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Abstract
Based on properties of n-subharmonic functions we show that a complete, noncompact,
properly embedded hypersurface with nonnegative Ricci curvature in hyperbolic space has
an asymptotic boundary at infinity of atmost two points.Moreover, the presence of two points
in the asymptotic boundary is a rigidity condition that forces the hypersurface to be an equidis-
tant hypersurface about a geodesic line in hyperbolic space. This gives an affirmative answer
to the question raised by Alexander and Currier (Proc Symp Pure Math 54(3):37–44, 1993).

Mathematics Subject Classification 53C40 · 53C21

1 Introduction

For immersed hypersurfaces φ : Mn → Hn+1 with appropriate orientation we recall the
following successively stronger pointwise convexity conditions determined by the principal
curvatures κ1, . . . , κn : For all i ̸= j ∈ {1, . . . , n}

κi > 0 (strict) convexity

κi

(
n∑

l=1

κl

)

− κ2
i ≥ n − 1 nonnegative Ricci curvature

κiκ j ≥ 1 nonnegative sectional curvature
κi ≥ 1 horospherical convexity
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The influence of curvature conditions on the geometry and the asymptotic boundary of
complete noncompact hypersurfaces in hyperbolic space Hn+1 has been studied by Epstein,
Alexander and Currier, and the authors in [1,2,4,8–10]. In Epstein [10] it is shown that
the asymptotic boundary of a complete proper embedding of R2 into H3 with nonnegative
Gaussian curvature has a single point asymptotic boundary. The same is true for any complete
noncompact horospherically convex hypersurface immersed in Hn+1. In fact, in [8] it is
shown by Currier that the only complete noncompact horospherically convex hypersurface
immersed in Hn+1 is a horosphere. While in Alexander and Currier [1,2] it is shown that a
complete, noncompact, embedded hypersurface φ : Mn → Hn+1 with nonnegative sectional
curvature has at most two points in its asymptotic boundary. Moreover the presence of two
points in the boundary at infinity is a rigidity condition that forces φ(M) to be an equidistant
hypersurface. Recently, in [4] it is shown by the authors that the same conclusion as in [1,2]
holds for immersed hypersurfaces.

In [1,2] it is observed that a properly embedded strictly convex hypersurface in hyperbolic
space can be realized as a global vertical graph of a height function over a domain in a
horosphere and that the height function is subharmonic when restricted to any 2-plane when
the hypersurface has nonnegative sectional curvature. Based on the theory of subharmonic
functionsAlexander andCurrier thenmanaged to show that the asymptotic boundary is totally
disconnected. In [2] the question was raised as to whether or not nonnegative Ricci curvature
suffices for their asymptotic boundary theorem. In this note we affirmatively answer their
question.

Main Theorem For n ≥ 3, suppose that# is an n-dimensional complete, noncompact hyper-
surface properly embedded in hyperbolic spaceHn+1 with nonnegative Ricci curvature. Then
∂∞# consists of at most two points. The case that ∂∞# consists of two points is a rigidity
condition that forces # to be an equidistant hypersurface about a geodesic line.

The classification of complete noncompact Riemannianmanifolds with nonnegative Ricci
curvature is very interesting and complicated subject (cf. Shen and Sormani [14], for exam-
ple). On the other hand, from our main theorem and its proof we are able to easily classify
those hypersurfaces that are properly embedded in hyperbolic space. In fact, there are only
two classes: one is the cylinderR×Sn−1 and the other consists of nonnegative Ricci curvature
metrics on Rn .

Corollary Suppose that (Mn, g) is a complete and noncompact Riemannian manifold with
nonnegative Ricci curvature that can be properly isometrically embedded in hyperbolic space
Hn+1. Then (Mn, g) is either the standard cylinder R ×Sn−1 or it is a complete nonnegative
Ricci curvature metric on Rn.

As suggested for embedded hypersurfaces in [2], in Sect. 2 we realize the rigidity result
of our main theorem ultimately as consequence of the Cheeger–Gromoll splitting theorem
[7], and the Gauss and Codazzi equations. Our proof of the rigidity part is local in nature and
therefore does not need the embeddedness assumption. In fact, we can further strengthen the
result by only assuming that the boundary at infinity has more than one connected component
(cf. Theorem 2.1) as the Cheeger–Gromoll splitting theorem [7] will guarantee that such a
hypersurface has exactly two ends. The key to our proof is to show that Ricci flat directions
are in fact principal directions of the hypersurface for n ≥ 3 (cf. Lemma 2.1). To resolve this
issue we appeal to the fact that the Ricci operator and the shape operator of a hypersurface
in any space form are pointwise simultaneously diagonalizable thanks to Bourguignon [5].
Then from the Gauss and Codazzi equations we are able to show that the principal curvatures
are constant reciprocals with multiplicities 1 and n − 1. The fact that such a hypersurface
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Hypersurfaces with nonegative Ricci curvature in Hn+1 Page 3 of 14    36 

must be an equidistant hypersurface then follows from the following classification theorem
of so-called isoparametric hypersurfaces in hyperbolic space due to Cartan [6].

Cartan Theorem ([6]) An isoparametric hypersurface in Hn+1 must be either a sphere Sn,
a hyperbolic space Hn, a Euclidean space Rn (called a horosphere), all three are totally
umbilic, or a cylinder Sk × Hn−k , where each factor is a space form.

The most difficult part in proving the main theorem is to show that a connected asymp-
totic boundary can only be a single point. To do this, we pursue an avenue closely related to
[1,2]. However, one nontrivial observation of ours is that problems related to Ricci curvature
are sometimes reduced to the n-Laplacian equation. This was discovered in the context of
conformal geometry, which can be applied to hypersurfaces in hyperbolic space as well. In
Sect. 3 we prove that hypersurfaces embedded in hyperbolic space with nonnegative Ricci
curvature give rise to height functions that are Euclidean n-subharmonic. Then in Sect. 4 we
apply the theory of n-subharmonic functions to show that hypersurfaces embedded in hyper-
bolic space with nonnegative Ricci curvature must have asymptotic boundaries of Hausdorff
dimension zero and are therefore a single point when connected. It is rather surprising that our
calculation for Ricci curvature in dimensions larger than 2 (cf. Theorem 3.1) goes perfectly
in line with what was observed in [1, Theorem 2.1] for Gaussian curvature in dimension 2.

For convenience of the reader, we conclude this section with a brief explanation of the
curvature conditions under consideration. Suppose {e1, . . . , en} is an orthonormal basis of
principal directions of an immersed hypersurface φ : Mn → Hn+1. Due to the Gauss
equations, the sectional curvatures of # = φ(M) are given by K (ei , e j ) = κiκ j − 1 for
i ̸= j and therefore nonnegative sectional curvature is equivalent to the principal curvature
condition κiκ j ≥ 1 for i ̸= j for hypersurfaces inHn+1. Clearly then all principal curvatures
of a hypersurface φ : Mn → Hn+1 with nonnegative sectional curvature are nonzero and of
the same sign. The same is true for hypersurfaces with nonnegative Ricci curvature. Indeed,
writing the Ricci curvature as the sum of sectional curvatures we see

Ric(ei ) =
∑

j ̸=i

K (ei , e j ) =
∑

j ̸=i

(κiκ j − 1) = κi

⎛

⎝
n∑

j=1

κ j

⎞

⎠ − κ2
i − (n − 1).

Therefore, for hypersurfaces in Hn+1, nonnegative Ricci curvature is equivalent to the prin-
cipal curvature condition

κi

⎛

⎝
n∑

j=1

κ j

⎞

⎠ − κ2
i ≥ n − 1 > 0

for all i = 1, . . . , n, which clearly implies that all principal curvatures of φ are nonzero.
Moreover, since

κi

(
n∑

l=1

κl

)

− κ2
i ≥ n − 1 > 0 and κ j

(
n∑

l=1

κl

)

− κ2
j ≥ n − 1 > 0,

if κi < 0 and κ j > 0 for some i ̸= j , we arrive at the contradiction

n∑

l=1

κl < κi < 0 and
n∑

l=1

κl > κ j > 0.

Hence, the principal curvatures of a hypersurface in hyperbolic space with nonnegative Ricci
curvature are all nonzero and of the same sign as claimed.
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The orientation we take on hypersurfaces with nonnegative Ricci curvature is the orien-
tation for which the second fundamental form of the hypersurface is positive definite. That
is, we take the orientation so that all principal curvatures of the hypersurface are positive.
With this orientation we may view nonnegative Ricci curvature as intermediate curvature
condition between strict convexity and nonnegative sectional curvature. In particular, with
our choice of orientation we have

Ric ≥ 0 ⇒ ki > 0, ∀i . (1.1)

Finally, we echo the question raised by Alexander and Currier [2] as to whether or not the
Main Theorem in this paper still holds for immersed hypersurfaces.

2 Asymptotic boundary of multiple components

In this section we show that complete noncompact hypersurfaces immersed in hyperbolic
space with nonnegative Ricci curvature and multiple component asymptotic boundaries are
in fact equidistant hypersurfaces. Our approach is very much local in nature, hence we do
not need to assume the hypersurfaces are embedded.

Let (Mn, g) be a completeRiemannianmanifoldwith nonnegativeRicci curvature that can
be isometrically immersed intoHn+1. If ∂∞M has more than one connected component, then
(Mn, g) has a line. Then by the Cheeger–Gromoll splitting theorem [7] (see also Toponogov
[13] for dimension2),M splits isometrically as the productM ∼= R×Nn−1 where (Nn−1, gN )
is a complete (n − 1)-manifold with nonnegative Ricci curvature. Naturally, the product
structure carries to the level of the tangent bundle and the Levi-Civita connection ∇ on M ,
which forces the Riemannian curvature tensor of (Mn, g) to split accordingly. Hence, the
factor R of the product M ∼= R × N represents a flat direction in M .

To be more precise, let (x1, x2, . . . , xn) denote local coordinates on a neighborhood of M
adapted to the product structure M ∼= R ×N where x1 = t is the coordinate corresponding to
distance in the factor R and (x2, . . . , xn) are local coordinates on N . Then locally the metric

g = dt2 + gN

where gN is independent of t and ∂
∂t is a flat direction. The Riemannian curvature tensor

Ri jkt = 0 (2.1)

for all i, j, k ∈ {1, . . . , n}. Therefore,
Rit = 0 (2.2)

for all i ∈ {1, . . . , n}. In other words, the flat direction ∂
∂t is pointwise an eigendirection for

the Ricci curvature operator corresponding to the eigenvalue 0.
It turns out that the key to establish rigidity is to know that the flat direction is a principal

direction of the hypersurface.A pleasantly surprising fact due toBourguignon [5] (see also [3]
Corollary 16.17) is that the Ricci curvature form and the second fundamental form commute
since the second fundamental form of a hypersurface in a space form is always a Codazzi
tensor.

Lemma 2.1 Suppose that φ : Mn → Hn+1 is an isometric immersion where Mn has non-
negative Ricci curvature and splits as R ×N. Then, for n ≥ 3, the flat direction is a principal
direction for φ.

123



Hypersurfaces with nonegative Ricci curvature in Hn+1 Page 5 of 14    36 

Proof It iswell-known that the second fundamental formof a hypersurface in a space form is a
Codazzi tensor.Due toBourguignon [5] (see alsoBesse [3]Corollary 16.17), it follows that the
Ricci operator and the shape operator then commute. Hence, the Ricci operator and the shape
operator preserve each other’s invariant subspaces and are therefore pointwise simultaneously
diagonalizable. Let V0 denote the eigenspace of the Ricci operator that corresponds to the
eigenvalue 0 at a point on the hypersurface. Clearly, dim(V0) ≥ 1 since it contains at least
the flat direction.

Let {e1, . . . , en} denote an orthonormal basis of principal directions with the principal
curvatures κi at the point. Up to linear combinations of the principal directions in their
respective eigenspaces, we may assume that {e1, . . . , en} simultaneously diagonalizes the
Ricci curvature operator. Moreover, since dim(V0) ≥ 1, up to reordering we may assume
V0 = span{e1, . . . , ek} for some 1 ≤ k ≤ n. Clearly, if k = 1, then the flat direction is a
principal direction. Otherwise, let us assume k ≥ 2. Then, for each i = 1, . . . , k,

0 = Ric(ei ) = κi

⎛

⎝
n∑

j=1

κ j

⎞

⎠ − κ2
i − (n − 1) = κi H − κ2

i − (n − 1), (2.3)

where H = ∑n
j=1 κ j is the mean curvature. From (2.3) we see

κi =
H ±

√
H2 − 4(n − 1)

2
for i = 1, . . . , k.

But then, since n ≥ 3, κi > 0 for all i = 1, 2, . . . , n, and k ≥ 2, we must have

κi = κ0 =
H −

√
H2 − 4(n − 1)

2
for i = 1, . . . , k.

Therefore, every vector in V0 is a principal direction associated with the principal curvature
κ0. Thus, the flat direction is a principal direction at any point on the hypersurface. ⊓.

It is interesting to notice that Lemma 2.1 works only for dimensions larger than 2. For flat
cases in dimension 2 one needs Volkov and Vladimirova [15] instead (please see [4] for an
alternative proof in dimension 2). We are now in a position to apply the Codazzi equations
to establish the rigidity result.

Theorem 2.1 For n ≥ 3, let φ : Mn → Hn+1 be an isometric immersion of a complete
noncompact manifold (Mn, g) with nonnegative Ricci curvature. If the asymptotic boundary
at infinity ∂∞φ(M) has more than one connected component, then φ(M) is an equidistant
hypersurface about a geodesic line.

Proof Let Xi = φ∗( ∂
∂xi

) denote the local frame on the hypersurface adapted to the product

structure. From the discussion above we may assume that Xt = φ∗( ∂
∂x1

) is a unit length
flat direction that is orthogonal to X2, . . . , Xn . In addition, due to Lemma 2.1, we may also
assume that Xt is a principal direction with principal curvature κ0. Then, from (2.1) and
Gauss equations we have

0 = Rit j t = RH
i t j t + I Ii j I Itt − I Ii t I It j

= −gi j + κ0 I Ii j for i, j = 2, . . . , n (2.4)

and therefore
I I = 1

κ0
gN (2.5)
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when restricted to directions tangential to N . That is, κi = 1
κo

for all i = 2, . . . , n. Now since
g = dt2 + gN with gN independent of t , it follows that the Christoffel symbols for g satisfy

%
j
i t = %

j
ti = %t

i j = 0 for any i, j ∈ {1, . . . , n}. (2.6)

Furthermore, from (2.5), we see

∇Xt I Iii = Xt

(
1
κ0

(gN )i i

)
= ||Xi ||2gN Xt (κi ) (2.7)

for any i ∈ {2, . . . , n}. Moreover, from the Codazzi equations, we find

∇Xt I Iii = ∇Xi I Iti = −%l
i i I Ilt + %l

ti I Ili = 0. (2.8)

Meanwhile,

Xi (κ0) = ∇Xi I Itt = ∇Xt I Iti = −%l
t t I Ili + %l

ti I Ilt = 0. (2.9)

Thus, from (2.7), (2.8) and (2.9) it follows the principal curvatures κ0 and κi = 1
κ0

are
constant.

Due to Currier [8, Theorem B] it follows that κ0 ̸= κi for i ̸= 1 since otherwise κ0 =
κi = 1 so the hypersurface is horospherically convex and therefore a horosphere, which
contradicts the assumption that the hypersurface has more than one end. Therefore, locally
the hypersurface has exactly two distinct constant principal curvatures κ0 of multiplicity 1
and 1

κ0
of multiplicity n − 1. It then follows from Cartan Theorem (cf. Cartan Theorem in

the introduction) that the hypersurface is an equidistant hypersurface about a geodesic line.
⊓.

3 Calculations for vertical graphs in hyperbolic space

In [1,2,10] it is observed by Epstein, Alexander and Currier that a complete, noncompact,
properly embedded, strictly convex hypersurface in hyperbolic space can be realized globally
in Busemann coordinates as a graph of a height function over a domain in a horosphere.More-
over, in [1,2] it is shown that embedded hypersurfaces with nonnegative sectional curvature
give rise to height functions that are subharmonic with respect to the Euclidean metric when
restricted to any 2-plane. Then, as a consequence of the theory of subharmonic functions on
domains in the plane, in [1,2] it is concluded that a hypersurface embedded in hyperbolic
space with nonnegative sectional curvature must have a single point asymptotic boundary
when the asymptotic boundary is connected.

Moving on to the situations when only Ricci curvature is assumed to be nonnegative, the
theory of subharmonic functions in dimension 2 is not applicable and themethod in [1,2] fails
in dimensions larger than 2. Our approach here is to employ the theory of n-subharmonic
functions instead of subharmonic functions in dimensions n > 2.

Consider the upper half-space model Rn+1
+ of hyperbolic space with standard coordinates

(x1, . . . , xn, xn+1) and hyperbolic metric

gH = dx21 + · · · + dx2n+1

x2n+1
.

In the upper half-space model of hyperbolic space we note that

∇H
∂

∂xi

∂

∂x j
= δi j

1
xn+1

∂

∂xn+1
and ∇H

∂
∂xα

∂

∂xn+1
= − 1

xn+1

∂

∂xα
.
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Note that in our convention Greek letters run from 1, 2, . . . , n + 1 while Latin letters run
from 1, 2, . . . , n. Let # be the vertical graph of a function xn+1 = f (x1, . . . , xn) over a
domain ( in

Rn = {(x1, x2, . . . , xn+1) ∈ Rn+1
+ : xn+1 = 0}.

Denote the induced tangent vectors on # by

Xi =
∂

∂xi
+ fi

∂

∂xn+1

where fi = ∂ f
∂xi

. Then the induced metric on # as a hypersurface in Hn+1 is given by

g := f −2(δi j + fi f j )dxi dx j

with inverse

gi j = f 2
(

δi j − fi f j
1+ |Df |2

)
,

where we have denoted the Euclidean norm squared of the Euclidean gradient of f by

|Df |2 = δi j fi f j =
n∑

i=1

f 2i .

Then a straightforward computation gives

∇H
Xi
X j = f −1

(
(δi j + f fi j − fi f j )

∂

∂xn+1
− fi

∂

∂x j
− f j

∂

∂xi

)
.

Hence, with respect to unit normal

ν = f

(1+ |Df |2) 1
2

(− f1,− f2, . . . ,− fn, 1)

on #, we compute the second fundamental form of #

I Ii j = ⟨∇H
Xi
X j , ν⟩ = 1

f 2(1+ |Df |2) 1
2

(δi j + fi f j + f fi j ). (3.1)

Moreover, denoting the Euclidean Laplacian of f by * f , it follows that the mean curvature
of # is

H = 1

(1+ |Df |2) 1
2

n∑

i, j=1

(
δi j − fi f j

1+ |Df |2
)
(δi j + fi f j + f fi j )

= 1

(1+ |Df |2) 1
2

⎛

⎝n + f * f − f
1+ |Df |2

n∑

i, j=1

fi j fi f j

⎞

⎠ .

Now at any point x ∈ Rn where h = log f is finite and Df (x) ̸= 0, we may choose local
coordinates where ∂

∂x1
= Df

|Df | is the Euclidean unit vector in the direction of Df and with

f j (x) = ∂ f
∂x j

(x) = 0 for all j ̸= 1. In such coordinates f 21 = |Df |2 so we may write the
mean curvature of # at such a point x as

H = f

(1+ f 21 )
3
2

(

f11 +
1+ f 21

f

)

+ f

(1+ f 21 )
1
2

n∑

i=2

(
fii +

1
f

)
. (3.2)
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Next we calculate the Ricci curvature for the vertical graph # in hyperbolic space via
Gauss equations

R#
i jkl = −(gikg jl − gil g jk)+ (I Iik I I jl − I Iil I I jk).

From (3.1) it follows that the Ricci curvature tensor has components

Rik = −(n − 1)gik +
1

f 2(1+ |Df |2)
n∑

j,l=1

(
δ jl − f j fl

1+ |Df |2
)

× ((δik + fi fk + f fik)(δ jl + f j fl + f f jl) − (δil + fi fl + f fil)(δ jk + f j fk + f f jk))

= −(n − 1)gik +
1

f 2(1+ |Df |2)

×

⎛

⎝(δik + fi fk + f fik)

⎛

⎝n + f * f − f
1+ |Df |2

n∑

j,l=1

f jl f j fl

⎞

⎠

−
n∑

l=1

(δil + fi fl + f fil)

⎛

⎝δlk + f flk − f
1+ |Df |2

n∑

j=1

f jk f j fl

⎞

⎠

⎞

⎠ . (3.3)

Now, let us consider the gradient of f with respect to the induced metric g

∇g f = gi j fi X j = f 2
(

δi j − fi f j
1+ |Df |2

)
fi X j =

f 2

1+ |Df |2
n∑

j=1

f j X j ,

and its normalization

∇g f
||∇g f ||g

= f

|Df |(1+ |Df |2) 1
2

n∑

j=1

f j X j .

Denoting the components of the normalized gradient of f by

f̄ i = f

|Df |(1+ |Df |2) 1
2

fi ,

from (3.3) we calculate the Ricci curvature in the direction of the normalized gradient of f

Rik f̄ i f̄ k = −(n − 1)+ 1
|Df |2(1+ |Df |2)2

n∑

i,k=1

fi fk

×

⎛

⎝(δik + fi fk + f fik)

⎛

⎝n + f * f − f
1+ |Df |2

n∑

j,l=1

f jl f j fl

⎞

⎠

−
n∑

l=1

(δil + fi fl + f fil)

⎛

⎝δlk + f flk − f
1+ |Df |2

n∑

j=1

f jk f j fl

⎞

⎠

⎞

⎠

= −(n − 1)+ 1
|Df |2(1+ |Df |2)2

×

⎛

⎝

⎛

⎝|Df |2 + |Df |4 + f
n∑

i,k=1

fik fi fk

⎞

⎠
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×

⎛

⎝n + f * f − f
1+ |Df |2

n∑

j,l=1

f jl f j fl

⎞

⎠

−
n∑

l=1

(

fl + |Df |2 fl + f
n∑

i=1

fil fi

)

×

⎛

⎝ fl + f
n∑

k=1

flk fk − f
1+ |Df |2

n∑

j,k=1

f jk f j fl fk

⎞

⎠

⎞

⎠ . (3.4)

For convenience, we denote
n∑

i, j=1

fi j fi f j = H1( f ) and
n∑

i, j,k=1

fik fk j fi f j = H2( f ).

Then we may write (3.4) as

Rik f̄ i f̄ k = −(n − 1)+ 1
|Df |2(1+ |Df |2)2 (|Df |2(1+ |Df |2)+ f H1( f ))

×
(
n + f * f − f H1( f )

1+ |Df |2
)

−
(
|Df |2(1+ |Df |2)+ 2 f H1( f )

+ f 2H2( f ) − f 2(H1( f ))2

1+ |Df |2
))

= −(n − 1)+ 1
|Df |2(1+ |Df |2)2

(
n|Df |2(1+ |Df |2)+ n f H1( f )

+ f * f |Df |2(1+ |Df |2)+ f 2H1( f )* f − f H1( f )|Df |2 − f 2(H1( f ))2

1+ |Df |2

−
(
|Df |2(1+ |Df |2)+ 2 f H1( f )+ f 2H2( f ) − f 2(H1( f ))2

1+ |Df |2
))

= −(n − 1)
|Df |2

1+ |Df |2 + f
|Df |2(1+ |Df |2)2 ((n − 2)H1( f )

+ * f |Df |2(1+ |Df |2)+ f H1( f )* f − H1( f )|Df |2 − f H2( f )). (3.5)

Now, as above, at any given point where h = log f is finite and Df ̸= 0, we choose a
local normal coordinate such that ∂

∂x1
is a Euclidean unit vector in the direction of Df . Then

pointwise we may simplify (3.5) as follows:

Rik f̄ i f̄ k = −(n − 1)
f 21

1+ f 21
+ f

(1+ f 21 )
2

(

(n − 2) f11 + * f (1+ f 21 )

+ f f11* f − f11 f 21 − f
n∑

i=1

f 21i

)

= −(n − 1)
f 21

1+ f 21
+ f

(1+ f 21 )
2

(

(n − 1)

(

f11 +
1+ f 21

f

)

− (n − 1)
1+ f 21

f

+ f

(
1+ f 21

f
+ f11

)
n∑

i=2

fii − f
n∑

i=2

f 21i

)
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= f 2

(1+ f 21 )
2

(
1+ f 21

f
+ f11

)
n∑

i=2

(
fii +

1
f

)
− (n − 1) − f 2

(1+ f 21 )
2

n∑

i=2

f 21i .

(3.6)

But then, since the Ricci curvature is nonnegative, it follows that Rik f̄ i f̄ k ≥ 0 so
[

f

(1+ f 21 )
3
2

(
1+ f 21

f
+ f11

)] [
f

(1+ f 21 )
1
2

n∑

i=2

(
fii +

1
f

)]

≥ (n − 1). (3.7)

Note that the sum of the two factors in (3.7) is the mean curvature in the light of (3.2).

Lemma 3.1 On a hypersurface in hyperbolic space with nonnegative Ricci curvature the
mean curvature of the hypersurface H ≥ n.

Proof From the assumption that the Ricci is nonnegative, for each i = 1, . . . , n, one has

κi H ≥ n − 1+ κ2
i

where κi denote the principal curvatures. Therefore, with our choice of orientation, κi > 0
and

H2 ≥ n(n − 1)+
n∑

i=1

κ2
i ≥ n(n − 1)+ 1

n
H2

which implies that H ≥ n. ⊓.
Since both sum and product are positive, the two factors on the left of the Eq. (3.7) are

both positive. Therefore,
√√√√ (n − 1)

(
1+ f 21

f
+ f11

)

·

√√√√
n∑

i=2

(
fii +

1
f

)
≥ (n − 1)

1+ f 21
f

. (3.8)

Theorem 3.1 Suppose that # is a vertical graph of a function xn+1 = f (x1, . . . , xn) in the
upper half-space model of hyperbolic space with f ∈ C2 wherever the hyperbolic height
function h = log f is finite. If # has nonnegative Ricci curvature, then the height function is
Euclidean n-subharmonic. That is,

*n log f = Div(|D log f |n−2D log f ) ≥ 0 (3.9)

wherever h = log f is finite.

Proof One may focus on the points where Df ̸= 0. From (3.8) and Young’s inequality, we
have

2(n − 1)
1+ f 21

f 2
≤ (n − 1)

(
f11
f

+ 1+ f 21
f 2

)

+
n∑

i=2

fii
f

+ (n − 1)
1
f 2

which implies

0 ≤ (n − 1)
f11
f

− (n − 1)
f 21
f 2

+
n∑

i=2

fii
f

= (n − 1)(log f )11 +
2∑

i=2

(log f )i i

= (n − 2)|D log f |−2
n∑

i, j=1

(log f )i j (log f )i (log f ) j + *(log f )

= |D log f |−(n−2)*n log f (3.10)

and completes the proof. ⊓.
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4 n-Subharmonic functions and proof of main theorem

Let# be a complete, noncompact, properly embeddedhypersurface inHn+1 with nonnegative
Ricci curvature. Then from (1.1) # is strictly convex and it is known that # is the boundary
of a strictly convex body U in hyperbolic space. Then the recession set R(#) for # is the
collection of end points at infinity of all geodesic rays which lie entirely inside U . Thanks to
Epstein, Alexander and Currier [1,2,10], it is also known that # can be realized as a vertical
graph of a height function over a domain in any horosphere centered at a point in the recession
set (cf. [1,2,10]). Let us state a lemma to collect some useful facts for us.

Lemma 4.1 (cf. [1, Proposition 2.2]) Suppose that # is a complete, noncompact, properly
embedded, strictly convex hypersurface in hyperbolic space. Then # is a graph of a height
function h : ( → R ∪ {−∞}. Here ( ⊂ Hp0 , whereHp0 is a horosphere centered at some
point p0 in the recession set R(#). Moreover the following hold:

• The domain ( is a convex and open subset of Hp0 .
• The height function h is continuous and locally bounded from above in (.
• P({h = −∞}) ∪ {p0} is the recession set R(#), where P is the simple orthogonal

projection when using the half space model taking p0 as the infinity.

Proof One can refer to the graph below for the notions. Note that all geodesic lines from p0
have one-to-one correspondence with the horosphere Hp0 . From (1.1),U is strictly convex.
So all geodesic lines from the point p0 are exclusively of three kinds: those lying entirely
inside U ; those lying entirely outside U ; those intersecting # transversally. The intersection
points of Hp0 with those geodesic lines which are not lying entirely outside U make up the
domain (. Since U is open and convex, it is easy to prove that ( is open and convex inHp0 .
Let (x1, . . . , xn, xn+1 = ey) be the Busemann coordinate and assumeHp0 is given by y = 0.
In this coordinate, # together with the recession set R(#)\{p0} can be viewed as the graph
of the function y = h(x1, . . . , xn) over(.# corresponds to where h is finite and R(#)\{p0}
corresponds to where h = −∞. It is not difficult to prove that h is continuous in ( from the
fact the hypersurface is smooth and convex. So it is locally bounded from above in ( since
h < +∞ in (. The third item is also obvious from our construction.
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In this section, based on the theory of n-subharmonic functions and n-polar sets in [11,12]
by Heinonen, Kilpelainen, and Martio, and Lindqvist, we present an argument here to show
that for a complete properly embedded hypersurface with nonnegative Ricci curvature, the
set

{h = −∞} ⊂ (

is totally disconnected. In particular, p0 is a connected component of the recession set, since
if there were other points in the connected component containing p0, these points are totally
disconnected, which is absurd. Then if the hypersurface is not an equidistant hypersurface,
∂∞# = {p0}. So we will complete the proof of the main theorem.

For the convenience of the readers we recall some of the basics in the theory of p-
subharmonic functions on domains in Rn . Our introduction here is mostly based on [11,12],
therefore readers are referred to [11,12] for details and proofs. First we recall Definition 7.1
of [11] (see also Definition 5.1 of [12]), which defines viscosity p-subharmonic functions in
terms of the comparison principle.

Definition 4.1 ([11, Definition 7.1] [12, Definition 5.1]) A function u : W → R ∪ {−∞} is
called viscosity p-subharmonic in a domain W ⊂ Rn , if

(1) u is upper semi-continuous in W ;
(2) u ̸≡ −∞ in W ;
(3) For each W1 ⊂⊂ W , the comparison principle holds: if v ∈ C(W 1) is p-harmonic in

W1 and v|∂W1 ≥ u|∂W1 , then v ≥ u in W1.

The most important analytic tools for us are Theorems 10.1 and 2.26 in [11], which we state
as follows:

Theorem 4.1 ([11, Theorems 10.1 and 2.26]) Suppose that u is a viscosity p-subharmonic
function defined in a domain W ⊂ Rn. Then its p-polar set {u = −∞} ⊂ W is of

123



Hypersurfaces with nonegative Ricci curvature in Hn+1 Page 13 of 14    36 

zero p-capacity and of Hausdorff dimension at most n − p. Particularly, for a viscosity
n-subharmonic function u, the set {u = −∞} is of zero n-capacity and

dimH ({u = −∞}) = 0.

Therefore, the main issue in proving the Main Theorem is to verify that the height functions
for complete properly embedded hypersurfaces in hyperbolic space with nonnegative Ricci
curvature are viscosity n-subharmonic in( ⊂ Rn . In the light of Definition 4.1, we only need
to verify the comparison principle. Here we make a note that viscosity p-subharmonic func-
tions may not belong to W 1,p

loc . However, if it is locally bounded from below, then it belongs
to W 1,p

loc . For our purpose we introduce the notion of weakly p-subharmonic functions.

Definition 4.2 ([12, Definition 2.12]) For p ≥ 1 and a domain W ⊂ Rn , a function u ∈
W 1,p

loc (W ) satisfying
∫

⟨|Du|p−2Du, Dη⟩dx ≤ 0 for each η ∈ C∞
0 (W ) and η ≥ 0 (4.1)

is called a weakly p-subharmonic function in W .

From Theorem 2.15 in [12] and subsequent remarks we have the following comparison
principle for weakly p-subharmonic functions.

Theorem 4.2 ([12, Theorem 2.15]) Suppose that u is a weakly p-subharmonic function and
v is a p-harmonic function in a bounded domain W ⊂ Rn. If for every ζ ∈ ∂W

lim sup
x→ζ

u(x) ≤ lim inf
x→ζ

v(x) (4.2)

with the possibilities ∞ ≤ ∞ and −∞ ≤ −∞ excluded, then u ≤ v almost everywhere in
(.

Consequently, due to Theorem 3.1 in the previous section, away from the recession set, the
height function h is clearly weakly n-subharmonic and satisfies the comparison principle.
Now we are ready to prove our main theorem.

Proof of theMain Theorem We claim that the height function h = log f is viscosity n-
subharmonic in its domain ( as defined in Lemma 4.1. It is clear that h ̸≡ −∞ and that
h is upper semi-continuous. One only needs to verify the Comparison Principle in (3) of
Definition 4.1. Assume otherwise, that condition (3) does not hold for h in (. Let v ∈ C(W )

be an n-harmonic function in W ⊂⊂ ( with v ≥ h on ∂W but h > v in some nonempty
open subset W0 ⊂ W with h = v on ∂W0. Then it is easily seen that W0 ∩ {h = −∞} = ∅.
That is to say the height function h is finite in W0 and therefore satisfies the comparison
principle Theorem 4.2 on W0, which is a contradiction. Thus, the height function is indeed
viscosity n-subharmonic.

In the light of Theorem 4.1, we know that dimH (R(#)) = 0. So the asymptotic boundary
is totally disconnected, that is, every connected component of the asymptotic boundary can
only be a single point. If the asymptotic boundary has more than one connected component,
then we know ∂∞# consists of exactly two points by the Cheeger–Gromoll splitting theorem
[7] and the discussion in Sect. 2. Hence, by Theorem 2.1, it follows that # is an equidistant
hypersurface. Otherwise, the asymptotic boundarymust consist of a single point. So the proof
of the Main Theorem is complete.

Our corollary now follows easily from our main theorem and the discussion above. From
our main theorem one easily sees that a manifold (Mn, g) with nonnegative Ricci curvature
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that can be isometrically embedded inHn+1 can either be embedded as an equidistant hyper-
surface and is therefore diffeomorphic to a cylinder R × Sn−1 or it can be embedded as a
hypersurface with single point boundary at infinity. In the latter case, one finds in that the
hypersurface can be realized as the graph of a smooth (nonsingular) height function over a
convex open domain ( in a horosphere and is therefore diffeomorphic to Rn . ⊓.
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