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Open your eyes,

Let it begin with me.

Brand new day,
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The mornin’ is callin’,

Walk with me into the sun.

Everything’s Coming Our Way,

—Carlos Santana
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ABSTRACT OF THE DISSERTATION

Spectral Decomposition in Large Scale Nuclear Computations:
Broken Symmetries of Chromium and Astrophysical PF-Shell Weak Transitions

by

Raul A. Herrera
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University of California San Diego, 2020

Professor George Fuller, Chair

Using a modified version of the Lanczos matrix diagonalization algorithm for spectral

decompositions, properties beyond basic nuclear structure can be computed. In this dissertation,

this method is applied to solutions of the nuclear Hamiltonian under symmetry group operators

and weak nuclear force transition operators. In Chapter 2, I decompose state vectors for chromium

isotopes decomposed into the basis of Casimir operators of symmetry groups relevant to nuclei.

While these symmetries are broken under the nuclear interaction, the decompositions tend to

hold their patterns for certain progressions of states identified to be crossing rotational bands

in the energy spectrum, where the spectra are related to the phenomena of backbending. These
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patterns are known as quasi-dynamical symmetries. In Chapter 3, I compute weak nuclear force

transition strength functions, specifically Gamow-Teller transitions for certain pf-shell isotopes

relevant to massive stellar collapse and nucleosynthesis. I examine these transitions in terms of

the Brink-Axel hypothesis, which states that transition strength distributions from excited states

are identical to the transition strength distribution from the ground state. I develop a method for

computing weak transition rates in stellar environments based on a localized Brink-Axel statement.

This allows for the access of highly excited states, which have heretofore been prohibitive, and

therefore improved thermal weak rates of heavy nuclei at temperatures occurring in stellar cores

near collapse. As such, the methods developed in this dissertation are a contribution to progress

on this topic.
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Chapter 1

Introduction and Theoretical Background

The properties of nuclei are important in many applications, whether nuclear energy and

medicine, or understanding astrophysical phenomena. Fundamental to such applications is an

understanding of nuclear structure and dynamics. Therefore, this chapter begins with an outline

of the basic quantum many-body problem of nuclear physics. Later, I introduce the mathematical

concept of symmetry groups, which was applied in the work of Chapter 2, a previously published

collaboration on the properties of rotational bands in chromium isotopes, which are associated

with another phenomenon in the nuclear energy spectrum called backbending. Then, I discuss

weak nuclear force transitions of selected heavy nuclei around mass number A = 55� 57, in

preparation for the work in Chapter 3. The weak nuclear force is responsible for beta decay

and related processes such as neutrino production, which provides important context to the

gravitational collapse of massive stars. The appropriate use of an approximation known as the

Brink-Axel hypothesis is analyzed of these iron peak nuclei, but will not be discussed until

Chapter 3. At then end of this chapter, I discuss the relevance of the Lanczos algorithm [1], and

prescribe the different versions of it used to compute the nuclear Hamiltonian eigenvectors, and

spectral decompositions.
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1.1 Nuclear Structure

In this work, nuclei are treated as non-relativistic collection of neutrons and protons

at low energy (order of keV and MeV) relative to medium and high energy scales of meson

exchange, or QCD and quarks, respectively. This will suffice for most applications, including

stars at temperatures in the billions of kelvin. These temperatures correspond to energies of MeV,

where nuclei may dissociate but are not necessarily relativistic. Because the proton and neutron

have similar mass and interaction with the nuclear forces to a good approximation, one can treat

them as a single type of particle known as the nucleon, exhibiting a two state symmetry, the two

dimensional representation of SU(2). Therefore I use the isospin coordinate, short for isotopic

or isobaric spin, which is analogous mathematically to electron spin [2]. The quantum number

for the total isospin of a state is T , where a nucleon has T = 1/2. The proton and neutron are

assigned spin up and down states, respectively, and given the isospin projections Tz = 1/2 and

Tz = �1/2. For a single nucleus, I use Z for the number of protons, and N for the number of

neutrons, such that Tz = (Z �N)/2. Lastly, since the same SU(2) algebra holds for isospin, then

for a single nucleon the isospin operators ti can be represented by the same Pauli matrices, such

that in matrix form ti = si for i = x,y,z.

1.1.1 Many-Body Hamiltonian and Wave Function

In quantum many-body physics, the Hamiltonian is generalized so that one sums over

the kinetic energies, Ti, of all the particles, the interparticle interactions, Vi j, and any external

potentials, Ui, giving:

H = Â
i
(Ti +Ui)+

1
2 Â

i6= j
Vi j. (1.1)

The many-body Hamiltonian acts on many-body wave functions, Yn, that depend on the

spatial coordinates for all A = N+Z particles,~r1,~r2, . . .~rA, where~ri = (xi,yi,zi). Yn also depends
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on the spin angular momentum~si = (sx
i ,s

y
i ,s

z
i ) and isospin coordinates~ti = (tx

i ,t
y
i ,t

z
i ) of every

particle.

General solutions to the many-body eigenvalue problem HnYn = EnYn are written as

linear combinations as:

Yn =
Dim(H)

Â
k=1

ckY0
k(~r1,~s1,~t1;~r2,~s2,~t2; . . . ,~rA,~sA,~tA), (1.2)

where the Y0
k are members of a Hilbert space comprising the many-body basis. The ck are the

amplitude coefficients of each basis state. The sum is up to the dimension of the vector space,

Dim(H), which could be in principal be infinite. In this work, the total angular momentum of a

nucleus is the sum of the individual total angular momentums of each nucleon, ~J = Â
i

~ji =~L+~S,

where ~L = Â
i

~li is the total orbital angular momentum, and ~S = Â
i
~si is the total spin angular

momentum, of the constituent nucleons. Sometimes in nuclear physics literature the total angular

momentum of the nucleus is labeled by I instead of J.

Ideally, one works with complete basis sets, {Y0
1,Y0

2, . . . ,Y0
Dim(H)}, meaning sets that

span the solution space appropriate to the Hamiltonian. Often these basis sets of functions are

constructed from solutions to a simpler problem that has previously been solved, especially if the

new problem has similar properties or results form a small perturbation to the old one. An example

would be a independent particle model of a mean field of simple harmonic oscillator type. Note:

Generally, the term eigenstate, state vector, and wave function may be used interchangeably.

1.1.2 Nuclear Shell Model

In atoms, the quantum states of electron were found to exhibit shell structure, which gives

rise to the Periodic Table of Elements and highly stable atoms with filled shells like the noble

gases. Similarly, nuclei exhibit shell structure first posited by Nobel Prize winner Maria Goeppert

Mayer [3], where filled shells correspond to stable atomic nuclei according to certain magic
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Ground State

Fermi Energy

An Excited State

a hole

Left (solid) = protons
Right (dashed) = neutrons

Figure 1.1: Protons and neutrons in the independent particle model

numbers of nucleons. Understanding isospin and shell structure are the first steps in organizing

solutions to the nuclear many-body problem, and in this section I develop the nuclear shell model

further. Before describing the basis of solutions mathematically, it is useful to provide a mental

picture. These shells all represent different energy levels, which are solutions for a single particle

in a mean field created by the collective action of all the nucleons. This assumes the Independent

Particle Model, where none of the particles interact with each other but simply fill up a series of

shells that are labeled by specific energy and other quantum numbers. The total energy of the

nucleus is therefore the sum of all the individual energies of the protons and neutrons. If one fills

up single particle states starting from the bottom upward, one gets the lowest energy state (or

states), known as the ground states. But if one allows some of the particles into higher energy

shells, one gets excited states.

In the simplest case the proton-neutron mass difference, as well as, the Coulomb repulsion

of protons is ignored, so the energy levels and states are identical, as in figure 1.1. They are

identical fermions, so a proton may not inhabit the same state as another proton, but it may share

a state with a neutron. The shells are labeled nlJ by the radial quantum number, n, which by

my convention goes as 1,2,3, . . . , and the orbital angular momentum values l = 0,1,2,3, . . . that

single nucleons would have in the shell, which are given the spectroscopic labels s, p,d, f , . . . ,

respectively. Hence a major shell labeled 1p means that it has radial quantum number n=1, which

is related to the number of nodes in the wave function, and orbital quantum number l = 1, and

1p3/2 is a sub-shell with states of J = 3/2. Now the shells with lower n and l are energetically
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favored and fill up first with nucleons to get the lowest energy state, or ground state, though other

forces may affect this ordering. But excited states of nucleons, where some particles are excited

to higher energy shells, will have higher total energies and leave behind holes in the lower energy

shells. A nucleus with a ground state comprising of a completely filled shell will be especially

stable as the energy gaps between shells make removing a nucleon energetically disfavored. When

the total number of protons, or separately the total number of neutrons, corresponds to this filled

shell situation, one has a magic number [4] as shown in figure 1.2, where the nucleus has a larger

binding energy pointing to stability against decay.

This was mainly used as a tool to understand nuclear structure better, but to get accurate

magic numbers and other properties of nuclei, there a few more complications. The usual starting

point in the theoretical spectroscopy of nuclei assumes that individual nucleons interact only

through a mean field created by the collective action of all the nucleons. The mean field potential

takes various forms depending on convenience or desired accuracy, such as the harmonic oscillator

or square well. Also, the nuclear Hamiltonian has a strong interaction between the spin and

orbital coordinates of the nucleons [5]. The spin-orbit potential takes the form US�O(~ri)~li ·~si and

becomes part of the mean field, preserving the Independent Particle Model but with newly shifted

energies of the orbitals, s, p, d, f,. . . , along with splitting for different values of total angular

momentum, where |L�S| J  L+S.

In figure 1.2, the major shell groupings (1s or just s, 1p or just p, 2s1d or sd, 1p1f or

pf) include these effects. Also in the figure, the pf-shell, having higher energy then the sd-shell,

is partially filled and therefore is known as the valence shell. Below that all shells (sd, p, and

s) are completely filled and represent a frozen core of the very stable nucleus 40Ca, where this

corresponds to magic numbers of 20 protons and 20 neutrons.

Again due to the large energy gaps between major shells, it is possible in applications

to ignore the frozen core and only deal with interactions of nucleons within finite valence

shell subspaces. An interaction among these nucleons is know as a residual interaction. Now
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Figure 1.2: Nuclear shell groupings and magic numbers structure, where energy increases
vertically. Example “pf” is a major shell made up of two subshells; namely the 1f and 2p. Note:
for simplicity only one type of nucleon is shown e.g. protons.

the generic many-body Hamiltonian described in equation 1.1 becomes more specific and is

represented in terms of matrix elements. That is, in this work I use so-called phenomenological

interactions, where the energy contribution of the frozen core is known and the interaction matrix

elements for the valence space is provided for diagonalization. The matrix elements of these

phenomenological interactions are derived by fitting the eigenvalues of nuclides in the model

space to so-called realistic interactions, such as the Bonn potential [6], with parameters that were

fitted to experimental data, including nucleon scattering data.

1.1.3 Many Body Basis

When restricting to a valence space, as described in the previous section, one gets an

interaction in a basis of single particle states, where they are often the same for protons and

neutrons. In the M-scheme including isospin, these single particle states, would be labeled

|nl jMT T zi, where for protons and neutrons T = 1/2 and T z = ±1
2 . However, since nucleons

are fermions, these states are either occupied or not, and a convenient and natural representation

to put into a computer is the occupation space representation. For fermions this gives a binary

representation in terms of 0 or 1, whereas for bosons one could have occupancies greater than
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1. Thus, I assign to each single particle basis state an index in a vector of zeroes and ones

corresponding to whether that state is occupied. Finally, I use a complete vector space of states

with one for each possible combination of zeros and ones, where in a single basis state the number

of ones must add up to the total mass number, A = N +Z.

Generally, one can write an occupation space state as a tensor product of possible states

for particles to occupy:

|n1i⌦ |n2i⌦ · · ·⌦ |nki= |n1n2 . . .nki, (1.3)

where the nk are the occupancies of the k-th states, the label, i, represents a specific basis state

having a unique k-tuple of nk, and |0i = |000....0i is a vacuum state representing no particles

occupying any state. For example in occupation space, if one had three fermions in six different

states, then one could have the following:

|010101i

|100101i

|100011i

(1.4)

One might wish to work in a space where N, Z, or A = N+Z vary, that is, the total number

of neutrons, protons, or nucleons respectively. The direct sum of all possible basis states with

different numbers of identical particles is called a Fock space, but generally in nuclear physics,

including this work, one keeps the total number of nucleons fixed. This is represented by a sector

of Fock space with only A nucleons in the occupancy space representation. Also, this fixed basis

can be organized as a tensor product of proton states with neutron states, |pi⌦ |ni, each in a

binary representation. Such a factorized representation can be useful when wanting to save space

in terms of memory on a computer [7].

Finally, the Hamiltonians I use in this work have rotational symmetry and conserve total

isospin and thus computed eigenstates will have "good" or fixed J and T. However, an M-scheme
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algorithm only guarantees a basis keeping Jz = M fixed, but not other quantities. Consequently,

basis states y used have the following properties:

Jz|yi= M|yi

Tz|yi= (Z �N)

2
|yi,

(1.5)

where these are not necessarily coupled to good J or T. While I have described the quantum

many-body basis and someways to simplify its representation, one may still have too large of a

basis size to solve the problem practically. Therefore, the number of single particle states will

have to be reduced to reduce the computation time and memory required to a tractable amount.

These reductions will either be a result of:

1. approximations or truncation, such as but not limited to, inert core of shells with small

number of valence shell(s), functional expansions of operators, or restricting the types of

excitation (particle-hole, two particle-two hole, particle-particle, etc.)

2. exact reductions to equivalent representations, such as, irreducible representations due to

symmetries.

1.1.4 Representations of Operators: Computing Matrix Elements

We start with the second quantization formalism of creation and annihilation operators,

where the word second comes from the ability to quantize field operators in this context. These

operators are c†
k and ck, which create or destroy a particle in state, k, respectively. For example

one could create a particle in every single basis state:

Dim

’
k=1

c†
k |0i= |111 . . .1i (1.6)

Here |0i= |000 . . .0i is known as the vacuum state, where no particles are occupy anything.
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Now imagine that an operator acts on a single particle, or two particles, or more by taking

these particles to new states. These are called one-body operators, two-body operators, and so on,

when acting on a many-body basis. These many-body operators can be represented as matrices

using tensor products and Fock space. A simple example of one body operators in Fock space

are pairs of the creation and annihilation of particles. From equation 1.1, the kinetic energy Ti is

another example of a one-body operator and the scalar interparticle interactions, Vi j, would be

two-body operators. These operators are converted into matrices using inner products, so that the

matrix element of an operator is:

Oab...,cd... = hab . . . |O|cd . . .i, (1.7)

where a, b, c, and d are single particle states that nucleons may occupy. An n-body operator

takes n particles in n states to n other states, or the same states, but can act on a state that has any

number of particles, including zero (vacuum). As a reminder, this is Dirac, or bra-ket, notation

where the ket, |cdi, and the bra hab| is conjugate transpose of |abi, hence this is a scalar product.

In the creation/annihilation operator formalism, a one body operator would look like

T =� h̄
2m

∂ 2

∂ 2xi
in position space, but in the occupation space it takes the general form:

T = Â
jk

T ( j,k)c†
jck, (1.8)

with the sum over the single particle basis states. A two body operator would have the form:

V = Â
a<b,c<d

V (ab,cd)c†
ac†

bcdcc (1.9)

where the sum is again over single particle states.

At times it becomes necessary to do algebra with the creation and annihilation operators.

Therefore one uses the fact that an annihilation operator acting on vacuum gives, due to the nature
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of fermions only occupying states one at a time, ck|0i = 0 or a creation operator acting on an

already occupied k-th state would give after pulling out the creation operator c†
k | . . .

k
1 . . .i= 0. This

leads to the conjugate transpose operation with a creation operator h0|c†
k = 0 and h. . .

k
1 . . . |ck = 0.

Lastly, a consequence of fermions getting a negative sign under exchange, is that these operators

anti-commute, written {ck2 ,ck1}= 0, {c†
k2
,c†

k1
}= 0, and {c†

k2
,ck1}= dk1,k2. For example, in the

last relation, for k1 6= k2, explicitly one gets:

0 = {c†
k2
,ck1}= c†

k2
ck1 + ck1c†

k2

c†
k2

ck1 =�ck1c†
k2

(1.10)

and for k1 = k2

1 = {c†
k2
,ck1}= c†

k2
ck1 + ck1c†

k2

ck1c†
k2
= 1� c†

k2
ck1

c†
k2

ck1 = 1� ck1c†
k2

(1.11)

Consider two identical particles and four single particle states, a,b,c,d. The Hamiltonian

typically is made of sum of a one body and a two body interaction, but here it will have only two

two-body elements. First is, H(ab,bc)=0.5. Second because it is Hermitian, there is H(bc,ab)=0.5,

so if it sees two particles in states b and c, it will take them to states a and b, or vice versa. In

this case the fermion many-body basis has six unique anti-symmetrized states {1 = ab, 2 = ac,

3 = ad, 4 = bc, 5 = cd, 6 = cd}. Not surprisingly, for two identical particles one just gets the

same matrix. That is, the only matrix elements in this two particle basis are the ones mentioned
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above, which looks like:

H(2) =

2

666666666666664

0 0 0 0.5 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0.5 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

3

777777777777775

(1.12)

However, if instead one does three identical particles with the same basis and interaction, it gets

more interesting. Now there are only four unique many-body states {1=abc,2=abd,3=acd,4=cbd}.

Thus, because there aren’t as many holes to move particles around in, then there are less total

configurations. Generally, this involves creation/annihilation particle algebra In this three particle

basis one gets the following non-zero matrix elements:

H(3)
24 = h2|H|4i

= habd|H(ab,bc)c†
ac†

bcccb|cbdi

= H(ab,bc)h0|cdcbcac†
ac†

bcccbc†
cc†

bc†
d|0i

= H(ab,bc)h0|cdcccbc†
cc†

bc†
d|0i

= H(ab,bc)h0|cdcc(�c†
ccb)c

†
bc†

d|0i

=�0.5h0|0i=�0.5(1) =�0.5

(1.13)

To get to the last step one just notices that when acting on the vacuum state to the right the pairs

ck1c†
k2

are just the identity operator that does nothing and can be moved out of the way, so there

ends up being a minus sign. The only other non-zero element is H24 = h4|H|2i, which is the
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same by symmetry of a Hermitian operator. This gives a matrix that looks like:

H(3) =

2

66666664

0 0 0 0

0 0 0 �0.5

0 0 0 0

0 �0.5 0 0

3

77777775

(1.14)

Note: State 4 |cbdi results in negative matrix elements because c and b are reversed, but if they

were in order one would get a positive number, which highlights the important of tracking signs

correctly in fermion exchange.

In general the Hamiltonian interactions I use in this work will take the form H = H1 +H2,

where in equation 1.1 these corresponds to the one-body term Â
i

Ti+Â
i

Ui and the two-body term

1
2 Â

i 6= j
Vi j, respectively. The one-body part is:

H1 = Â
a

ea [ ja ][c†
a ⇥ c̃b ]J=0 (1.15)

and the two body part is:

H2 =
1
4 Â

abcd
zabzcd Â

JT
VJT (ab,cd) Â

M,MT

A†
JM,T MT

(ab) AJM,T MT (cd) (1.16)

Within the model space one is supplied with the single particle energies, ea , and the two-body

matrix elements between two states a and b, VJT (ab,cd). Here zab =
p

1+dab. Further, the two-

body pair creation operators operators A†
JM,T MT

(ab) are coupled to total J and T and projections

Jz = M and Tz = MT , specifically:

A†
JM,T MT

(ab) = [c†
a ⇥ c†

b]JM,T MT (1.17)
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where the coupling is accomplished via a sum over all possible individual angular momentum

z-projections ma and isospin projections µa involving Clebsch-Gordan coefficients, that is:

[c†
a ⇥ c†

b]JM,T MT = Â
ma,mb

h jama, jbmb|JMi Â
µa,µb

h1/2 ma,1/2 mb|T MT ic†
jama,1/2 µa

c†
jbmb,1/2 µb

,

(1.18)

which creates a state |ba;JM,T MT i. While three-body or higher order terms are sometimes used

to account for other affects, these will not be significant in this work.

For phenomenological shell model interactions, the single particle energies and two-body

matrix elements are parameters that are varied so as to obtain accurate quantities for the nuclei

in the model space, such as the energy eigenvalues of the low energy spectrum. Examples of

phenomenological interactions are USDB [8] for the sd-shell or GXPF1A [9] for the pf-shell,

which were from derived from intermediate effective interactions computed using G-matrix theory

on realistic nucleon-nucleon interactions mentioned at the end of section 1.1.2 [10].

1.1.5 Symmetries, Group Theory and Algebras

To introduce the concept of symmetry groups, let us consider a free particle with no inter-

action forces. For a single particle, the total angular momentum, ~j =~l +~s, would be conserved,

where one has a sum of its orbital, ~l and spin, ~s, angular momentum. However for multiple

particles, an important property of the nuclear Hamiltonian is that the total angular momentum,

~J = Â
i

~ji, and total isospin ~T = Â
i
~ti of all the particles is conserved. Note: Sometimes I is used

instead of J for total angular momentum. The representations of these symmetries have useful

properties:

1. Transformation operators representing a symmetry of the system form a mathematical

group structure, that is, the set of transformation operators is closed under a binary operation, for

example matrix operators and matrix multiplication.

2. For a continuous symmetries, there is an associated Lie algebra of the group made
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up of linear combinations of operators called generators. The generators follow commutation

relations of the following form:

[Oa,Ob] = Â
c

fabcOc, (1.19)

where fabc are structure constants unique to the algebra and the commutator is the following

operation [Oa,Ob] = OaOb �ObOa. The generators are called as such because they generate a

transformation of the state of a system, such as a rotation.

For example in physics, these generators sometimes represent measurable values called

observables. But the generators may not commute with each other, therefore they cannot be

measured simultaneously. For example, in a system with rotational symmetry, the symmetry

group is called SO(3). One representation of a rotation operator would take the form:

R(~n,f) = exp

 
�i

~J ·~n
h̄

f

!
, (1.20)

where one has the total angular momentum vector ~J = (Jx,Jy,Jz), the normal vector,~n along the

desired axis of rotation, and f the angle of rotation. Here one possible set of generators are the

operators representing the Cartesian components of the total angular momentum vector Jx, Jy,

and Jz, where in this basis one can derive:

R(a,b ,g) = e�i Jz
h̄ ae�i Jy

h̄ b e�i Jz
h̄ g , (1.21)

where the operators depend on the Euler angles,(a,b ,g).

3. There exists a special operator known as the Casimir invariant that commutes with all

of the generators and consequently the entire Lie Algebra. The operator therefore acts as just

a scalar (or number) when next to a basis state. These are typically quadratic or higher order

forms of the generators. For example, in rotational symmetry one has the square of the angular

momentum vector operator, J2 = ~J · ~J = Jx
2 + Jy

2 + Jz
2.
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4. When an operator, O, such as a generator or the Casimir invariant, commutes with the

Hamiltonian, that is, [H,O] = 0, then its eigenvalues, known as quantum numbers in physics,

are conserved quantities. This is related to Noether’s first theorem, which states that conserved

quantities are implied by a dynamical symmetry, where the Hamiltonian is the generator of

dynamics. A set of basis states, which are constructed from a previously solved Hamiltonian, can

be labeled by a set of conserved quantities for that Hamiltonian.

Should it suit the particular problem, the Casimir invariant eigenvalues can be used as

labels for closed subspaces of the solution space, known as irreducible representations, where

group generators on vectors will result in vectors in the same subspace. This concept is useful

when applied to conserved quantum numbers. For example, if one knows the total angular

momentum quantum number is J = 2, then one only has to use certain basis states labeled by

J = 2, and that simplifies computation by reducing the basis dimension.

Further, if one uses a basis arranged in irreducible representations of matrix operators

that act on vector states, then the operators in this representation will take a block diagonal form

according to the quantum number labels. As an example, using one Cartesian angular momentum

generator, Jz and the Casimir invariant, one gets a basis of vectors like, | jmi, where j is the

eigenvalue of the Casimir invariant and m is the eigenvalue of Jz. In this basis, rotation operators

will take the Wigner D-Matrix representation:

R(a,b ,g) =

2

666666666666666664

D0
00 0 0 0 0 0 . . .

0 D0
�1�1 D0

�10 D0
�11 0 0 . . .

0 D0
0�1 D0

00 D0
01 0 0 . . .

0 D0
1�1 D0

10 D0
11 0 0 . . .

0 0 0 0 D0
�2�2 D0

�2�1 . . .

0 0 0 0 D0
�1�2 D0

�1�1 . . .

...
...

...
...

...
... . . .

3

777777777777777775

, (1.22)
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where the matrix elements are D j
m0m(a,b ,g) = h jm0|R(a,b ,g)| jmi. These blocks are indecom-

posable subspaces, that is, they act independent of each other. So again as an example, if one

acts on a vector with values only in a certain block, then the result is as if the operator matrix had

zeros everywhere else:

R(a,b ,g)Y = Y0

2

666666666666666664

D0
00 0 0 0 0 0 . . .

0 D1
�1�1 D1

�10 D1
�11 0 0 . . .

0 D1
0�1 D1

00 D1
01 0 0 . . .

0 D1
1�1 D1

10 D1
11 0 0 . . .

0 0 0 0 D2
�2�2 D2

�2�1 . . .

0 0 0 0 D2
�1�2 D2

�1�1 . . .

...
...

...
...

...
... . . .

3

777777777777777775

2

666666666666666664

0

0

0

0

1p
5

1p
5
...

3

777777777777777775

=

2

666666666666666664

0

0

0

0

1p
5
(D2

�2�2 +D2
�2�1 + . . .)

1p
5
(D2

�1�2 +D2
�1�1 + . . .)

...

3

777777777777777775

Here my initial state vector Y is non-zero only in the J=2 block, and due to the structure of the

matrix operator, so is the resulting state vector Y0. Thus I ignore, better yet remove, all of the

other blocks of the matrix operator acting on the state, because all elements are being multiplied

by zero. This allows for an exact finite representation, where one does not have to worry about

infinite sums. However, there are situations when infinite sums are unavoidable, and this is usually

the case in computational quantum physics research, so the hope is that truncating higher energy

blocks would give a good approximation.

1.1.6 Wigner-Eckart Theorem

An indispensable mathematical relation for applications to quantum physics is the Wigner-

Eckart theorem, which applies to matrix elements of tensor operators transforming under a

symmetry group. Spherical tensors transform under the rotation group symmetry SO(3), or
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equivalently SU(2), and these include angular momentum and isospin operators. The Wigner-

Eckart theorem factorizes matrix elements of operators into the Clebsch-Gordan coefficient,

which depends on orientation or spin component, M, and the reduced matrix element that only

depends on J. Specifically, using the standard convention of Edmonds [11]:

hJM|T (k)
q |J0M0i= 1

2Jf +1
hJ0M0kq|JMihJ||T (k)||J0i (1.23)

where k is known as the rank of the spherical tensor and q is the component, where �k  q  k.

The Clebsch-Gordan coefficients, hJ0M0kq|JMi, come from angular momentum addition in the

coupling of two angular momenta. The coupled state with total angular momentum, J, and

z-component, M, is then the sum over all possible values of the two individual z-components, M0

and q,:

|JMi=
J0

Â
M0=�J0

k

Â
q=�k

|J0M0kqihJ0M0kq|JMi (1.24)

Because of selection rules, the Clebsch-Gordan coefficients are zero unless M0+ q = M and

|J0 � k| J  J0+ k, reducing hte number of matrix elements to compute. For example, since the

square of total angular momentum J2 acts like a scalar on the basis states or rank k = 0 operator,

one gets also that q = 0, so the selection rules for matrix elements of the form hJM|J2|J0M0i are

DM = M�M0 = 0 and DJ = J� J0 = 0.

1.2 Nuclear Transitions

1.2.1 The Weak Nuclear Force

The weak nuclear force is known for decay or capture reactions. For example, electron

emission would result in the nucleus losing a neutron and gaining a proton; hence changing its

charge but not changing much in size or mass. Later, it was discovered that neutrinos must also
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be involved to account for missing energy. Relevant reactions in this work are:

b� Decay (Electron Emission) A
ZX ! A

Z+1Y + e�+ n̄e

b+ Decay (Positron Emission) A
ZX ! A

Z�1Y + e++ne

Electron Capture A
ZX + e� ! A

Z�1Y +ne

Positron Capture A
ZX + e+ ! A

Z+1Y + n̄e

Here X and Y are parent and daughter nuclei, respectively, the e± is the (positron) electron,

ne is the electron neutrino, and n̄e is the electron anti-neutrino.

The V-A theory [2] for charge changing weak interactions causes transitions like beta

decay and electron capture, where the nucleus changes its number of neutrons and protons,

hence its charge. The theory has two major components, where the first vector term gives Fermi

transitions and the second axial vector term gives Gamow-Teller transitions:

Vweak = gV OF +gAOGT , (1.25)

where gs are coupling factors and the O are the respective transition operators. The Fermi

transition operator is proportional to the sum of over all of the individual nucleons of raising or

lowering ladder operators in isospin space, or just the ladder operator of the total isospin for the

entire nucleus:

OF = T (±) = Â
i

t(±)
i (1.26)

The plus or minus depends on whether a proton becomes a neutron or vice versa. Similarly, the

Gamow-Teller term is:

OGT = Â
i

t(±)
i ~si (1.27)

The Fermi term commutes with the square of the total isospin [T (±),T 2] = 0 and therefore does

not change isospin (or angular momentum) for wave functions of the entire nucleus. However,

both operators must change the third component of isospin Tz = Z �N depending on the type of
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reaction.

As the Gamow-Teller interaction operator does not commute with the total angular

momentum or total spin, it changes both the angular momentum quantum number, J, and the

isospin quantum number, T, for the nuclear wave function. In calculations, the above leads

to simplying selection rules. Specifically, for Fermi transitions DJ = 0 and DT = 0, while for

Gamow-Teller DJ = 0,±1 and DT = 0,±1.

1.2.2 Weak Processes in Massive Stars

One of the major motivations for studying the nuclear physics of stars is to understand the

origin of the elements, known as nucleosynthesis, and to explain the relative abundances for each

isotope. A star like our Sun will mostly produce helium from hydrogen, but only elements up to

16O in significant amounts through its lifetime. These lighter elements reside in the lower energy

s and p nuclear shells. Thus, in this work I focus on nuclear processes in massive stars, which are

on the order of ten solar masses and heavier, especially because through fusion they can produce

elements as heavy as iron and nickel from the pf-shell.

The reason massive stars fuse larger elements is their larger mass leads to even larger

gravitational pressure. Thus, they get much denser and hotter in their cores before they run out

of nuclear fuel, but also it is these higher densities and temperatures that allow the ignition of

fusion reactions involving heavier elements. By the time a massive star collapses it will have

gone through multiple ignition cycles. The core becomes denser igniting a new type of fusion

for heavier elements up to iron with the previous types of fusion for lighter elements occurring

in successive outer shells as in Figure 1.3. The higher densities and temperatures gives a higher

kinetic energy of particles allowing the electrical repulsion of the protons in different nuclear

reactants to be overcome, which is more important as the nuclear reactants get larger.

According to Woosley and Heger, while our hydrogen burning Sun has 150 g/cm3 in core

density and will continue burning for billions of years, the core of a massive star starts out around
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Figure 1.3: The layers of a massive star near the end of its life with an iron core at the center,
followed by a silicon burning shell up to hydrogen burning in its outermost shell.

1-2 orders of magnitude less dense and will burn hydrogen in its core for tens of millions instead.

The massive stellar densities are increasing at each stage, but also length of each stage of burning.

As the star hits helium burning the density is upwards of 103 g/cm3, which lasts for around one

million years. Then carbon burning it reaches 105 g/cm3 falling in length dramatically to only a

thousand years. Neon and oxygen burning happen at densities near 106�7 g/cm3 and only last

a year. Finally silicon burning start above 108 g/cm3, and get near 1010 g/cm3 before collapse

initiates, where this stage lasts only days [12].

Increasing density is associated with increasing temperature. For example, in comparison,

our sun is about 4000 K on the surface and tens of millions of kelvin at the core, but a massive

stellar core can reach near a hundred billion kelvin, which gives an energy range of stellar core

from 0.001 to 10 MeV. In fact up to carbon burning the core when in hydro-static equilibrium

follows a so-called polytropic trend where the central temperature and density are related as

Tc µ r1/3
c . Then the electrons start to become degenerate and relativistic and the density grows
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faster with temperature [12].

These temperatures are highly relevant to the quantum excitation levels of nuclei, which

are on the order of keV and MeV. Under the Fermi gas approximation for nucleons described in

Bethe et al. [13], using the density of nuclear levels along with their Boltzmann probability at a

given temperature, T, one gets that the average excitation energy, Ex, as follows:

Ex = a(kT )2, (1.28)

where a ⇡ A
8MeV is the level density parameter parameter relating to the mass number, A, of a

chosen nucleus and k is Boltzmann’s constant. As an example, if one chooses A = 56 and kT = 1

MeV, one gets an average excitation of 7 MeV. This is relevant context, but does not yet explain

the significance of the weak nuclear force.

Bethe et al. [13] further described two important factors determining the composition

and stability of the stellar core, namely the entropy per nucleon of the core and the presence of

degenerate electrons, which are highly sensitive to weak nuclear interactions. First, entropy is

important because low entropy means implies there are more bound neutrons and protons, hence

heavy nuclei, while high entropy would mean are more disordered mix of more particles made up

of lighter nuclei and disassociated protons or neutrons. Second, massive stars in their early stages

of burning release energy primarily via photons, but around silicon burning neutrino emission

dominates as a byproduct of weak nuclear force reactions, especially electron capture [12]. While

weak nuclear processes that create neutrinos happens slowly and out of equilibrium relative to

strong nuclear and electromagnetic processes, neutrinos at typical pre-collapse densities below

1012 g/cm3 so weakly interact that they easily carry away heat. At higher density, neutrinos start

to scatter more strongly, getting trapped and returning some of the heat to the collapsing star

aiding the supernova explosion. Thus weak processes are crucial in the release of energy and

entropy, which cools the star and keeps the core at low entropy. Third, due to the Pauli Exclusion
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Principle, electrons cannot be in the same state (non-degeneracy) and this degeneracy pressure

helps to hold up the star. Therefore the ratio of electrons to baryons, or electron fraction, Ye,

becomes an important quantity [13].

Eventually a massive star will become so dense that it collapses and explode in a super-

novae leaving behind a neutron star or blackhole, where the environment becomes one hundred

times hotter. This gravitational instability happens when the electrons can no longer hold up the

star, and the core reaches about 1.4 solar masses or the Chandrasekhar mass, Mlim, which depends

on the electron fraction mentioned above and the stellar density:

Mlim µ 1
µ2

e
µ 1

(rYe)2 (1.29)

Lastly, the weak nuclear force plays an important part in the nucleosynthesis of heavy

elements via the s-process and the r-process, where neutrons are captured by seed nuclei that

beta decay into new elements of higher proton number. The s-process, where s is for slow,

happens when neutron captures are slower than beta decay, but also where there are adequate

numbers of free neutrons. The main s-process occurs in helium flashes of low mass stars, but a

weaker contribution to abundances happens during helium burning in massive stars with some

contribution from carbon and oxygen burning [12]. Neutron creating processes are alpha capture

on 13C and 22Ne, where elements in the ranges of A = 22� 50 and 63� 209 have significant

s-process contributions [14]. However, during stellar collapse and supernovae the temperatures

and densities are high enough to make the neutron capture rate faster than beta decay. Highly

degenerate core electrons are Pauli blocked from decaying to low momentum states, but are still

captured on protons and nuclei, a process called neutronization that lowers Ye and accelerates

collapse. This results in the r-process, where higher neutron density allows for many rapid and

successive neutron captures that can make very large elements around A = 200. As mentioned

above, helium burning could last a million years whereas supernovae collapse happens on the order
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of milliseconds and the explosion only hours [12]. Hence, in general knowing the relevant energy

and time scales involved in these strong and weak nuclear processes allows for computations of

both stellar evolution and elemental abundances.

1.2.3 Computing Transition Strengths and Rates

Relative to the strong nuclear force, the weak interactions in the previous section (Fermi/GT)

can be treated as perturbations. One can use time dependent perturbation theory, which results in

Fermi’s Golden Rule [2] for transition rates, or probability of a change of state per unit time:

li f =
2p
h̄

Z •

�•
|h f |V |ii|2d (Ei �E f )D(E f )dE f , (1.30)

where V is the perturbation transition operator, D(E) is the density of states. The Dirac delta

function assures that these final states have the same total energy as the initial states. Hence

energy will be conserved by this transition, with some energy carried away by neutrinos and

electrons.

In experiments and applications, the dynamics are often orientation independent. Thus for

the squared matrix elements in li f above, one sums over possible angular momentum orientations

M, averages over possible initial states Mi, and sums over final states Mf , applying the Wigner-

Eckart theorem to get:

Bi f (V ) =
1

2Ji +1 Â
M

Â
Mi

Â
Mf

|hJf Mf |V
(J)
M |JiMii|2

=
1

2Ji +1 Â
M

Â
Mi

Â
Mf

|hJiMiJM|Jf Mf i|2hJf ||V (J)||Jii2

=
|hJf ||V (J)||Jii|2

2Ji +1 Â
M

Â
Mi

|hJiMiJM|Jf Mf i|2

=
|hJf ||V (J)||Jii|2

2Ji +1

(1.31)
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where ÂM ÂMf |hJf Mf kq|JiMii|2 = 1 via orthogonality relations for the Clebsch-Gordan coeffi-

cients [11].

These Bi f are called the reduced transition probabilities. If one instead computes matrix

elements that are doubly-reduced with respect to both angular momentum isospin, then one

applies the Wigner-Eckart theorem again. Since Tz is fixed, then one does not need to average or

sum across states, and for a rank 1 raising or lowering operator, such as in Gamow-Teller:

Bi f (V ) =
1

2Ji +1
|hJf Tf |||V (J,T )|||Ji Tii|2

|hTi Tz,i T (±1)|Tf Tz, f i|2

2Tf +1
(1.32)

Now, if one fixes the inital state, i, one gets the transition strength f unction in terms of the final

states, f as:

SV (Ei,Qi f ) = Â
f

d (Qi f �E f +Ei)Bi f (V ) (1.33)

As an example, an analytical closed form for the reduced transition probabilities of the Fermi

operator is known:

Bi f (OF) = T (T +1)�T i
z (T

f
z ), (1.34)

Further, the the Fermi operator commutes with the iso-spin conserving Hamiltonians I use here,

that is, [OF = T (±),H] = 0. Thus, transitions from initial states of the parent nucleus go to final

states of the daughter nucleus of the same J,T, and energy, where these states of the daughter

nucleus are known as isobaric analogs. In actual nuclei, Coulomb repulsion of the nuclear protons

would shift the energy of isobaric analogs. Because the computation of Fermi transition rates are

mostly trivial, in this work I focus on the Gamow-Teller interaction.

1.2.4 Thermal Rates in Stellar Environments

In a star, the nuclear reactions mentioned in the previous section don’t occur independently

but are subject to a background plasma of nucleons, nuclei, electrons, photons, and neutrinos at a
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certain density r and temperature, T . However, the rates have a similar form to section 1.2.3 on

Fermi’s Golden Rule. To get the total rate for a specific interaction one must sum over all initial

parent states and final daughter states giving the following:

l (r,T ) = Â
i

Pi Â
f

li f = Â
i

(2Ji +1)e�Ei/kT

G(T ) Â
f

Bi f (V )Fi f (Qi f ,r,T ) (1.35)

where Pi = exp�Ei/kT/G is the occupation probability, and G = Âi exp�Ei/kT is the partition

function, for parent nuclei. Similar to the density of states, one has Fi f a phase space factor that

depends on the transition energy, Qi f between initial parent and final daughter states, and captures

the effect of the electrons and neutrinos. The phase space factor is akin to the density of final

states in Fermi’s Golden Rule in equation 1.30. It is dependent on the type of process, such as beta

decay or electron capture, and will be defined later in the text as necessary. At high temperatures,

the probabilities for initial parent states become larger and head towards equality with a value

of e�0

G(T=•) =
1

G(T=•) , where G(•) is a constant equal to the total number of possible states for

the nucleus. Thus, excited states become ever more important as the temperature increases in

accordance with the average excitation energy from equation 1.28.

1.3 Obtaining Eigenstates and Spectral Decompositions

The next step after obtaining the quantum Hamiltonian matrix is to diagonalize for the

eigenvalues and eigenvectors. Throughout this research, I worked with very large, sparse matrices

as will be explained in this section. Therefore the Lanczos algorithm [1] is indispensable to this

work. Further, to obtain other relevant spectral quantities whether symmetry group decompositions

or transition strength functions, a modified version of the Lanczos algorithm is used, which I

describe in succeeding sections. But first I give some context for why I use the Lanczos algorithm.

For the symmetry group decompositions in chromium the basis size was in the millions,

so these could easily be done on modern desktop computers. However, this is not the case for
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many weak nuclear force transitions in the middle of the pf-shell with larger basis dimension.

Many of the astrophysically relevant nuclear isotopes in a pre-collapse massive star exist around

the iron abundance peak with atomic mass number A = 50�65. In these isotopes, the basis size

can exceed one billion, hence storing a single state vector for a nucleus would take at least four

gigabytes of memory. Also, relevant are the operators that act on a state vector and their sparsity,

where sparser operator matrices, that is matrices with a relatively small number of non-zero

elements, are amenable to fast methods of diagonalization. Specifically, I use the BIGSTICK

code, which uses an M-scheme basis for our calculations that has the z-component of angular

momentum M = Jz is fixed for the basis vectors [7] [15]. This leads to relatively large, sparse

matrix operators, especially the Hamiltonian operator, compared to J-scheme codes that use a

basis where total angular momentum, J, is fixed [16].

For example, in the basis used to represent quantum states, 57Co has a basis dimension of

980,474,907 whose square is the number of matrix elements, about 1018. But the actual number

of non-zero matrix elements is on the order of 1011 giving a sparsity of 10�7. Further, assuming

four bytes per basis element this means one single vector takes about 4 GB, and to converge a

couple hundred eigenvectors may take a few thousand Lanczos iterations, where such memory

requirements exceed typical desktop computer capabilities. Fortunately, BIGSTICK is highly

suited to the task being highly parallel with MPI and OpenMP capabilities to increase processing

power along with factorized on-the-fly matrix element creation to to reduce memory load.

To compound the situation, as explained above, the probability of nuclear excitation in

massive stellar cores near collapse temperatures (> 109 K), is such that many excited states of

a parent nucleus must be used to compute accurate weak nuclear force transitions rates. But

even after computing the eigenstates of the parent nucleus, for each eigenstate, one must also

compute the spectral distribution of the transition operator requiring more iterations and computer

memory. This was understood in the pioneering work on this subject by Fuller, Fowler and

Newman [17], where an approximation known as the Brink-Axel hypothesis [18][19] about the
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form of transition strength distributions was applied to simplify calculations by avoiding the need

to compute strength functions for excited states. However as will be discussed in Chapter 3, to

improve the accuracy of thermal rates, the computation of these excited state distributions cannot

legitimately be avoided. Thus one can see how this problem quickly becomes intractable without

the use of modern supercomputers, as well as, approximations like the one that I will develop

later in this text.

1.3.1 Diagonalization and the Lanczos Algorithm

The code used in this work is BIGSTICK [15], an M-scheme code, where M is the

quantum number associated with eigenvalues of the generator Jz. This means that M is fixed,

but the total angular momentum quantum number J is not. Consequently this basis produces

matrices that are larger, but are also very sparse in terms of non-zero matrix elements. These are

ideal for the Lanczos iterative method, where it is equivalent to the Arnoldi method for Hermitian

operators (H† = H). The method involves taking the matrix, H, that one wishes to diagonalize

and applying it to an initial, usually random, pivot vector, v1 as follows:

1. Let a1 = hv1|H|v1i and b0 = 0.

2. Let w1 = H|v1i�a1|v1i. Then for j = 2, ...,m repeat steps 3-5.

3. Let b j�1 = hw j�1|w j�1i

4. Let v j =
|w j�1i

hw j�1|w j�1i (v j is w j�1 normalized)

5. Let |w ji= H|v ji�a j|v ji�b j�1|v j�1i
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Solving for a j|v ji gives the following result:

H|v1i= a1|v1i+b1|v2i

H|v2i= b1|v1i+a2|v2i+b2|v3i

H|v3i= b2|v2i+a3|v3i+b3|v4i

. . .

H|vki= bk�1|vk�1i+ak|vki

(1.36)

Thus, a tri-diagonal matrix will result with matrix elements H(k)
i j = hvi|H|v ji:

H(k) =

2

666666666666666664

a1 b1 0 0 0 0 0

b1 a2 b2 0 0 0 0

0 b2 a3 b3 0 0 0

0 0 b3
. . . . . . 0 0

0 0 0 . . . . . . bk�2 0

0 0 0 0 bk�2 ak�1 bk�1

0 0 0 0 0 bk�1 ak

3

777777777777777775

(1.37)

The extremal eigenvalues of H(k) approximate well the extremal eigenvalues of the original

matrix H. To get eigenvectors, left-multiply the eigenvectors of H(k) by the matrix V =

[|v1i, |v2i, . . . , |vki]. This method can converge very quickly, where on the order of tens of

iterations one can get a few eigenvalues quite accurately. Theoretically in exact arithmetic, the

error in the first eigenvalue has been proven to be bounded above by a function that decreases

exponentially in the number of iterations, where the constant depends on the gap between succes-

sive eigenvalues and also between the desired eigenvalue and the extremal ones. A similar bound

holds for other eigenvalues. [1]
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1.3.2 Modified Lanczos - Spectral Decomposition in Symmetry Groups

In this section and the next, I will outline two applications of a modified Lanczos algorithm

that is used to obtain spectral distributions. First, in Chapter 2, it will be necessary to compute the

decomposition of an eigenstate of a certain nucleus to see the fraction of the eigenstate that lies in

each irreducible representation (irrep) of the Casimir. The fraction, or probability, of a nuclear

eigenstate in a certain irrep is P(|Ci) = |d1(C)|2. One may use the Casimir eigenvalues to label

the irreducible representations. Hence one does the following:

1. Pick an initial eigenvector of the nuclear Hamiltonian as a pivot to decompose. That is,

|yi= |v1i. Note that for the spectral decompositions in this work, the pivot vectors are not

random.

2. Perform the Lanczos iteration for a desired number of steps, m, using the Casimir invariant

operator, C of the desired symmetry group.

3. Before transformation, the approximate eigenvectors |Ci of the matrix C are in a basis in

terms of the Lanczos vectors vi as |Ci= Âm
i=1 di(C)|vii. Since the pivot is the first Lanczos

vector, then the approximate coefficient for a specific Casimir eigenvalue is just the first

component of the corresponding vector |Ci, up to a phase. Store all the values d1(C) for

each Casimir eigenstate, |Ci.

Like the usual Lanczos method, this method converges efficiently to the desired result but instead

of a set of eigenvalues and eigenvectors, one gets a spectral distribution via its moments (ai,bi),

where this method provides twice as many moments as iterations. These moments describe the

overall shape of the distribution [20]. The second application of this method is to transition rates

between different nuclear states, which will be developed in the next section.
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1.3.3 Modified Lanczos - Spectral Decomposition in Transition Strength

Functions

The second application of the decomposition algorithm is transition strength functions.

The transition strength of an operator, V , of the initial wavefunction to a certain final daughter

state, |y f i, is related to the squared matrix element |hyi|V |y f i|2 = |d1(y f )|2 up to appropriate

scaling factors. The set created from varying final strength, f , is the strength function with m

total points. Similarly to the previous section, one does the following:

1. Pick an initial eigenvector, |yii, of the nuclear Hamiltonian as a pivot to decompose into

daughter states. Then apply the transition operator, V to get |v1i=V |yii

2. The transition operator may change previously conserved quantities, such as, total angular

momentum, J, or isospin, T. Therefore if desirable, decompose |v1i in the corresponding

Casimir invariant operators, J2 and T 2.

3. To get the amplitudes of the pivot in the final daughter states, |y f i, use the nuclear

Hamiltonian to provide the daughter states. Perform Lanczos with H a desired number of

times, m.

4. Similarly to above, the basis is in terms of the Lanczos vectors vi as daughter states

|y f i= Âm
i=1 di(y f )|vii. Since the pivot is the first Lanczos vector, then the approximate

coefficient for a specific transition i ! f is just the first component of the corresponding

vector |y f i, up to a phase. Store all the values d1(yf) for each final daughter state, |y f i.

Thus, while producing the initial state happens differently compared to symmetry group decom-

positions from above, the filtering into components for strength functions is essentially the same

operation.
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Chapter 2

Quasidynamical symmetries in the

backbending of chromium isotopes
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Abstract

Background: Backbending is the well-known abrupt change in the moment of inertia along the yrast line.

Prior mean-field calculations in 48,49,50Cr suggest a change from strongly prolate to more spherical configu-

rations as one crosses the backbending and increases in angular momentum.

Purpose: In order to better illuminate the evolution as one goes along the yrast line, we analyze wavefunc-

tions into group-theoretical components, looking for evidence of quasi-dynamical symmetry, that is, the

same or similar decomposition across members of a band.

Methods: We efficiently decompose configuration-interaction shell-model wavefunctions of 48,49,50Cr into

subspaces labeled by eigenvalues of Casimir operators, specifically the SU(2) groups L (total orbital angular

momentum) and S (total spin), and the groups SU(3) and SU(4), using a modified Lanczos algorithm. We

worked in the pf -shell using semi-phenomenological interactions.

Results: We find strong signatures of quasi-dynamical symmetry, albeit often of a different character above

and below the backbending. In some cases we can continue a band, marked out by its decomposition, both

before and after band crossings. While decompositions in SU(3) showed the strongest evolution, they did

not suggest a decrease in deformation.

Conclusions: We see strong and persistent quasi-dynamical symmetry in all four groups, but no evidence

for a decrease in deformation in SU(3) configurations. We point out with a simple example that mean-field

and SU(3) may give very different pictures of deformation. Nonetheless these decompositions, which do not

require a special basis but only matrix elements of Casimir operators, provide another tool for investigating

complex behavior of nuclei.

34



I. INTRODUCTION

Backbending is an abrupt change in the nuclear moment of inertia along the yrast line [21], seen

in nuclides ranging from 22Ne [22] through the actinides [23]. In a rotational band with constant

moment of inertia the gamma transition energy Eg(I)=E(I)�E(I�2) grows steadily with angular

momentum I, but in backbending Eg(I) abruptly falls and then rises again with a different slope,

as illustrated in Fig. 1 for 48,49,50Cr.

There are three general explanations for the change in the moment of inertia [21]

• a change in deformation;

• a change from superfluid to normal phase;

• a change in alignment of quasiparticles.

Of course, backbending may be due to a mixture of these explanations; furthermore, it may not

be the same for all nuclei [24].

Because backbending occurs mostly frequently in heavy nuclei, most calculations of backbend-

ing have used mean-field and related methods [25], such as cranked Hartree-Fock-Bogoliubov

[26–29] and the (angular-momentum) projected shell model [30]. A favorite target of theory, how-

ever, has been backbending in the chromium isotopes [31–36], because in addition to mean-field

and similar studies [24, 37, 38] one can fully diagonalize the nuclear Hamiltonian in the 1p-0 f

(‘p f ’) shell using configuration-interaction methods [39–46].

We will discuss some of these prior investigations in more detail below. We are especially moti-

vated, however by recent assertions [44] that for 48Cr the lower sub-band (below the backbending)

can be associated with a well-defined intrinsic state, but not the upper sub-band (above the back-

bending). We follow this up by decomposing the nuclear wavefunctions into subspaces defined by

group Casimir operators, that is, operators which are invariant under all elements of a Lie group

and its related algebra [47–49]. We see strong characteristics of quasi-dynamical symmetry, that

is, consistent fragmentation of the wavefunction with increasing I; in most cases we see a change

as one crosses the backbending, and in SU(3) we see significant evolution of the fragmentation in

the upper sub-band as I increases.

As described below in section II B, we use an efficient method to decompose a wavefunction

according to subspaces labeled by eigenvalues of Casimir operators. We choose total orbital angu-

lar momentum L and total spin S, both of which belong to group the group SU(2), as well as the
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FIG. 1: Backbending in 48�50Cr, as signaled by the evolution of Eg(I) = E(I)�E(I �2). The

distinct shapes/colors represent, to the best of our ability to identify, different configurations along

the yrast as discussed in detail in the text: (red) solid squares for the lower sub-band, (blue) dotted

triangles for the upper sub-band, and a black ‘x’ and (green) striped circle for upper and lower

‘intruder’ levels, respectively. The calculated values are in good agreement with experiment (not

shown).

groups SU(3), and SU(4). We limit ourselves to two-body Casimirs.

II. MICROSCOPIC METHODS

A. Configuration-interaction shell model

We carry out calculations in the framework of the configuration-interaction (CI) shell model

[50–52], which expresses the nuclear Hamiltonian as a large-dimensioned matrix in a basis of

shell-model Slater determinants (antisymmetrized products of single-particle states), recasting the

many-body Schrödinger equation as a matrix eigenvalue problem,

Ĥ|Yii= Ei|Yii. (1)

We find the low-lying eigenpairs, via the Lanczos algorithm, using the BIGSTICK1 configuration-

interaction code [7]. Because the Hamiltonian is rotationally invariant, the total magnetic quantum

number M (or Jz, the z component of the total angular momentum) is conserved and one can easily

construct a basis with fixed M; this is called an M-scheme basis.

Although ab initio calculations for 0p-shell nuclides are now routine, for the chromium isotopes
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FIG. 2: Calculated spectrum of 48Cr. The x-axis (angular momentum I) is scaled as I(I +1) so as

to emphasize rotational bands. The labeling of levels, i.e., (red) squares, (blue) triangles, and

(green) circles, correspond to the same (initial) state as in Panel (a) of Fig. 1. According to our

decompositions, the yrast state at I = 10, marked by as ‘x,’ belongs to neither the lower nor upper

sub-bands. Bars indicate levels found in our calculation but which we do not decompose.

we use the modified G-matrix interaction for the 1p-0 f (p f ) shell GXPF1 [53], which assumes a

frozen 40Ca core and valence particles restricted to the 1p-0 f single-particle space. Like other

high-quality semi-phenomenological interactions in the p f shell, calculated spectra using GXPF1

have good agreement with experiment (which we do not show to avoid further cluttering our fig-

ures). We also made decompositions in the same space using the monopole-modified Kuo-Brown

effective interaction version KB3G [54] and the modified GXPF1 interaction, version A, [9] and

found very similar results.
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FIG. 3: Decomposition of wavefunctions of 48Cr into components of total L (orbital angular

momentum). The fill (and color) scheme are matched to the levels shown in Fig. 2, i.e., (red) solid

bars (lower sub-band), (blue) dotted (upper sub-band), and (black) cross-hatched, and (green)

striped, intruder levels. Here and throughout we superimpose levels which have the same I but

which belong to different sub-bands.

B. Group decomposition and quasi-dynamical symmetry

Modern computers allow us to carry out large scale calculations previously unimaginable. The

M-scheme dimension for 48,49,50Cr in the 1p-0 f valence space are 2 million, 6 million, and 14.6

million, respectively, but fully converged low-lying states can be computed in a matter of minutes

on a laptop, and leadership-class configuration-interaction calculations have basis dimensions of

the order of 1010. This begs the question: do we really need that many numbers?

One attempt to simplify the description of nuclei is through dynamical symmetries, where the

Casimirs of a group commute with the nuclear Hamiltonian; then the eigenstates of the Hamilto-

nian will also be eigenstates of the Casimirs of the group, and one can just choose a basis within

a single irreducible representation (irrep) of the group [47–49], which is the smallest possible sub-
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space where all group elements are block-diagonal. (The simplest, though still nontrivial, example

of this would be a J-scheme basis, where the states have fixed total angular momentum J rather

than M. J-scheme bases are an order of magnitude smaller than M-scheme bases, but because each

J-scheme state is a linear combination of M-scheme states, computing matrix elements is corre-

spondingly more difficult and the Hamiltonian matrix is significantly denser.) The most prominent

choice is the group SU(3), from which rotational bands arise naturally [55, 56], or its extension

the symplectic group Sp(3,R). We loosely say we decompose the wavefunctions into group irreps,

although in our SU(3) and SU(4) examples we use only one Casimir operator for the decomposi-

tion, and hence technically we in those cases we are combining results from different irreps. In

principle one could fully decompose into true irreps, but we chose not to, partly to avoid in using

three-body Casimirs for SU(3) as well as to keep our already busy figures become less readable.

Alas, it has long been known that the nuclear force, in particular the spin-orbit [57–59] and

pairing [60] components, strongly mixes SU(3). But not all is lost: while the wavefunctions are

distributed or fragmented across many irreps, in many cases the patterns are strongly coherent

and consistent across members of a band [57, 59]. This quasi-dynamical symmetry [61–63] helps

to explain why SU(3) dynamical symmetry works well phenomenologically even though it fails

microscopically.

To illuminate quasi-dynamical symmetry, we decompose a wavefunction into subspaces labeled

by Casimir eigenvalues. Given a wave function |Yii, which is an eigenstate of the nuclear many-

body Hamiltonian (1), and a group Casimir Ĉ with eigenpairs

Ĉ|z,ai= g(z)|z,ai (2)

where z is a quantum number or numbers labeling subspaces of the group (for example, for SU(2)

I is a quantum number and g(I) = I(I + 1) ; note that, for consistency with many past papers on

backbending, we use I rather than J for nuclear angular momentum) and a labels distinct states in

the subspace, that is, solutions of (2) degenerate in g(z), we want to find the fraction F (z) of the

wave function |Yii in the subspace labeled by z, that is,

F (z) = Â
a2z

|hz,a|Yii|2 . (3)

Luckily, there is an efficient method to find F (z) using the Lanczos algorithm [59, 64] that does

not require finding all states in the irrep. This method only finds the magnitude in each subspace,

39



0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

0 1 2 3 4
0

0.2

0.4

0 1 2 3 4

S

F
ra

c
ti

o
n
 o

f 
W

a
v
e
fu

n
c
ti

o
n

I=0

I=2

I=4

I=6

I=8

I=10

I=12

I=14

I=16

I=18

FIG. 4: Decomposition of wavefunctions of 48Cr into components of total S (spin). The fill (and

color) scheme are the same as in Fig. 3.

not the phase. In the next section we plot F (z), the fraction of the wavefunction in the subspace

labeled by z, versus either z ( or g(z), in the case of SU(3) and SU(4), where z represents several

labels) as bar graphs for states along the yrast band.

The group Casimirs we use are: total orbital angular momentum L̂
2 labeled by L; total spin Ŝ

2

labeled by S; and the two-body Casimirs of SU(3) and SU(4).

The irreps of SU(3) are labeled by the quantum numbers l and µ via their Young tableaux [48],

and which can be interpreted in terms of the standard deformation parameters b and g (see Figure

2 in Ref. [65] or Figure 1 in Ref. [60]). We use only the two-body Casimir,

C2(SU(3)) =
1
4

⇣
~Q · ~Q+3L

2
⌘
, (4)

where

Qm =

r
4p
5

✓
r

2

b2Y2m(Wr)+b
2
p

2
Y2m(Wp)

◆
, (5)

the (dimensionless) so-called Elliott quadrupole operator, whose matrix elements are nonzero only

within a major harmonic oscillator shell; here Wr and Wp refer to the standard angles q ,f in spher-
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ical coordinates for the position and momentum vectors, respective. This Casimir has eigenvalues

l 2 +l µ + µ2 +3l +3µ (in the above b is the harmonic oscillator length parameter). One could

distinguish between different combinations of l and µ by including the third-order Casimir, which

is numerically more challenging. We discuss interpretation of the SU(3) decomposition in terms

of deformation in Section III D.

Wigner suggested [66, 67] looking for an SU(4) symmetry built upon SUS(2)⇥SUT (2), some-

times called a supermultiplet. The irreps of SU(4) are labeled by the quantum numbers P,P0, and

P
00, which arise from the Young tableaux [48, 67], found by the Casimir operator

C2(SU(4)) = ~S2 +~T 2 +4Â
i, j

(~Si ·~S j)(~Ti ·~Tj) (6)

where the sum is over particles labeled by i, j, and which has eigenvalues [48, 67],

P(P+4)+P
0(P0+2)+

�
P
00�2 (7)

In the highest weight states, P = S and P
0 = T . Despite its early history, SU(4) has recently been

neglected, in part because it is badly broken in nuclei, for example in the sd and p f shells [68].

It has been primarily investigated in its role in the Wigner energy [69]. Although we confirm

breaking of SU(4), we also demonstrate strong quasi-dynamical symmetry.

Group decompositions of the wavefunctions are of course not experimentally observable. Prior

work, however, in L- and S-decomposition comparing phenomenological and ab initio calculations

demonstrated remarkable consistency [64].

III. RESULTS

Throughout we attempt as much as possible to use a consistent labeling scheme of levels, e.g

for levels in the lower sub-band we use (red) solid circles for the excitation energies and (red)

solid bars for the decomposition; for levels in the upper sub-band we use (blue) dotted triangles

for excitation energies and (blue) dotted bars for decomposition; and finally for ‘intruder’ states,

that is, levels which do not belong to either the upper or lower sub-bands, we use black ‘x’s and

black cross-hatched bands and (green) striped circles/bars. In all of this we group together levels

via quasi-dynamical symmetry, that is, by inspecting the decomposition into irreps. Using group

decomposition and quasi-dynamical symmetry, we attempt to extend members of a band beyond

the yrast in order to identify band crossings; we were able to do this for 48,50Cr but not 49Cr.
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two-body SU(3) Casimir (see text for definition). The fill (and color) scheme are the same as in

Fig. 3.

Although we attempt to give a reasonable summary of the existing literature, for purposes of

comparison we emphasize those whose interpretations mostly clearly can be illuminated by our

calculations, namely those which focus on shape deformations, and less so on K quantum numbers

(the Jz value in the intrinsic frame) and quasi-particle excitations which, while of course relevant,

are harder to connect to our group decompositions.

A. 48Cr

We begin with backbending in 48Cr [31, 32]. Fig. 2 shows the spectrum, spaced by I(I +1) so

that rotational bands are linear and easily picked out. In fact we see here and for our other two

isotopes that the yrast bands are not ideal rotors but positioned between vibrational (linear in I)

and rotational (quadratic in I).

Caurier et al. [39] compared a cranked Hartree-Fock-Bogoliubov (CHFB) calculation with
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two-body SU(4) Casimir (see text for definition). The fill (and color) scheme are the same as in

Fig. 3.

the finite range Gogny force against a full p f -shell diagonalization. Both calculations yielded

similar backbending and excellent agreement in B(E2) values, quadrupole and magnetic dipole

moments, and orbital occupations; the CHFB calculation showed an axially deformed rotor up to

the backbend, while the yrast states after the backbend are more spherical and with the triaxiality

parameter g less well-defined. Because full space configuration-interaction (CI) calculations do

not have an intrinsic frame, the deformation cannot be computed directly, but Caurier et al. argued

that, given the good agreement between CI and CHFB in other quantities, the CHFB interpretation

is likely robust.

Later calculations support this picture. A subsequent CHFB calculation [24] arrived at similar

results, i.e., consistent axial deformation up to the backbending, and then rapid transition to a

spherical nucleus. These authors emphasized the lack of a level crossing in the single-particle

orbits, which is associated with backbending in heavier nuclides, and the importance of careful

treatment of the residual interaction.
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Calculations with the “projected shell model” or PSM [37], which uses a basis of deformed

quasiparticle-quasihole states projected out with good angular momentum and particle number,

also described the backbending of 48Cr in terms of a spherical band crossing a deformed band;

furthermore, they identified two crossings, the first around I = 6, where a 2-quasiparticle (qp)

band crosses the ground state 0-qp band, which does not show up as backbending, and the second,

around I = 10, where a 4-qp band crosses the 2-qp band.

Finally the hybrid “projected configuration interaction” (PCI) [44], which is similar to the pro-

jected shell model but using deformed particle-hole states, that is, explicitly number-conserving,

rather than quasiparticle-quasihole state, which are then projected out to good angular momentum

and the Hamiltonian diagonalized in this basis, found results similar to that of Caurier et al.. (An-

other germane difference is the PSM used a schematic interaction tuned to reproduce levels within

their calculations, while the PCI uses semi-realistic shell-model interaction fitted within the full

configuration space.) In particular they emphasized levels below the backbending are dominated

by a single deformed intrinsic state, but not above the backbending.

Now we turn to our group decompositions for 48Cr. The L-decompositions, Fig. 3, at first

glance look like a intrinsic shape being spun up: the distribution of L is similar for all the yrast

states, though shifted up as total angular momentum I increases. But there are subtleties. For

example, the ground state is dominated by L = 1, while the states I = 2,4,6, . . . have their strength

centering roughly around L = I. Above the backbend at I ⇡ 10, this shifts; now the strength centers

roughly around L ⇡ I �2.

This pattern is of course echoed in the S decompositions (Fig. 4): below the backbend, the

decomposition is dominated by S = 1, with some S = 0 which decreases, and S = 2 which increases

slightly, while after the backbend S = 2 dominates with S = 1,3 subdominant. Of course, in this

space the maximum S is 4, which means when one reaches I = 18 the minimum L is 14; this

helps to explain the shifting pattern in the L decomposition. Nonetheless, notice that the I = 18

state is significantly different, particular in S. This is easily understood: the ground state band is

predominantly (0 f7/2)
8 [39] but the maximum angular momentum for that configuration is I = 16.

The SU(3) decompositions, Figs. 5, also show a pronounced change around the backbending.

SU(3) is highly fragmented, as is well known for the p f shell [59]. After the backbend, the

distribution of SU(3) is much more narrow and in fact narrows further with increasing I. K-band

termination may be contributing to this evolution, with some SU(3) (l ,µ) dropping out due to
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FIG. 7: Calculated spectrum of 49Cr. The x-axis (angular momentum I) is scaled as I(I +1) so as

to emphasize rotational bands. The labeling of levels, i.e., red squares, blue triangles, and green

circles, correspond to the same (initial) state as in Panel (b) in Fig. 1. Bars indicate levels found in

our calculation but which we do not decompose.

their maximum possible L values. On the other hand, the L- and S decompositions do not change

much within the uppper sub-band, until one reaches the termination of the (0 f7/2)
8 configuration

at I = 16.

Previous work on SU(4) only showed its fragmentation [68], while we appear the first to demon-

strate quasi-dynamical symmetry in SU(4) in the p f shell, as in Fig. 6. The SU(4) decomposition

also changes dramatically at the backbend, although the spread does not evolve as it does so for

SU(3). Again the abrupt shifts at I = 18 is easily interpreted as the termination of the (0 f7/2)
8

configuration band at I = 16. Interestingly, the change in the SU(4) decomposition at the back-

bend is most pronounced for 48Cr than for our other two nuclides. This is suggestive of studies

investigating the relative role of isovector and isoscalar pairing in N = Z and N 6= Z nuclides, as in

[69].

By using the decompositions we were able to identify levels which are not part of the yrast
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band but which do appear to be continuations of the component sub-bands. For example, we were

able to trace the continuation of the lower sub-band up through I = 12, as well as trace the upper

sub-band down to I = 8. Futhermore we can see the actually yrast level at I = 10, marked by an ‘x’

in Fig. 2 and cross-hatched bars in Figs. 3-6 belongs to neither the lower nor the upper sub-bands.

B. 49Cr

Fig. 7 shows the spectrum of 49Cr spaced by I(I+1). The yrast band of 49Cr has been measured

up to 31/2� [33, 34], which is the highest angular momentum we calculate. It was previously

calculated in the full p f model space using shell-model CI [43], where the authors explicated

the results in terms of Nilsson diagrams and detailed effects of the residual interaction; other

calculations emphasize the role of K-bands and quasi-particle excitations of the intrinsic state

[38, 45, 46].

As with all three of our nuclides, the L decompositions, Fig. 8, increase steadily with I; similar

to what we saw with 48Cr, below the the L-decompositions for each angular momentum I centers

around L ⇡ I �1/2, while in the upper sub-band it centers around L ⇡ I �3/2.

The spin decompositions, Fig. 9 show strong (but distinct) quasi-dynamical symmetry below

and above the backbend, and could be approximated by taking the spin decompositions of 48Cr and

shifting up by 1/2 unit of angular momentum ( the L-decomposition also strongly parallel that of
48Cr): below the backbend the yrast band is dominated by S = 1/2,3/2, while above the backbend

S = 3/2,5/2 dominate.

Also like 48Cr, the SU(3) decomposition of 49Cr, Fig. 10, is relatively coherent below the back-

bend, while above the backbend the distribution becomes narrower and has more pronounced evo-

lution.

Fig. 11 shows strong quasi-dynamical symmetry in SU(4), especially in the lower sub-band,

but with significant coherence in the upper band as well; while there is a definite change across the

backbend, it is not as dramatic as for 48Cr. Here we were not able to identify continuations of the

sub-bands beyond their locations on the yrast band.

In our figures we include the low-lying I = 1/2,3/2 levels which, though part of the yrast band,

are not the yrast band heads; in the S and SU(4) decompositions they clearly are grouped with the

rest of the low-lying yrast levels, but they have nontrivial differences in the other decompositions,
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FIG. 8: Decomposition of wavefunctions of 49Cr into components of total L (orbital angular

momentum). Much like Fig. 3, the fill (and color) scheme are matched to the levels shown in

Fig. 7, i.e., (red) solid bars (lower sub-band), (blue) dotted (upper sub-band), and (green) striped,

the lowest I = 1/2,3/2 which technically are not part of the yrast line.

most markedly in SU(3).

C. 50Cr

The yrast band of 50Cr has been measured up to I
p = 18+ [34–36], as shown in Fig. 12, with

backbending seen around I ⇡ 10 and a second backbending around I ⇡ 16 which is easily inter-

preted as the terminus of levels generated within the (0 f7/2)
10 configuration. The origin of the

change at the backbending is somewhat unclear within CI calculations; Martínez-Pinedo et al [42]

interpret it as a shift from strongly prolate to weakly oblate, similar to what is seen in 48Cr, yet

Zamick et al, looking at the sign of the quadrupole moments in just the (0 f7/2)
10 configuration

space [41], argue instead the upper sub-band could belong to a high-K prolate band.

Similar to the work on 48Cr [39], calculations using the configuration-interaction (CI) shell

47



S

F
ra

c
ti

o
n

 o
f 

W
a
v

e
fu

n
c
ti

o
n

0

0.3

0

0.3

0

0.3

0

0.3

0

0.3

0

0.3

0

0.3

1/2 3/2 5/2
0

0.3

1/2 3/2 5/2 7/2

I=1/2

I=3/2

I=5/2

I=7/2

I=9/2

I=11/2

I=13/2

I=15/2

I=17/2

I=19/2

I=21/2

I=23/2

I=25/2

I=27/2

I=29/2

I=31/2

FIG. 9: Decomposition of wavefunctions of 49Cr into components of total S (spin). The fill (and

color) scheme are the same as in Fig. 8.

model were compared directly with cranked Hartree-Fock-Bogoliubov calculations [42], and with

similar results: both CI and CHFB showed backbending at I ⇡ 10 and I ⇡ 16; the latter is where

pure (0 f7/2)
10 configurations must terminate. In particular they find 50Cr to be axially symmetric

and prolate below I ⇡ 10, afterwhich it becomes oblate and weakly triaxial, until it reaches I ⇡ 16

where, again at the termination of the (0 f7/2)
10 configuration it becomes strongly triaxial.

While the decomposition in L, shown in Fig. 13, shows significant shifts at the two backbending

points, the decompositions in S, Fig. 14, and SU(4), Fig. 16, are more subtle than for our other two

nuclides: in the run-up to the backbend, at I = 6,8, the decompositions of both sub-bands are

nearly identical, but as I increases up to and past the backbend at I = 12, the decompositions of the

upper sub-band shows a stronger evolution. Like the other nuclides, in the SU(3) decomposition,

Fig. 15, we see strong quasi-dynamical symmetry in the lower sub-band, with strong changes at

the two backbends, and the fragmentation becoming more narrow.
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FIG. 10: Decomposition of wavefunctions of 49Cr into SU(3) irreps. See text for the definition of

the SU(3) Casimir. The fill (and color) scheme are the same as in Fig. 8.

D. SU(3) and deformations

For a given state wholly in an SU(3) irrep labeled by (l ,µ) one can map it to a deformed shape

and determine its deformation parameters b and g ; in particular, the value of the two-body SU(3)

Casimir is proportional to b 2 [65]. This has been used in prior work to examine SU(3) breaking

by the pairing and spin-orbit forces [58, 60]. The broad fragmentations we see in SU(3) is similar

to the broad distributions of b and g values in the presence of strong spin-orbit splitting in Figs. 2

and 3 of [58].

It is therefore tempting to interpret our SU(3) decompositions as telling us something about

deformation. By eye one can see, and we confirmed in detail, the expectation value of C2(SU(3))

does not change much along the yrast line for each of our nuclides; by the above mapping this

would suggest the average value of b 2 also remains near constant. This, however, contradicts prior

work using mean-field frameworks suggesting 48,49,50Cr are all strongly prolate, axially symmetric

rotors below the backbend, while above the backbend they becomes nearly spherical and are less
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FIG. 11: Decomposition of wavefunctions of49Cr into SU(4) irreps. See text for the definition of

the SU(4) Casimir. The fill (and color) scheme are the same as in Fig. 8.

well-interpreted in terms of a single intrinsic shape [24, 39, 42, 44, 46]. (Although we do not show

it, we confirmed this behavior with a separate Hartree-Fock code using shell-model interactions.)

It is important to note that a deformed Slater determinant does not necessarily correspond to a

single SU(3) irrep. Rather, it can be fragmented across many group irreps, as previously demon-

strated in [70], where a projected Hartree-Fock state had a much stronger overlap with the full

configuration-interaction ground state wavefunction than the highest-weight SU(3) state, driven

predominantly by the single-particle spin-orbit force.

We can provide a class of simple examples which show the mapping of SU(3) labels (l ,µ)

to deformation can conflict with a simple mean-field picture. Consider a state which consists of a

filled single- j shell, for example, 48Ca where one fills the 0 f7/2 shell with neutrons. This is a single

Slater determinant and is a manifestly spherical shape: the expectation value of the quadrupole

tensor vanishes. Yet if one decomposes it using the SU(3) two-body Casimir, it has only a 1%

fraction in the spherical (l ,µ) = (0,0) irrep; the rest of the wavefunction is broadly spread across
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FIG. 12: Calculated spectrum of 50Cr. The x-axis (angular momentum I) is scaled as I(I +1) so

as to emphasize rotational bands. The labeling of levels, i.e., (red) squares, (blue) triangles, and

(green) circles, correspond to the same (initial) state as in Panel (a) of Fig. 1. Bars indicate levels

found in our calculation but which we do not decompose.

many SU(3) irreps. This result is not unique to 48Ca, but occurs whenever one fills a j-shell but

not its spin-orbit partner. The fact that one has large SU(3) mixing is not surprising, given the

spin-orbit splitting, but it also suggests a picture of deformation can depend strongly upon whether

determined from a mean-field solution or from an SU(3) decomposition.

IV. CONCLUSIONS AND ACKNOWLEDGEMENTS

In order to illuminate backbending in chromium isotopes, we carried out group decomposition

of shell model CI wavefunctions, using total orbital angular momentum L, total spin S, and the

two-body Casimir operators of SU(3) and SU(4). We saw strong quasi-dynamical symmetry in all

cases, often with a significant shift in the fragmentation as one crosses from the lower to the upper

sub-band. Above the backbend the SU(3) distribution show the largest evolution with increasing I,
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FIG. 13: Decomposition of wavefunctions of 50Cr into components of total L (orbital angular

momentum). Decomposition of wavefunctions of 50Cr into components of total L (orbital angular

momentum). Much like Fig. 3, the fill (and color) scheme are matched to the levels shown in

Fig. 12, i.e., (red) solid bars (lower sub-band), (blue) dotted (upper sub-band), and (green) striped

(‘intruder,’ that is, outside of the (0 f7/2)
10 configuration space). Here and throughout we

superimpose levels which have the same I but which belong to different sub-bands.

a narrowing of the distribution but with a nearly constant average. On one hand large expectation

values of the SU(3) two-body Casimir eigenvalues suggest persistent large deformation, but mean-

field calculations consistently depict the yrast states at high I have decreasing deformation. We

note this clash of deformation pictures, that is, mean-field versus SU(3), can be found even in the

very simple example of a simple spherical Slater determinant, a filled j-shell, which also has a

broad distribution across many deformed SU(3) irreps.

In contrast, spin S and SU(4) show less evolution in the sub-bands, both below and above the

backbending. SU(4) shows the most pronounced shift in decomposition at the backbend in 48Cr,

much less so in our other two nuclides; nonetheless, we have demonstrated pervasive SU(4) quasi-

dynamical symmetry in the p f shell. Overall the L decomposition simply shows a steady and
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color) scheme same as that of Fig. 13.

coherent increase in angular momentum.

Of course, the p f shell space is limited and the GXPF1 interaction is phenomenological and

heavily renormalized relative to the ‘real’ nuclear force. While there has been work decomposing

ab initio wavefunction for very light nuclei into SU(3) irreps, [71], quasi-dynamical symmetry has

not been deeply investigated such calculations. We only note that one previous investigation, in the

L and S decomposition only [64] in p-shell nuclei, showed remarkable congruence between results

from phenomenological and ab initio interactions.

While it would be interesting to apply these same analyses to heavier nuclei with backbending,

the fact that tractable model spaces for such nuclei general exclude spin-orbit partners makes exact

decomposition impossible. One could consider pseudospin, psuedo-SU(3), and other approximate

symmetries, but this we also leave to future work.
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Chapter 3

Localized Brink-Axel in Weak Rates of

Astrophysical PF Shell Nuclei

3.1 Introduction

Weak nuclear transitions strengths from highly excited states are needed for accurate

modeling of astrophysical properties, but difficult to obtain either from experiment or theory. For

experiment, it is rare to find weak decay rates from the first excited state let alone higher excited

states. For theory, using computational methods one finds two issues. First, depending on the

type of shell, the degeneracy of those shells also increases as (2J+1), where for example p and f

shells have more states than s and d shells. Further, the basis dimension of the shell model space

increases in combinatorial fashion as one fills up single particle states within a specific major

shell with nucleons. Second, the number of Lanczos iterations required to converge more excited

states increases dramatically. Both of these factors require more and more processors, time and

memory, up to the point of necessitating supercomputers. However, as I will explain, even given

the most powerful modern supercomputers, the full computation of rates for heavier elements in

the pf-shell and beyond remain intractable.
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In the foundational work of Fuller, Fowler and Newman (FFN) [17], stellar weak rates

were computed for mass number A = 17�60 for grids in temperature and density appropriate to

pre-collapse massive stars. To compute the parent ground state they used the Independent Particle

Model, and then applied the Brink-Axel hypothesis to approximate distributions for Gamow-Teller

(GT) strength functions, as described in equation 1.33, coming from highly excited states. Later

in 1994, Oda et al. [72] updated the sd-shell nuclei, A = 17�39 and an 16O core, while in 2001

Langanke and Martinez-Pinedo (LMP) [73] updated rates for the pf-shell, A = 45� 65 and a

frozen 40Ca core. The primary difference between FFN and the updates by Oda et al. and LMP

was the use of large scale shell model calculations. Specifically, in the work directly preceding

LMP by Caurier, Langanke and Martinez-Pinedo, (CLMP) [74], the authors sought to improve

over the independent particle model approach of FFN by using the interacting shell model via

the KB3 interaction of Poves and Zuker [75]. CLMP provided evidence that the KB3 interaction

more accurately predict the placement of the Gamow-Teller centroid than the FFN model. Also,

where FFN puts all the GT strength at one place in the daughter spectrum, the KB3 interaction

models the fragmented distribution of GT transition from an initial parent state to many final

daughter states, a consequence of SU(4) symmetry breaking.

Even more than 20 years ago, Oda et al. were able to compute at least 100 eigenstates

in sd-shell parent nuclei, where they could capture virtually all of the thermal weak transition

strength. These rates were appropriate for for the oxygen, neon, and magnesium burning stars of

intermediate mass stars below 10 solar masses. However, for massive stars around 10 solar masses

and higher, the pf-shell transitions are necessary, but at the time computing highly excited states

for these nuclei proved difficult. LMP did an expanded sweep of the pf-shell to heavier nuclei

over FFN, but only computed states 4 to 12 parent eigenstates, which limited excitation energy to

1 MeV for odd-A and odd-odd nuclei, and limited to 2 MeV for even-even nuclei. However, in

LMP, as in FFN, this was supplemented by the Brink-Axel Hypothesis for the form of transition

strength spectra, which will be explained below, and so-called back resonance contributions
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coming from the reverse transition in low lying daughter states. An examination of the validity of

the Brink-Axel hypothesis in sd-shell nuclei was performed by Misch, Fuller and Brown [18],

where they were easily able to obtain parent states of up 28 MeV.

Today’s desktop computers are easily able to obtain many hundreds of eigenpairs for

Hamiltonians in the sd-shell after many thousands of Lanczos iterations. In the M-scheme basis

used the sd-shell nuclei can have basis dimensions at most in the tens of thousands (28Si has

90 thousand states), so a computer with gigabytes of memory more than suffices to hold such

vectors and associated matrix elements. But in the pf-shell we get many orders of magnitude

higher, where for example 52Fe has 100 million basis states [7]. For this work I use the large

scale shell model code BIGSTICK [7][15], which has parallel computing capabilities that allows

for the computation of spectra and transition rates of pf-shell nuclei with especially large basis

dimension by taking full advantage of the resources of supercomputing facilities.

In this work, I explore the limits of the Brink-Axel hypothesis applying it to several

Gamow-Teller transitions in the iron region.

53Fe ! 53Mn

55Fe ! 55Mn

55Cr ! 55Mn

56Fe ! 56Mn

57Co ! 57Fe ,

(3.1)

where I also computed thermal weak rates for the last transition 57Co ! 57Fe at finite temperature

and density suitable to massive star core conditions preceding collapse. I find very good agreement

with LMP thermal Gamow-Teller rates through most of the density and temperature range up to

a temperature of 1010 K. But beyond this temperature, there is a sudden uptick in the rates and

their growth that could have significant astrophysical implications. It is found that within certain
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energy windows strength distributions from neighboring parent states behave more and more

similarly at higher energies. Via this principle, I devise and apply a method to obtain transitions

strengths for highly excited states that are semi-converged, which can be directly applied in

thermal Gamow-Teller (GT) transition rate computations in massive stellar cores.

3.2 Methods

I chose an updated shell model residual interaction in the pf-shell developed more recently

in Japan, GXPF1A [9], which have smaller and more uniform deviations in lowing lying excitation

energies compared to the classic KB3 family interactions [75] [54]. Also, the GXPF1 family of

pf-shell residual interactions have been shown to follow more closely experimental Gamow-Teller

distributions in terms of the location of resonance peaks and fragmentation of the distribution [53].

For the transition, 57Co ! 57Fe, I use initial excited parent states going up to 60 MeV, which

requires the use of the significant memory and processing capability of supercomputers for the

heaviest nuclei. What is different in these computations is that I include many more initial states

in the parent compared to LMP, specifically from 100-200 states, where the spectrum is converged

from 4 MeV up to 10 MeV and beyond depending on the parent nucleus. As in Oda et. al. for

most temperatures and densities this suffices to converge most of the thermal Gamow-Teller

strength. But for temperatures above 1010 K it becomes necessary to use more excited states and

for this I turn to the Brink-Axel hypothesis describing a sort of translation symmetry in parent

excitation energy of strength function distributions. In fact, the primary focus of this chapter is to

provide evidence for a modified Brink-Axel hypothesis in the pf-shell, which was first analyzed

in detail by Misch, Fuller, and Brown [18] for the sd-shell. Based on this evidence, I propose a

new prescription for the calculation of thermal transition rates from strength functions.

The Brink-Axel hypothesis is an approximation stating that excited state strength functions

have the same distribution to daughter states as the ground state distribution, except that the
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centroid is shifted up. Specifically, in the strength function defined in equation 1.33 I use the

Gamow-Teller operator:

SGT (Ei,Etr) = Â
f

d (Etr �E f +Ei)Bi f (GT ), (3.2)

where Etr is the transition energy. The Brink-Axel hypothesis says that the strength function

above is independent of the initial state, i, and only depends on the difference Etr = E f �Ei.

Strong evidence exists for electromagnetic excitations [19]. However, the hypothesis is known to

fail in systematic ways, especially as one goes up in the excited state energy spectrum [18][19]. I

present computational evidence for a Localized Brink-Axel statement (LBAS) in Gamow-Teller

transitions that are relevant in astrophysical applications, specifically the PF shell, where localized

means that strength functions are indeed very similar within small windows of parent excitation

energy.

In section 3.3, I demonstrate the Brink-Axel hypothesis for different in initial parent nuclei

for electron capture/positron decay (GT�) type transitions. Then in section 3.4, I show how this

principle holds in a more restricted sense, that is, it breaks down globally but survives locally for

many different parent nuclides and parent excitation energies, including electron capture/positron

decay (GT+) type transitions as well. Using high energy initial parent states that are not fully

converged, I can probe higher in the energy spectrum than usually possible, and will allow the

full computation of high temperature stellar rates beyond 109 K. Thus finally, in section 3.5 I

apply these semi-converged excited states to the computation of such thermal rates.

There are currently two approaches used to compute transition strengths as follows. The

first is computing individual transition strengths between converged states. But because both

initial and final states must be converged, this is restricted to the low energies or small model
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spaces, such as, the sd shell. This method uses one-body density matrices:

r f i
K,T (ab) =

s
1

(2K +1)(2T +1)Â
ab
hy f ||[ĉ†

a ⌦ c̃b]K,T ||yii, (3.3)

where [ĉ†
a⌦ c̃b]K,T is a tensor product of creation/annihilation operators coupled to specific values

of angular momentum K, and isospin T . a and b are single particle states. Also, c̃b = (�1) j+mcb

is an annihilation operator for time-reversed single particle state b, where j and m are the angular

momentum quantum numbers for this specific state. To obtain the doubly reduced matrix element

of an transition operator, VK,T , which is necessary for a transition strength, one computes:

hy f |||VK,T |||yii= Â
ab

r f i
K,T (ab)ha|||VK,T |||bi, (3.4)

which relates to the reduced transition probability, B(GT ) from equation as in equation 1.32

with J = K and V = GT . This method has the limitation that one must compute a large number

of eigenstates for both the parent and the daughter, which limits how high one can go in the

excitation spectrum. However, it is a useful check against the results of the strength function

method, which I discuss next.

The second approach to obtaining transition rates is by computing strength functions,

as in equation 1.33. These distributions are produced from the modified Lanczos algorithm

described in section 1.3.3 that starts from a single converged initial parent state and results in

the transition strength function to many final states as a function of daughter energy. Because

strength function calculations require converged initial states, then this approach is still limited to

low excitation energy when the basis dimension of the parent nucleus is especially large, where

in the pf-shell eigenstates up to 5-10 MeV excitation energy are typical, even after thousands of

iterations. However, once a parent state is obtained it takes relatively few iterations to converge

a good distribution to final states compared to what is needed for converging eigenstates. For

example, it could take a few thousand Lanczos iterations to converge 150 eigenstates, whereas
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Figure 3.1: Convergence of the running sum of the strength function for the transition 44Ti !
44V as a function of daughter energy. The points are the data, and the lines are only visual aids.

in computing strength functions LMP ran 33 iterations, whereas I ran 100 iterations. Thus it

takes 1-2 orders of magnitude less computational resources to obtain decent strength function

distributions compared to computing eigenpairs. Figure 3.1 gives an example of strength function

convergence.

In this work, I develop and apply a third method. I start from semi-converged initial parent

states whose variance in energy expectation value is small. This allowed me to sample the parent

energy spectrum up to whatever is necessary to converge the thermal B(GT) transition rates. To

reduce the energy variance of a semi-converged state, a targeted thick-restart Lanczos algorithm

is used [15], which targets a specific energy window of the Hamiltonian. The algorithm localizes

states in energy by running the Lanczos algorithm up to a maximum number of iterations, and

then removes excess Lanczos vectors and restarts the filtration process a desired number of

times. But it remains to be examined how well neighboring states in an excitation energy window

resemble each other.
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3.3 Gamow-Teller Transition Strengths and Brink-Axel

Before computing thermal rates in stellar environments, one first needs the reduced

transition probabilities, B(GT ), which are proportional to the square of the transition matrix

elements. Therefore I start with some examples of Gamow-Teller transition strengths, B(GT), as

functions of transition energy. The transition energy is related to the Q-value:

Etr = Etheory
f �Etheory

i = Qi f + constant = Q0 +E f �Ei + constant, (3.5)

and is a measure of the available energy for various processes in the reaction, such as, the

excitation energy or kinetic energy of the electrons, neutrinos or the nuclei. Here the Q-value,

Q0 = mre �mpr, is the difference in mass of the reactants and products in their ground states, Ei

is the excitation energy relative to the ground state of the parent nucleus, and finally E f is the

excitation energy relative the ground state of the daughter nucleus. However, the transition energy

I use in the Brink-Axel graphs will be shifted by a constant because I use the theoretical initial

parent and final daughter energies, which may not exactly agree on the masses nor include the

electron/positron mass. For the thermal rates, I use Q0 as provided by experimental masses.

Notice in Figure 3.2 I show a sample of the four of the five different transitions mentioned

above (GT� type), where the strength functions all have initial parents states of around 4.5 MeV

excitation energy. Here one sees the generalized Brink-Axel hypothesis holding, in that for each

transition the two different distributions in each graph look very similar to each other. There

is an apparent upward shift in the resonance peak as the mass number increases for the iron to

manganese transitions, and one might wonder if this is a general trend. This is in contrast to the

bottom graph, which has two transition strength functions for 57Co ! 57Fe with the peak instead

at a lower point in the spectrum. However, one drawback of strength functions is that these are a

collection of delta function spikes with highly varying distances between them, which further

move around as the Lanczos iterations proceed. Thus, the true location of a giant resonance,
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or any resonance peak, can be unclear without folding the peaks together with an appropriate

resolution function, as described by Haxton, Nollett, and Zurek [20], but I do not do this here.

Instead, one can get around this in other ways by averaging in bins or by using the running sum of

the strength function, as will be described in succeeding sections, where in this work I use both.

3.4 Generalized Brink-Axel Hypothesis versus Localization

In this section I analyze how the strength functions evolve with the parent excitation

energy. One could examine the average of strength functions, S(GT ), for parent states within

an energy bin. However, the strength function may not always provide an adequate visual aid

to describe desirable features of the transition spectrum. As another tool, I use the running sum,

R(GT ), which is defined for an initial parent state, i, as a sum over the strength function from

equation 1.33:

R(GT )[Ei,Qi f ] = Â
f

d (Qi f �E f +Ei)
f

Â
f 0=1

Bi f (GT ), (3.6)

The running sum gets rid of some of the noise caused in the vacillating strength functions. Also,

when plotting a set of individual running sums of strength functions on the same graph, one can

see visually the variance of the total strength of the set. Figure 3.3 shows a transition strength

function B(GT ) simultaneously with its running sum R(GT ). R(GT ) is a type of discrete integral

of the S(GT ) with varying intervals int the dependent variable. Thus the slope of the running sum

gives an idea of the shape of the S(GT ) as well. Increases in slope followed by decreases in slope

correspond to broad peaks, where the position of resonances is noticeable.

Now I provide crucial evidence in lower parts of the spectrum that a version of the

generalized Brink-Axel hypothesis does hold, that is, one sees the average of running sum

strength functions are similar within fluctuations. In these figures, DE represents an energy

window, where many parents running sum distributions are averaged together around a central

parent excitation energy; the resulting distribution is plotted as a function of transition energy
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Figure 3.4: Average of running sums in 53Fe ! 53Mn for parent states around 3.96 MeV

from parent to daughter, in equally spaced 0.5 MeV bins. One can see in Figure 3.4 for the

53Fe ! 53Mn transition centered at 3.96 MeV, this window does not seem to affect significantly

the variance or shape resulting in self-similar shapes as the size of the windows changes. The

variance in total strength is about 0.6 at the end. At the lower end of excitation energy the variance

is smaller signaling more similarity in shape. Further, the highest slopes for the running sum

would correspond to peaks in the strength function, which in this case are around 11 MeV in

excitation energy. Figure 3.5 shows parents states around 4.92 MeV, which shows similar trends,

except that the smallest energy window of 0.3 MeV has a smaller variance. This means that in

this more restricted region the strength functions are even more alike on average. Increasing the

window gives a larger spread of 0.6 in running strength similar to figure 3.4. To see whether the

above patterns are ubiquitous, I looked at other transitions. Figures 3.6,3.7,3.8, and 3.9 show

other transitions at low energy up below 5 MeV. In general, the data show the independence

of running sum with initial state energy windows of size 0.5-1 MeV. This starts to break down
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Figure 3.6: Average of running sums in Fe 55Fe ! 55Mn for parent states around 2.52 MeV
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Figure 3.7: Average of running sums in 55Fe ! 55Mn for parent states around 3.56 MeV

when adding states further away from the mean, or for windows that are two small, where the

former shows the breakdown of the Generalized Brink Hypothesis, and the latter is simply due to

approaching granular details of individual parent strength functions.

3.5 Semi-Converged States

Unfortunately even with a method that could pick out converged eigenstates in energy

windows in more advanced parts of the spectrum, for high energies the level density gets so

large that available computational resources are insufficient necessary to resolve the many tightly

packed quasi-continuous states. Thus I explore whether it is necessary to have a fully converged

state by comparing to semi-converged states. These semi-converged parent excited states were

projected to good J and T, but are only partially localized in energy. The variance around the peak

for a such a parent state, |yi, is given by the formula hH2iy �hHi2
y with the expectation value
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Figure 3.8: Average of running sums in 56Fe ! 56Mn for parent states around 3.29 MeV
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Figure 3.9: Average of running sums in 56Fe ! 56Mn for parent states around 4.25 MeV
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for an operator O defined as hOiy = hy|O|yi. In the figures in this section, semi-converged

parent states have fixed T , Tz, and M, but can be decomposed as linear combinations for possible

J:

|yi= Â
J

CJ|JMT T zi, (3.7)

where in the figures C2 is therefore the amplitude squared, or probability, of such a state being

measured to have angular momentum, J. As mentioned previously, I use targeted thick restart

Lanczos, to localize the state to within the desired energy window, where one would expect

strength functions to be similar.
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Figure 3.10: The evolution of the transition 53Fe! 53Mn as one goes higher in parent excitation
energy. Each graph has strength functions for parents of different angular momentum J. Those
having C2 are semi-converged states projected to the given J, and those having excitation energy,
Ex, are fully converged states of that specific excitation energy.
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That is, the strength functions follow a Local Brink Axel Statement (LBAS), where for the

strength function in equation 3.2, I claim:

The strength function evolves in a secular fashion, such that, within a sufficiently
small energy window the spectral distribution from nearby parent excited states to
their daughter states is the same independent of the parent index, i.

As a first example, figure 3.10 has examples of strength functions at successive energy scales for

the transition 53Fe ! 53Mn, which could be used to compute electron capture or positron decay

rates. The functions are very similar in shape and magnitude. There is an evolution going up

in excitation energy, where at around 20 MeV in initial parent excitation (top graph) there is a

second peak around 2-3 MeV transition energy. To show that this phenomenon is ubiquitous,

Figure 3.11 has strength functions for a transition between 55Cr ! 55Mn, which could be used in

electron decay or positron capture calculations. Here the same pattern arises, where as one goes

up in parent excitation energy a peak on the right is shrinking from 1.5 to 1 strength units, while a

second peak on the left side is growing.

Notice that in Figure 3.11, the 5 MeV parent case (middle graph) the dashed line goes

higher than the other two, but still follows a similar pattern. This is because it is a J = 1/2 line, so

it has less transition channels and resulting data points, which makes it appear less smooth. Often

these are smoothed out with Gaussian or Lorentzian functions that are appropriate in matching

the experimental spectrum [20].

Thus one can see that the Brink-Axel hypothesis is broken, in that when going up in

energy the shape of the distribution changes. But this work shows that the magnitude of the total

sum evolves in a smooth manner. Further, it appears that parent states that are close in energy are

very similar and get closer to identical as the parent excitation energy is increased. This gives

strong evidence for the LBAS described earlier.

Similar conclusions can be drawn for the running sums, R(GT ). First in figure 3.12, I

compare to the averages computed in section 3.4 for 53Fe ! 53Mn at lower energy values around
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Figure 3.11: The evolution of the transition 55Cr! 55Mn as one goes higher in parent excitation
energy. Each graph has strength functions for parents of different angular momentum J. Those
having C2 are semi-converged states projected to the given J, and those having excitation energy,
Ex, values are fully converged states of that specific excitation energy.
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Figure 3.12: Comparison of running sums for converged states average around 4.5 MeV
excitation (blocks and broken lines) and individual semi-converged states also around 4.5 MeV
excitation (colored, connected lines) in the 53Fe ! 53Mn transition
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Figure 3.13: Running transition strength sums in 53Fe ! 53Mn for semi-converged parent states
around 10 MeV

5 MeV. One can see that the semi-converged states seem to mostly fall within the averages, which

confirms that they follow the pattern 1 of a generalized Brink hypothesis.

Unfortunately as mentioned before because of computational constraints one cannot

generally go much beyond 5-15 MeV if fully converged states are used. Thus for higher excitation

energies at 10 and 20 MeV I again use projections of semi-converged states. Notice in figures

3.13 and 3.14 that as one progresses higher in the energy spectrum the shape of the running sum

of strength becomes independent of J, and are virtually identical. However, the curve starts to

spread out more towards negative transition energy, evolving smoothly as parent energy increases

to 10 MeV and 20 MeV. This shows more evidence for a version of the Brink hypothesis, but one

that is localized. In addition, it seems that the total strength has a slight J dependence with higher

J having smaller total strength, where this is most pronounced in the 20 MeV case at about a 5

percent deviation.
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Figure 3.14: Running transition strength sums for 53Fe ! 53Mn for semi-converged parent
states around 20 MeV
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Figure 3.15: Comparison of running sums for converged states average around 4 MeV excitation
(blocks and broken lines) and individual semi-converged states around 5 MeV excitation (colored,
connected lines) in the 55Cr ! 55Mn transition
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Figure 3.16: Running transition strength sums for 55Cr ! 55Mn for semi-converged parent
states around 10 MeV

There is very similar behavior but now in the direction of lowering isospin for the transition

55Cr ! 55Mn, where the transition could electron decay or positron capture. In figure 3.15, one

sees that the semi-converged states line up well within the variance of the converged average for

around parent excitation energy 4-5 MeV. As parent excitation energy increases, as in figures 3.16

and 3.17, the same two features appear again. That is, the overall shape of the curves become less

dependent on the angular momentum J of the parent excited state, but the total strength also has a

slight systematically decreasing dependence on J though now much smaller at less than 1 percent.

However, one major difference is that the total sum has not changed much from R(GT ) = 23 for

this transition as we increased parent excitation energy.
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Figure 3.17: Running transition strength sums for 55Cr ! 55Mn for semi-converged parent
states around 20 MeV

3.5.1 Application to Massive Stellar Thermal Rates

In astrophysical applications, such as pre-collapse massive stars, the high temperatures in

billions of kelvin make higher energy parent states more significant in the thermal sum of rates.

The Fermi and Gamow-Teller rates determine the baryon to lepton fraction and the neutrino flux,

which are vital inputs to the final collapse dynamics of a star and the composition of the products.

As a test of the efficacy of the method, I calculated the thermal GT rates for 57Co ! 57Fe,

a near 1 billion basis dimension case, and much larger compared to previous studies. I affirm

that the contributions of excited states to stellar transition rates are more important at high

temperatures. Here I look at both electron capture and positron decay rates for 57Co, which was

chosen because the basis size being around 1 billion gives a good test of the BIGSTICK code

[15], but also because it was noted as significant in recent pre-collapse stellar evolution research

[76]. These BIGSTICK derived rates are compared to the work of Fuller, Fowler, and Newman
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(FFN) [17], and also the work of Langanke and Martinez-Pinedo (LMP) [73].

Importantly, the standard formulas used for weak interaction transition rates given in FFN

and LMP are applied. Phase space factors account for the final states of the electron and neutrino,

where the Q-value, Qi j, goes to their mass and kinetic energy depending on the reaction type. As

seen in the previous sections, parent energy windows around 1 MeV give strength functions that

are increasingly similar, particularly for excitation above 5 MeV where our ability to converge

eigenstates is gets more and more limited. Therefore as the approximation method derived from

the LBS, we take that in these energy windows or bins the excitation probabilities Pi, the reduced

transition probabilities, B(GT ), and the phase factors, Fi f , are identical. This means that these

factors are also independent of energy, angular momentum, or isospin, where when the energy

factors in I use the midpoint energy, e , of the window. The equation 1.35 for thermal transition

rates, where the sum over initial states i, is re-done with a converged state sum that proceeds

normally, and a semi-converged state sum in De = 2 MeV wide bins that does the rest up to

convergence of the total transition rate:

l = Â
i

Pi Â
f

Bi f (GT )Fi f

⇡
Nconv

Â
i=1

Pi Â
f

Bi f (GT )Fi f +
Nbins

Â
bin=1

Pe(bin) Ne(bin)Â
f

Be(bin), f (GT )Fe(bin), f ,

(3.8)

where bin = 1 picks up at states starting above the highest energy converged state and the total

partition function is also split as:

G ⇡
Nconv

Â
i=1

e�Ei/kT +
Z e(bin=1)�De/2+NbinsDe

e(bin=1)�De/2
e�Ex/kT D(Ex)dEx (3.9)

As a result, two new factors must be introduced in the semi-converged sum, namely the number of

states in the energy window, Ne(bin) =
R

bin D(Ex)dEx, and D(Ex) the corresponding level density,

where the integration is over the excitation energy of the parent nucleus, Ex. Therefore the level
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density plays a significant role in these calculations, and the sensitivity of thermal GT rates

to level density will be explored in section 3.5.4. I will give results using two different level

densities, one from the shell model used in calculation and one from an empirical back-shifted

Fermi Gas fitted to experiments [77].

These sums are used in conjunction with the following phase space factors for electron

capture and positron decay:

F(ec)
i j (µe,T ) =

Z •

Wmin
W
p

W 2 �1(Qi j +W )F(Z,w) f (T,µe,+e)dW

F(pd)
i j (µe,T ) =

Z Wmax

1
W
p

W 2 �1(Qi j �W )F(�(Z �1),w) f (T,µe,�e)dW,

(3.10)

with Wmax = Qi j and Wmin = 1 if Qi j >�1, or else Wmin = |Qi j|, when where F(Z,W ) is called

the Fermi function that accounts for the attraction of beta particle and the nucleus:

F(Z,w) = 2(1+ g)(2pR)�2(1�g) |G(g + iaZw/p)|2

|G(2g +1)|2 (3.11)

with g =
p

1� (aZ)2, where a is the fine structure constant, and R is the nuclear radius. Finally

f (T,µe;Wmec2) are the Fermi-Dirac statistics for the beta particles:

f (T,µe,e) =
1

exp
⇣

e�µe
kT

⌘
+1

(3.12)

Here µe is the electron chemical potential and p =
p

W 2 �1 is the momentum in units of the

mass of the electron times the speed of light (mec). The total energy of the electron including

mass is e =Wmec2. For the transition energy defined in equation 3.5, Q0 = Mp �Md in units of

mec2 with Mp and Md the nuclear masses of the parent and daughter, respectively. The chemical

potential was obtained using a root-finding algorithm on the following integral equation:

rYe =
(mec)3

p3h̄3NA

Z •

1
W
p

W 2 �1[ f (T,µe,e)� f (T,�µe,e)]dW, (3.13)
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where h̄ is Boltzmann’s constant and NA is Avogadro’s number.

At 4 MeV up to 80 MeV, semi-converged states are used at 2 MeV intervals. The

approximation is used that all the transition strength functions in these intervals for states of

different J are identical. The contributions of higher isospin T = 5/2 states are less than ten

percent up to 25 MeV, where most of the strength has been summed for the temperatures computed

in this work, but pass 30 percent near 80 MeV along with the rise of T = 7/2 states. These

energies ranges open up Fermi transitions to the isobaric analogs from the 57Co parent. Lastly,

the Boltzmann factor used is constant in each interval, where I take the midpoint of the energy.

However, this report is meant to just give very basic results for the thermal rates of 57Co ! 57Fe,

so as to give opportunity for feedback, as this is the capstone of the final chapter.

The LMP and FFN rates were obtained from the MSU NSCL Charge Exchange Group at

URL: https://groups.nscl.msu.edu/charge_exchange/weakrates.html. The parent energy levels

and transition rates I computed using the GXPF1A interaction [9]. The Gamow-Teller operator is

generated using auxiliary code provided with BIGSTICK [15].

3.5.2 Electron Capture Results, 57Co ! 57Fe

First consider a comparison of FFN and LMP electron capture rates: As one can see, the

FFN electron capture rates in figure 3.18 are generally higher than the LMP rates, in some case

by many orders of magnitude, but become much closer at high temperature and separately at high

density as well. This was noted to be a general trend for the various nuclides and beta processes,

which for electron capture rates would result in higher values for Ye and the in the production of

neutron-rich nuclei [73].

For electron capture, one sees that my rates have similarities to LMP with some notable

differences. In Figure 3.19, I show another comparison of rates but this time for two different

level densities including my full rates with semi-converged excited states added and partial rates

that don’t include excited states at all (marked by ‘X’). At the highest temperature regions, Note
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Figure 3.18: Comparison of previous work in electron capture for 57Co ! 57Fe. The numbers
in the legend are Log[rye] = 1,3,5, . . . , that is, density times electron fraction in grams per
cubic centimeter. The lines are plotted in reverse order to the legend, so that Log[rye] = 1 is the
first line from the bottom.

three different regions in Figure 3.19. First at low temperature and low density both my full

and partial rates are virtually identical to the LMP rates. Going up in density to 109 g/cm3

(Log[rye] = 9), both the full and partial rates are about 0.2-0.3 higher in log-rate, or almost a

factor of 2 in absolute rate over the LMP rates. In the high temperature range approaching 1010 K

and higher with densities higher than or equal to 105 g/cm3 (Log[rye] = 5), the empirical level

density full rates (bottom graph) are even higher and lifted off by up to 1 in log-rate or a factor of

10 in absolute rate. Going up a bit more in temperature, the full shell model rates (top graph) also

start to have noticeable increases over the LMP rates. Lastly, in both graphs at high temperature

and density, the difference between the full rates and the partial rates (marked by ‘X’) increases

as temperature increases.

3.5.3 Positron Decay Rates, 57Co ! 57Fe

The positron decay rates, show more drastic differences. At low temperature and density,

the positron decay rates are many orders of magnitude smaller than electron capture; however, at

extreme temperature and density they become comparable to other processes and may contribute

in a significant way. The chemical potential for positrons is such that there is not much difference
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Figure 3.19: Electron capture in 57Co ! 57Fe. Top graph is using the gaussian shell model
level density, and bottom is using the empirical level density. The lines represent the LMP rates,
and the symbolic markers represent my full rates. The values marked by ‘X’ are partial rates
that do not include the semi-converged excited state contribution. The plotting of lines is in
reverse to the legend, where Log[rye] = 11 is the topmost line.
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in the rates for different stellar densities (Log[rye]). Thus in the two graphs in Figure 3.20, all

lines overlap. As with the electron captures rates, the positron decay rates computed in this

work are noticeably higher for high temperature and densities when compared to the LMP rates,

but lower than the FFN rates in the regions computed. However, there are two other important

features. First, at low temperature the full and partial rates are higher than the LMP for both level

density graphs, but increase at a slightly lower trend as one goes higher in temperature. Second,

at around 5⇥109 K, the full rates I derived using shell model and empirical level densities start

to deviate significantly from the LMP line and head toward the FFN line, but then the full shell

model density rates slow down and follow a similar curve to LMP. The partial rates (marked by

‘X’) are dramatically less than any of the other rates graphed including LMP. Importantly, my full

rates in both graphs are 1-2 orders of magnitude higher than LMP at these higher temperatures

for both level densities.

3.5.4 Level Densities and Convergence of LBAS Method, 57Co ! 57Fe

As I showed in preceding sections, knowledge of the density of energy levels for parent

nuclei becomes necessary for this binned approximation. In these calculations, the shell model

level density is well approximated by a Gaussian function, or normal distribution, of the form

D(Ex) =
C

s
p

2p e�
1
2 (

Ex�µ
s )2

, where Ex is the nuclear excitation energy. Also, for this transition

C = 980,474,907 is the total number of states, s = 12.55 is the standard deviation or width, and

µ =�147.15 is the energy centroid for the 57Co nucleus. On the other hand, the back-shifted

Fermi gas model, which is empirically fitted to experimental data, takes the form:

D(Ex) =
exp
⇣
�2
p

a(Ex �d )
⌘

12
p

2sa1/4(Ex �d )5/4
(3.14)

The values for 57Co ! 57Fe in this empirical model are the level density parameter, a = 6.5, and

the backshift parameter, d = 0.7 MeV. These parameter values were obtained from Mishra et al.
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Figure 3.20: Positron decay in 57Co ! 57Fe. Top graph is using the shell model level density,
and bottom graph is using the empirical level density. The solid lines represent the LMP rates
and the dashed lines represent the FFN rates, and the symbolic markers represent my full rates.
The log-rates are mostly indistinguishable for all stellar densities Log[rye]. The values marked
by ‘X’ are partial rates that do not include the semi-converged excited state contribution.
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[77], but not given there was the spin-cutoff parameter s though it was noted that the dependence

on s is weak with a tolerance of 20 percent. I use s = 3.96 taken from graphs for pf-shell nuclei

in Spinella and Johnson [78], where s = hJ2
z i is dependent on excitation energy but it is shown to

be approximately constant over a wide range in the PF shell.

When discussing the convergence of their method, LMP describes using so-called ‘average

states’ that are not fully converged, which are essentially like the semi-converged states I use

though presumably at different levels of energy localization. However, it is unclear how these

states were applied in their work. I assume they were treated like typical parent states with specific

quantum numbers that would have to be rounded, if not converged to good values. Instead my use

of the LBAS implies that I should treat a semi-converged parent states just like any other within

the energy window as if all these states had the same strength function regardless of quantum

number, except perhaps for isospin. Therefore, I only need to count the number of states in the

window, hence the need for the level density.

This leaves us with an important caveat: the empirical back-shifted Fermi Gas level

density grows much faster than the shell model level density, which directly affects the parent

state partition function and the total states per energy bin from our LBAS approximation in

equation 3.8. Thus, for the same weak interaction matrix elements, one will have different

behavior depending on the chosen level density scheme.

To understand the convergence of this method it is helpful to study the plot of the product

of level density and Boltzmann factor in figure 3.21: Here the empirical back shifted fermi gas

density is 1-2 orders of magnitude greater. Thus, in order to capture the full rate at 3⇥1010 K

for the empirical level density, I needed to obtain semi-converged excited states up to at least 80

MeV. Figure 3.22 shows a typical graph for the convergence of this method assuming one has

gone high enough in excitation energy.

It becomes obvious from performing these calculations that using the shell model level

density is more practical, in that it does not grow as quickly, but one may also prefer it from a
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Figure 3.21: Product of Boltzmann factor and the level density from 0-80 MeV. The left graph
is using the gaussian shell model level density, and right graph is the empirical back-shifted
Fermi gas level density. Peaks represent the most probable energy.
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Figure 3.22: Fractional error in thermal Gamow-Teller transition rate when adding excited
states in increments of 10 MeV for three different temperature points, and Log[rye] = 1
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consistency point of view. Using the experimental level density, I am including states that don’t

exist in the theoretical shell model for nuclear structure and are not connected to the Gamow-Teller

transition operator. The primary limitation of the shell model is that at some energy scale the

level density hits an inflection point, drops off, and becomes unrealistic. But in principle before

particle separation, or disassociation, the level density should approach a continuum. A larger

model space could include the higher energy g9/2 shell, which due to the spin-orbit coupling is

nearby in energy to the pf-shell [5]. Consequently, this addition would also create more channels

for GT strength. For the Gaussian shell model level density, we can take the difference of the

energy centroid, µ and standard deviation s mentioned above, which means the inflection point

is around 135 MeV. It would be a valid question as to whether the semi-converged states in the

region around this downward inflection point are legitimate representations of highly excited

states. While for this nuclide (57Co), I am not at all limited in going higher than 80 MeV in

parent excitation energy, a larger shell model space may be required to provide realistic results

for transition rates at temperatures nearest to 1011 K or above.

3.6 Discussion

In this chapter, I showed that Gamow-Teller strength distributions follow a Local Brink-

Axel Statement more restrictive than the generalized Brink-Axel hypothesis. The LBAS shows

that transition strength distributions becomes more similar locally as one goes higher in excitation

energy for parent nuclei, where in many cases this held within an energy window of 1.3 MeV.

After this one would not expect similarity due to the secular evolution of the total sum of strength

[19]. This holds even for parent excited states that are semi-converged linear combinations of

eigenstates (up to 80 MeV excitation in this work). Thus, this implies that one can still obtain

strength distribution information at higher energies that would be prohibitive otherwise when

requiring convergence of eigenstates. Further, I provided evidence that in some cases finer energy
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windows for semi-converged parent states could be used that improve the similarity of strength

functions. Specifically figures 3.5, 3.6, and 3.8, where windows of 0.3 MeV or 0.5 MeV for

parent excitation energy, show smaller variance in average running sum of strength functions,

when compared to average running sums for windows nearer to 1 MeV.

As the application, my rates for 57Co ! 57Fe Gamow-Teller transitions computed using

semi-converged excited states up to 80 MeV tend to be higher than the rates of Langanke and

Martinez-Pinedo (LMP) [73], but lower than FFN rates in the computed regions. The differences

cannot be explained by an overall quenching factor, which would raise all rates by the same

amount in all density and temperature regions where FFN does not include such a factor. For

electron capture, I found that the rates computed in this work are higher than LMP for temperatures

above 109 K and densities greater than or equal to 105 g/cm3 up to an order of magnitude. For

positron decay, the rates are different from LMP by 1-2 orders of magnitude, except for a lull

in temperatures between 109 K and 1010 K where they mostly match. Also for positron decay,

above the temperature 1010 K, there is an uptick where my rates trend towards the higher FFN

rates above the LMP rates by up to 2 orders of magnitude, especially when using the back-shifted

Fermi Gas level density. Positron decay rates tend to match each other at all stellar densities and

are primarily a function of temperature. My rates were in general higher than the LMP rates,

which as they noted in their work could have significant implications for neutrino production,

core temperature and entropy [73].

After obtaining strength functions for 57Co up to 80 MeV, I was able to converge Gamow-

Teller transition rates up to 7.5⇥ 1010 K for the Gaussian level density model, but only up to

3⇥1010 K for the empirical level density. This directly due to the fact that the empirical back-

shifted Fermi gas level density continues to grow exponentially as energy increases, whereas

the Gaussian-type shell model level density accelerates, then decelerates and inflects. For most

temperatures and densities in both electron capture and positron decay, the empirical Fermi gas

model rates tracked the Gaussian model rates in transition rates until temperatures near 1010 K
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and beyond, which is due to the lack of excited state contributions. Notably, at high temperatures

the Fermi gas level density rates diverge towards the FFN rates though this might be expected as

FFN also uses an independent particle model.

While using the empirical level density may provide an upper limit on the rates, for a few

reasons, as explained above, this may not be either practical or consistent. Nevertheless, my rates

are computed up to temperatures and densities that are significant for massive stellar evolution up

to collapse. The results of a broader sweep of Gamow-Teller rates in pf-shell nuclei remains to be

completed and analyzed. However, I have shown that for certain iron peak nuclei of the pf-shell,

a Local Brink Axel Statement holds. Based on this, I applied a new method that can compute

transition rates at temperatures above 1010 K using up to arbitrary excitation energy in the parent

state spectrum, which bodes well for updated stellar evolution calculations.
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Chapter 4

Conclusion

In this dissertation, I presented two different applications of the Lanczos spectral de-

composition method, that is, symmetry group decompositions and transition strength functions

in Chapters 2 and 3, respectively. The methods used to produce each type of distribution are

quite similar between each case, and were described in Chapter 1. But there is another strong

relationship between the two works, namely Wigner’s SU(4) symmetry [66] [67].

As discussed in Chapter 2, a Hamiltonian respecting a specific symmetry will have

eigenstates corresponding to one single eigenvalue of the Casimir invariant operator of the

symmetry group. When a dynamical symmetry is explicitly broken in the Hamiltonian, the

eigenstates of the Hamiltonian were fragmented across the eigenvalues of the Casimir operator of

the symmetry group. The Casimir invariant of SU(4) was applied to chromium nuclei, members of

the pf shell, to show a quasi-dynamical symmetry pattern. I showed that even though Hamiltonian

eigenstates in chromium isotopes were fragmented in SU(4), there were patterns that persisted

in progressions of states known as rotational bands, which is called quasi-dynamical symmetry.

As one progresses up the yrast band of lowest energy states of total angular momentum J, this

corresponded to increased energy and orbital angular momentum L, as expected for a nucleus that

is rotating faster. However, the spectral distributions for states of the yrast line in the Casimirs of
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SU(4) and spin angular momentum, S2, were relatively stable until band crossing. Then, from

a second band that took over the yrast another pattern of quasi-dynamical symmetry emerged,

which was also stable. Only a small, coherent evolution in SU(4) and spin was seen in either band

for these nuclei.

This SU(4) quasi-dynamical symmetry has quantitative implications to the Gamow-Teller

strength computed in Chapter 3. A Hamiltonian exactly respecting the SU(4) symmetry would

commute not just with the Fermi operator, but also the GT operator, which is a generator of SU(4).

In the case, eigenstates of the nuclear Hamiltonian would be simultaneous eigenstates of both the

Fermi operator and GT operator up to isospin rotation. All of the GT strength would therefore

be highly concentrated at a certain point in the energy spectrum, as in Fermi transitions and the

isobaric analogue, where the total Gamow-Teller strength follows the Ikeda sum rule, 3(N �Z)

[79]. The sum rule was another useful way to check calculations. However, the Ikeda sum rule is

only exhausted when adding GT transitions in both directions, that is, where a proton is changed

to a neutron (p ! n) or vice versa (n ! p). Uni-directional sum rules can also be computed [80].

Also of note, the sum rule for Fermi transitions is exactly equal to N �Z.

In Chapter 3, I showed that for selected iron peak nuclei, even though there is fragmen-

tation, the strength functions are collected around certain resonances. Further, these collected

response functions, a.k.a. strength functions, evolve in a smooth, secular manner as one increases

parent excitation energy, which in nuclei generally involves increasing average angular momen-

tum, J, [19] and increasing isospin T. The generalized Brink-Axel Hypothesis was modified to

become a Local Brink Axel Statement about local similarity and secular evolution of strength

functions. This was applied to the calculation of Gamow-Teller rates in astrophysical conditions

relevant to massive stellar cores.

While it appears that the Local Brink-Axel statement and quasi-dynamical symmetries

are aspects of the same phenomenon, where spectral distributions evolve smoothly as a cer-

tain input changes. To what extent this is quantitatively and directly connected is not always
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completely clear. One would want to check whether the results were independent of basis and

phenomenological interaction. But understanding the origin and mechanism of quasi-dynamical

symmetry, specifically here in SU(4) symmetry breaking, would be a useful part of such an

analysis. For example, this was explained in terms of embedded representations and adiabatic

mixing of irreducible representations of broken symmetries in both Elliot’s nuclear SU(3) model

and a “soft” rotor system [81].

As the Gamow-Teller operator effects both spin and isospin, it is necessary to understand

the evolution of GT transition strength functions in isospin, T , as well. In a more precise use of

this method, one could include the minor angular momentum dependence of the Gamow-Teller

transition matrix element, as shown above, and the spin-cutoff factor. But it is more likely that

isospin would be a larger factor, as shown in Misch, Fuller and Brown [18] for sd-shell nuclei. To

fully test the applicability of this method, I would also want to look for patterns or breakdowns

in multiple cases of different types of parent nuclei, whether even-even, odd-odd, or even-odd.

One would also want to look at neutron rich nuclei versus otherwise due to the dependence of the

total weak transition strength on the difference (N �Z) as above. And of course nuclei differ in

Q-value and beta stability.

Besides specific properties of nuclei, or nuclear models, the uncertainties in this LBAS

method arise from the difference between using a semi-converged representative state over

an energy bin versus using fully converged states, and also potentially on the size of the bin.

However, the nuclear level density is necessary to count states within the bin. Thus, I showed

how assumptions about level density could affect the final rates, where at high temperatures this

will become highly dependent on the type of nuclear model one is using. Specifically, I compared

the shell model level density and the back-shifted Fermi gas level density.

Ideally though, a full update of weak transitions for pf-shell nuclei would now follow. For

A � 65, computations of weak interaction rates have avoided a full scale shell model approach,

but have been computed using various methods, including the FFN method [82], the random
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phase approximation (RPA) and Shell Model Monte Carlo [83]. It remains to be seen whether the

LBAS method developed here could accurately tackle larger model spaces such as the fpg shell,

which is the pf-shell plus g9/2, as the single particle states would increase by 50 percent, or 10

states. This combinatorially leads to a massive increase in basis dimension for nuclides in the

middle of this combined model space.

Nevertheless, it is clear from my work that the inclusion of more excited states can have

consequences on stellar weak interaction rates not previously seen in other work. However,

another direction worthy of exploration is the computation of spectral distribution of thermal

operators. Would it be possible with an iterative algorithm to directly and efficiently compute

thermal rates? This could remove the need to compute the initial excited states in the first

place. An algorithm involving a Boltzmann factor runs into the problem of how to properly

treat exponential functions of matrix operators, such as the Hamiltonian. There are standard

approaches [1]. For example, one could directly compute it from the definition of the matrix

exponential as a power series, or perhaps use the eigenspectrum, or instead focusing on the result

of the exponential operator acting on a vector. A common approach is scaling and squaring using

special functions known as Pade approximants.

Relatedly, finite temperature Lanczos algorithms have been developed in solid state

systems [84], which depend on thermal averaging of many separate Lanczos runs and in this

case would be doubled as one would need the eigenspectrum of the parent and the daughter. One

could apply a massively parallel block Lanczos algorithms [1] to speed up this process. A good

starting point is to transform the system via a Laplace or Fourier transform, where one no longer

has to deal with the Dirac delta functions in the strength function definition of equation 1.33, as is

done in the Shell Model Monte Carlo method [85]. This Monte Carlo approach was used for GT

transitions and electron capture by Radha et al. [86] and Dean et al. [87], respectively. Of course

any method that would reduce the uncertainty in the nuclear physics relevant to stellar evolution

would be welcome. I look forward to contributing to progress on these fronts.
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