
Grain Order 0.124 0.353   266170 516  
        
Residual 1.556 1.247   68425410 8272  
Number of Trials 165   139  
Note. Continuous scores were trimmed to within 1 standard deviation of the mean. 
*** = p<0.001, * = p<0.05 

 

the Kenward-Roger method and excluding the two most extreme leverage 
points did not change this pattern of results. 

 

6.3.2.1.3 Discrete Hierarchical Alignment 
 
Variable 

Discrete hierarchical alignment is analogous to overlap as described 
in Experiment 1 but within-participant instead of at the group level. A 
discrete hierarchical alignment score is the count of overlapped 1-second 
bins that contain segmentation responses in the two trials of the same 
video for the same participant at the two grain instruction levels minus the 
expected overlap calculated by joint probability. This measure was 
introduced in Zacks and Tversky (2001).  

 

Hypotheses 
If fine-grained segmentation responses are indicative of subsets of 

the activities being marked in the coarse-grained segmentation responses, 
there should be a higher level of alignment than expected by chance. 
Previous research has found higher than expected alignment. With the 
present model, a hierarchical alignment effect would be demonstrated by 
a significant intercept. 

 

Analysis 
The hierarchical alignment scores were the dependent variable in a 

LME model. The model had one fixed effect of grain order and two random 
effects of participant and video. The participant effect has random 
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intercepts. The video effect has random intercepts and random slopes by 
grain order. 

The dataset was filtered of missing values (due to one or both of the 
pair of trails not having any segmentation responses). The model fit to the 
hierarchical alignment scores produced residuals with a strong 
heterogeneity of variance. A log transformation of the hierarchical 
alignment scores was used instead which lessened the variance and 
increased normality in the residuals but these assumptions remain a 
concern. Only the fixed effect estimates are robust to this issue (Bartlett, 
2014). Grain order was deviation coded. The effect estimates are in Table 
6.12. 

Using the Satterthwaite method, there was a significant intercept, 
t(24.321) = 8.633, p < 0.0001. Neither using the Kenward-Roger method 
nor dropping the highest leverage points changed this conclusion. 

 

6.3.2.1.4 Continuous Hierarchical Alignment 
 
Variable 

Continuous alignment is the observed average distance between the 
nearest cross-grain segmentation points. The observed average distance is 
taking the average of the absolute time differences between each coarse 
segmentation response and its nearest fine segmentation response in the 
matched time series of a participant for a video at a grain. The expected 
average distance is calculated by computing the difference from a set of 
times equal to the number of coarse segmentations randomly sampled 
from the uniform distribution to the observed fine segmentation 
responses. This measure was introduced in Zacks & Tversky (2001). 

 

Hypotheses 
Previous research has found an effect of continuous hierarchical 

alignment. If the same participant is marking related events at the two 
grains, there should be a smaller average distance than expected by chance. 
This would predict a negative intercept. 

 

Analysis 
The continuous hierarchical alignment scores were the dependent 

variable in an LME model. The model has the same structure as in the 
discrete hierarchical alignment analysis. The continuous alignment scores 
are extremely leptokurtic. The residuals have heterogeneity of variance and 
are not normally distributed. A transformation that would make a linear 
model appropriate was not identified. Only the fixed effect estimates are 
robust to these issues (Bartlett, 2014).  

Because of the leptokurtic shape, no significant effects were found 
using the continuous hierarchical alignment scores trimmed by three 
standard deviations or even two standard deviations. In an exploratory 
analysis, to get a picture of the pattern within the most central data points,  
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Figure 6.9. Event Segmentation Theory prediction of Experiment 2 
segmentation responses. If segmentation is the reflection of a discrete 
perceptual process of segmentation, responses should be exclusively ballistic. 
 

the alignment values were trimmed to scores within one standard 
deviation of the mean. This model had a significant intercept in the 
negative direction, t(6.818) = -2.778, p = 0.0281, see Table 6.12 for effect 
estimates. 
 

6.3.2.2 Trajectories 
 

A key advantage to using mouse movement responses rather than 
keypresses is the response movement takes place over space and time. In 
this task, the response movement could occur in a number of ways while 
moving between the reset location and the response location on opposite 
ends of the slider track. The only restriction on movement is the 
requirement to reset the slider after a segmentation response. The EST 
prediction for these trajectories is exclusively ballistic movements, as 
segmentation behavior would be the result of discrete event model 
changes, see Figure 6.9 for an illustration. Participants did engage in 
ballistic movements however a range of movements were observed.  

As was seen in Experiment 1, there are three main categories of 
response movements. The movement could be ballistic (Figure 6.10) going 
straight from the left track end to the right track end. Alternatively, the 
response movement could be gradual (Figure 6.11) with the slider being 
slowly moved toward the response end of the slider. Participants also used 
a stepwise movement (Figure 6.12) by moving toward the response end of 
the slider then pausing before continuing rightward. While Figures 6.10-
6.12 were chosen to illustrate the categories of movements, participants 
often employed two or all three movement types during a trial (see Figure  
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Figure 6.10. Ballistic movements in Experiment 2. The ballistic movement is 
characterized as participants rapidly moved the slider from the reset location 
to the response location. 
 

Figure 6.11. Gradual movements in Experiment 2. The gradual movement type 
is characterized by slow increases of slider values over time.  This participant 
also exhibits ballistic movements towards the end of the fine-grained trial. 
 

6.13 for an example.) The frequencies of each of trials with these 
movement types are reported in Table 6.13. Characteristics of the trials are 
broken down by movement types in Table 6.14 Investigating the EST 
prediction of exclusively ballistic movements, 47.1% of trials fit this type. 
In total, over 85% of trials had at least some discrete responses. Even 
though Experiment 1 demonstrated that participants can report their 
expectation of activity ends, participants often used the response slider as 
a discrete response. However, many response trajectories did take place 
over time and showed expectation of the coming activity unit end, behavior 
that does not reflect a perceptual process. 
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Figure 6.12. Stepwise movements in Experiment 2. The stepwise movement 
type is characterized by extended stopping points along the slider during the 
trajectory towards the response.  The graphed trials also exhibit some ballistic 
movements. The coarse trial had stepwise movement while having no 
segmentation response, i.e., reaching a slider value of 400. 
 

Figure 6.13. Mixed response movement types in Experiment 2. All three 
movement types are exhibited in both the fine-grained and coarse-grained 
trials for this participant. 
 

A number of adaptive slider response strategies can be identified. 
Some participants used the ballistic movements of moving rapidly toward 
the response end of the slider track, e.g., both trials in Figure 6.10, as well 
as some responses in Figure 6.13, Figure 6.14, and Figure 6.15. The gradual 
movement was employed in a strategy of moving quickly to reset the slider 
then slowly moving the slider marker towards the response without 
specific intent to respond within milliseconds, e.g., both trials in Figure 
6.11, as well as some responses in Figure 6.13, and one coarse trial 
response  at  the end  of  the video  in  Figure  6.15.  Participants  also  used  
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Figure 6.14. Return to the Center and Reset to Respond Strategies. The coarse 
trial in light green is ballistic with the resting state being the response end of 
the slider. The fine trial in blue uses a return to the center strategy where after 
ballistically responding, the participant resets the slider by going to 0 then 
brings the slider marker back to the middle of the track, decreasing the distance 
to respond ballistically. 
 

Figure 6.15. Return to Response End Strategy. The fine trial in blue exhibits a 
strategy of resetting the slider by moving the marker to 0 then returning to the 
response end of the slider track. This is a variation of the return to center 
strategy. 
 

various adaptive strategies to be able to respond more quickly than they 
would be able to if the response started at the reset end of the slider track. 
In Figure 6.12, the participant moved closer to the response end in short 
bursts then ballistically responded over a short distance. In Figure 6.14, 
the fine trial exhibits a strategy of ballistically resetting the slider after a 
response then immediately returning to the center of the slider, waiting 
for the next activity end with  a shorter response distance.  In Figure 6.15, 
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Figure 6.16. Sub-Threshold Responses. Many movements toward the response 
end of the slider track are not completed in these trials.  From left to right, the 
indicated responses are examples of: (a) resetting the slider after moving 
toward the response end when slider is not reset, (b) small movements of a 
few pixels that are backtracked, (c) a seemingly “stepwise” response that is 
partially backtracked, and (d) a movement more than halfway across the slider 
that is ballistically backtracked to the reset end of the slider, though no reset is 
required. 
 

the fine trial exhibits this strategy more dramatically, with the participant 

responding then returning the marker to within 50 pixels of the slider 
response, making the distance traveled from active response movement 
initiation and the response location much shorter than even the center 
strategy.  

In Figure 6.14, a curious strategy is employed in the coarse trial. The 
participant does not reset the slider immediately after responding. Instead, 
he or she moved the slider marker twice the distance of the slider to reset 
and respond ballistically. 37 or ~10.1% of trials used this strategy for part, 
if not all of the video. This is surprising as the strategy appears to be 
maladaptive. 

Another feature of the trajectory data is sub-threshold responses. 
Participants often would start a response movement then abandon it, 
backtracking toward the reset end of the slider track. In fact, ~62.9% of 
trials have some identifiable sub-threshold responding. Identification of 
these non-responses is a bit complicated. For example, stepwise 
movements toward the response then stopping may reflect a deliberate 
strategy or could reflect sub-threshold responding without backtracking. 
Additionally, because the slider needs to be reset, there are also 
movements that look like ballistic sub-threshold responses but are in 
actuality a belated reset movement rather than backtracking due to an 
aborted response decision. Each of these sub-response movements are 
displayed in Figure 6.16. 
 
 

a 
b 

c 

d 
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Table 6.13          
Response Movement Types, 
Experiment 2             

 First Block Second Block   First 
Block 

Second 
Block 

All 
Trials Movement  Fine Coarse Fine Coarse Fine Coarse 

Ballistic Only 44 32 38 46 82 78 76 84 160 
Gradual Only 2 5 2 5 4 10 7 7 14 
Stepwise Only 5 8 2 0 7 8 13 2 15 
Ballistic/Gradual 10 10 10 4 20 14 20 14 34 
Ballistic/Stepwise 16 14 15 17 31 31 30 32 62 
Gradual/Stepwise 3 8 2 3 5 11 11 5 16 
All 6 7 15 10 21 17 13 25 38 
None 0 0 0 1 0 1 0 1 1 
Number of Trials 86 84 84 86 170 170 170 170 340 

Summarized             
Any Ballistic 76 63 78 77 154 140 139 155 294 
Any Gradual 21 30 29 22 50 52 51 51 102 

Any Stepwise 30 37 34 30 64 67 67 64 131 
 

Table 6.14     
Segmentation Statistics by Slider Movement Type, 
Experiment 2 

Movement 
Mean Number 
of Responses 

Range of 
Number of 
Responses 

Mean Event 
Duration (ms) 

Mean 
Segmentation 

Agreement 
Ballistic Only 15.66 (1-105) 49649.29 0.48 
Gradual Only 14.43 (1-69) 101658.48 0.45 
Stepwise Only 1.07 (0-2) 145718.41 0.29 
Ballistic/Gradual 21.00 (1-77) 36692.85 0.53 
Ballistic/Stepwise 11.29 (0-53) 54860.64 0.43 
Gradual/Stepwise 4.38 (1-16) 116714.94 0.41 
All 19.58 (3-55) 30421.93 0.49 
None 0 (0) 0 0 

 
 

6.3.2.2.1 Area Under the Curve 
 
Variable 

The dimensions of space and time can be used to construct a two-
dimensional shape of the mouse trajectory. The area between this 
trajectory and an axis can be calculated for comparison. The units of the 
space dimension are pixels on the slider track and are bounded between 0  
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Table 6.15  
Area Under the Curve Linear Mixed Effects Model, 
Experiment 2 
Fixed Effects Estimate SE 
Intercept -1.4554 1.5066 
Grain -3.8603 2.2474 
Block 0.1335 2.3625 
Grain by Block 1.7995 8.6643     
Random Effects Variance SD 
Participant (n = 85) 
Intercept 29.210 5.405 
Grain  Coarse 177.600 13.330 
 Fine 13.840 0.410 
Video (n = 2)   
Intercept 0.000 0.000 
Grain Coarse 0.173 0.416 
 Fine 1.539 1.240 
Block 3.805 1.951 
Grain by Block 80.230 8.957    
Residual 592.300 24.340 
Number of Segmentation Responses (n= 4985) 

 

and 400. The time dimension is characterized by measurement intervals 
of 50ms. There are a number of ways to define a trajectory to a 
segmentation response, the first slider value of 400 after a slider value of 
0 has been recorded. One option would be to define it as the last recorded 
0 slider position measurement time before the response measurement to 
the response measurement time. Another option would be to pre-define a 
window of interest such as 10 measurements or the 500ms preceding the 
slider response measurement. In order to cut down on variability, a 10-
measurement window was applied here. Two additional manipulations 
were applied to the trajectories to isolate the signal. Not all participants 
kept the slider at zero between responses. To account for this difference, 
the lowest value within the 10 measurements was deducted from all values 
in the sequence. The transformed sequence captures only the distance 
traveled by the slider marker over the 500ms window of interest. 
Additionally, some 10 measurement sequences captured a descent in 
slider values before the rise to the segmentation response. Only the 
ascending values captures the to-response trajectory. Therefore, rather 
than a blanket 10 measurement sequence of interest, we used the last zero 
value within the 10 measurements as the start of the trajectory. For ease 
of interpretation, the slider value was transformed with a division by four, 
creating a scale of 0-100. The final trajectory sequence was used to 
calculate area under the curve (AUC) - the space between the trajectory line 
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on its rise from zero to its peak (400 or 400 minus the lowest value). The 
AUCs were calculated using Simpson’s rule. 
 

Hypotheses 
One possible pattern within the AUC of the final ascent within the 

500ms prior to a segmentation response is a more ballistic responses, a 
lower AUC, could be observed for responses in the second block where the 
videos were being watched for a second time. 

 

Analysis 
The AUC values were the dependent variable submitted to an LME 

model. The planned model has the same basic structure as in the event 
duration and segmentation agreement models, with the fixed effects of 
grain, block, and grain by block, as well as the random effects of 
participant and video. The participant effect has correlated random 
intercepts and random slopes by grain. The video effect has correlated 
random intercepts and random slopes by the full fixed effect structure. 

To improve normality and decrease heterogeneity of variance, the 
AUC values underwent a Box Cox transformation with a lambda of 0.4. The 
two data points beyond 3 standard deviations of the mean were dropped. 
The planned model failed to converge. To get a model that did converge, 
first the Box Cox transformed AUC values were centered. Additionally, the 
random intercepts and random slopes for both participant and video 
effects were uncorrelated. These changes were determined using the 
protocol suggested by Barr, Levy, Scheepers, and Tily (2013). 

The fitted model had residuals that were normally distributed but 
has some heterogeneity of variance. Therefore, only the fixed effects 
should be considered unbiased (Bartlett, 2014). Using the Satterthwaite 
method, no effects were statistically significant, see Table 6.15 for effect 
estimates. There was a lot of variability in the amount of leverage 
attributed to individual data points in the model. A cluster of 29 high 
leverage trials were dropped from the model. The same model did not 
converge. Dropping the random intercept by video, the simplified model 
was run on the filtered data set and produced the same pattern of results. 

 

6.3.3 Discussion 
 
Segmentation Metrics 

As in Experiment 1, a number of metrics reported in previous event 
segmentation research were calculated and statistically tested. Here, these 
metrics are average event duration, discrete hierarchical alignment, 
continuous hierarchical alignment, and segmentation agreement. Of key 
interest is whether a similar pattern of results to previous response 
patterns were found with the slider response method. Average event 
duration was found to differ by instruction condition as expected. Coarse-
grained events were longer on average than fine-grained events. This 
shows that the grain manipulation was effective. The mean segmentation 
agreement adjusted correlation was 0.47, comparable to the mean 
agreement in Experiment 1. This suggests that there is a systematic pattern 
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to segmentation responses for each video at an instruction grain. The mean 
discrete hierarchical alignment was found to be reliably above zero 
indicating that there was more overlap of segmentation across grains than 
would be expected by chance. The mean continuous hierarchical alignment 
was not reliably different from zero but had a distribution very 
inappropriate for a linear model. The alignment score skews negative 
which is the predicted direction of lower average distance than chance. 
Using a central subset of the data, it appears this trend may remain a 
pattern when accounting for the random effects of participant and video. 
Overall, with the exception of continuous hierarchical alignment, the 
pattern of event segmentation metric results in the current experiment are 
comparable to metrics observed in discrete segmentation tasks. 

 

Trajectories 
The qualitative analysis of the slider trajectories revealed a number 

of response patterns. There are three identified movement types. A 
number of different strategies, both adaptive and maladaptive, were 
evident across trails. These response patterns are consistent with diverse 
decision-making processes rather than a direct reflection of an automatic 
process. Finally, sub-threshold responses were observed frequently with at 
least one sub-threshold response in close to two thirds of trials. These sub-
responses are particularly revealing; they demonstrate participants are 
initiating movement then deciding not to respond. This filtering process is 
another layer of separation between perceptual processing and responses 
in the event segmentation task. 

The slider trajectories varied widely in temporal length and velocity 
across the slider. The area under the curve (AUC) of the slider response in 
space over time was calculated as a way to systematically look at the slider 
trajectories. Limited the length of the trajectories of interest to the 
ascending slider values within 10 measurements of a segmentation 
response, there was no difference by instruction grain or block. At least by 
this metric, there was not a systematic difference in slider movement by 
these groupings. Future analyses of the Experiment 2 trajectory data are 
discussed in section 6.4.2.2. 

 

6.4 General Discussion 
 

This chapter has, in two experiments, investigated the event 
segmentation task using a continuous response measure. A discrete 
response such as a keypress provides minimal data for interpretation. 
Alternatively, continuous responses give researchers more information 
about how participants are responding in a task. 

Experiment 1 implemented the standard discrete event 
segmentation task. Videos were used as the event stream and 
segmentation responses were indicated with keypresses. The control 
condition, the button press only response condition, was a replication of 
the event segmentation portion of Experiment 2 in Zacks et al. (2006) 
including the instruction wording and video stimuli. The novel 
manipulation is the addition of a second condition, the button press and 
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slider condition, with a continuous slider response reporting ongoing 
expectation of the end of an activity in addition to the standard keypress 
response. For the most part, with the exception of overlap, the metrics 
used to characterize event segmentation had patterns consistent with 
previous event segmentation task experiments. In the button press and 
slider condition, there was evidence of similar segmentation patterns. The 
differences between the response conditions indicate the addition of the 
second response may have increased variability in performance on the 
discrete response task. 

The qualitative analysis of the expectation value trajectories has 
revealed diverse response styles. Across all trials participants have moved 
the slider quickly and slowly. After moved the slider marker to a new 
location, sometimes the slider is left in that spot and sometimes the slider 
is quickly moved back in the opposite direction. The diversity in response 
styles makes generalization over the group difficult. The first view on the 
data, isolating expectation values at segmentation points, reveals some 
systematicity and a high degree of variability concurrently. One possible 
interpretation is that some segmentation points are highly expected while 
others are a surprise. Alternatively, the random expectation values at 
response could reflect a lack of engagement in the slider response task. 

Experiment 2 implemented the event segmentation task using a 
continuous response measure for the segmentation responses. The 
experiment also introduced a memory order accuracy test. The metrics 
used to characterize event segmentation were found in patterns consistent 
with previous research. 

The qualitative analysis of the response trajectories revealed the 
same movement types as were seen in Experiment 1. Experiment 2 issued 
participants a different task with the slider, however, and therefore, while 
general movement types aligned the inference of the purpose of the 
movements is different. A number of strategies were identified: using 0 as 
the base-point and responding via a ballistic movement to the response 
end of the slider track and a quick return; resetting the slider quickly then 
slowly moving towards the response end, picking up speed when the end 
of an activity is immanent; using alternative base-points than 0 including 
the approximate midpoint of the track, within 50 pixels of the response, 
and the response location itself. Participants also used a stepwise strategy 
where they moved the slider toward the response end in bursts. Beyond 
this diversity of strategies, the slider response also revealed a large 
quantity of sub-threshold responses, information that is not available 
using a keypress response. In a first statistical analysis on these 
trajectories, analysis of the area under the curve of the ascending 
measurements within half a second of the response did not vary 
systematically relative to instruction grain. The area also did not differ 
relative to viewing order of the same video by a participant. 

 

6.4.1 Trajectory Response Implications and Limitations 
 

Together, these experiments demonstrate that continuous response 
measures are compatible with the event segmentation task. The 
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continuous response on top of the discrete segmentation response in 
Experiment 1, as well as the continuous response as the segmentation 
response in Experiment 2 do not radically alter the event segmentation 
task metrics. The trajectories produced in both continuous response types 
are complex with a wide range of behaviors exhibited by participants. 
 

Expectation Value Slider Responses 
A continuous expectation response is a novel measure for event 

segmentation. The ability of an individual to predict the end of an activity 
is evident in the distribution of expectation values at segmentation. Over 
a one third of keypress segmentation responses were simultaneously 
reported as highly expected on the slider. The majority of the 7.48% of 
trials that were trimmed had mean expectation values segmentation at or 
near 50, the starting position. The .1% rate of change threshold was 
selected as a low bar for inclusion that excluded the expectation values 
with no movement or a single movement, however, examining the 
trajectories qualitatively relative to the threshold could improve the 
selection of trials with no response from those with a few stepwise 
movements. Antidotally, this condition confused the most participants, 
with many asking questions after they completed the practice trial and 
some expressing in the debriefing question they didn’t know what to do 
with the slider. The presented LME model does not account for the 
movement strategies of trials, or more specifically, portions of trials that 
the segmentation responses fall within. The under-analysis of the 
relationship between segmentation and expectation values in this task is 
the primary limitation. 
 

Slider Segmentation Responses 
The slider segmentation responses revealed a plethora of movement 

types and response strategies. There was not a consistent manner of 
response across- or even within-participants. The various response 
strategies as well as the sub-threshold responses, i.e., evidence of filtering, 
demonstrate that the event segmentation task is a reasoning and decision-
making task.  

Using a continuous response with dynamic stimuli is a messy 
endeavor. With most mouse tracking studies, the trajectory begins at a 
time-locked location and the response target is available on the screen. The 
slider responses of Experiment 2 are analogous to these studies in that it 
represents a discrete response of marking a boundary while the response 
behavior is recorded as it unfolds over time. Unlike previous studies, with 
present decisions relative to a stimulus that is also unfolding over time, 
time-locking the beginning of the trajectory is not feasible.  

Resetting after a response is also a challenge. For example, taking 
control of the cursor from participants would be disorienting. Yet for the 
response to be given by moving the cursor across the screen, the cursor 
position is must be brought back to that initial position to distinguish the 
beginning of a response trajectory. The employed technique of requiring 
the participant to reset the slider themselves seemed to work reasonably 
well. Yet resetting takes attention and time while the video plays on. With 



129 

event segmentation, pausing the video would introduce new events to the 
participant’s experience of the video.  

As a first attempt at this sort of response measure with this type of 
stimuli the paradigm was successful reproducing most of the basic event 
segmentation response patterns. The quantitative trajectory analysis of 
area under the curve was not revealing of systematic patterns. However, as 
with the trajectories in Experiment 1, utilizing and improving on the 
qualitatively identified movement types is a promising path forward. Each 
segmentation response can be coded for the behavior it resulted from. I 
am optimistic that further exploratory analysis of the trajectory data, 
taking into account sub-populations of response strategies, will uncover 
systematic patterns. 
 

6.4.2 Future Analyses 
 

The initial analysis has largely demonstrated the viability of the 
continuous response slider in the event segmentation task. While the 
variability in trajectories is indicative of the main theoretical point that the 
event segmentation task is not a perceptual task and is not a good proxy 
for a perceptual process, the initial explorations of the trajectory data with 
pre-planned inferential analyses did not yield much specific information 
about what participants are doing during the task. The data sets are 
complex and there are many avenues of analysis that have not been 
explored. I will outline a few of the many possible analyses that are beyond 
the scope of this chapter but will be conducted in the future. 

 

6.4.2.1 Experiment 1 
 

The analysis in Experiment 1 could be improved via incremental 
changes to existing models as well as integrating the qualitative analysis 
of trajectory movements into quantitative models of the data. 
 

Segmentation Agreement  
An improvement to the reported LME models of within-condition 

segmentation agreement and between-condition segmentation agreement 
would be to replace the grain order fixed effect with block and grain, as 
was used in Experiment 2. Segmentation agreement is calculated at the 
video by grain level. It is possible that there are systematic differences by 
grain within these scores that are not dependent on the grain order. 

Additionally, the descriptive statistics of the movement types 
revealed a pattern such that trial trajectories that exhibited one movement 
type tended to have lower segmentation agreement compared to those 
which contained multiple types. It is possible this is confounded by 
keypress response quantity. Both variables in the same statistical model 
would help clarify whether the descriptive pattern is meaningful. 

 

Expectation Values at Segmentation 
The expectation values at segmentation do not differ by the 

predictor variables of the LME model, however, there are a number of 
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additional predictors that should be explored for this dependent variable. 
One prediction is segmentation responses that agree with other 
individual’s segmentation responses are more expected than the responses 
that are more idiosyncratic. The group segmentation probability time 
series captures the group agreement on where event boundaries are 
located within the video. The group segmentation probability of a 
particular 1-second bin that a segmentation response falls within may 
predict expectation values at segmentation. 

Integrating the qualitative analysis of slider trajectories into the 
quantitative analysis is a future analysis goal. There are three identified 
categories of response movements. Coding each time series for periods of 
movement of each type is the next step to learn more about the 
relationship between segmentation and expectation values in this task. For 
example, I predict that ballistic movements are most correlated with high 
expectation values. This would reflect participants syncing their two 
response modalities. 

 

6.4.2.2 Experiment 2 
 
 The analysis of Experiment 2 has been focused on discrete response 
points, i.e., event duration, segmentation agreement, and hierarchical 
alignment; focused on trajectories but inconclusive, i.e., area under the 
curve; or qualitative, i.e., trajectory movement types and response 
strategies. Future analysis will seek to use inferential statistics on the 
trajectory data and find additional ways to group the trajectory responses. 
Additionally, the memory task will be analyzed. 
 
Trajectory Strategies 

There are a number of exploratory hypotheses that could be tested 
using the trajectory movement and strategies coding scheme. For example, 
because there is a higher density of responding, fine-grained trials could 
have more ballistic responses than coarse-grained trials. However, fine-
grained trials, having more time pressure, could have higher rates of 
anticipatory strategies, e.g., returning to center and gradually moving 
towards response beginning at the reset timepoint. The anticipatory 
strategies reduce the distance between the location of the marker before 
the acceleration that culminates in a response. With more time between 
responses in the coarse-grained trails, a delayed response does not affect 
the next response as frequently. 

I would also predict that participants using anticipatory strategies 
would have more probable segmentation points compared to the group 
segmentation probabilities of the same videos with the exclusive keypress 
response, i.e., the Experiment 1 BPO condition. The shortened response 
delays due to shorter distances to travel would allow the segmentation 
points to more closely align. This analysis presumes a lag of 0. Cross-
Recurrence Quantification Analysis (cRQA) is a method of examining lag 
between two time series (Coco & Dale, 2014). Utilizing cRQA to find the 
optimal alignment between the group segmentation probabilities and each 
trial, I predict that anticipatory strategies would have the shortest lag, 
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ballistic movements from the resent point would have a longer lag, and the 
responses that initiate at the response point traveling to the reset point 
and back would have the longest lag. 

 

Sub-threshold Responses 
The sub-threshold response patterns have not yet been analyzed. I 

predict that sub-threshold responses will occur at or just after more 
probable segmentation points. Participants who do not respond at a point 
when many participants do respond may be considering making a 
response. If a response is aborted because the participant did not move 
quickly enough, the sub-threshold response should occur on a delay 
relative to a high probability segmentation point. Alternatively, a response 
could be aborted because the participant decided the activity end was not 
at the appropriate size for the current instruction grain. If so, the 
prediction would be sub-threshold responses in the coarse-grained 
instruction condition correlate with overt responses in the fine-grained 
instruction condition. 
 

Event-Related Trajectories 
Additionally, I would like to do an analysis of the event-locked 

trajectories. Inspired by event-related potentials (ERPs) in EEG data, these 
event-related trajectories (ERTs) will be windows of the slider 
measurement stream aligned by the segmentation responses. This is a 
programmatic way of finding more nuanced movement types. For instance, 
while many segmentation responses are gradual, attempting to aggregate 
over gradual segmentation responses may reveal systematic variation 
leading to sub-categories that are qualitatively distinct as strategies. 

 

Order Memory 
Finally, the memory data from Experiment 2 has gone unexplored 

in this chapter. The motivation for conducting the order memory test is to 
expand upon previous findings that memory for stills from a video is 
greater when the stills are from event boundaries. The memory task was 
to choose which of a pair of stills occurred earlier in the video. The pairs 
have different time differences between them. Future analysis will focus 
on the memory accuracy as the dependent variable and include a number 
of predictor variables including the type of pair, e.g., boundary vs. 
boundary, the time difference between the pair, the quantity of 
participant’s own segmentation responses for the seconds represented by 
the images of the pair, and the group segmentation probability difference 
between the pair. 
 

6.4.3 Theoretical Contributions 
 

The two experiments in this chapter demonstrate that the event 
segmentation task is not an acceptable proxy for an automatic perceptual 
segmentation process. The basic event segmentation task requires 
participants to respond to the ends of activity units of a particular order 
of magnitude, i.e., smallest or largest natural and meaningful units of the 
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participants’ own judgment. The task demands not only require 
participants to respond to continuous perception, but also, to decide what 
qualifies as an activity unit at a particular size. Rather than respond to 
every activity end they perceive, participants need to filter their responses. 
The frequency of sub-threshold responses observed in Experiment 2 
confirm the filtering process is inhibiting potential responses.  

The EST claims the automatic perceptual segmentation process 
initiates when errors in perceptual predictions pass a threshold (Zacks et 
al., 2007). Because using the same videos across instruction grains allows 
for within-participant analyses, which have greater statistical power than 
between-participant analyses, event segmentation experiment designs 
often repeat stimuli across instruction grains. As discussed in Chapter 5, 
participants having perceptual prediction errors aligned across instruction 
grains while experiencing the same video twice in the same experimental 
session is logically flawed. If participants have memory of the exact video 
during the second viewing of that video, and segmentation behavior 
reflects perceptual prediction error, the response rate should drop 
dramatically for the second viewing trial. Experiment 2 had participants 
segment two videos twice; Block and grain order fixed effects were not 
significant in any of the linear mixed effects models. Block and grain order 
have not been reported as a significant factor in the literature. In fact, 
Zacks, Tversky, and Iyer (2001) argue that no effect between first and 
second viewing of a video is a feature in that effects are robust to 
familiarity. The segmentation behavior effects may be robust, but that 
robustness is in direct opposition to the theory of automatic perceptual 
prediction error triggered responses. While this critique is a theoretical 
contribution and the current data supports the critique, there is amble 
existing evidence in the literature that supports the critique as well. 

Now that I have established what the event segmentation task is not, 
what cognitive processes are being reflected by the task? The task is a 
reasoning and decision-making task. Beyond perceiving the continuous 
stimulus, participants must determine criteria for what activities count as 
largest or smallest activity units, which they then can use to determine 
activity ends. For example, on a coarse-grained trial for the carwash video, 
a participant could decide that soaping and scrubbing a side of the car is 
one activity and on a fine-grained trial that participant might mark off each 
scrubbing motion. Pre-determining the scope of activities would allow 
participants to anticipate, or expect, the end of the activity. The high 
expectation of an activity ending reported for many segmentation 
responses in Experiment 1 would fit this activity-end identification 
strategy.  However, this is just one possible strategy; as there are many 
response strategies displayed across participants and trials in Experiment 
2, there may also be many identification strategies. The key theoretical 
point, however, is participants use reasoning strategies, they do not 
exclusively react ballistically to unexpected activity ends. In fact, ballistic 
responses are predicted by the EST as a signature of discrete perceptual 
segmentation, but these responses could also reflect failures in reasoned 
anticipation. For example, say a participant planned to mark off soaping 
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and rinsing activities in the carwashing video and had expected the steps 
to be sequential with all soaping to occur before all rinsing. Instead, the 
steps are alternated on different areas of the car. The segmentation 
response for the first rinsing activity would be ballistic because the 
participant reasoned that the soaping activity would continue but saw 
activity that met the criteria for a new activity. The perceptual prediction 
of more soaping would be violated, but so too would the high-level 
reasoned expectation. 

When viewing the event segmentation task at the reasoning and 
decision-making level, how participants perceive change is not the 
determinant of behavior. Event changes could be perceived discretely as 
the EST theorizes or event changes could be perceived continuously with 
qualitative differences resulting in behavior triggers. For example, a recent 
model of event representation for reasoning (Khemlani, Harrison, & 
Trafton, 2015) creates markers for the types of changes that are 
consequential for situation modeling (Zwaan & Radvansky, 1998). In the 
model, reasoning takes place over these discrete markers, but the 
mechanism for getting to a representation of a discrete change that serves 
as an event boundary does not necessarily have to be discrete itself.  Being 
able to treat something as discrete does not require a discrete base 
representation. The Khemlani et al. (2015) model demonstrates how an 
event can be effectively discrete in a particular frame regardless of having 
changes within its boundaries. If asked to reason about large activity units, 
participants can discount small activity unit boundaries even though they 
are perceiving the changes that the boundaries rely upon.  

To summarize, the present chapter provides evidence for two broad 
theoretical contributions.  For the EST, the present experiments 
demonstrate that the event segmentation task does not provide conclusive 
evidence for the proposed perception and working memory processes. In 
order to test the theory, other tasks and paradigms need to be developed 
keeping in mind processes beyond perception and memory affect behavior. 
For the event segmentation behavior itself, the segmentation task is a 
decision-making task. In order to use event knowledge, people need to be 
capable of identifying relevant event elements such as time, location, 
people, and objects. The event segmentation literature has provided 
substantial evidence that changes in elements are key to understanding 
events. Viewed as a reflection of reasoning in addition to memory and 
perception, the event segmentation task and similar paradigms can 
productively be used to investigate how people detect and utilize 
meaningful experiences that unfold over time. 
 

6.4.4 Conclusion 
 

This chapter has presented a novel exploration of event 
segmentation decision-making and has implemented innovative response 
measures with variations on mouse tracking methodologies. The basic 
event segmentation task has been replicated and appears to work with the 
response measures I have introduced. The trajectory analysis is 
preliminary, but in both experiments, participants appear to have utilized 
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the slider in diverse and systematic ways. The pattern of expectation values 
at segmentation suggests participants can predict their segmentation 
responses, which does not align with the predictions of the EST. 
Responding in the event segmentation task is a decision, subject to high-
level reasoning as evidenced by the multiple strategies participants used 
in Experiment 2. The event segmentation task is not a good test of the EST 
mechanistic commitments but instead is a useful paradigm for exploring 
event reasoning. 
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Chapter 7 
 
General Discussion 
 
7.1 Summary 
 

This dissertation has presented theoretical and empirical reviews as 
well as empirical investigations. Theories of representation (and non-
representation) were reviewed in Chapter 2. The chapter goes on to review 
theories of embodiment (and non-embodiment). The two theoretical 
domains are discussed in light of each other, explaining how some views 
on the two topics are complementary while others are mutually exclusive. 
Chapters 3 and 4 are empirical investigations of the Representational Shift 
Hypothesis (Lupyan, 2008). Chapter 3 focuses on the claim that there are 
label-driven shifts from the true item properties towards increased 
category typicality at memory trace encoding of visually presented items. 
The reported experiments, using colors varying along the hue dimension 
as stimuli, provide little evidence of an effect of labeling and instead 
provide evidence of ubiquitous shifts in the opposite direction from 
category typicality. Chapter 4 makes a second attempt at finding the 
predicted pattern of label-driven shifts towards increased category 
typicality, testing color memory along the hue dimension after a delay of 
a few minutes. The experiments demonstrated an overall bias towards 
increased category typicality regardless of labeling. However, labeling did 
have an effect, one of decreasing the size of the typicality bias. Switching 
gears, Chapters 5 and 6 focused on the topic of event segmentation. The 
Event Segmentation Theory (Zacks et al., 2007) was reviewed in Chapter 5 
along with the empirical evidence associated with the theory. Harkening 
back to the issues of representation and embodiment raised in Chapter 2, 
Chapter 5 contains a discussion of the theoretical commitments of the 
Event Segmentation Theory and points out some of these commitments 
are assumed and remain untested. Chapter 6 is an empirical investigation 
of the event segmentation task, the main experimental task used to 
investigate the proposed cognitive process of event segmentation, the 
automatic discretizing of continuous sensory input as a core component 
of perception. In the present chapter, I will attempt to contextualize the 
empirical findings within the theoretical domains of representation and 
embodiment as well as reflect on implications of my work for the field of 
cognitive science. 
 

7.2 Theoretical Implications for Representation and 
Embodiment Debates 

 
The theoretical issues of representation and embodiment were 

introduced at the beginning of the dissertation and related to each other. 
The empirical chapters do not address these issues in depth. Therefore, 
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here I will explore the relationship between the reported empirical studies 
and these core theoretical issues in the cognitive sciences. The dissertation 
contains two distinct lines of empirical research on representational shifts 
of hue memory and event segmentation decision-making. The 
investigations of these phenomena will first be discussed independently, 
then the connections across the phenomena will be discussed. 

 

7.2.1 Representational Shifts 
 

The Representational Shift Hypothesis (RSH) is a representational 
theory, as the name implies, but it is not a proponent of traditional 
symbolic object-like representations. It is a dynamic representational 
theory where online perception is affected by existing knowledge 
structures. Following the Connell & Lynott (2014) taxonomy of 
representations being current activation and concepts being long-term 
knowledge, the RSH suggests that language and labeling is a way to tap 
into existing knowledge quickly, activating core aspects of a concept 
associated with a label. This allows those core concept features to be 
represented actively in real time. The incoming perception is actively 
represented as well. The RSH suggests these two sources of information, 
the external world through perception and the internal knowledge through 
labeling get co-activated and the representation is a combination of the 
two. As the representation gets stored into long-term memory, the memory 
trace is the blended product of both sources. 

As for embodiment, the RSH is at the very least embodiment 
compatible. It is a hypothesis about brain-based mental processes, 
therefore it is not a replacement theory. It does not explicitly extend 
representation beyond the body as a constitution theory would nor does it 
explicitly suggest representations are affected by our bodies as a 
conceptualization theory would. However, in spite of not fitting neatly 
within one of Shapiro’s embodiment categories, RSH does argue that the 
history of the cognizer affects online processing, with the history of 
associating particular words with concepts resulting in a fast connection 
from an experience word to those mental concepts resulting in concurrent 
representation of perception and prior knowledge. RSH is explicitly 
concerned with the agent-environment system in so far as the presence of 
labels in the current environment affects the perception of other aspects 
of the environment. 

The experiments reported in Chapters 3 and 4 do not fully agree 
with the RSH. The experiments of Chapter 3 tested whether an influence 
of labels on hue memory would be evident after half a second or after five 
seconds. There was no reliable influence of labels. In fact, regardless of 
labeling, the bias was in the atypical direction. Expanding the time delay 
between study and test, the experiments of Chapter 4 tested whether there 
was a label-based bias in memory for hue when testing occurred a few 
minutes after exposure. A labeling effect was found but it was not in the 
direction predicted by RSH. Labeling the color category during the study 
phase of the experiment resulted in less biased memory than making a 
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judgment unrelated to color. At least in the domain of hue, it appears that 
the RSH does not account for memory bias patterns. 

For Chapter 3, I, along with my co-author Evan Heit, suggested 
alternative explanations for the patterns of results. The atypical bias 
observed in Chapter 3 could be a distinctiveness bias with immediate 
processing privileging the more unique aspects of a stimulus. With the 
immediate same/different judgments, response patterns reflect a higher 
standard for issuing a same judgment for hues that are more likely of the 
category and less distinct in the perceivers’ experience. Additionally with 
the immediate testing, it may not have been beneficial to give much 
attention to the color categories when current experience made it clear that 
distinctions were being made at a level far below the basic color categories 
of red and green. 

These explanations are not strongly representational or anti-
representational. Little emphasis has been put on the contents of the mind 
other than some version of memory for visual experiences that are no long 
available in the environment. Most cognitive scientists would likely refer 
to this as representation yet this behavioral pattern does not require rigid 
object-like representation. Insofar as anti-representational theories have 
an account of working-memory-like processes, they could probably 
account for this simple memory usage. With regards to embodiment, 
essentially we have suggested that performance on the task is context 
dependent, or a product of the agent-environment system. The task 
demands of the fine hue distinctions and of the immediate memory test 
influence the observed memory bias more than the labeling manipulation. 
These task demands are relevant to the activity the participants were 
engaged in. Labeling the hues on top of the memory activity was 
superfluous to that activity. In fact, it could be that when labeling is more 
relevant to the task, it has a more prominent effect on memory bias. That, 
however, is a question left to future research. In accord with the RSH, these 
new hypotheses are about a task that has little bodily involvement. The 
influence of the agent-environment system and the history of participants 
in their past environments creating systematic behavioral biases are the 
main connection to embodiment for our hypotheses. 

With no evidence of language creating bias at encoding in the 
experiments of Chapter 3, an alternative reason for a prototypical bias in 
response pattern is category knowledge affecting memory biases at 
memory retrieval. Therefore, in Chapter 4, I, again along with my co-author 
Evan Heit, suggest an explanation for our results using the logic of the 
Category Adjustment Model (CAM; Huttenlocher et al., 1991, 2000, 2007). 
Essentially, the initial memory trace is encoded with some degree of detail. 
The more strong an individual memory trace is, the less biased it will be. 
The weaker the memory trace, the more that recognition of an item will 
depend on other knowledge filling the knowledge gap. In Chapter 4, 
regardless of labeling, there was a bias toward selecting hues more typical 
of the color category at test. There was an effect of labeling such that 
labeling hues with their basic color category at encoding led to less biased 
recognition memory than alternative activities to labeling at encoding. The 
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labeling activity could have increased the strength of the hue aspect of the 
memory trace at encoding. To test this hypothesis, participants were 
warned of the upcoming hue memory test, creating task demands 
emphasizing the importance of the color component of the objects being 
labeled by color or being judged as living/non-living. The difference 
disappeared with all memory still biased toward typicality, with the 
magnitude of bias comparable to the previous memory biases observed in 
the labeling condition without forewarning of the memory task. The CAM 
is strongly representational as written, discussing memory traces as 
object-like encodings. Our hypothesis explaining the present results, 
inspired by the CAM, is not necessarily as strongly representational. As in 
the explanation for the Chapter 3 results, some notion of memory is 
needed. Otherwise, the behavior of varying strength of that memory is 
agnostic to representationalism. An anti-representational account could 
focus on the relative strength of affordances suggested by the color 
labeling vs non-color labeling tasks at encoding. Labeling colors suggests 
that color may be relevant for future action. When told color would be 
relevant for future action, participants performed equivalently to the 
labeling condition in the surprise memory test version of the experiment. 
As asserted in Chapter 2, exemplar theories are compatible with the aspect 
of embodiment that is concerned with the history of a cognitive agent in 
its environment. The history of using labels suggest they are generally used 
when there is a purpose for them such as drawing attention to a specific 
aspect of current perception. The history of seeing reds and greens 
suggests some hues are more likely to be seen. The biases observed in the 
Chapter 4 experiments would be adaptive to future experience that aligns 
with this history. Therefore, while there is no explicit test of body-based 
influences in this task, the hypothesis we put forth is based on influences 
within the full agent-environment system and in that sense is an embodied 
hypothesis. 

Across the two chapters, context, whether labeling or other task 
demands, had a measurable influence on memory biases. Our 
interpretations of the results are not strongly representational though are 
couched in inherited representational language. Our interpretations are 
compatible with all forms of embodiment, most strongly with stances that 
view the history of an agent as the major source of conceptual knowledge 
and behavioral tendencies. 

 

7.2.2 Event Segmentation Decisions 
 

The Event Segmentation Theory (EST) is an explicitly internal-only 
representational theory and is only compatible with the conceptualization 
hypothesis of Shapiro’s three embodiment categories. This was discussed 
in some detail in Chapter 5, Section 3. Briefly, the EST treats working 
memory event models - active representations - as representational objects 
that are built quickly from current experience mixed with expectations 
from long-term memory. These representational objects are active but held 
apart from new perception. When no longer accurate to incoming 
perceptual input, the current event model is stored in memory and a new 
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discrete model is built. Conceptualization embodiment comes from event 
models being built in part from the current perceptual input from the 
perceiver’s point of view. 

In Chapter 5, I presented a critique of the EST that while people may 
be able to describe events by breaking them down into component parts, 
the evidence for perception being discretized as an ongoing automatic 
process is not convincing. Performance on the active event segmentation 
task, indicating the end of self-defined activity units with a keypress, is 
only somewhat related to any passive and automatic cognitive process of 
segmentation that may be occurring within a perceiver. Specifically, the 
EST puts a strong emphasis on the increase of prediction error beyond 
some threshold as the instigator of segmentation. However, in most 
segmentation experiments, participants see a video twice to segment it at 
two timescales. On the second viewing, little of the video should produce 
perceptual prediction error - the participant has just watched the exact 
video minutes before and has knowledge of what to expect next. Yet, 
participants are able to sensibly segment the videos on both the first and 
second viewing. Something other than perceptual prediction error must be 
motivating segmentation responses. 

The two experiments reported in Chapter 6 are investigating the 
nature of the event segmentation task, focusing on segmentation 
decisions. In the task, participants are being asked to make explicit 
judgments about the structure of the activity stream they are perceiving. 
Both experiments produced discrete segmentation response patterns that 
align with previous research. The experiments reported here utilized 
continuous response measures in addition to or instead of keypresses. The 
continuous response was collected via action dynamics from moving a 
slider marker within its track. In Experiment 1, the slider was used to 
report continuous expectation of the current activity unit ending, i.e., the 
trigger for giving a discrete keypress response. Expectation values at 
segmentation were highly variable. If the event segmentation behavior 
reflects perceptual prediction error, participants should not expect the end 
of end of activities and should predominantly report low expectation went 
they give a segmentation response. Instead, over a third of segmentation 
responses were paired with a high expectation value in the top 20% of the 
expectation range with the rest of the responses evenly distributed across 
the range. Since participants could expect their own responses, the task 
does not purely reflect a perceptual segmentation process based on 
prediction error. In Experiment 2, the segmentation response itself 
occurred via the slider. If the task reflects prediction error-based 
segmentation, responses should exclusively have ballistic movement 
pattern rather than gradual or stepwise movements that demonstrate 
anticipation of the end of the activity unit. A person cannot simultaneously 
anticipate the end of an activity and have a large prediction error while 
perceiving the anticipated activity ending. However, participants engaged 
in a diverse array of response strategies and response movement patterns. 
Over half of trials also demonstrated at least one sub-threshold response 
that was initiated but did not culminate in a complete movement to the 
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response location on the slider; Not all perceived activity ends resulted in 
segmentation responses. The event segmentation task is a reasoning and 
decision-making task using knowledge of activities, including predictions 
of ends of activities to select response points.  

The event segmentation task behavior is the product of event 
perception and reasoning. It does not provide evidence about perceptual 
mechanisms. Event segmentation behavior, instead, can provide insight 
into what meaningful activities are, and how people explicitly conceive of 
activities. Abandoning the EST interpretation of the task, systematic 
behavior appears to be representation-hungry—outside knowledge of 
activities guides reasoning about activity units and unit end points. The 
design of these experiments using a continuous measure to capturing 
action dynamics requires a theoretical commitment to movement through 
space and time reflecting cognitive processes; an embodiment stance. 
Indeed, anticipation strategies exhibited by participants in Experiment 2 
demonstrate an active process of utilizing the physical environment 
adaptively. The experimental results do not distinguish amongst 
theoretical stances on representation and embodiment; yet by being 
potentially consistent with a wide range of theories, the experiments 
demonstrate that the EST assumption of strong representation, and 
therefore limited embodiment, are not well justified. 

 

7.2.3 Across Phenomena 
 

Research in the cognitive sciences has long been interpreted 
through a strongly representational lens by default with the 
representations being amodal and disembodied. Representational shifts 
and event segmentation are proposed cognitive processes that are borne 
of representational theories. The major theories associated with these 
phenomena are not of that traditional sort. The RSH and the EST each 
branch away from the computer metaphor albeit in different ways. The 
RSH, while representational, is dynamically representational, viewing 
representations as malleable, at least during encoding. Different varieties 
of information in the environment have differing effects on cognitive 
processing, reflecting an important role of the agent-environment system 
in cognition. The EST is more traditionally representational with snap-shot 
unchangeable event models, essentially representational objects. These 
representations are influenced by a perceiver’s body and history of 
experience. The event models contain scenes and modality-specific 
information about the world. The event model creation is driven by 
predictions based on previous experience of the environment from a 
perceiver’s own viewpoint. These steps away from the traditional computer 
metaphor view of representation and disembodiment are interesting and 
exciting. 

In this dissertation, I have questioned the aspects of these theories 
that adhere to traditional theoretical stances. Even theorizing about 
phenomena that appear to be representation-hungry, e.g., memory for 
specific items and identifying recurring structure in continuous sensory 
experience, do not require a traditional notion of representation. As 
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Connell and Lynott (2014) asserted, “you can't represent the same concept 
twice.” If representing is activating some collection and sequence of neural 
patterns, representing a concept for second time would require having the 
exact same activation as the first time. This is simply not possible given 
how complex the brain is. Some aspects of the previous activation pattern 
will not reactivate while other patterns will happen to be active, all it takes 
is a small difference in the environment, or a difference in what is primed 
by previous thoughts. 

Representation is a useful construct when talking about brain-
internal processes. Memory for things like objects and color hues as well 
as autobiographical experience of events is removed in space and time 
from the perceptual experience. Brain-based processes need to implement 
this memory storage. But calling a memory trace a representation and 
treating it as a cohesive entity misses the complexity and continued 
malleability of memory. Dynamic ideas of representation acknowledge that 
there is some cohesiveness to what is called a memory but also 
acknowledge that a myriad of factors introduce variability into cognitive 
processing, including memory processing. The empirical results of this 
dissertation call for dynamic views of memory storage. Memory for hue 
half a second after it is experienced is not veridical to experience (Chapter 
3). Accuracy of memory for hue after minutes depends on the context in 
which the original hue was experienced (Chapter 4). Event segmenting 
behavior is highly variable in quantity and manner for different 
participants watching the same sequence of activity (Chapter 6). These are 
examples of how traditional representation is not adequate for explaining 
memory. Theorizing clean, contained representations between imperfect 
sensory input and variable action output would require the brain to be 
doing 100% of the work for a fraction of the payoff. Given the high 
variability observed in behavior related to memory, representations (or 
relatively consistent processing patterns, if you prefer) are more 
appropriately conceived of as fuzzy, impressionistic, and variable with 
context.  

Both phenomena of interest have been viewed as embodied in a 
minimal sense, with the history of the cognitive agent in its environment 
essential to the theories in the literature as well as the hypotheses I have 
put forward. The context of sitting in a behavioral laboratory’s running 
room and being given strange instructions on a computer screen is an 
embodied experience. Being asked to label hues has pragmatic meaning 
that has consequences for subsequent memory of the hues. Asking 
participants to mark the smallest or largest “natural and meaningful 
activity units” while watching a video is not an isolated instruction; the 
instructions “smallest” and “largest” produce a context of comparison, 
introducing task demands. Embodiment may or may not be a paradigm 
shift. Regardless of embodiment’s paradigmatic status, awareness that all 
human experience occurs within a body and within a history is not just of 
theoretical importance but also practical importance to researchers 
regardless of their individual theoretical leanings. 
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7.3 Broader Implications 
 

7.3.1 Object Metaphors 
 

I opened this dissertation with a discussion about the use of object 
metaphors in cognitive science and how they can imply the associations 
beyond what the communicator intends. This dissertation itself is riddled 
with object metaphors. There are memory traces; percepts; event segments, 
models, and schemata; and category exemplars and prototypes. 
Representations shift; processing has depth; memory has strength, is stored 
and retrieved; and perception can be distorted or lost. This is the language 
of the field and in particular it is almost impossible to talk about memory 
without relying on object metaphors - how can a process stop and start 
without being stored in between? But perhaps the object permanence 
implied by these metaphors is why it seems so strange to think of memory 
as flexible and, in any particular instantiation, ephemeral. These 
metaphors undoubted influence the way cognitive theories and 
experiments designed. 

The phenomena under investigation in this dissertation cannot be 
discussed without some object metaphors for cognitive processes. 
Representational shifts are a phenomena named with an object metaphor. 
When possible, I discussed response bias and shifts in responses within 
color space rather than shifts in memory itself. However, the RSH is about 
shifts along a typicality gradient within a category space; a metaphorical 
mental space with psychologically defined dimensions. The EST’s 
proposed event segmentation perceptual process produces event models 
which are built and stored. Discussing the EST requires use of these 
metaphors. 

Should embodiment theories and nuanced views of representation 
continue to gain more support, the language of cognitive science may 
become less object oriented. By discussing the issues and results through 
the lens of these theoretical domains, I hope I have conveyed that cognition 
is better thought of as processes and the implications of object metaphors 
such as discrete rather than fuzzy bounds are assumptions to be 
questioned wherever they arise. 

 

7.3.2 Perception and Memory in Context 
 

From the theoretical discussions of agent-environment systems, 
mutuality relations, and affordances; to the effect of pragmatic task 
demands in the representational shift experiments; and to the influence of 
existing knowledge on event segmentation responses, one of the key 
takeaways of this dissertation is that context matters.  

As discussed in the introduction, perception is affected by existing 
knowledge, and memory is often affected by newly perceived information. 
In psychophysics, it has long been known that concurrent experience can 
change how sensory signals are perceived, e.g., the McGurk effect (McGurk 
& MacDonald,1976) and the checkershadow illusion (Adelson, 1995). In the 
representational shift experiments, concurrent perception of labels while 
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perceiving hues did not result in the hybrid memory biased toward the 
labeled category as suggested by the RSH. Pragmatically, the labeling did 
not have a clear purpose to the participant. However, usually, language 
does have a functional purpose. When a labeling effect was observed in the 
Chapter 4 experiments, the labeling of color seemed to be a cue that the 
color was more important than other aspects of the image. So rather than 
perceptual context affecting the perception-to-memory processing stream, 
it was instead the extra-perceptual pragmatic context that appears to have 
driven the effect. Similarly, in the Chapter 3 experiments, though there was 
not an effect of labeling, the sequence of rapid exposure then test may 
have driven the perception-to-memory stream to focus on distinctive 
information. 

Perceptual prediction error cannot be the only source of 
information for event segmentation decisions. When videos are watched a 
second time by the same participant, prediction error for the incoming 
perceptual signal should be considerably lower than it was during the 
initial exposure. Given instructions to mark off natural and meaningful 
activity units, participants seem to be making segmentation decisions 
based on their understanding of the overarching activity rather than 
perceptual unpredictability. Rather than reflecting a discrete, online 
working memory event modeling process, the task demonstrates how 
perception and memory align and mutually influence behavior in a 
particular behavioral context. 

Task demands such as those observed to be so influential in the 
present experiments are often viewed as noise in experimental data 
analysis. The full context of an experiment from the physical environment, 
to the pragmatic implications of experimental design choices, and to 
experiment external factors such as conducting the experiment at a 
particular time of year can all influence participant behavior. Taking into 
account the full context and designing experiments that capture rather 
than obscure external influences on perception and memory are essential 
for gaining an accurate view of the processes and their interactions. 

 

7.3.3 Event Cognition 
 

To make a bold claim, in many ways event cognition is cognition. 
Humans and other organisms perceive their environment extended over 
time. Even experiencing something static is an experience over time, one 
lacking variability. More specifically for the behavioral sciences, 
experiments are events that participants take part in. Therefore all 
behavioral scientists should have some concern for how event cognition 
works if only to better understand how participants interact with the tasks 
they design. In spite of this, event cognition is relatively young as an area 
of research. 

I’m not convinced that segmentation is a natural part of perception. 
If some version of segmentation is a core aspect of perception, it is not 
likely to be as discrete as the EST & the related Event Horizon Model (EHM; 
Radvansky & Zacks, 2014) make it out to be. Therefore, the name 
segmentation is likely to be a mis-applied metaphor. Instead, event 
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understanding could be the result of continuous information processing 
with constant sensory input and spreading neural activation through 
association networks. Periodically, we transition from one understanding 
to another. In complex systems, small signals can accumulate moving the 
state of the system and if a threshold is passed the movement can become 
much more rapid until another stable state is reached. Such a transition 
may look discrete from a coarse-grained view of the system but at a fine-
grain, it is nonlinear continuity. That continuity has consequences that 
look like noise in the system if treated as sharp discrete processes. More 
than most areas of cognitive science, event cognition is grounded in the 
interaction between the perceiver and its environment. Some ecological 
psychologists (Chemero, 2000; Chemero, Klein, & Cordeiro, 2003) go so far 
as to suggest that events explicitly are changes in affordances, 
opportunities for action with in the environment. Regardless of whether 
that stance is accepted broadly, taking the agent-environment system 
seriously is necessary for interpreting event perception and other related 
cognitive processes. Event cognition is an area of cognitive research that 
requires embodied theories and, in my opinion, the conceptualization 
version of embodiment is not enough. 

 

7.4 Giving Responses Dimension 
 

A key methodological theme of this dissertation, as the title Giving 
Responses Dimension: Representational Shifts in Color Space and Event 
Segmentation Decisions in Physical Space Over Time asserts, is introducing 
changes to existing experimental paradigms to garter more information 
than previous versions had collected using increase dimensionality. 

With the representational shift experiments of Chapters 3 and 4, 
rather than using target stimuli and matched foils that are arbitrarily 
similar, the experiments presented here used targets and foils that were 
similar in a systematic fashion along a single measurable dimension. The 
task remained a comparison task requiring discrete responses, but the 
pattern of responses created sensitivity metrics that spanned hue space, 
and collapsed across targets, spanned typicality space with some foils 
more typical of the category and some foils less typical of the category. 
Beyond the dimension of color space and its category structure, the 
combined experiments of Chapters 3 and 4 produce a view of 
representational shifts over the dimension of time with varying study to 
test delays of half a second, five seconds, and a few minutes. The delay 
differences give us a view of processing extended over time. 

With event segmentation, previous research had collected discrete 
segmentation responses at time points along the activity sequence. The 
Chapter 6 experiments also collected these same segmentation points. The 
continuous slider responses, introduced for the first time to this paradigm 
in this dissertation, give segmentation responses additional dimension. In 
Experiment 1, the slider response provides an ongoing recording of the 
expectation of the end of the current event, providing a continuous 
dimension along side the binary segmentation time series. In Experiment 



145 

2, the slider response extends the previously binary response over time 
and space. The responses could be slow or fast, and smooth or stepped, 
including pauses. Aborted responses are a signal that is not observable 
with the binary response but with the slider can be seen in the form of 
moving toward the response end without reaching the segmentation 
response location. 

In my presented empirical investigations, using dependent 
measures that capture more detail have provided new insight into the 
phenomena of interest. Expanding discrete responses into responses with 
information along a measurable dimension is an important strategy in 
research that looks to question assumptions. 

 

7.5 Conclusion 
 

Every individual is part of a unique cognitive system; a homegrown 
complex system of capabilities and past experiences. Organisms are the 
product of a unique trajectory of experience in the world. Each human is 
born with a certain baseline of biological components with some variability 
from other humans. After that, the experience of each human is different. 
Even identical twins who have identical DNA will make and learn from 
different mistakes, have different interpersonal interactions, and develop 
interests that diverge. Even when in the same overall context, their 
experiences will differ slightly. Perhaps the twin who has a first name that 
is earlier in the alphabet will be regularly asked to speak before the other 
in school. One twin may take on a leader role within their relationship 
creating a systemic difference with how they interact with each other and 
with others while together. No matter how similar two people’s lives are, 
their interaction with the environment will differ resulting in unique neural 
networks through which incoming sensory information is processed. 

Understanding the manner and mechanisms by which humans and 
other cognitive agents make sense of the world has been a long-standing 
quest in the cognitive sciences. Reacting to and interacting with the 
environment a person finds him or herself in is a fundamental cognitive 
capacity. Meaning within the brain emerges from a complex system of 
neuronal pathways with degrees of freedom beyond imagining; from 
neuronal firing rates to their synaptic connections to the influence of 
electric oscillations produced by neural firing to the concentrations of 
neurotransmitters and other molecules, the signals and signal interactions 
are staggering. With the inclusion of the environment and all the 
affordances both local, e.g., picking up a glass or flipping a light switch, 
and extended, e.g., calling someone to act in your stead or even getting on 
a flight that eventually results in a flipped a light switch thousands of miles 
away from the initial location, the system producing meaning is amazingly 
complex.  

Cognitive scientists cannot account for all of the moving parts of a 
cognitive system simultaneously. By being aware of the complexity and 
remaining vigilant about questioning assumptions, scientists can identify 
unexpected influences in their investigations. Throughout this dissertation 
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I have sought to question assumptions at many levels. In the introduction, 
I began by acknowledging that the language of science can bias scientists, 
myself included. I explicitly investigated and questioned theoretical 
assumptions in the domains of representation and embodiment for the 
two phenomena under empirical study. Finally, I questioned whether the 
empirical evidence for existing theories truly supports their claims. My 
empirical designs challenge the assumption that binary responses are 
informative enough, pushing deeper through adding dimension to 
previously discrete tasks. Theoretically driven investigations such as those 
I have reported here advance cognitive science by challenging existing 
theories, supporting them or helping to recontextualize existing research.  
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