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ABSTRACT OF THE THESIS

A Sequential Linear Quadratic Approach for Constrained Nonlinear Optimal

Control with Adaptive Time Discretization and Application to Higher Elevation

Mars Landing Problem

by

Amit Sandhu

Master of Science in Mechanical Engineering

University of California, Irvine, 2015

Professor Athanasios Sideris, Chair

A sequential quadratic programming method is proposed for solving nonlinear

optimal control problems subject to general path constraints including mixed

state-control and state only constraints. The proposed algorithm further develops

on the approach proposed in [1] with objective to eliminate the use of a high

number of time intervals for arriving at an optimal solution. This is done by

introducing an adaptive time discretization to allow formation of a desirable

control profile without utilizing a lot of intervals. The use of fewer time intervals

reduces the computation time considerably. This algorithm is further used in this

thesis to solve a trajectory planning problem for higher elevation Mars landing.
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1 INTRODUCTION

An optimal control problem (OCP) consists of a set of differential equations describing

the path of state variables given the control variables and a cost function to minimize.

The optimal control problem discussed in this work is of the general Bolza form, in which

the cost function is divided into Mayer and Lagrange parts. The Mayer part seeks to

minimize the final cost while the Lagrange part minimizes the running cost. An OCP

is subject to general path constraints including mixed state-control and state-only con-

straints. To solve a nonlinear optimal control problem (NL-OCP), a sequential quadratic

programming (SQP) approach is used here, in which the generally difficult NL-OCP is re-

placed with a sequence of more manageable linear quadratic optimal control subproblems

subject to linear state/control constraints. The subproblems solved at each step of the

algorithm inherit the structure of the nonlinear optimal control problem (NL-OCP). At

each iteration, a constrained Linear Quadratic Optimal Control subproblem is obtained

by taking a quadratic approximation of the cost function and linearizing the dynamical

equations and state/control constraints about the current solution candidate. The solu-

tion to each of these subproblems then provides a search direction that can be used to

step towards the optimal solution of NL-OCP.

The adaptive time approach introduced in this thesis aims at making the algorithm in

[1] efficient by reducing the number of time intervals required to solve an optimal control

problem. It is done by introducing time as an additional state and the rate of change

of time with respect to a new independent time variable as an additional control. This

approach optimizes the spacing between time intervals to devise a control profile with

the help of fewer intervals. Consequently, the computational time required to achieve an

optimal solution is reduced considerably.

This algorithm is applied to solve a trajectory planning problem for a Mars entry vehicle

for landing at higher altitudes [2]. The entry guidance task for Mars Science Labora-

tory (MSL) type vehicles is to deliver the lander accurately to the supersonic parachute

deployment point within the parachute altitude, dynamic pressure and Mach number
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constraints. The higher the required landing site elevation is, the lower the atmospheric

density the lander must maneuver in during the final stage of entry. The trajectory

optimization is used to understand the nature of the bank angle profile that leads to

the maximum parachute deployment altitude and the trade-off between maximizing final

altitude and preserving control authority near the end of entry.

This problem is formulated mainly in two different ways to get the optimal solution. The

first step in both the formulations is to define the dynamic equations, constraints and the

cost function. Then the algorithm is coded and implemented in MATLAB to plot the

state trajectories and bank angle profile. The optimal bank angle profile is obtained with

and without the use of adaptive time approach to compare the number of time intervals

required to reach an optimal solution. In the first problem formulation, the dynamic

equations and the cost functions are kept the same as described in [2]. In the second

problem formulation, two extra states are introduced to convexify the Lagrange part of

the cost function.

Units of length are taken as km to minimize numerical ill-conditioning and the problem

is treated as a fixed final time problem. The system dynamic equations and constraint

equations are assumed to be continuously differentiable and the cost twice continuously

differentiable with respect to their arguments.
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1.1 Nomenclature

r =Radial distance from Mars center

rp =Mars radius

h =Altitude

θ =Longitude

φ =Latitude

V =Velocity

γ =Flight path angle

ψ =Heading angle

σ =Bank angle

ωp =Mars angular velocity

CD, CL =Drag Coefficient, Lift coefficient

L,D =Lift acceleration, Drag acceleration

S =Vehicle Surface Area

m =Vehicle Mass

g =Gravitational acceleration

1.2 Planet Model

Mars is assumed to be spherical and a windless planet. Altitude h is computed as h =

(r − rp) km, with rp = 3397 km. The gravitational acceleration is modeled by g = µ
r2

km/s2, with gravitational parameter µ = 42409 km3/s2. The planet rotates around its

north pole at a rate of ωp = 7.095× 10−5 rad/s. The atmospheric density is modeled by

the exponential function of h (km) as [2]

ρ(h) = 0.013×109 exp(−9.20×10−5h−1.94×10−11h2−7.51×10−15h3+4.20×10−20h4)kg/km3

3



The aerodynamic forces on the vehicle is divided into lift and drag force. The lift and

drag accelerations are defined by

L =
1

2
ρV 2 S

m
CLkm/s

2

D =
1

2
ρV 2 S

m
CDkm/s

2

Table 1: Entry vehicle parameters [2]

Parameter Value Units
S 15.9e−6 km2

m 2804 kg
CL 0.62 -
CD 1.92 -
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2 PROBLEM FORMULATIONS

2.1 Basic Formulation

2.1.1 System Dynamics

The entry vehicle dynamics are defined with respect to planet-fixed coordinate frame.

The state vector is taken as

x =

[
h θ φ V γ ψ

]T
(1)

(V, γ, ψ) define the planet-relative velocity vector. The heading angle ψ is the angle

between the projection of the velocity on the horizontal plane and the east direction

(see Figure 1); the convention for the heading angle is ψ = 0° for East and ψ = 90° for

North. The flight path angle γ is the angle of the velocity vector with the local

horizontal plane and is defined positive when the velocity is above the plane or the

vehicle is gaining altitude and negative when the velocity is below the plane or the

vehicle is losing altitude.

Figure 1: Vehicle Coordinate System
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To have increased control authority at the final part of entry, the final flight path angle

γf , should be reduced in magnitude [2]. Minimizing the magnitude of γf implies less

steep descent. The rotation angle of lift vector about the planet-relative velocity vector,

is defined as the bank angle σ. This angle is taken as the control u. When the lift vector

is in the vertical plane defined by the position and velocity vectors, the bank angle is

zero.

Equations of motion

The entry vehicle center of mass dynamics are [3]

ḣ = V sinγ

θ̇ =
V

rcosφ
cosγcosψ

φ̇ =
V

r
cosγsinψ

V̇ = −D − gsinγ

γ̇ =
1

V

[
Lcosσ −

(
g − V 2

r

)
cosγ

]
+ 2ωpcosψcosφ

ψ̇ = − 1

V cosγ

(
Lsinσ +

V 2

r
cos2γcosψtanφ

)
+ 2ωp(tanγsinψcosφ− sinφ)



(2)

where time derivatives are denoted by a dot over the variable. These equations define

the behavior of the states during the trajectory.

2.1.2 Constraints

(i) Final State Constraints

Parachute Deployment Constraints

A supersonic disk-band-gap parachute is assumed for this problem [4]. It can be deployed

at dynamic pressures between 300 and 800 Pa and Mach numbers between 1.4 and 2.2.

Converting these constraints into velocity and altitude constraints and imposing the min-

imum deployment altitude of 6 km relative to rp, the feasible parachute deployment box

is shown in Figure 2.
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Figure 2: Disk-band-gap parachute deployment box

Taking a linear approximation of the boundaries of parachute deployment box, we get

hf − 6>0

Vf − 0.309>0

Vf − 0.480<0

40.32Vf − hf − 12.42742<0

54.27Vf − hf − 8.77744>0


(3)

where the subscript ’f ’ denotes final time. The time t is considered to be the indepen-

dent variable with t ∈ [0, tf ], and tf fixed. The value of tf = 300 is obtained from results

published in [2]. This problem can also be solved as a free final time by removing the

constraint on final time.

Surface Position Constraints

The radial projection of the vehicle state onto the surface is defined by the downrange

DR and crossrange CR or by the longitude θ and latitude φ. The plane in which the

initial position and velocity vector lies is defined as a great circle plane (see Figure 3).

The reference great circle is at the surface radius in this plane. The crossrange is defined

as the shortest distance from the target position to the great circle, with positive values
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when the final position is to the right looking down the surface. The downrange is the

arc length on the great circle between the initial position and the point from where the

crossrange is measured.

Figure 3: Downrange, crossrange and great circle arc

For every value of CR and DR, the corresponding value of θf and φf can be be obtained

by [5]

φf = arcsin
(
cos
(
ξ − ψ0 +

π

2

)
cosφ0sinLF + sinφ0cosLF

)
θf = θ0 + arcsin

(
sin(ξ − ψ0 + π

2
)sinLF

cosφf

)
with

LF = arccos

(
cos

DR

rp
cos

CR

rp

)
ξ = arcsin

(
sinCR

rp

sinLF

)



(4)

where θ0, φ0 and ψ0 are initial surface longitude, latitude and heading angle.

Projecting the set of all points on feasible trajectories onto the downrange-crossrange-
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altitude space yields the reachable position space set. The lower boundary is a subset

of a plane at the minimum altitude 6.0 km at which the parachute can be deployed.

The region inside this boundary is called the “landing footprint” of the vehicle in the

downrange-crossrange plane. In order to determine the boundary of the landing foot-

print, optimal control problems are solved [6-8]. Focusing on the central region of the

footprint, we get

Downrange = 800km

Crossrange = 0km

φf = −0.7203rad

θf = −1.2576rad


(5)

(ii) Control Constraints

To prevent negative lift, the following control constraints are imposed.

σ<90°

σ>− 90°

 (6)

The constraints on σ̇ and σ̈ are not imposed in this formulation.

(iii) Initial Constraints

The initial entry state, x(0) = x0 used for all the numerical results presented here, is

given by

[
h0 θ0 φ0 V0 γ0 ψ0

]T
=

[
143km −90.07° −43.90° 6.082km/s −15.50° 4.99°

]T
(7)

2.1.3 Cost Function

(i) Mayer Cost

The Mayer Cost is a weighted combination of the final altitude and the final flight path
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angle as follows:

M(tf , xf ) = −khh(tf ) + kγγ(tf )
2 (8)

The first term in the equation (8) seeks to maximize the final altitude, while the second

term seeks to minimize the final flight path angle magnitude. kh and kγ are positive

weighting constants with values kh = 5km−1 and kγ = 91.4(180/pi)2rad−2.

This Mayer cost is modified to include a penalty term that consists of penalty param-

eters multiplied by a measure of the violation of the final constraints. This facilitates

approaching the solution faster.

(ii) Modified Mayer Cost

M(tf , xf ) = −khh(tf ) + kγγ(tf )
2 + 0.5k1(θ(tf ) + 1.2576)2 + 0.5k2(φ(tf ) + 0.7203)2 (9)

k1 and k2 are the penalty parameters with values k1 = k2 = 1000.

(iii) Lagrange Cost (non-convex function)

In the following Lagrange Cost, values of the bank angle between −σmin and σmin = 18.2°

are penalized to reserve 5% of the maximum vertical lift for the guidance (see Figure 4).

This soft constraint allows bank reversals crossing σ = 0, but not prolonged use of small

bank angles.

L(σ(t)) = a[tan−1(b(−σ(t) + σmin)) + tan−1(b(σ(t) + σmin))] (10)

The parameters a and b control the height and smoothness of the function and are taken

as a = 90 and b = 500.
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Figure 4: Non-convex bell shaped function used in Lagrange cost of basic formulation

This Lagrange cost is modified to limit the magnitude of the flight path angle from

approaching zero. This is done by penalizing small values of γ for better control authority

during the trajectory.

(iv) Modified Lagrange Cost

L = a[tan−1(b(−σ(t) + σmin)) + tan−1(b(σ(t) + σmin))] + 0.5cγ2 (11)

The penalty on γ is taken to be c = 10, 000.

2.1.4 Solution

The optimal control problem formulated above is solved using the algorithm described in

[1]. This algorithm is briefly described next.

Consider a non-differentiable penalty function:

M = J + ρV where J is the cost function of the optimal control problem, V represents

maximum constraint violation, and ρ>0 is a parameter for trading off J and V .

(1) Choose an arbitrary control sequence and ρ = ρ0 > 0 for the first iteration. Com-

11



pute the state trajectory corresponding to the current control by simulating the dynamic

equations.

(2) Formulate the Linear Quadratic Optimal Control Problem (LQ-OCP) by taking a

second order approximation of the cost function and linearizing the dynamics and con-

straints along the current solution. An auxiliary scalar state ξ is introduced in (LQ-OCP)

to ensure feasibility. This state is added to the quadratic approximation of the cost with

the penalty parameter ρ. Now two cases are included in the (LQ-OCP) formulation. First

the solution of (LQ-OCP) is attempted with initial ξ = 0 in case (a). If this problem is

feasible, the current control becomes the solution of LQ-OCP. If this problem is infeasible

because the linearized constraints are infeasible, (LQ-OCP) is solved with leaving initial

ξ ≥ 0 unspecified, as an optimization variable in case (b). The algorithm then sets the

value of ξ0 equal to the maximum linearized constraint violation. If the constraint viola-

tion is less than the termination tolerance, the current control is taken as the solution to

LQ-OCP. The NL-OCP is considered infeasible if the constraint violation is not reduced

to below the tolerance within the specified iterations.

(3) The solution from LQ-OCP gives a descent search direction to compute the next

control sequence where the step length is obtained with the help of Armijo’s rule.

These steps are repeated until case (a) becomes valid for LQ-OCP and First Order Nec-

essary conditions for optimality are satisfied for Nonlinear Optimal Control Problem

(NL-OCP).

Let N be the number of time discretization intervals. These intervals are equally spaced

in this formulation. The algorithm is run multiple times with different values of N to

study the variation of states and to find the minimum number of intervals required to

reach the optimal cost. The initial control sequence used here is an array of length N

with each element equal to −π/360. The initial value of ρ is chosen to be 100.
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Table 2: Comparison of final values of states for different N in basic formulation

State Variable h(km) θ° φ° V (km/s) γ° ψ°

Initial Value 143 -90.07 -43.90 6.082 -15.50 4.99

Final Value (N = 9) 11.2472 -72.0552 -41.2701 0.48 -19.1392 22.7786

Final Value (N = 50) 14.2163 -72.0552 -41.2702 0.48 -17.264 19.7495

The minimum number of intervals required by the algorithm to find a feasible solution

in this case is 9. For N equals 9, the final altitude achieved is 11.2472 km and the final

flight path angle magnitude is 19.1392°. It can be seen from Table 2 that as the number

of time intervals increases to 50, the algorithm is able to achieve a higher final altitude

of 14.2163 km and a lower final flight path angle magnitude of 17.264°. Figure 5 and

Figure 6 show the variation of all the states along the trajectory for different number of

time intervals.

Figure 5: Variation of state variables along the trajectory for N=50 in basic formulation

13



Figure 6: Variation of state variables along the trajectory for N=9 in basic formulation

Figure 7: Variation of states and cost with N in basic formulation

Figure 7 shows the variation of optimal cost and states with the number of time intervals

considered. The states that are not plotted here do not show considerable variation. It

can be inferred that 30 intervals are sufficient to reach an optimal solution in this case.

14



Figure 8: Optimal bank angle profiles in basic formulation

Figure 8 shows the comparison of piecewise constant profiles of σ for large and small N.

In this formulation, the transition of control from one value to another occurs at equal

time intervals. It is worth mentioning here that the profile would look completely

different if the constraints on σ̇ and σ̈ are imposed as the transition rate of control from

one value to another will be restricted in that case.
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2.2 Alternative formulation

In this formulation, two new states are introduced. The Lagrange cost is made a convex

function with the help of these states to establish better results.

2.2.1 System Dynamics

The state vector is taken as

x =

[
h θ φ V γ ψ z1 z2

]T
(12)

where z1 and z2 are the added states defined as

z1 = sinσ

z2 = cosσ

 (13)

In this case, the bank angle rate σ̇ is used as the control:

u = σ̇ (14)

Since the control profile generated by the algorithm is piecewise constant, the bank angle

profile will be piecewise linear. Two new dynamic equations are added in the equations

of motion by taking derivative of z1 and z2 with respect of time t.

Equations of motion

Set of equations (2), and

ż1 =
dσ

dt
cosσ = σ̇cosσ

ż2 = −dσ
dt
sinσ = −σ̇sinσ

 (15)

2.2.2 Constraints

(i) Final State Constraints

Set of equations (3) and (5).
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(ii) Path Constraints

The value of sigma should lie between −90° and 90° to prevent negative lift, as mentioned

earlier. Hence cosσ will always be positive.

z2>0 (16)

(iii) Control Constraints

The bank angle rate is limited to | σ̇ |≤ σ̇max, with σ̇max = 20deg/s.

σ̇<20deg/s

σ̇>− 20deg/s

 (17)

The constraint on σ̈ is not imposed in this formulation.

(iv) Initial Constraints

Set of equations (7), and leaving the initial values of z1 and z2 free for the algorithm to

optimize in order to arrive at the solution.

2.2.3 Cost Function

(i) Modified Mayer Cost (9)

M(tf , xf ) = −khh(tf ) + kγγ(tf )
2 + 0.5k1(θ(tf ) + 1.2576)2 + 0.5k2(φ(tf ) + 0.7203)2

with kh = 5km−1, kg = 91.4(180/pi)2rad−2 and k1 = k2 = 1000.

(ii) Modified Lagrange Cost

The Lagrange cost is modified to make it a convex function for better working of the

algorithm. It places a penalty on values of z2 between 0 and cos18.2°. Soft constraints

on the control u = σ̇ are also imposed here for faster convergence.

L = exp(b1(z2 − cmin)) + exp(c1(σ̇ − umin)) + exp(−c1(σ̇ − umax)) (18)
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The penalty parameters are chosen as

b1 = 120, c1 = 10, cmin = cos(18.2pi/180), umin = −pi/9 and umax = pi/9

(iii) Comparison of basic and modified Lagrange function

Figure 9: Convex function used in Lagrange cost of alternative formulation

Figure 10: Non-convex function used in Lagrange cost of basic formulation

In both the costs defined in (11) and (18), the value of σ is penalized between −18.2°

and 18.2° (see Figure 9 and Figure 10). But the function used in alternative formulation

has a convex profile with respect to z2 to facilitate the quadratic approximation of the

cost within the algorithm.
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2.2.4 Solution

The N time discretization intervals are equally spaced in this formulation also. The initial

control sequence used here is an array of length N with each element equal to zero. The

initial value of ρ is chosen to be 1000.

The minimum number of intervals required in this formulation to find a feasible solution

is 10. For N equals 10, the final altitude achieved is 12.6721 km and the final flight path

angle magnitude is 22.5974°. Figure 11 and Figure 12 show the variation of all the states

along the trajectory for different number of time intervals.

Figure 11: Variation of state variables along the trajectory for N=50 in alternative for-
mulation
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Figure 12: Variation of state variables along the trajectory for N=10 in alternative for-
mulation

Table 3: Comparison of final values of states for different N in alternative formulation

State Variable h(km) θ° φ° V (km/s) γ° ψ°

Initial Value 143 -90.07 -43.90 6.082 -15.50 4.99

Final Value (N = 10) 12.6721 -72.3485 -41.6473 0.4814 -22.5974 20.5492

Final Value (N = 50) 13.1870 -71.3275 -40.8052 0.4850 -14.7357 30.4514

It can be seen from Table 3 that as the number of time intervals increases to 50, the

algorithm is able to achieve a higher final altitude of 13.1870 km and a lower final flight

path angle magnitude of 14.7357°. Thus, it is able to achieve a better control authority

at the end than in the basic formulation.
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Figure 13: Variation of states and cost with N in alternative formulation

Figure 13 shows the variation of optimal cost and states with the number of time

intervals considered. The states not plotted here do not show considerable variation. It

can be inferred that 30 intervals are sufficient to reach the optimal solution in this case.

The comparison of piecewise linear bank angle profiles for large and small value of N is

shown in Figure 14.

Figure 14: Optimal bank angle profiles in alternative formulation

It can be seen in Figure 14 that by using a higher number of intervals, the resulting profile

behaves similarly to a piecewise constant profile desired for the problem. Also, due to the

linear nature of the bank angle profile, the bank angle spends more time in the penalized

zone during transition from one value to another which is not desirable.
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3 ADAPTIVE TIME APPROACH

An adaptive time discretization approach is introduced here to solve an optimal control

problem with fewer number of time intervals. In this approach, time t is considered as

an additional state variable which is optimized with respect to another independent time

variable τ . So now, algorithm is given the freedom to optimize spacing between the time

intervals. The intervals will be closely spaced where greater authority over the control

profile is required. This judicious use of spacing facilitates achieving desired a control

profile with fewer number of time intervals.

A mathematical analysis of this approach is given next.

Consider the dynamic equation

ẋ(t) = f(x(t), u(t)) (19)

and express time t as a state variable that depends on τ such that

dt(τ)

dτ
= W (τ) (20)

where W (τ) is the additional control introduced.

Let

τ = [0,
1

N
, ....

k

N
,
k + 1

N
, ....1] (21)

and take W (τ) ≡ Wk in τ ∈ [ k
N
, k+1
N

]. The spacing between tk and tk+1 is controlled by

the value of Wk.

Let x(t(τ)) and u(t(τ)) be denoted as x(τ) and u(τ) respectively. The dynamic equations

have to be modified to show the variation of states and control with respect to indepen-

dent variable τ . So,
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ẋ =
dx(τ)

dτ
=
dx(t)

dt

dt(τ)

dτ
= W (τ)f(x(τ), u(τ)) (22)

ẋ = Wf(x, u) (23)

where ẋ and u̇ represent dx(τ)
dτ

and du(τ)
dτ

respectively.

The initial conditions conditions are taken as

x(0) = x(t0) (24)

t(0) = t0 (25)

If tf is fixed, then the constraint

t(1) = tf (26)

is used. Now, the augmented state becomes

xa =

x
t

 (27)

and the augmented control becomes

ua =

 u
W

 (28)

To make sure that time keeps on increasing with respect to τ , an additional constraint

has to be imposed, namely:

W>0 (29)
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Next, consider the Lagrange function

JL(t) =

∫ t

t0

L(x(t′), u(t′))dt′ (30)

Differentiating (30) with respect to time yields:

J̇L(t) = L(x(t′), u(t′))dt′ (31)

Let JL(t(τ)) be denoted as JL(τ). Differentiating (30) with respect to τ gives,

J̇L(τ) =
JL(τ))

dτ
=
dJL(t)

dt

dt(τ)

dτ
(32)

J̇L(τ) = W (τ)J̇L(x, u) (33)

Comparing (31) and (33), we get the modified Lagrange Cost

L = W (τ)L(x, u) (34)

Finally, the Jacobians of the dynamics and the cost have to be modified as follows to

include the additional state and control:

(i) System Dynamics

fxa =

Wfx 0

0 0

 ; fua =

Wfu f

0 1


(ii) Lagrange Cost

Lxa =

[
WLx 0

]
;Lua =

[
WLu L

]

Lxaxa =

WLxx 0

0 0

 ;Luaua =

WLuu LTu

Lu 0

 ;Lxaua =

WLxu LTx

0 0


(iii) Mayer Cost

Mxa =

[
Mx 0

]
Mxaua =

Mxx 0

0 0

 where the subscript ′x′ and ′u′ denote Jacobians

with respect to state and control respectively. The subscript ′a′ denotes augmented or
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modified Jacobian.

3.1 Basic Formulation with Adaptive Time

3.1.1 System Dynamics

The modified state vector with t as an additional state becomes

x =

[
h θ φ V γ ψ t

]T
(35)

and the modified control becomes

u =

 σ
W

 (36)

The dynamic equations of motion are modified according to (23)

ḣ = WV sinγ

θ̇ =
WV

rcosφ
cosγcosψ

φ̇ =
WV

r
cosγsinψ

V̇ = W (−D − gsinγ)

γ̇ =
W

V
[Lcosσ − (g − V 2

r
)cosγ] + 2Wωpcosψcosφ

ψ̇ = − W

V cosγ
(Lsinσ +

V 2

r
cos2γcosψtanφ) + 2Wωp(tanγsinψcosφ− sinφ)

ṫ = W



(37)

3.1.2 Constraints

(i) Final State Constraints

Set of equations (3) & (5), and for a fixed final time problem:

tf = 300 (38)

(ii) Control Constraints

Set of equations (6) & (29)
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(iii) Initial Constraints

Set of equations (7), and setting the initial time

t0 = 0 (39)

3.1.3 Cost Function

(i) Modified Mayer Cost (9)

M(tf , xf ) = −khh(tf ) + kγγ(tf )
2 + 0.5k1(θ(tf ) + 1.2576)2 + 0.5k2(φ(tf ) + 0.7203)2

with kh = 5km−1, kg = 91.4(180/pi)2rad−2, k1 = k2 = 1000.

(ii) Modified Lagrange Cost (11) & (34)

L = Wa[tan−1(b(−σ(t) + σmin)) + tan−1(b(σ(t) + σmin))] + 0.5Wcγ2

with σmin = 18.2°, a = 90, b = 500, and the penalty on γ is c = 10000.

3.1.4 Solution

In this case, the spacing between N time intervals is optimized by the algorithm. The

initial control sequence used here is an array of length N with each element equal to

−π/360. The initial value of ρ is chosen to be 100,000. The minimum number of intervals

required in this formulation to find a feasible solution is 4. For N equals 4, the final

altitude achieved is 11.91 km and the final flight path angle magnitude is 22.3258°. It can

be seen from Table 4 that as the number of time intervals increases to 15, the algorithm

is able to achieve a higher final altitude of 14.4215 km and a lower final flight path angle

magnitude of 17.5835°.
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Table 4: Comparison of final values of states for different N in basic formulation with
adaptive time

State Variable h(km) θ° φ° V (km/s) γ° ψ°

Initial Value 143 -90.07 -43.90 6.082 -15.50 4.99

Final Value (N = 4) 11.9102 -72.0551 -41.2702 0.48 -22.3258 -3.588

Final Value (N = 15) 14.4215 -72.0549 -41.2701 0.4801 -17.5835 17.2135

The performance of this adaptive time formulation matches with that of “basic

formulation” (2.1) but without utilizing a lot of time intervals. Figure 15 and Figure 16

show the variation of all the states along the trajectory for different number of time

intervals.

Figure 15: Variation of state variables along the trajectory for N=4 in basic formulation
with adaptive time
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Figure 16: Variation of state variables along the trajectory for N=15 in basic formulation
with adaptive time

The plots in Figure 17 show the variation of the optimal cost and states with the number of

time intervals considered. The states not plotted here do not show considerable variation.

It can be inferred that 8 intervals are sufficient to reach the optimal solution in this case.

Figure 17: Variation of states and cost with N in basic formulation with adaptive time
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Figure 18: Optimal bank angle profiles in basic formulation with adaptive time

It can be seen in Figure 18 that the transition of control from one value to another does

not occur at equal time intervals. The spacing between these intervals is determined by

the value of control W at the corresponding values of τ .

3.2 Alternative formulation with Adaptive Time

This formulation includes the extra states introduced in 2.2 and also time as an additional

state.

3.2.1 System Dynamics

The modified state vector is

x =

[
h θ φ V γ ψ z1 z2 t

]T
(40)

where z1 and z2 are given by (15)

and the modified control is

u =

 σ̇
W

 (41)

Since the control profile generated by the algorithm is piecewise constant, the bank angle

profile will be piecewise linear.
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Equations of motion

The equations of motion consist of the set of equations (37), the equations

ż1 = Wσ̇cosσ

ż2 = −Wσ̇sinσ

 (42)

obtained by differentiating z1 and z2 with respect to independent variable τ , and (20).

3.2.2 Constraints

The constraints consist of

(i) Final State Constraints

Set of equations (3),(5) & (38).

(ii) Path Constraints

Set of equations (16)

(iii) Control Constraints

Set of equation (17) & (29).

(iv) Initial Constraints

Set of equations (7),(39) and leaving the initial values of z1 and z2 free for the algorithm

to optimize in order to arrive at the solution.

3.2.3 Cost Function

(i) Modified Mayer Cost (9)

M(tf , xf ) = −khh(tf ) + kγγ(tf )
2 + 0.5k1(θ(tf ) + 1.2576)2 + 0.5k2(φ(tf ) + 0.7203)2

with kh = 5km−1, kg = 91.4(180/pi)2rad−2 and k1 = k2 = 1000.

(ii) Modified Lagrange Cost (18) & (34)

L = W (exp(b1(z2− cmin)) + exp(c1(σ̇ − umin)) + exp(−c1(σ̇ − umax)))
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with b1 = 120, c1 = 10, cmin = cos(18.2pi/180), umin = −pi/9 and umax = pi/9.

3.2.4 Solution

In this case too, the spacing between time intervals is optimized by the algorithm.

The initial control sequence used here is an array of length N with each element equal to

zero. The initial value of ρ is chosen to be 1000. Figure 19 shows the variation of all the

states along the trajectory.

Figure 19: Variation of state variables along the trajectory in alternative formulation
with adaptive time

Table 5: Final values of states in alternative formulation with adaptive time

State Variable h(km) θ° φ° V (km/s) γ° ψ°

Initial Value 143 -90.07 -43.90 6.082 -15.50 4.99

Final Value (N = 10) 13.3152 -72.0552 -41.2702 0.48 -16.8902 4.7859
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Figure 20: Optimal bank angle profile in alternative formulation with adaptive time

For this formulation, the algorithm is able to find an optimal solution for N equal to 10

only. If we compare the performance of this approach with the alternative formulation,

it is evident from Table 5 that for same number of intervals, this formulation is able to

achieve better control authority, i.e. lower magnitude of flight path angle (16.89 ) at a

higher landing altitude (13.3152km). In this formulation, the spacing between the time

intervals at which the transition of control takes place is decided by W (see Figure 20).

Thus we are able to obtain an optimal control profile by using fewer time intervals.
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4 CONCLUSIONS

A sequential linear quadratic approach with adaptive time discretization has been devel-

oped to solve nonlinear optimal control problems. With this approach it is shown that an

optimal solution can be achieved by considering fewer time intervals. In the application

of this algorithm, an optimal bank angle profile for higher elevation Mars landing is de-

veloped. The number of intervals required to obtain bank angle profile in the formulation

without adaptive time approach is shown to be much higher than in formulations that

use this approach. The computational time required to attain optimal solution is also

greatly reduced. We compare the results obtained here and in [2] in Table 6.

Table 6: Comparison between final altitude hf and final flight path angle γf for different
solutions

Performance comparison hf (km) γf (deg)

Problem Formulations basic formulation (N=50) 14.22 -17.26

alternative formulation (N=50) 13.19 -14.74

basic Formulation (Adaptive time N=15) 14.4 -17.58

alternative formulation (Adaptive time N=10) 13.4 -16.89

Profiles considered in [2] Bank-limited optimal 13.2 -10.1

Planner 13.3 -9.6
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APPENDIX

Code for obtaining the equations of motion

%w= Mars Angular Velocity, rp= Mars radius, g= Acceleration gravity,

%r=density, Surface Area S, mass m, Lift and drag coefficients are

%considered constant;

rp=3397;

mu=42409

w=7.095e-5;

CL=0.62;

CD=1.92;

m=2804;

S=15.9e-6; % kmˆ2

% change r <--> h

%x(1)=x(1)+rp; % now x(1)=h --> r

r=x(1)+rp;

h=x(1);

g=mu/rˆ2;

ro=0.013e9*exp(-9.2e-2*h-1.94e-5*hˆ2-7.51e-6*hˆ3+4.2e-8*hˆ4); % (h in km)

rho in kg/kmˆ3

dro=ro*(-9.2e-2-2*1.94e-5*h-3*7.51e-6*hˆ2+4*4.2e-8*hˆ3);%differentiation of

ro wrt x(1) % (h in km) drho in kg/kmˆ4

L=0.5*x(4)ˆ2*ro*(S/m)*CL; % (km/secˆ2)

D=0.5*x(4)ˆ2*ro*(S/m)*CD; % (km/secˆ2)

% r=x(1), theta=x(2); phi=x(3); v=x(4); gamma=x(5); psi=x(6)

xdot=[x(4)*sin(x(5));...

x(4)*cos(x(5))*cos(x(6))/(r*cos(x(3)));...

x(4)*cos(x(5))*sin(x(6))/r;...

-D-g*sin(x(5));...

(L*cos(u)-(g-x(4)ˆ2/r)*cos(x(5)))/x(4)+2*w*cos(x(6))*cos(x(3));...

-L*sin(u)/(x(4)*cos(x(5)))-x(4)*cos(x(5))*cos(x(6))*tan(x(3))/r+...

2*w*(tan(x(5))*sin(x(6))*cos(x(3))-sin(x(3)))];
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r v=sin(x(5));

r gam=x(4)*cos(x(5));

th r=-x(4)*cos(x(5))*cos(x(6))/(rˆ2*cos(x(3)));

th phi=x(4)*cos(x(5))*cos(x(6))*sec(x(3))*tan(x(3))/r;

th v=cos(x(5))*cos(x(6))/(r*cos(x(3)));

th gam=-x(4)*sin(x(5))*cos(x(6))/(r*cos(x(3)));

th psi=-x(4)*cos(x(5))*sin(x(6))/(r*cos(x(3)));

phi r=-x(4)*cos(x(5))*sin(x(6))/rˆ2;

phi v=cos(x(5))*sin(x(6))/r;

phi gam=-x(4)*sin(x(5))*sin(x(6))/r;

phi psi=x(4)*cos(x(5))*cos(x(6))/r;

v r=-0.5*x(4)ˆ2*(S/m)*CD*dro+2*mu*sin(x(5))/rˆ3;

v v=-x(4)*ro*(S/m)*CD;

v gam=-g*cos(x(5));

gam r=0.5*x(4)*(S/m)*CL*cos(u)*dro+2*mu*cos(x(5))/(x(4)*rˆ3)-x(4)*cos(x(5))

/(rˆ2);

gam phi=-2*w*cos(x(6))*sin(x(3));

gam v=0.5*ro*(S/m)*CL*cos(u)+g*cos(x(5))/x(4)ˆ2+cos(x(5))/r;

gam gam=(g-x(4)ˆ2/r)*sin(x(5))/x(4);

gam psi=-2*w*sin(x(6))*cos(x(3));

psi r=-0.5*x(4)*(S/m)*CL/cos(x(5))*sin(u)*dro+x(4)/rˆ2*cos(x(5))*cos(x(6))*

tan(x(3));

psi phi=-x(4)/r*cos(x(5))*cos(x(6))*(sec(x(3)))ˆ2+2*w*(-tan(x(5))*sin(x(6))

*sin(x(3))-cos(x(3)));

psi v=-0.5*ro*(S/m)*CL*sin(u)/cos(x(5))-cos(x(5))*cos(x(6))*tan(x(3))/r;

psi gam=-L*sin(u)*sec(x(5))*tan(x(5))/x(4)+x(4)/r*sin(x(5))*cos(x(6))*tan(x

(3))+2*w*((sec(x(5)))ˆ2*sin(x(6))*cos(x(3)));

psi psi=(x(4)/r*cos(x(5))*sin(x(6))*tan(x(3)))+2*w*(tan(x(5))*cos(x(6))*cos

(x(3)));

%Jacobian with respect to x

fx=[0 0 0 r v r gam 0;...

th r 0 th phi th v th gam th psi;...

phi r 0 0 phi v phi gam phi psi;...

v r 0 0 v v v gam 0;...
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gam r 0 gam phi gam v gam gam gam psi;...

psi r 0 psi phi psi v psi gam psi psi;...

];

%Jacobian with respect to u

fu = [0;0;0;0;-L*sin(u)/x(4);-L*cos(u)/(x(4)*cos(x(5)))];
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