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Abstract: With the increase in carbapenem-resistant A. baumannii (CRAB) infections, there has been a
resurgence in the use of polymyxins, specifically colistin (COL). Since the reintroduction of COL-based
regimens in treating CRAB infections, several COL-resistant A. baumannii isolates have been identified,
with the mechanism of resistance heavily linked with the loss of the lipopolysaccharide (LPS) layer of
the bacterial outer membrane through mutations in lpxACD genes or the pmrCAB operon. SPR206,
a novel polymyxin derivative, has exhibited robust activity against multidrug-resistant (MDR) A.
baumannii. However, there is a dearth of knowledge regarding its efficacy in comparison with
other A. baumannii-active therapeutics and whether traditional polymyxin (COL) mediators of A.
baumannii resistance also translate to reduced SPR206 activity. Here, we conducted susceptibility
testing using broth microdilution on 30 A. baumannii isolates (17 COL-resistant and 27 CRAB),
selected 14 COL-resistant isolates for genomic sequencing analysis, and performed time-kill analyses
on four COL-resistant isolates. In susceptibility testing, SPR206 demonstrated a lower range of
minimum inhibitory concentrations (MICs) compared with COL, with a four-fold difference observed
in MIC50 values. Mutations in lpxACD and/or pmrA and pmrB genes were detected in each of
the 14 COL-resistant isolates; however, SPR206 maintained MICs ≤ 2 mg/L for 9/14 (64%) of the
isolates. Finally, SPR206-based combination regimens exhibited increased synergistic and bactericidal
activity compared with COL-based combination regimens irrespective of the multiple resistance
genes detected. The results of this study highlight the potential utility of SPR206 in the treatment of
COL-resistant A. baumannii infections.

Keywords: Acinetobacter baumannii; polymyxin derivative; colistin; SPR206

1. Introduction

Acinetobacter baumannii is an opportunistic, non-fermenting Gram-negative organism
associated with high all-cause mortality rates [1,2]. Typically, A. baumannii manifests in
nosocomial infections, with outbreaks identified in numerous countries and treatment
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settings globally [1,3]. A. baumannii shows a propensity for developing resistance against
commonly used antimicrobials, including fluoroquinolones, aminoglycosides, and beta-
lactams. The emergence of multidrug-resistant (MDR) A. baumannii isolates has led to a
resurgence in using polymyxin agents, such as polymyxin B and colistin (COL, also known
as polymyxin E) [4,5]. However, the increased use and the absence of optimal dosing for
COL have resulted in reports of COL-resistant strains [2,5].

The mode of action for COL, a part of the polymyxin class of antimicrobials, involves
an interaction with the polyanionic lipopolysaccharide (LPS) present within the bacterial
outer membrane, leading to membrane destabilization [6]. Resistance of Gram-negative
pathogens to COL is most commonly attributed to the modification of the lipid anchor of
LPS, or lipid A. Consequently, mutations in the first three genes in the lipid A biosynthesis
pathway, namely lpxACD, are frequently implicated as the basis for polymyxin resistance in
A. baumannii [6,7]. Apart from lpxACD gene mutation, various studies have highlighted that
modifications of the target LPS, driven by the addition of phosphoethanolamine moieties
to lipid A through the pmrCAB operon, also play a role in A. baumannii COL resistance [8,9].
Of note, investigators have reported detection of mutations, specifically in the pmrA and
pmrB genes, in COL- and carbapenem-resistant A. baumannii (CRAB) isolates [5,10]. When
evaluated against MDR A. baumannii isolates, including those with pmrA and pmrB gene
mutations, COL-based combination regimens (alongside other A. baumannii-active agents
including meropenem, MEM, or minocycline, MIN) can be effective [11]. Nevertheless,
conflicting data exists on whether these combinations are associated with improved patient
outcomes or a reduction in the emergence of COL resistance [2,12]. Given the potentially
detrimental spread of A. baumannii resistance to COL—a last-line agent—and dose-limiting
toxicities associated with COL-based combination regimens, there is an urgent need to
identify new agents to treat serious MDR A. baumannii infections.

SPR206, a novel polymyxin derivative, has shown robust activity against A. baumannii
in both in vitro and in vivo studies [13,14]. While maintaining a similar pharmacophore
to COL, SPR206 has undergone structural modifications to include a fatty acyl tail with
an aryl chloride group-substituted aminobutyryl N-termini and a shortened nanopeptide
cyclic core with L-Dap residues attached to the peptide ring [13,15]. These modifications
have been attributed to a reduction in cytotoxicity and nephrotoxicity compared with COL,
as observed in in vivo studies [16]. Additionally, in vitro studies have revealed that SPR206
has more potent activity compared with COL (nearly eight-fold lower MICs) when evalu-
ated against MDR A. baumannii isolates [15]. Although these findings indicate the potential
utility of SPR206 in MDR (including COL-resistant) A. baumannii infections, critical gaps
remain. Namely, the potential mediators of SPR206 resistance need elucidation and whether
these genes associated with A. baumannii COL resistance (i.e., lpxACD and/or pmrA, pmrB)
exert the same impact on the novel polymyxin derivative remains unclear. Furthermore,
there is a need to investigate whether similar or enhanced activity, comparative to COL,
would be seen with SPR206 when tested in combination with other A. baumannii-active
antimicrobials against MDR isolates.

In this study, our primary aims were to delineate the antibacterial activity of SPR206
against MDR A. baumannii isolates and to describe the effect of COL resistance on SPR206
susceptibility. The specific objectives of this study were to (i) evaluate the comparative
activity of SPR206 and other A. baumannii-active agents against MDR A. baumannii isolates
through minimum inhibitory concentration (MIC) testing, (ii) conduct genomic sequencing
analysis to determine mutations present in 14 A. baumannii isolates (both COL-resistant
and CRAB), and (iii) investigate and compare the in vitro synergistic activity, employing
time-kill analysis (TKA), of COL and SPR206 alone as well as in combination regimens
with other antimicrobials against four MDR A. baumannii isolates.
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2. Results
2.1. Susceptibility Testing

Thirty isolates underwent MIC testing revealing that 17/30 (57%) were COL-resistant,
with six isolates registering COL MIC values of 32 mg/L or higher [17]. In the MIC test-
ing performed on A. baumannii strains, SPR206 inhibited the growth of (22/30) 73% of
the isolates at concentrations of <2 mg/L and 83% (25/30) at concentrations of <4 mg/L.
Two isolates exhibited an SPR206 MIC value of 32 mg/L. A four-fold increase in potency
was shown in the MIC50 and MIC90 values of SPR206 compared with COL. Additionally,
87% (27/30) of the A. baumannii isolates demonstrated resistance to meropenem (MEM),
with MIC values of ≥ 8 mg/L. Amikacin (AMK) and sulbactam (SUL) were largely in-
effective in inhibiting A. baumannii growth, with 90% (27/30) presenting AMK MICs at
>16 mg/L and with 77% (23/30) presenting SUL MICs at > 8 mg/L. Minocycline (MIN)
and tigecycline (TGC) yielded more favorable MIC results, inhibiting A. baumannii growth
at a MIN concentration of <4 mg/L in 77% (21/30) of the isolates and at a TGC concen-
tration of <4 mg/L in 60% (18/30) of the isolates. Individual MIC values for each of the
30 tested isolates, alongside the MIC50 and MIC90 values of SPR206 and the comparative
antimicrobials tested, can be found in Table 1.

Table 1. Broth microdilution susceptibility testing results (mg/L).

Isolate
Number Geographical Location SPR-206 COL MEM MIN TIG AMK SUL

J105 Loma Linda Medical Center, Loma
Linda, CA 1 1 16 0.5 0.5 64 64

J104 Loma Linda Medical Center, Loma
Linda, CA 1 0.5 32 0.5 1 64 64

J109 Loma Linda Medical Center, Loma
Linda, CA 0.25 0.5 8 2 1 8 32

J108 Loma Linda Medical Center, Loma
Linda, CA 1 1 32 0.5 1 64 64

J110 Loma Linda Medical Center, Loma
Linda, CA 0.5 1 8 1 1 32 32

J101 Loma Linda Medical Center, Loma
Linda, CA 0.25 1 32 2 1 64 64

J103 Loma Linda Medical Center, Loma
Linda, CA 1 1 32 1 1 64 64

J108 Loma Linda Medical Center, Loma
Linda, CA 1 2 32 2 1 64 64

J106 Loma Linda Medical Center, Loma
Linda, CA 1 0.5 4 4 2 64 64

J115 Loma Linda Medical Center, Loma
Linda, CA 1 2 8 0.5 2 32 8

J112 Loma Linda Medical Center, Loma
Linda, CA 0.25 2 8 0.5 2 16 16

J107 Loma Linda Medical Center, Loma
Linda, CA 0.5 2 32 1 2 64 16

R11248 Detroit Medical Center, Detroit MI 0.25 4 16 0.5 2 256 2

J113 Loma Linda Medical Center, Loma
Linda, CA 1 4 4 1 2 32 16

J102 Loma Linda Medical Center, Loma
Linda, CA 1 4 32 1 2 32 64

R11252 Detroit Medical Center, Detroit MI 2 4 8 2 2 256 4
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Table 1. Cont.

Isolate
Number Geographical Location SPR-206 COL MEM MIN TIG AMK SUL

J111 Loma Linda Medical Center, Loma
Linda, CA 1 4 2 2 2 32 32

R9569 Detroit Medical Center, Detroit MI 2 8 32 16 2 16 16

J114 Loma Linda Medical Center, Loma
Linda, CA 0.5 1 16 0.5 4 32 16

R9788 Assaf Harofeh Medical Center, Israel 2 16 16 1 4 256 4

R10074 Siriraj Hospital, Bangkok, Thailand 0.5 16 64 16 4 256 16

R8379 Corewell Health Detroit, MI 1 32 64 2 4 256 4

R10409 Siriraj Hospital, Bangkok, Thailand 1 4 16 0.25 8 256 2

R9656 Siriraj Hospital, Bangkok, Thailand 32 8 32 4 8 >256 32

R10367 Chaung Gung Medical Hospital,
Taiwan 0.5 16 16 4 8 256 16

R9645 Siriraj Hospital, Bangkok, Thailand 0.125 16 32 16 8 256 8

R10141 Corewell Health Royal Oak, MI 32 32 64 4 8 >256 32

R8410 Corewell Health Royal Oak, MI 16 256 64 4 8 64 32

R8402 Corewell Health Royal Oak, MI 8 256 64 32 8 64 64

R8407 Corewell Health Royal Oak, MI 4 256 64 0.125 16 64 64

MIC50 1 4 32 1 2 64 16

MIC90 8 32 64 4 8 256 64

Shown in Table 1 are the individual MIC, MIC50, and MIC90 values for the 30 A. baumannii isolates evaluated
against A. baumannii-active antimicrobials.

2.2. Genomic Sequencing Analysis

Genomic sequencing was conducted on 14 COL-resistant and CRAB isolates collected
from different geographical regions. Three were from Thailand (21%), one from Taiwan
(7%), one from Israel (7%), and nine from Michigan (64%). The identified isolates exhibited
elevated MICs and various resistance genes were detected, including aminoglycoside-
modifying enzymes (notably APH (3′)-Vla) in all isolates. Beta-lactamases of classes A,
C, and D, were present, with ADC-2 (an Acinetobacter-derived cephalosporinase) and
blaOXA-23 in all isolates. Additionally, the endogenous presence of efflux pumps specific to
the tetracycline agents (MIN and TGC) and the lpxA and lpxC genes was also confirmed in
all A. baumannii isolates.

Compared with a reference strain (CP043953.1), mutations in pmrA were detected, with
missense single-nucleotide variants (SNV) encoding S119T and A144T mutations detected
in pmrA for three of the 14 isolates (21%). Alterations in pmrB were more commonly detected
with mutations detected in 13 of the 14 (93%) included isolates. Strain typing revealed that
the isolates belonged to five unique clonal groups based on Oxford and Pasteur multilocus
sequence typing (MLST) schemes for A. baumannii (Table 2). The most common sequence
type among the strains was Pasteur ST2, followed by Pasteur ST3, Oxford ST106, ST195,
and ST281. Figure 1 illustrates the mutations in the 14 sequenced isolates (COL-resistant
and CRAB) and pmrCAB operon amino acid variations (and MLST sequence type) are
provided in Table 2.
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Table 2. pmrA and pmrB amino acid variations for 14 COL-resistant and CRAB isolates.

Isolate Geographical Location Sequence Type
(Oxford/Pasteur)

pmrA Amino Acid
Variations

pmrB Amino Acid
Variations

R10074 Siriraj Hospital, Bangkok, Thailand ST195 (O) ST2 (P) WT A138T

R10141 DMC, Detroit MI Not assigned WT A138T

R10363 Chaung Gung Medical Hospital, Taiwan ST129 (P) S119T A227V

R10409 Siriraj Hospital, Bangkok, Thailand ST106 (O) ST3 (P) S119T P360Q

R11248 DMC, Detroit MI ST281 (O) ST2 (P) WT L239V

R11252 DMC, Detroit MI ST2 (P) WT A142T

R8379 Corewell Health, Royal Oak MI ST2 (P) WT L239V

R8402 Corewell Health, Royal Oak MI ST2 (P) WT D37G, Q43L

R8407 Corewell Health, Royal Oak MI ST2 (P) WT D37G, Q43L

R8410 Corewell Health, Royal Oak MI ST281 (O) ST2 (P) WT D37G, Q43L

R9569 DMC, Detroit MI ST2 (P) WT WT

R9645 Siriraj Hospital, Bangkok, Thailand ST2 (P) WT P233T

R9656 Siriraj Hospital, Bangkok, Thailand ST195 (O) ST2 (P) WT A138T, R263L

R9788 Assaf Harofeh Medical Center, Israel ST106 (O) ST3 (P) A14T, S119T T187P, P360Q

Shown in Table 2 are the geographical location and pmrA and pmrB amino acid variations compared with the
reference strain (CP043953) for the 14 COL-resistant and CRAB isolates. MLST strain typing according to Oxford
(O) or Pasteur (P) schemes for A. baumannii.
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2.3. Time-Kill Analysis

In the in vitro synergy evaluation of four COL-resistant and CRAB A. baumannii
isolates, single agents did not sustainably reduce the bacterial burden over 24 h. However,
the SPR206 + MEM combination displayed synergistic and bactericidal activity against
all isolates, achieving an average −5.6 log10 CFU/mL reduction from the most active
single agent. The SPR206 + MIN combination regimen was synergistic against all isolates
exhibiting bactericidal activity against R10141. Despite elevated MICs for SPR206 and COL
against R10141 with a detected pmrB mutation, SPR206-based combinations outperformed
COL-based regimens with an average −5.25 log10 cfu/mL reduction compared with a
−3.2 log10 cfu/mL reduction. COL + MEM showed synergistic activity against all isolates
but achieved bactericidal activity against only two (R11252 and R9645). COL + MIN
combinations were synergistic but yielded lower average log reductions (−2.78 log10 vs.
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−3.77 log10 reduction in cfu/mL from the most active single agent) compared with COL
+ MEM. Overall, the SPR206 plus MIN or MEM combinations demonstrated an average
3-log10 reduction in CFU/mL compared with the 2-log10 log reduction observed in the
COL-plus-MEM or MIN combinations. The 24-h TKA results for the A. baumannii strains
are shown in Figure 2.
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3. Discussion

Given the escalating global threat of antimicrobial resistance, particularly in the context
of COL-resistant CRAB infections, an increase in the utilization of COL is inevitable [1,18].
However, this heightened usage raises concerns about increased drug-related toxicities,
including nephrotoxicity and neurotoxicity, and the continued dissemination of COL-
resistant A. baumannii pathogens [1]. Identifying novel therapeutics becomes imperative
to address this treatment gap. Our in vitro study highlights the robust activity of SPR206
against CRAB even in isolates with substantially elevated MICs to COL. Furthermore, our
study suggests that traditional resistance mechanisms leading to elevated COL MICs, such
as mutations in lpxACD or pmrAB, may not exert a similar impact on SPR206 suscepti-
bility. Additionally, our results demonstrate enhanced activity when SPR206 is used in
combination with other antimicrobials, even in the presence of resistance genes to either
agent. This underscores the potential of SPR206 as a promising therapeutic option against
COL-resistant A. baumannii infections.

In the last decade, several polymyxin derivatives have been developed, each featuring
modifications to integral areas of the traditional polymyxin structure [13,19]. These modi-
fications primarily involve changes to the N-terminal fatty acyl chain length, alterations
in the hydrophobic domain of the COL, and substitutions of the Dab side chains and
amino acids [20,21]. Of note, polymyxin derivative compounds with alterations in the hy-
drophobic domain of the N-terminus chain, such as SPR206, have demonstrated increased
susceptibility compared with COL, a trend corroborated in our study [21]. SPR206 exhibited
lower MICs in comparison to COL when evaluated against MDR A. baumannii isolates.
Other studies have similarly reported lower MICs against MDR Gram-negative organisms
compared with other polymyxin derivatives and polymyxin B. This improved activity may
potentially be attributed to SPR206′s observed high LPS binding and permeabilization
capabilities [21].

This heightened LPS binding and permeability capacity observed in SPR206 may
contribute to its sustained activity even in the presence of COL resistance mediated by
the loss of LPS genes (lpxACD and pmrAB) [22,23]. Each CRAB and COL-resistant isolate,
characterized by the presence of multiple beta-lactamases, exhibited a mutation in either
lpxA, lpxC, pmrA, or pmrB. This suggests that SPR206 may possess a higher barrier to
resistance against LPS loss compared with COL. While lpxACD is more extensively studied
in the context of COL resistance, the impact of the pmrCAB operon on A. baumannii-elevated
MICs to COL is less understood [5,10,23,24]. It has been proposed that pmrB mutations
could lead to the constitutive activation of pmrA, resulting in increased pmrCAB op-ron
expression and COL resistance [25,26]. In our study, pmrA mutations were less common,
while pmrB mutations were prevalent, potentially contributing to increased COL MICs.
Nonetheless, SPR206 MICs remained relatively low, with 62% (9/14) of isolates having MICs
at < 2 mg/L. In particular, isolates with elevated SPR206 MICs (>4 mg/L) exhibited pmrB
mutations at A138T and/or amino acid substitutions, showing region-specific patterns.
This regional variability is important for tailoring A. baumannii treatment strategies based
on predominant clonal types in specific geographic regions [2,27,28]. Identifying molecular
characteristics associated with elevated MICs to SPR206 is critical for informing the best
practices in the treatment of A. baumannii infections.

In addition to SPR206 demonstrating retained susceptibility in the presence of mul-
tiple resistance genes, our study revealed similar and—in some cases—increased in vitro
synergistic activity when SPR206 was combined with other antimicrobials compared with
COL-based combination regimens. The enhanced membrane permeability attributed to
polymyxins, including derivatives, has been hypothesized to facilitate the binding of
drugs (such as MEM or MIN) when in combination irrespective of elevated MICs or
gene mutations to either agent [2,11,29,30]. Given that SPR206 has demonstrated superior
permeability compared with traditional polymyxins, this could explain why the SPR206-
based combination regimens resulted in a greater reduction in CFU/mL compared with
COL-based combinations [21]. Notably, the enhanced activity of MEM-containing combi-
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nations (SPR206 + MEM and COL + MEM) compared with MIN-containing combinations
(SPR206 + MIN and COL + MIN) can be attributed to the fact that tetracyclines (MIN) are
bacteriostatic agents, while carbapenems (MEM) are bactericidal [31,32]. This difference
may influence the attenuated antimicrobial activity with MIN combinations compared
with MEM combinations. Previous studies have also demonstrated increased activity
with polymyxins in combination with carbapenems compared with combinations with
tetracyclines, even in isolates with pmrA mutations [11,33].

Despite providing valuable insights about SPR206 activity, several limitations should
be noted. First, only a select number of isolates underwent genomic sequencing analysis,
potentially restricting the generalizability of the findings to a broader clinical applicability of
the findings. Considering the epidemiological variations in A. baumannii infections, future
studies should investigate SPR206 activity against prominent clonal ST types. Furthermore,
polymyxin resistance in A. baumannii can be mediated through various factors, including
other regulatory and effector mechanisms such as mutations in the mcr-1 gene or in genes
encoding OmpA family proteins. While each strain sequenced did have mutations in genes
encoding OmpA family proteins (shown in Supplemental Table S1), the mcr-1 gene was
not detected in the selected sequenced strains [10,11]. Lastly, the MIC testing and TKA
experiments were short-duration and used static concentrations, differing from humanized
pharmacokinetic exposure conditions.

4. Materials and Methods
4.1. Bacterial Isolates

A total of 30 A. baumannii clinical isolates were included in the study; the isolates were
representative of different geographical areas including Thailand, Israel, Taiwan, Michi-
gan, and California. A portion (14/30) (46%) of the isolates were collected from patients
who were enrolled in an NIH-funded clinical trial evaluating the treatment outcomes of
extremely drug-resistant Gram-negative pathogen infections [34]. A total of 28/30 of the
isolates were CRAB, indicated through the meropenem (MEM) MIC of ≥8 mg/L, and
15/30 were COL-resistant, indicated through the colistin (COL) MIC OF ≥4 mg/L [35]. To
further present resistance mechanisms, genomic sequencing analyses were completed on
14 A. baumannii isolates, all of them being COL-resistant and CRAB isolates.

4.2. Antimicrobials

The comparator antibiotics that were utilized for susceptibility testing versus SPR206
in A. baumannii were as follows: MEM, COL, minocycline (MIN), sulbactam (SUL), amikacin
(AMK), and tigecycline (TGC). MEM, COL, MIN, SUL, AMK, and TGC were purchased
from Sigma Chemical Co. (St. Louis, MO, USA) and SPR206 was obtained from its
manufacturer (SPERO Therapeutics Cambridge, MA, USA).

4.3. Susceptibility Testing

Susceptibility testing for COL, MEM, MIN, AMK, TGC, SUL, and MEM was per-
formed for each strain in 96-well microtiter plates (Corning Costar®, obtained through
Sigma-Aldrich®, Warren, MI, USA). Organism susceptibility (minimum inhibitory concen-
tration, MIC) was evaluated through broth microdilution testing using cation-adjusted
Mueller–Hinton broth (CAMHB, Difco, Detroit, MI, USA) supplemented with 25 mg/L
Ca2+ and 12.5 µg/mL Mg2+ as stated in the Clinical and Laboratory Standards Institute
(CLSI) guidelines. Freshly prepared Mueller–Hinton broth was used to prevent the ox-
idative degradation of TGC in aqueous solution and SUL was tested in combination with
ampicillin (AMP) and supplemented at a 4:1 ratio. The microtiter, 96-well plates were
incubated at 37 ◦C for 18–24 h before recording the results and minimum inhibitory con-
centration (MIC) reductions were measured using serial two-fold dilutions. Escherichia coli
ATCC 25922 was used as the internal quality control strain.
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4.4. Genomic Sequencing Analyses

Fourteen CRAB and COL-resistant isolates were selected to undergo whole genome
sequencing (WGS). The total genomic DNA was extracted and used as input material for
the library construction. DNA libraries were prepared using the Nextera XT™ library
construction protocol and index kit (Illumina, San Diego, CA, USA) and sequenced on a
MiSeq sequencer (Illumina). Libraries were multiplexed and sequenced with 100 base-pair
(bp) paired end reads (PE100) on an Illumina NovaSeq 6000 (Illumina, San Diego, CA, USA).
Samples were demultiplexed using bcl2fastq conversion software (v1.8.4) (Illumina, San
Diego, CA, USA). Illumina genome sequencing reads were used for de novo genome assem-
bly and annotation as well as re-sequencing analyses. The comprehensive genome analysis
tool from the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) was used to
generate de novo assemblies and annotations for all genomes [36–43]. Beta-lactamase
genes were identified through similarity to genes in the comprehensive antibiotic resistance
database (CARD) [44]. Breseq (v0.37.1) was used for re-sequencing analysis to determine
pmrA and pmrB single nucleotide variants [45]. Breseq was run in consensus mode to
align sequencing reads according to the complete A. baumannii K09-14 reference genome
sequence (Genbank accession CP043953.1).

4.5. Time-Kill Analyses

Time-kill analyses (TKAs) were performed against four isolates (CRAB and COL-
resistant) in Mueller–Hinton broth (MHB) as growth media and each TKA was performed
in duplicate for all antibiotic regimens to ensure reproducibility. In the TKA against the
four A. baumannii isolates, each well was treated without a drug, SPR206, COL, MEM,
MIN, SPR206 + MEM, SPR206 + MIN, COL + MEM, and COL + MIN, at a concentration
of 0.5× MIC or the biological free peak (MEM fCmax at 30 mg/L per 1 g q 8 h dosing,
COL fCmax at 2 mg/L per 4.5 million IU q 12 h dosing, and MIN fCmax at 8 mg/L per
200 mg IV q 12 h dosing), utilizing whichever was lower [32,46,47]. The experiments were
conducted at a starting inoculum of ~1 × 106 for each isolate and were conducted in a
shaker incubator at 37 ◦C for 24 h and aliquots of 0.1 mL were obtained from each well at
the 0-, 4-, 8-, and 24-h time intervals.

The samples were serially diluted in 0.9% normal saline according to the appropriate
concentrations and plated using automatic spiral plating (EasySpiral Pro Intersciences,
Worburn, MA, USA); then, the plates were incubated at 37 ◦C for 24 h before colony enumer-
ation using an automated colony counter (Scan 1200, Interscience Laboratories Inc., Woburn,
MA, USA). The time-kill curves were made by plotting mean colony counts remaining from
duplicate experiments against each time point using Prism® (v10.1.2)(Graphpad Software,
San Diego, CA, USA). Bactericidal activity was defined as ≥3 log10 CFU/mL reduction
from baseline and synergistic activity was defined as a ≥2 log10 CFU/mL reduction from
the most active single agent. Antagonistic activity was defined as a ≥2 log10 CFU/mL
decrease in killing from the most active single agent.

5. Conclusions

In summary, this study reveals that SPR206 has robust activity against A. baumannii
isolates, including those characterized by CRAB and COL-resistance. Importantly, SPR206
MIC values consistently outperformed COL MIC results when evaluated against A. bau-
mannii. Traditional mechanisms of polymyxin-resistance, mediated through LPS loss and
the modification of lpxACD or the pmrCAB operon, may not significantly impact SPR206
activity. Further research is warranted to assess the viability of SPR206 as a broadly appli-
cable treatment option for MDR A. baumannii infections and its diverse potential mediators
of resistance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics13010047/s1, Supplementary Table S1—Mutations in
Genes Encoding for OmpA family Proteins for 14 COL-resistant and CRAB isolates.
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