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Abstract

A novel multi-component model is introduced for studying interaction between blood flow and 

deforming aortic wall with intramural hematoma (IMH). The aortic wall is simulated by a 

composite structure submodel representing material properties of the three main wall layers. The 

IMH is described by a poroelasticity submodel which takes into account both the pressure inside 

hematoma and its deformation. The submodel of the hematoma is fully coupled with the aortic 

submodel as well as with the submodel of the pulsatile blood flow. Model simulations are used to 

investigate the relation between the peak wall stress, hematoma thickness and permeability in 

patients of different age. The results indicate that an increase in hematoma thickness leads to 

larger wall stress, which is in agreement with clinical data. Further simulations demonstrate that a 

hematoma with smaller permeability results in larger wall stress, suggesting that blood coagulation 

in hematoma might increase its mechanical stability. This is in agreement with previous 

experimental observations of coagulation having a beneficial effect on the condition of a patient 

with the IMH.

Keywords

Intramural hemorrhage; Finite element model; Poroelasticity; Flexible wall; Multi-component 
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1. Introduction

Aortic dissection is a serious medical condition characterized by tearing of the inner layer of 

the aorta which results in blood surging through the tear causing the inner and middle layers 

of the aorta to separate. Rupture of the outside aortic wall of the blood-filled vessel often 

results in fatal aortic dissection. Aortic intramural hematoma (IMH) is an atypical form of 
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aortic dissection. It results from the rupture of the vasa vasorum and formation of a 

hemorrhage in the aortic wall. Its distinguishing feature is an absence of the tear in the inner 

layer that characterizes classic aortic dissection. However, since the aortic wall weakens 

after formation of an IMH, the rupture within the wall might propagate and lead to 

dissection (Sawhney et al. (2001), Tsai et al. (2009)). An aortic IMH was found in 5–20% of 

patients who had shown signs of acute aortic syndromes. Improvement is observed in 

approximately 10% of patients, while progression to classic dissection occurs in 29–47% of 

patients and carries a risk of wall rupture in 20–45% of patients (Tsai et al. (2009)). Even 

though levels of morbidity and mortality due to IMH are as high as in case of classic 

dissection, the appropriate treatment of the IMH is neither well defined nor understood.

Mathematical modeling and numerical simulations have been recently used for predicting 

variety of patient specific health conditions which currently can not be determined based 

only on experimental data. In particular, numerical simulations have been used to determine 

stress distribution in the aortic wall under different conditions. For example, wall stress in an 

aorta with a growing aneurysm has been investigated by Thubrikar et al. (1999) as a possible 

mechanism for the development of transverse intimal tears in aortic dissections. A patient 

specific study was performed by Nathan et al. (2011) where local thoracic aortic wall stress 

was estimated using finite element analysis. The influence of the aortic root movement on 

the aortic wall stress was investigated by Beller et al. (2004) using a single layer model of 

the wall. The computed wall stress was used to explain why aortic dissection occured more 

often in this location. Stress distribution in each layer of the aorta was investigated by Gao et 

al. (2006a,b). However, since the aortic outlet zero pressure was applied, the effects of the 

downstream flow were not taken into account. A similar study was performed by Khanafer 

and Berguer (2009) with imposed physiologically relevant pressure values. A 

hemodynamics-based model was proposed by Menichini and Xu (2016) to study formation 

and growth of thrombus in the aortic dissection. The model was used for simulating different 

idealized aortic dissections to investigate the effect of geometric features of the aorta on 

thrombus formation.

A novel two-dimensional multi-component model is introduced in this paper for studying 

interaction between pulsatile blood flow and aortic wall with the IMH. The model describes 

dynamics of main three layers of the aortic wall and takes into account differences in their 

mechanical properties. In contrast with the previous studies, the model describes in detail the 

dynamics of the IMH and its interaction with the deformed aortic wall. The IMH is caused 

by the hemorrhage into the aortic wall, and the false lumen is known to cause formation of 

blood clots (Tsai et al. (2007)). Therefore, we assume that IMH consists of both fluid and 

solid phases. Hence, we describe the IMH using a poroelastic submodel capable of 

simulating how different distributions of the coagulated blood within IMH could influence 

its mechanical properties. The submodel for the aorta with IMH is coupled with the 

submodel for blood flow in the lumen. The coupling between blood flow and a 2-layer 

structure model was previously considered by Bukač et al. (2015), but without the presence 

of the poroelastic material. Furthermore, the coupling between the fluid, a single layer, thin 

elastic structure and poroelastic material was previously considered by Bukač (2016), but in 

a different configuration. The poroelastic material in Bukač (2016) was in contact with both 
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fluid and the thin elastic structure. In contrast with the previous work, in our present model 

the poroelastic submodel representing IMH is fully immersed in the 3-layer aortic wall.

Model simulations of the aortic blood flow under physiological conditions were performed 

using the finite element method. Finally, model simulations were used to investigate relation 

between the peak wall stress, hematoma thickness and permeability in patients of different 

age.

2. Methods

The multi-component model describes blood flow in a section of a descending aorta with the 

IMH (see Figure 1). Similar to the work by Khanafer and Berguer (2009), an idealized, 

axially symmetric section of an artery is considered. This assumption is justified by CT 

observations indicating that IMH often appears in the form of a focal region of a symmetric, 

homogeneous wall thickening (see Figure 2). Moreover, cross section images show that the 

IMH maintains a constant circumferential relationship with the aortic wall (Rajiah (2013), 

Herlinger et al. (2001), Nienaber et al. (1995), Kazerooni and Gross (2004)).

2.1. Blood flow

Blood is a mixture of plasma, red and white blood cells, proteins, lipoproteins and ions, and 

hence it is not homogeneous or Newtonian. However, in medium-to-large vessels, the size of 

individual elements becomes negligible with respect to the blood vessel diameter, and the 

Navier-Stokes equations for an incompressible, viscous fluid have been extensively used for 

simulations (Nakamura et al. (2006), Vasava et al. (2012), Sankaran et al. (2012)):

(1)

(2)

where v is the velocity, σf = −pf I +2μf D(v) is the fluid stress tensor, pf is the fluid pressure, 

ρf is the fluid density, μf is the fluid viscosity and D(v) = (∇v + (∇v)T)/2 is the strain rate 

tensor. At the beginning of the simulation, the fluid domain is defined as a rectangle of 

length L = 10 cm and height Rlumen = 1 cm, where the height is the vessel radius. This is 

consistent with the experimental measurements of the aortic diameters reported by Wolak et 

al. (2008) and O’Rourke and Nichols (2005). The blood density is taken to be ρf = 1 g/cm3 

and viscosity μf = 0.035 g/cm s. We impose symmetry boundary conditions at the fluid 

bottom boundary  (see Figure 1) (Khanafer and Berguer (2009), Bukač et al. (2015)).

A physiological, pulsatile velocity vD(t) is imposed at the inlet of the fluid domain , 

while a pressure waveform pout(t) is imposed at the outlet  see Figure 3) (Mills et al. 

(1970)). The boundary conditions are implemented in the following way:
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(3)

(4)

where nf denotes the outward normals to the fluid boundary.

The velocity waveform vD corresponds to the Reynolds number of 1200, in which case the 

flow can be categorized as laminar (Stokes (1851), Holman (2001)). To circumvent the 

issues related to the motion of the fluid domain due to the fluid-structure interaction, we use 

the Navier-Stokes equations in the ALE form (Donea (1983), Duarte et al. (2004), Bukač et 

al. (2015)).

2.2. Aortic wall

Aortic walls are represented as a composite material consisting of three main layers: tunica 

intima, media and adventitia. We model the aortic wall using a composite structure model, 

taking into account mechanical properties of each layer. Average thickness ratio of intima/

media/adventitia was shown to be 13/56/31 (Schulze-Bauer et al. (2003)). Hence, we model 

the intimal layer as a thin, elastic structure using the Koiter shell model (Bukač et al. (2013))

(5)

(6)

The intimal displacement is denoted by , where  denotes the longitudinal and 

the radial displacement. The intimal density is denoted by ρi, the thickness by hi, and the 

force applied to the wall by fi. The parameters Ei and σi are the Young’s modulus and the 

Poisson’s ratio of the intimal layer, respectively.

The deformation of the media/adventitia complex is modeled using the 2D equations of 

linear elasticity (Quaini (2009), Bukač et al. (2015)):

(7)

where ηma is the structure displacement and ρma is the density. One of the common 

simplifying assumptions in models of blood flow interaction with the vessel wall is 
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treatment of the biomechanical material properties of the vessel as linearly elastic, 

homogeneous material (Thubrikar et al. (2001), Hua and Mower (2001), Scotti et al. (2005), 

Giannoglou et al. (2006)). Some authors even claim that although human arterial tissue acts 

like a non-linear material, at pressures above 80 mmHg (10.67 KPa) the aorta behaves more 

like a linearly elastic material (Giannoglou et al. (2006), Thubrikar et al. (2001)). Hence, we 

assume that arterial wall behaves as isotropic, linearly elastic Saint-Venant Kirchhoff 

material. Thus,

where Ema and σma are the Young’s modulus and the Poisson’s ratio, respectively.

Based on the experimental measurements from Xie et al. (1995) and Fischer et al. (2002), 

we assume that the Young’s moduli of the intima, media and adventitia are, 2, 6 and 4 MPa, 

respectively. Poisson’s ratio of all three layers is set to 0.45 (Khanafer and Berguer (2009)). 

Thicknesses of intima, media and adventitia are 0.04 cm, 0.12 cm and 0.06 cm, respectively. 

The total aortic wall thickness is 0.22 cm, in agreement with the experimental measurements 

in Malayeri et al. (2008) and Alimohammadi et al. (2016). Furthermore, the density of all 

three layers is set to 1.1 g/cm3. The aortic wall is assumed to be fixed at the inlet and outlet 

boundaries. The adventitia is exposed at the external boundary to zero external ambient 

pressure. We assume the continuity of the displacement and the conservation of momentum 

between the three layers.

2.3. Intramural hematoma

One of the novel features of the model described in this paper is that we account for the 

pressure inside the IMH and its deformation. The IMH is located in the medial layer. It has 

been observed using echocardiography that the hemorrhage has a thrombus-like, 

homogeneous echo structure in some patients, while in others it has small echo-free areas 

probably representing contained liquid zones (Nienaber et al. (1995), Tsai et al. (2007), 

Mohr-Kahaly et al. (1994)). Hence, we model the IMH as a fully saturated poroelastic 

material. In this way we take into account the fluid pressure inside the IMH created by the 

hemorrhage, as well as the deformation of the IMH due to the movement of the aortic wall. 

The level of thrombosis is related to the permeability of the IMH. Even though we assume 

that there is no flow coming inside or outside the IMH, the permeability of the region will 

affect its mechanical properties.

We model the IMH using the Biot’s poroelasticity model (Chen (1994)). The pressure and 

the deformation are mutually dependent and fully coupled in Biot’s model. The model is 

given as follows:

(8)
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(9)

where U is the displacement pp is the fluid pressure. The stress tensor of the poroelastic 

medium is given by σh = σE(U) – αppI, where σE(U) denotes the elasticity stress tensor. For 

the Saint Vernant-Kirchoff elastic material,

where Eh and σh are the Young’s modulus and the Poisson’s ratio, respectively. The density 

of the solid material is denotes by ρh and the permeability tensor by κ. Finally, α is the Biot 

parameter accounting for the coupling strength between the fluid and the solid phase in the 

two-phase material.

In the numerical simulations, we used the value of ρh = 1.3 g/cm3. IMH is a region filled 

with clotted blood. Since there are no experimental measurements of material properties of 

IMH, we estimate its permeability using measurements of the permeability of different 

blood clots. We used permeability values varying from the values for clotted blood with 

higher permeability and for less permeable blood clots, to values close to the permeability of 

the aortic wall.

Furthermore, we assume the following mechanical properties of the IMH: Eh = 5 · 107 

dyne/cm2 and σh = 0.49 obtained from the experimental measurements of blood clots 

reported in Kim et al. (2015). Finally, we assume that α = 1. Specific values of permeability 

are provided in the Results section.

2.4. Coupling of the sub-models of the blood flow, vessel walls and thrombus

The interaction of arterial walls with the blood flow plays a crucial role in the normal 

physiology and pathophysiology of the human cardiovascular system. The coupling between 

the blood and aortic walls is described in our model as follows (Bukač et al. (2015), Bukač 

(2016)):

(10)

(11)

where ns is the outward normal to the aortic wall.

Aortic walls are in contact with the IMH. Denote by nh the outward normal to the IMH. The 

coupling conditions at the IMH-aortic wall interface are given as follows (Bukač (2016)):
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(12)

(13)

(14)

Complete model system of coupled equations has the following form.

(15)

(16)

(17)

(18)

(19)

(20)

(21)

The system consists of fluid submodel (1)–(2), elastic structure submodel (5)–(7) and 

poroelastic material submodel (8)–(9), subject to coupling conditions (10)–(14).
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2.5. Numerical scheme

The coupled problem features different physical phenomena defined on separate domains. 

Hence, we solve the full problem using a partitioned approach so that the fluid dynamics of 

blood flow are solved separately from the aortic wall and IMH mechanics. To separate the 

fluid sub-problem from the composite structure sub-problem describing the aortic wall, we 

use a stable, partitioned, non-iterative scheme called the kinematically coupled β scheme, 

presented and analyzed by Bukač et al. (2015) and Bukač and Muha (2016). It was shown in 

Bukač and Muha (2016) that the scheme is unconditionally stable and first-order accurate in 

time. The aortic wall and IMH mechanics are solved together, in a monolithic fashion.

3. Hemodynamics analysis

The growth of the IMH might cause an intimal tear leading to the classic aortic dissection. 

The occurrence of the intimal tear is associated with the increase of the stress acting on the 

wall, which exceeds the mechanical failure strength of the wall. The Peak Wall Stress (PWS) 

is often used to quantify the risk of the vessel wall rupture (Polzer et al. (2012), Khanafer 

and Berguer (2009), Venkatasubramaniam et al. (2004)). The PWS is defined as the 

maximum von Mises stress (PWS = max σVM) in the vessel wall, where

(22)

and σ1 and σ2 are principal stresses in the wall.

The objective of this paper is to quantify the risk factors which might lead to progression of 

the disease and wall rupture, manifested by the increase of the PWS. We studied dependance 

of the von Mises stress on the IMH thickness, IMH permeability and patient age. We also 

performed numerical simulations for the an aorta without IMH in order to compare our 

results with the outcome for a healthy patient. In the simulations for a healthy patient, we 

assumed that there was no IMH present in the wall, while the mechanical properties of the 

wall remained the same.

To obtain a good resolution of the solution based on the assumed value of the Reynolds 

number of 2400, we used 20746 nodes in the fluid domain, 6372 nodes in the aortic wall 

domain and 15057 nodes in the domain representing IMH. Mesh and time step 

independence tests were preformed. Linear systems corresponding to each subproblem were 

solved using the parallel solver MUMPS. The time step used in the simulations was Δt = 

10−4 s. The final results were obtained after periodic regime was achieved after 3 cardiac 

cycles.

4. Results

4.1. Effects of the IMH thickness

In this section, we perform a computational study to quantify the effects of the IMH 

thickness on the von Mises stress in the aortic wall. The normal aortic thickness is less than 
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0.3 cm by any imaging modality. Hence it is believed that the aortic wall thickness larger 

than 0.5 cm implies the diagnosis of IMH in patients with typical clinical symptoms 

suggesting acute aortic syndrome (Song (2004)), while the maximum IMH thickness is often 

even larger than 1 cm (Choi et al. (2014), Evangelista et al. (2004)).

We considered IMHs of thicknesses 0.6, 0.8 and 1.0 cm. In all three cases we use the value 

of the IMH permeability κ = 10−10I cm3 s/g. The permeability is taken from the 

measurements of intramural thrombi reported by Polzer et al. (2012).

Figure 4 shows the comparison of the velocity and pressure in the lumen over one cardiac 

cycle obtained in the case of a healthy aorta and aortas with IMH, for IMH thicknesses 0.6, 

0.8 and 1.0 cm. The values of the velocity and pressure are taken from the center of the 

domain, i.e. point (5, 0). There are no significant differences in the velocity between the 

healthy aorta and the diseased aortas with IMH of thicknesses 0.6 and 0.8 cm. However, the 

peak and mean velocity in the case of IMH with thickness 1.0 cm is 9% and 33% larger, 

respectively, than in the healthy case. In all three IMH cases, we do not observe differences 

in the luminal pressure when compared to the healthy case.

The displacements of the intimal and adventitial region at the center of the wall (x = 5 cm), 

in healthy and diseased cases, are shown in Figure 5. The aortic diameter ranges from 2.19 

cm to 2.29 cm, which agrees well with the displacement measured in vivo by Stefanadis et 

al. (1995), see Figure 7, right panel in (Stefanadis et al. (1995)). Displacements in the 

diseased cases are larger than the displacement in the healthy case in both regions of the 

aortic wall. The average displacement over one cardiac cycle in a diseased aorta is by 5% 

larger than in the healthy case, while the peak displacement is increased by 6%. There are no 

significant differences in the displacement of aortas with IMH for different values of the 

IMH thickness.

The propagation of the IMH and the occurrence of the intimal tear is associated with the 

increased values of the PWS defined in (22). In all three cases of the aortas with IMH, the 

PWS occurred in the media/intima region below the IMH. The PWS in the case when the 

IMH thickness is 1.0 cm is shown in the left panel of Figure 6.

The comparison of PWS in aortas with IMH of different thicknesses is shown in the right 

panel of Figure 6. We observe that the PWS increases with the increase of the IMH 

thickness. Hence, the risk of rupture of the IMH is greater in aortas with thicker IMH. This 

is consistent with experimental observations by Song (2004).

4.2. Effects of the IMH permeability

In this section we quantify the effects of the permeability of the IMH on the risk of disease 

propagation and wall rupture, associated with the higher values of the PWS. We perform the 

numerical simulations for a diseased aorta with IMH thickness 1.0 cm using values of 

permeability κ = 10−8I, 10−10I and 10−12I cm3 s/g.

The left panel in Figure 7 shows the comparison of the velocity in the center of the fluid 

domain over one cardiac cycle obtained in the case of a healthy aorta and diseased aortas 
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with different values of IMH permeability. In all cases, aortas with IMH exhibit an increase 

in the fluid velocity. The peak fluid velocity is 9% larger then in the healthy case, while the 

mean velocity is increased by 33%. As in the previous section, we did not observe any 

differences in the pressure.

The displacement in the intimal region, in the healthy and the diseased cases, is shown in the 

right panel in Figure 7. Similar behavior as in the previous section is observed in this case. 

The average displacement at the center of the vessel is increased by 5% in the diseased cases 

in both intima and adventitia. The peak displacement is increased by 6% in the diseased 

aortas. There are no significant differences in the displacement of aortas with IMH for 

different values of the IMH permeability.

Finally, we investigate the relationship between the permeability of the IMH region and the 

PWS in the aortic wall. The PWS for different values of the permeability is achieved at the 

same location as shown in Figure 6. The PWS at that location, over one cardiac cycle, for 

different values of permeability is shown in Figure 8. We can see that the IMH with smaller 

permeability causes smaller PWS. The PWS is the largest for κ = 10−8I cm3 s/g. As the 

permeability decreases to κ = 10−12I cm3 s/g, the PWS drops by 3%.

4.3. Effects of age

The aortic diameter increases with age. The normal expansion rate is about 1–2 mm/year. 

The aging of the aorta is accompanied by an increase in wall stiffness and thickness, caused 

by the structural changes including an increase in the collagen content. The effects of these 

changes on the blood flow in a healthy and diseased aortas are studied in this section. We 

assume that the aortic diameter of a heathy, older person is 2.4 cm (Erbel and Eggebrecht 

(2006)). Thicknesses of intima, media and adventitia are 0.5 cm, 1.4 cm and 0.6 cm, 

respectively, resulting in 2.5 cm total wall thickness. Measurements by Wuyts et al. (1995), 

Learoyd and Taylor (1966) indicate that the arterial stiffness doubles in older people. Hence, 

we assume that the Young’s moduli are 4, 12 an 8 MPa for intima, media and adventitia, 

respectively.

Our simulations showed that velocity in the lumen in a healthy older person is higher by 

10% then in a healthy younger person. This agrees well with the measurements reported by 

Erbel and Eggebrecht (2006) and provided calibration for our model. We also did not 

observe major difference between the pressure in a younger and older healthy person.

The left panel in Figure 9 shows a comparison between the intimal displacement in an old, 

healthy aorta and old aortas with IMHs of thicknesses 0.6, 0.8 and 1.0 cm. The permeability 

in all cases is 10−10I cm3 s/g. The maximum displacement is about 20% larger in all cases 

with IMH than in the healthy case. However, there are no differences between the 

displacements in cases with IMH with different IMH thicknesses.

The right panel in Figure 9 shows comparison of the intimal displacement in a healthy older 

people and older people with IMHs of permeabilities 10−8 and 10−10I cm3 s/g. The IMH 

thickness in all three cases is 0.8 cm. We observe that in both cases with IMH, the 
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displacement is larger than in the healthy case. Furthermore, in cases with IMH the 

displacement is larger for smaller value of the permeability.

Finally, the relation between PWS and IMH thickness and permeability is shown in Figure 

10. The left panel shows the PWS obtained for three different valued of IMH thickness, 

where the permeability in all cases is κ = 10−10I cm3 s/g. Our results show that, as expected, 

the PWS increases as the IMH thickness increases. The right panel shows the PWS obtained 

for different values of permeability and the same IMH thickness of 1.0 cm. Notice that the 

PWS is larger for larger values of permeability. We also note that PWS is larger in older 

patients then young patients (see Figure 8). Moreover, the difference in PWS with respect to 

IMH permeability is more significant in older patients. The increased PWS in older people is 

due to the combination of age related hemodynamical changes. Besides the increased 

stiffness and thickness of the aortic wall, these changes include the increase in the aortic 

diameter, causing higher blood velocity (increased by 10% in comparison with a young 

person), and a slight increase in peak systolic pressure causing an increase in the wall stress.

5. Discussion

A novel multi-component model is presented in this paper for simulating blood flow in an 

aorta with realistic representation of an IMH formed in the aortic wall. The model captures 

both deformation of the IMH and pressure inside it. There are no experimental 

measurements of the material properties of different parts of the IMH available at this time. 

Hence, to estimate the permeability of different parts of the IMH we used the permeability 

values ranging from the values for clotted blood with higher permeability and for less 

permeable blood clots, to values close to the permeability of the aortic wall.

Simulations were preformed for studying blood flow in aortas in young and old patients with 

IMH. Results in Figures 8 and 10 indicate that IMH regions with higher permeability (with 

smaller amounts of coagulated blood) have higher PWS than the same domains with smaller 

permeability in both young and old individuals. Furthermore, the difference between PWS 

obtained using different IMH permeabilities is much more pronounced in older people. 

Hence, increased blood coagulation in the IMH, which determines permeability, might lead 

to more stable IMH. This is in agreement with previous experimental observations 

(Menichini and Xu (2016)) of coagulation having beneficial effect on patient condition.

Since our model captures both pressure inside the IMH and its deformation, it could be 

extended for modeling the IMH progression into the classical dissection in the form of the 

pressure driven crack propagating in an elastic material. To capture this process, the model 

presented in this paper needs to be coupled with a phase field submodel of the propagating 

fractures. This will be implemented in our future work. Furthermore, we will extend our 

description of the vessel wall by developing a more realistic non-linear model for anisotropic 

solids. We are also working on a 3D extension of the model and incorporating patient 

specific aorta geometries.
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Figure 1. 
Diagram of an idealized, axially symmetric model of an aorta. Rlumen denotes the lumen 

radius and h denotes the maximum IMH thickness.
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Figure 2. 
A. Normal aorta. B. Aorta with IMH. C. CT image of normal aorta. D. CT image of aorta 

with IMH. CT images in panels C and D are taken from Masip (2004).
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Figure 3. 
Left: The velocity imposed at the inlet of the domain. Right: The pressure imposed at the 

outlet of the domain.
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Figure 4. 
Comparison of the velocity (left) and pressure (right) in the center of the lumen obtained in 

the case of a healthy aorta and diseased aortas with IMH thicknesses 0.6, 0.8 and 1.0 cm.
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Figure 5. 
Comparison of the displacement in the intima (left) and adventitia (right) at the center of the 

wall obtained in the case of a healthy aorta and diseased aortas with IMH thicknesses 0.6, 

0.8 and 1.0 cm. The permeability of IMH is 10−10I cm3 s/g.
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Figure 6. 
Left: The Peak von Mises stress in the aorta with IMH of thickness 1.0 cm. Right: 

Comparison of the PWS in diseased aortas with IMH thicknesses 0.6, 0.8 and 1.0 cm. The 

PWS is slightly greater in aortas with thicker IMH.
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Figure 7. 
Left: Comparison of the velocity in the center of the lumen obtained in the case of a healthy 

aorta and diseased aortas with IMH permeabilities 10−8, 10−10 and 10−12I cm3 s/g. Right: 

Comparison of the displacement in the intima at the center of the wall obtained in the case of 

a healthy aorta and diseased aortas. The thickness of IMH is 1.0 cm.
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Figure 8. 
Comparison of the PWS in diseased aortas with IMH permeabilities 10−8, 10−10 and 10−12I 
cm3 s/g. The PWS is slightly greater in aortas with more permeable IMH.
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Figure 9. 
Left: Comparison of the intimal displacement in old people without IMH and with IMHs 

being 0.6, 0.8 and 1.0 cm thick. Right: Comparison of the intimal displacement in older 

people without IMH and with IMH with permeabilities 10−8 and 10−10I cm3 s/g.
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Figure 10. 
Left: PWS in older people with IMHs of thicknesses 0.6, 0.8 and 1.0 cm and permeability κ 
= 10−10I cm3 s/g. Right: PWS in older people with IMHs of permeabilities 10−8 and 10−10I 
cm3 s/g and thickness 1.0 cm.
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