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Application of temporal streamflow descriptors in hydrologic

model parameter estimation

Eylon Shamir,1 Bisher Imam,2 Hoshin V. Gupta, and Soroosh Sorooshian2

Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona, USA.

Received 10 June 2004; revised 9 March 2005; accepted 1 April 2005; published 29 June 2005.

[1] This paper presents a parameter estimation approach based on hydrograph descriptors
that capture dominant streamflow characteristics at three timescales (monthly, yearly, and
record extent). The scheme, entitled hydrograph descriptors multitemporal sensitivity
analyses (HYDMUS), yields an ensemble of model simulations generated from a reduced
parameter space, based on a set of streamflow descriptors that emphasize the timescale
dynamics of streamflow record. In this procedure the posterior distributions of model
parameters derived at coarser timescales are used to sample model parameters for the next
finer timescale. The procedure was used to estimate the parameters of the Sacramento soil
moisture accounting model (SAC-SMA) for the Leaf River, Mississippi. The results
indicated that in addition to a significant reduction in the range of parameter uncertainty,
HYDMUS improved parameter identifiability for all 13 of the model parameters. The
performance of the procedure was compared to four previous calibration studies on the
same watershed. Although our application of HYDMUS did not explicitly consider the error
at each simulation time step during the calibration process, the model performance was, in
some important respects, found to be better than in previous deterministic studies.

Citation: Shamir, E., B. Imam, H. V. Gupta, and S. Sorooshian (2005), Application of temporal streamflow descriptors in hydrologic

model parameter estimation, Water Resour. Res., 41, W06021, doi:10.1029/2004WR003409.

1. Introduction

[2] In rainfall-runoff models, model calibration, which
attempts to estimate model parameters that cannot be
physically measured, is generally based on comparing
simulated and measured hydrographs. Studies aiming to
improve calibration methods have traditionally focused on
(1) developing new optimization procedures to improve the
efficiency of convergence to an optimal parameter set [e.g.,
Wang, 1991; Duan et al., 1993], (2) selecting appropriate
measures of fit (objective functions) to evaluate the model
performance [e.g., Dawdy and O’Donnell, 1965; Diskin and
Simon, 1977; Sorooshian and Dracup, 1980; Rao and Han,
1987], (3) utilizing probabilistic methods to account for
parameter uncertainty [e.g., Kuczera, 1988; Beven and
Binley, 1992; Uhlenbrook et al., 1999; Thiemann et al.,
2001; Vrugt et al., 2002], (4) calibrating the model to satisfy
multiple objectives [e.g., Gupta et al., 1998; Yapo et al.,
1998; Boyle et al., 2000], and (5) developing stepwise
procedures in which a subset of parameters satisfy different
objectives in each step [e.g., Harlin, 1991; Hogue et al.,
2003].
[3] A common feature among the aforementioned proce-

dures is their reliance on objective functions that measure
performance with respect to a given timescale. For example,
the Least Squares, a commonly used objective function,
aggregates the residuals (observed - simulated), which are

computed for each simulation time step, to compute a
performance measure corresponding to the entire calibration
period. The use of the Least Squares as an objective function
selects parameters that satisfy the temporal scale of the
residuals (i.e., the simulated time step). Thus, in case that
such an objective function is used as a single performance
criterion, it is assumed that because the estimated parameters
yield a plausible description of the physical processes at
higher temporal resolution, they would also perform well in
coarser timescales (e.g., month, season, and year).
[4] However, at different timescales, different processes,

which are affected by local climatology and basin physio-
graphic properties, tend to become more or less dominant
[Beven, 1991]. For example, evapotranspiration affects the
overall water balance and has a significant influence on the
seasonal and annual water budget. On the other hand,
infiltration, which is dominated by the intensity and dura-
tion of precipitation events (e.g., hours to days), plays a key
role in partitioning storm water at the event scale. With
respect to continuous process-based models, a parameter
that is thought to control the infiltration rate would have
some impact on the availability of soil water for evapo-
transpiration. Similarly, parameters affecting evapotranspi-
ration will have an influence on soil moisture and therefore
on the storm’s antecedent conditions. While this accounts,
in part, for the interactions among model parameters, it also
lends support to the argument that parameters are scale-
dependent, as demonstrated by Koren et al. [1999], Finnerty
et al. [1997], and Obled et al. [1994]. Therefore it can be
argued that model parameters must be viewed and assessed
over a continuum of temporal scales that address the scale
dependency of these parameters, while at the same time
accounts for their interactions.
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[5] The above argument becomes especially important
with the increasing usage of hydrologic models for multiple
objectives corresponding to several timescales. For exam-
ple, the operational Sacramento soil moisture accounting
model (SAC-SMA), which is used mainly for flood warning
applications [Burnash et al., 1973], has also been used for
long-term predictions of flow associated with climate
change impacts [e.g., Lettenmaier and Gan, 1990] and
has been coupled with a land surface model to provide
long-term monthly and annual water yield predictions [e.g.,
Lohmann et al., 2004].
[6] In this paper, we present a probabilistic parameter

estimation procedure that sequentially constrains the pa-
rameter space to yield posterior parameter distributions
that are consistent with the uncertainties at different
timescales. In other words, the parameters for the finer
timescales are selected from a posterior parameter distri-
bution that satisfies subjective performance standards for
the coarser timescales. In this procedure, the convergence
of model simulated streamflow toward observations is
indicated by the ability to reproduce specific character-
istics of the observed hydrograph. These characteristics,
described using numeral streamflow descriptors, are de-
rived for different timescales.
[7] The study was conducted for the humid Leaf River

watershed, Mississippi, using the 13-parameter Sacramento
soil moisture accounting model (SAC-SMA) [Burnash,
1995]. In section 2, we briefly describe the Leaf River data
set and the SAC-SMA. Section 3 elaborates on the concept
of streamflow descriptors and introduces the descriptors
selected for the study. Section 4 introduces the sequential
parameter estimation procedure (hydrograph descriptors
multitemporal sensitivity analyses, HYDMUS), which is
based on an evolving parameter uncertainty covariance that
sequentially reduces the sampling space of the parameters.
In section 5, we evaluate the performance of the estimated
parameters independently and in comparison with past
studies. Finally, discussion and summary are provided in
sections 6 and 7, respectively.

2. Material and Methods

2.1. Data

[8] The Leaf River near Collins, Mississippi (1944 km2),
is a perennial headwater basin (mean daily flow 32.4 m3 s�1),
which is mostly covered by mixed conifer and broad leaf
forest. Data for this watershed was acquired from the
Office of Hydrologic Development of the National Weather
Service. Forty consecutive years of data were available for
this basin which includes 6-hour cumulative mean areal
precipitation, mean daily flow, and estimated mean daily
potential evapotranspiration. An 11-year period (WY
1952–1962) was selected for calibration, and a 26-year
period (WY 1963–1988) was selected for independent
validation. Additional 3-month period was used in the
beginning of the calibration and validation periods as a
spin-up data to establish reliable initial conditions of the
model state variables. The selection of these calibration and
validation periods is consistent with previous parameter
estimation studies that were conducted in the Leaf River
[Brazil, 1988; Duan et al., 1993; Hogue et al., 2003], as
further discussed in section 5.

2.2. Sacramento Soil Moisture Accounting Model

[9] The SAC-SMA is a continuous conceptual, time
invariant, spatially lumped model that predicts soil moisture
content and streamflow hydrographs from rainfall and
potential evaporation input. A detailed model description
is given by Burnash [1995]. This model has been the
operational streamflow forecasting model in several of the
River Forecast Centers (RFC) of the National Weather
Service (NWS) for nearly three decades and is currently
in use for real-time flood forecasting at about 4000 forecast
points in the United States [Ingram, 1996]. It has also
received substantial attention from numerous research
groups that use it to study modeling issues and the hydro-
logic responses of specific watersheds [Brazil, 1988;
Sorooshian et al., 1993; Gan and Biftu, 1996; Koren et
al., 2000; Carpenter et al., 2001].
[10] Despite the physically based mechanistic conceptu-

alization of the model’s structure, its 16 parameters cannot
be directly measured in the field. In this study, 13 param-
eters are estimated (Table 1) using parameter ranges that
were defined by Brazil [1988], while the remaining three
parameters are set to fixed values (SIDE, RSERV, and RIVA
are 0.3, 0.0, and 0.1, respectively) as recommended by the
NWS [1999]. The model was set to run in 6-hour time steps
while the streamflow hydrograph simulations were aggre-
gated to mean daily flows.

3. Hydrograph Descriptors

3.1. Concept

[11] A streamflow hydrograph represents the time and
space aggregation of the hydrologic response of the con-
tributing area and, as such, discloses information on the
dominant processes that occur at the basin scale. In this
study, we broadly define a streamflow descriptor as numeral
information that is derived from the observed data and is
thought to represent a specific characteristic of the time
series.
[12] Hydrologists commonly attempt to enhance predict-

ability by identifying unique basin signatures through data
analyses. Examples of nonparametric streamflow descrip-
tors are provided by Richter et al. [1997] and Poff et al.
[1997], who proposed a wide range of scalar descriptors
and discussed their potential role in characterizing the
relationship between streamflow conditions and riparian
flora and fauna. Their works demonstrate the usefulness
of intuitive measures of flow, which are independent of
statistical assumptions, but are capable of identifying sig-
nals representing unique aspects of the long-term behavior
of the basin. Of particular interest to rainfall-runoff model-
ing is the work of Jothityangkoon et al. [2001] and Farmer
et al. [2003], who derived ‘‘water balance signatures’’ by
plotting streamflow records in three different temporal
scales. They used the interannual variability of water yield,
the mean monthly variation of runoff (regime curve), and
the duration curve of daily flow to evaluate the level of
model complexity that is required to reproduce these
streamflow signatures.

3.2. Selection of Descriptors

[13] In this study we selected a group of streamflow
descriptors that collectively capture the variability and the
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extremes in the streamflow record at different timescales.
The selection of these descriptors is based on the logic
presented bellow. We claim that a plausible model should
have a level of flexibility that captures these properties. The
following considerations were taken into account in the
selection of hydrograph descriptors: (1) the descriptors are
simple, concise, nonparametric, and direct (i.e., minimal
data preprocessing) and (2) the descriptors are relatively
independent from each other.
[14] To consider streamflow variability at different time-

scales, the mean daily discharge was aggregated into three
timescales: the record extent (i.e., 11 years), annual flow,
and monthly flow. For the record extent, the most important
descriptor is the total flow, which is a nonparametric
descriptor of a specific basin. For the annual flow timescale,
the range between the extremes (wettest and driest years)
was selected to capture the variability of annual runoff
during the calibration period of record.
[15] The monthly timescale is considered to portray the

annual variability of the basin’s seasonal cycle. To describe
this timescale, the selected descriptors should capture var-
ious characteristics of the seasonal cycle. The following
discussion explains the rationale for our selection of the
eight specific indices corresponding to the monthly time-
scale. Figure 1 represents some features of the seasonal and
annual variability of monthly streamflow. Figure 1 (top)
shows the monthly total flows for the period covering water
years (WY) 1952–1962. This plot demonstrates the annual
variability of seasonal patterns.
[16] The monthly autocorrelation plot, presented in the

middle panel, indicates the time dependency that extends to
the interannual and intra-annual timescales. The annual
variability of the monthly flow could be partially repre-
sented by measuring the shape of the hydrograph through
the monthly rising limb density (MRLD), which is defined
as the ratio between the number of peaks (a peak is defined
as a flow increase followed by a decrease) and the cumu-
lative time of the rising limbs calculated from the monthly

hydrograph. Developed by Morin et al. [2002] and later
studied as a streamflow descriptor by Shamir [2003] and
Shamir et al. [2005], the rising limb density descriptor
represents the shape and the level of smoothness of a given
hydrograph, while being insensitive to the magnitude and
timing of any single time step [Shamir et al., 2005]. The
MRLD is expressed in frequency units (month�1) while a
smooth hydrograph (e.g., one peak with a long rising limb)
and a noisy hydrograph will be expressed as small and high
MRLD values, respectively. MRLD values can be computed
for any given duration such as annual or duration of record.
In this study, the MLRD value for the calibration period is
considered as a hydrograph index that measures the model’s
ability to capture the variability of monthly flows during the
period of calibration.
[17] In Figure 1 (bottom) the 40-year cumulative mean

normalized runoff (solid line) is plotted against the 40-year
cumulative mean normalized precipitation. The precipita-
tion at the Leaf River seems to be relatively evenly spread
over the year, which is indicated by the apparent constant
slope of the cumulative precipitation curve. On the other
hand, the runoff curve can be segmented within a year into
three major periods with different accumulation rate: slow,
fast, and slow accumulations. The first slow period in the
beginning of the water year represents a ‘‘wetting’’ period
in which precipitation saturates the basin and runoff
production is relatively low. During the subsequent
‘‘wet’’ period the basin is relatively saturated and precip-
itation is transformed to runoff at higher but seemingly
uniform rates. Finally, the last part of the water year,
which represents a ‘‘drying’’ phase, coincides with sea-
sonal recession of the hydrograph with higher potential
evapotranspiration rates (summer), which cause faster
depletion of soil moisture.
[18] When a monthly timescale is considered, the sea-

sonal variability of flow (wetting wet and drying periods)
can be effectively reproduced in a model that simulates the
magnitudes and the variability of total monthly flows during

Table 1. The SAC-SMA Parameters With Their Reasonable Range of Values in Addition to the Parameter Values Derived From Past

Studies and the Minimum, Maximum, and Median Parameter Values Derived From 100 Simulations of the HYDMUS Parameter

Estimation Scheme

Parameters Description

Rangea

SCEb Brazilc MACSd RFCe

HYDMUSf

Minimum Maximum 10% 90% Median

UZTWM upper zone tension water max storage (mm) 1 150 14.09 9.00 52.9 45 101.6 134.0 116.8
UZFWM upper zone free water max storage (mm) 1 150 62.82 39.80 55.1 20 8.83 54.25 23.49
UZK upper zone free water lateral depletion rate (day�1) 0.1 0.5 0.10 0.200 0.345 0.310 0.354 0.486 0.43
PCTIM impervious fraction of the watershed 0 0.1 0.0 0.003 0.007 0.005 0.039 0.049 0.04
ADIMP additional impervious area (mm) 0 0.4 0.36 0.250 0.108 0.05 0.29 0.38 0.34
ZPERC max percolation rate 1 250 250 250 250 55 59.9 172.5 111.6
REXP exponent of the percolation equation 1 5 2.46 4.27 4.44 2.5 3.66 4.89 4.44
LZTWM lower zone tension water max storage (mm) 1 1000 238 240 179 120 255.9 375.9 318.2
LZFSM lower zone free water supplementary max storage (mm) 1 1000 3.19 40 71.5 40 19.17 99.4 54.72
LZFPM lower zone free water primary max storage (mm) 1 1000 99.80 120 142 100 75.86 197.8 137.4
LZSK lower zone supplementary free water depletion rate (day�1) 0.01 0.25 0.019 0.20 0.042 0.06 0.032 0.139 0.074
LZPK lower zone primary free water depletion rate (day�1) 0.0001 0.025 0.021 0.006 0.005 0.006 0.018 0.023 0.02
PFREE fraction percolating from upper zone to the lower zone 0 0.6 0.021 0.024 0.196 0.30 0.035 0.168 0.095

aParameter range [Brazil, 1988].
bShuffled complex evolution, University of Arizona [Duan et al., 1993]. Parameters were taken from Thiemann et al. [2001].
cThree-stage interactive multilevel calibration [Brazil, 1988].
dMultistep automatic calibration scheme [Hogue et al., 2002].
eLower Mississippi River Forecast Center manual calibration from Hogue et al. [2003].
fThe 10th, 90th, and 50th percentiles resulting from HYDMUS.
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December, April, and August. These months represent the
wetting, wet and drying periods, respectively. Following
evaluation of a variety of candidate descriptors, the model’s
ability to capture the maximum of the monthly flows during
the above mentioned months was selected as indicator of its

ability to capture the annual variability of the ratio between
the rainfall and runoff.
[19] The final four monthly descriptors were selected to

describe the variability of flow magnitude and timing in the
monthly time series. More specifically, we selected four

Figure 1. Characteristics of the Leaf River monthly flow: (top) Total monthly hydrograph for the WY
1952–1962, (middle) total monthly flow lag autocorrelation function, and (bottom) the 40-year mean
normalized cumulative runoff and normalized cumulative precipitation.
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descriptors that indicate changes from one month to the
next. Such change can be measured by magnitudes of
the difference between two consecutive monthly flows.
The selected descriptors are the maximum and minimum
of the extreme positive and negative monthly changes (i.e.,
rising and recession, respectively) observed for the time
series. Arguably, a model simulation that adequately cap-
tures these four extreme monthly changes should capture the
monthly flow changes and variability during the observed
time series. Figure 2 provides a schematic representation of
the eight descriptors used in conjunction with the monthly
timescale and a list of the descriptors and their associated
numerical values calculated for the 11-year model calibra-
tion period (October 1952 through September 1962) is
provided in Table 2.

4. Model Parameter Estimation Procedure

4.1. Procedure Development

[20] This section describes the HYDMUS scheme. The
scheme uses a temporal hierarchical approach that incorpo-
rates the descriptors as model convergence measures to
estimate model parameters by sequentially reducing the
parameter uncertainties as the temporal resolution of the
data increases. The final product of the HYDMUS scheme
is the first two moments of the parameter’s posterior
distribution that satisfy the descriptors of the various time-
scales. Using a resampling procedure with the derived
properties of the parameter’s posterior distribution, multiple

parameter sets can be generated to provide an estimate of
the effect of uncertainty due timescale dependency on the
flow predictions. The rational for the development of the
HYDMUS and the procedure description is described
below.
[21] Let Qt be the observed streamflow response at a

given time step t, t = 1,. . . n. The hydrologic model, in our
case the SAC-SMA model, can be generalized as;

Qt ¼ f X ; qð Þ þ et ð1Þ

Figure 2. Hypothetical monthly flow hydrograph, which extends for 2 years and presents the eight
monthly descriptors. The monthly rising limb density (MRLD) value is 0.5 month�1. This value is the
ratio between the number of the hydrograph peaks (Feb, Apr, Aug, Oct, Jan, Apr, and Aug, total of seven
peaks) and the cumulative time during the rising limbs (Oct–Feb, Mar–Apr, May–Aug, Sep–Oct, Nov–
Jan, Mar–Apr, and Jun–Aug total of 14 months). The other seven indices marked are as follows: 1–3,
maximum flow occurred on April, August, and December, respectively; 4, maximum negative change;
5, maximum positive change; 6, minimum negative change; 7, minimum positive change in consecutive
total monthly flow.

Table 2. Hydrograph Descriptors Values for the Observed

Calibration Streamflow (Water Years 1952–1962)

Timescale Descriptorsa

Value for
Water Years
1952–1962

11 years total flow (m3) 9.4 � 109

Yearly annual range (m3) 1.3 � 109

Monthly MRLD (month�1) 0.58
Monthly April maximum flow (m3) (1) 3.6 � 108

Monthly August maximum flow (m3) (2) 7.4 � 107

Monthly December maximum flow (m3) (3) 5.0 � 108

Monthly maximum negative change (m3) (4) 3.9 � 108

Monthly maximum positive change (m3) (5) 4.8 � 108

Monthly minimum negative change (m3) (6) 9.6 � 105

Monthly minimum positive change (m3) (7) 1.6 � 105

aThe numbers in parentheses indicate the label index of the descriptor as
shown Figure 2.
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where f( ) is the output response simulated by the model, X
is the vector of input data (e.g., precipitation, potential ET)
which extend from x1, x2,. . . xt, q is the vector of model
parameters to be estimated from the data; and et are error
terms resulting from discrepancies between the model and
the real system, error in the parameters, and errors in the
data.
[22] According to the paradigm of Bayesian statistical

inference, the parameter vector (q) is considered to be a
random vector whose elements have a joint posterior
probability density function. Initially, two sources of infor-
mation about the model parameters are available: (1) the
prior distribution P(q), which is assumed by the modeler and
(2) the information on model performance retrieved from
comparison between model simulations (Q̂) and observa-
tions D = f(Q, Q̂). According to the Bayes formula,

P q Djð Þ ¼ P D qjð ÞP qð Þ
P Dð Þ ð2Þ

where P(qjD) is the posterior distribution of the parameters,
P(Djq) is the likelihood function, and P(D) is a proportional
constant required so that

R
P(qjD)dq = 1 (i.e., density

distribution function).
[23] The posterior distribution reflects the uncertainty in

the parameters after consideration of the information (D).
This is commonly done by selecting a scalar measure
(objective function) y, such as the root mean square error
(RMSE). In this study, the y criteria are the measures of the
absolute differences between the measured and simulated 10
descriptors identified in section 3.
[24] Because of the structure complexity of hydrologic

models, explicit (closed form) solution of (2) is impractical.
Monte Carlo simulation methods, which are gaining popu-
larity in hydrology [Beven and Binley, 1992; Kuczera, 1997;
Thiemann et al., 2001; Vrugt et al., 2003], provide a tool to
deal with the inherent model complexity and the non-
Gaussian multivariate distributions of the parameters [Duan
et al., 1993]. Generally, in the MC simulation scheme, a
prescribed number of model simulations results in an
ensemble of m vectors of model predictions Q̂. Each
prediction (model simulation) is derived from a parameter
set qj that is randomly drawn from the prior probability
distribution P(q). The performance of model predictions is
then evaluated as to whether they capture important char-
acteristics that are reflected in the observations. The usage
of MC procedure is based on the assumption that the form
of P(qjD) can be estimated by drawing a large number of
samples of P(q), which can be used to obtain statistically
significant estimates of the first two moments of the scalar
(y). It is important, though, to select a sampling procedure
that sufficiently samples the parameters space. In this study,
model performance is measured by evaluating the ability of
the model to reproduce the described streamflow descriptors
with a sample size of (m = 10,000). This sample size was
found to produce consistent results when the Monte Carlo
simulations were repeated several times, indicating that the
prescribed sampling size (m = 10,000) is adequate to
represent the complex multidimensional parameter space
of the SAC-SMA in the Leaf River basin.
[25] The HYDMUS procedure calls for repeated resam-

pling (i.e., iterations) according to the number of temporal

scales to be considered. The resampling procedure enables
one to collect a large sample of parameter sets and to
estimate the posterior distribution associated with the dif-
ferent timescales. As mentioned above, in this study three
temporal scales are considered (calibration period, annual,
and monthly). In the first iteration, herein, the calibration
period, the prior distribution can be assumed by the modeler
or obtained from literature. Because no specific guidance
exists regarding the prior distribution of the SAC-SMA
parameters for the Leaf River Basin, we assumed a uniform
distribution for the first iteration. The parameter ranges were
obtained from Brazil [1988] (Table 1) and a unit covariance
matrix indicating parameter independence was also as-
sumed. The posterior distribution of the each iteration is
then introduced as the prior distribution for the subsequent
iteration (annual, and monthly).
[26] To derive the posterior distribution P(qjD) of each

iteration, a statistical diagnosis of the parameters’ popula-
tion is conducted to isolate a subset of behavioral parame-
ters. The isolation of the behavioral parameter sets was done
by selecting a subjective threshold. Following evaluations
of various thresholds, we assigned thresholds that maintain
good agreements between the simulated and observed
descriptors and isolate ample parameter sets for meaningful
parameterization of the first two moments of the posterior
distributions.
[27] For the first two iterations (record extent and

annual) the behavioral sets are parameter vectors that
are associated with the best 10% (top 1000) of simula-
tions as determined by the ability to capture the observed
descriptor relevant to these two temporal scales (total
flow and annual range, respectively). With regard to the
third iteration (i.e., monthly timescale), the eight monthly
descriptors were calculated from the behavioral subset of
the second iteration and a 20% threshold was identified
for each of the eight descriptors. The behavioral param-
eter sets in the third iteration are the ones that are
sampled from the posterior distribution derived from the
second iteration with all 8 monthly descriptors being
better than the threshold defined in the second iteration.
In other words, the absolute difference between the
simulated and observed of each one of the 8 monthly
descriptors is smaller than the absolute differences of the
20% thresholds identified in the second iteration.
[28] Once the behavioral set of parameter vectors is

identified, the posterior distribution at the end of each
iteration is determined by first classifying the parameter
vector into sensitive and insensitive parameters. The sensi-
tive parameters were assumed as those whose posterior
distribution is significantly different from random uniform
distribution. Although various tests of parameter sensitivity
to the descriptors can be devised, any such test requires
assignment of a subjective threshold to partition the param-
eters into sensitive and insensitive populations. We identi-
fied sensitive parameters as those for which the standard
deviation of the normalized probability density is smaller
than the threshold value of 0.12. This threshold is different
from 12�0.5 which is the standard deviation of uniform
distribution with range from 0 to 1, and is thought to
indicate distribution that is different from uniform. Catego-
rization to sensitive and insensitive parameters is an impor-
tant step that avoids the enforcement of central tendency by
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the resampling procedure on the posterior distribution of the
insensitive parameters.
[29] Parameter resampling at subsequent timescales is

accomplished in two steps: The insensitive parameters were
assigned independent uniform distributions; and the sensi-
tive parameters were assigned a multivariate normal distri-
bution N(m, S) with the mean vector m and the covariance S
estimated from the behavioral set. Such a procedure implies
that the interdependency structure of the parameters could
be found only among the sensitive parameters while, the
insensitive parameters are independent. We assume that for
a given parameter, a posterior distribution that can be
approximated by the uniform distribution is an indication
of insensitivity and probably also indicates independence
from the other parameters.
[30] In this study, we used the mode vector as an

estimator of the first moment (m), which is considered
appropriate for skewed distributions. Such commonly arises
when parameters have a priori assigned parameter ranges,
and the parameter distributions converge toward the
extremes of their ranges. This procedure artificially fits a
normal distribution to the mode using a covariance matrix
that was calculated using the distributions average.
[31] To improve the resampling of sensitive parameters

with a skewed distribution, parameters that are sampled
outside of the a priori assigned parameter range were
discarded. This practice artificially creates a skewed
distribution toward the center for parameters having a
mode toward the extreme ends of the range, and thereby
providing a better description of the actual resulting
distributions.
[32] The functioning of the resampling procedure is

demonstrated in Figure 3. The behavioral parameters
histograms, which are conditioned on the second iteration
(i.e., annual descriptor) are compared to histograms de-
rived from the resampling procedure (Figures 3a and 3b,
respectively). It can be seen that the resampling procedure
maintains key properties of the parameters distributions
and produce comparable histograms. The relative similar-
ities between the parameters distributions of the behav-
ioral and resampled parameters were also verified using
the nonparametric Kolmogorov-Smirnov test (results not
shown here).

4.2. Summary of the HYDMUS Procedure

[33] A summary of the sequential steps of the HYDMUS
procedure is as follows. (1) Conduct MC simulations
(10,000) using uniform independent distributions of model
parameters as the prior distribution for the first (coarsest)
timescale. (2) Identify behavioral parameter sets by select-
ing parameter vectors that correspond with the best 10%
of simulations as measured by the relevant descriptor.
(3) Identify parameters from the behavioral parameter sets
that are sensitive to the selected descriptor as those whose
posterior distribution is significantly different from the
uniform distribution. (4) Calculate the mode vector and
covariance matrix of the identified sensitive parameters.
(5) Resample 10,000 parameter sets from a joint multivar-
iate normal distribution for the sensitive parameters and
randomly and independent for the insensitive parameters.
(6) Repeat steps 2–4 for the annual timescale. (7) Calculate
the monthly descriptors and identify the 20% threshold for
each of the eight descriptors from the behavioral parameter
sets. (8) Resample from the posterior parameter distribution
of the annual timescale and accept 1000 parameter sets for
which all the monthly descriptors are below the 20%
thresholds that were identified in step 7. (9) Derive the first
two moments (mean and covariance) of the sensitive
parameters from the behavioral parameter sets to represent
the posterior parameter distribution.

5. Results

5.1. Parameter Uncertainty

[34] The parameters derived from the HYDMUS scheme
are evaluated in this section. Figure 4 shows the 10th and
90th percentile ranges of the normalized 13 SAC-SMA
parameter space, which are plotted for the three resampling
iterations used in the HYDMUS. It is clear that the
parameter space narrowed significantly as a result of the
third HYDMUS iteration. It also can be seen that, for some
parameters, the third iteration has extended the range
beyond the range obtained from the previous sampling steps
(UZFWM, UZK, PCTIM, LZFWM, and LZFPM). Al-
though the modifications of parameter ranges for these
parameters are small, this suggests that different parameter

Figure 3. (a) histogram of the normalized (0–1) 1000 behavioral parameters derived from the annual
selection (second iteration) and (b) resample of normalized 1000 parameters from the joint multivariate
normal random sampling of the sensitive parameters and uniformly and independent of the insensitive
parameters.
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values may be required to satisfy descriptors at different
timescales. Also, it is an indication that the HYDMUS
scheme is flexible enough to allow for shifts in the param-
eter space to occur.
[35] A sensitivity analysis of the parameters to the

descriptors using a Monte Carlo simulation from a prior
uniform distribution is shown in Figure 5. The sensitivity of
a given parameter to the descriptors is identified when the
behavioral cumulative distribution deviates from the cumu-
lative uniform distribution. The parameters that show differ-
ences between the cumulative distributions are assumed to
be sensitive to the descriptors. It is shown that UZFWM,
UZK, ZPERC, and REXP parameters are insensitive to any
of the selected descriptors. The first two parameters describe
properties of the model’s upper compartment, while the last
two control the percolation rate. It is apparent that these four
parameters are dominant in the fast hydrologic response
[Bae and Georgakakos, 1994] and therefore are expected to
be insensitive to coarser temporal-scale descriptors.
[36] The cumulative distributions of the resampled

parameters from the three iterations are shown in Figure 6.
A significant result of this study is that all of the SAC-
SMA parameters were found to be identifiable in a certain
range at the end of the third iteration. Note that even the
parameters that are insensitive to the descriptors when
selected from a uniform distribution are found to be
sensitive in the third iteration. Of course, this identifiability
result may be unique to the selected descriptors, and a
different suite of descriptors might yield different posterior
distributions.
[37] The parameter sets resulting from the HYDMUS

scheme were compared to four deterministic parameter sets
derived using different methods: (1) the shuffled complex
evolution University of Arizona (SCE-UA) [Duan et al.,

1993], which is a global search algorithm (parameter values
taken from Thiemann et al. [2001]), (2) Brazil’s three-stage
interactive multilevel calibration procedure [Brazil, 1988],
(3) a Multistep automatic calibration scheme (MACS),
which is a sequential calibration that applies different
objective functions to groups of parameters sequentially
[Hogue et al., 2003], and (4) a parameter set provided by
the Lower Mississippi River Forecast Center personnel
(hereinafter RFC), who calibrated the model using the
NWS manual calibration technique [NWS, 1999] (parameter
values were taken from Hogue et al. [2003]).
[38] These past studies represent techniques with various

levels of automation and expert evaluation ranging from a
completely automatic calibration procedure (SCE-UA) to
manual calibration (RFC). The calibration in these studies
was done using the simulation of the mean daily flow to
identify a single optimal parameter vector. The first three
studies (SCE-UA, Brazil, and MACS) used the same
calibration data set as used in this study (WY 1952–
1962). We recognize that since the past studies were
developed to accommodate different calibration objectives
and used various measure of fits criteria, a quantitative
comparison among the studies is questionable. However, a
comparison among the simulations of these studies that
evaluate the model’s ability to capture a variety of hydro-
logic response phenomena provides a better perspective on
the HYDMUS performance.
[39] The SAC-SMA parameter values for the different

studies are summarized in Table 1. In addition, the normal-
ized parameter values from the previous studies were
compared to the HYDMUS 10th to 90th percentiles param-
eter ranges obtained after the third iteration (see Figure 4).
Clearly, the majority of the parameters derived from the
HYDMUS are different from those estimated by the previ-

Figure 4. The 10th and 90th percentiles of the normalized SAC-SMA parameters resulting from the
HYDMUS for the three resampling iterations. In addition, the normalized parameter values of the
comparable past studies are shown.

8 of 16

W06021 SHAMIR ET AL.: TEMPORAL STREAMFLOW MODEL CALIBRATION W06021



Figure 5. Sensitivity analysis of the SAC-SMA parameters to the 10 selected hydrograph descriptors.
The solid line represents the cumulative distribution of the 1% behavioral parameter derived from a priori
uniform parameter distribution, and the dashed line represents the cumulative distribution of the uniform
distribution.

Figure 6. The cumulative distribution of the best 1% Monte Carlo behavioral simulations (thick line)
and the cumulative distribution of a uniform random sample for the three resampled iterations.
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ous studies. For example, the SCE-UA has only three
parameters that are within the range of the HYDMUS
(ADIMP, LZFPM, and LZPK). On the other hand, all of
the previous studies were out of the range derived from the
HYDMUS for the UZTWM, PCTIM, ZPERC, LZTWM,
and PFREE parameters. The HYDMUS procedure conver-
gence to a new region in the parameter space demonstrates
the dependence of the selected parameters on the parameter
search methods and the objective functions used in the
calibration.
[40] In summary, the parameter uncertainty derived from

HYDMUS provides a relatively narrow parameter range,
which does not include the parameters from the previous
studies. In the next section, the performance of the model
using HYDMUS-derived parameters is compared with
streamflow observations and the simulations from the
previous studies.

5.2. Evaluation of Flow Performance

[41] A performance evaluation of the simulated flow was
conducted at the three timescales considered in the appli-
cation of HYDMUS (i.e., record extent, annual, monthly),
in addition to evaluation of the daily timescale. The eval-
uation was conducted on an independent 26-year period
(WY 1963–1988). This evaluation of the parameters on a
longer historical time frame enables testing of the overall
model performance and detection of model divergence (i.e.,
good performance during calibration but poor performance
during the evaluation period).
[42] A suite of statistical evaluation criteria was calculated

to quantify model performance (Table 3). The first four
measures in Table 3 are used to evaluate the water balance at
different timescales, in addition to the commonly measured
daily root mean square error and correlation coefficient.
Values are shown for the maximum (worst), minimum
(best), and median performance derived from 100 simula-
tions randomly resampled from the HYDMUS posterior
parameter distribution.
[43] A very significant improvement of the overall total

bias (flow extent) and the overall annual biases was
achieved using the HYDMUS procedure as compared

with past studies. This, of course, is expected as a result
of considering these two time steps in the HYDMUS
procedure. It can be seen that at these timescales, even
the worst value (maximum value in Table 3) derived from
the HYDMUS is better then all of the past four studies.
In the monthly time steps, the HYDMUS minimum value
is better than the other studies and, for the daily time
step, the minimum value performed better than the RFC
and similar to the MACS parameters. Also, the DRMS
and the correlation coefficient performance are compara-
ble in quality to the past studies, with the minimum
HYDMUS DRMS being inferior only to the SCE-UA and
the correlation coefficient being as good as the SCE-UA
and Brazil.
[44] Visual evaluation of the simulated annual yield

performance (Figure 7) reveals that in comparison with
the observations, out of the 26 years, all past studies
overestimated the annual flow of at least 23 years. The
two years with the largest flow volume were underestimated
by all of the studies except from the RFC. It can be seen
from Figure 7 that in general, the resulting HYDMUS
annual volumes from the 100 simulations in most of the
years is closer to the 1:1 line.
[45] The monthly hydrographs of the measured and the

HYDMUS simulations for WY 1963–1965 are presented in
Figure 8. The monthly flow confirming good performance
of the HYDMUS simulations and capturing the seasonal
dynamics. In Figure 9 the monthly flow duration curve for
the 26 evaluation years is shown. The flows were trans-
formed using a Box-Cox transformation [Box and Cox,
1964] to relate the error variance at each time step to its
associated flow magnitude and to provide flow values with
an approximately Gaussian distribution. The Box and Cox
transformation is expressed as

qtransformed ¼ qt þ 1ð Þl� 1

l
ð3Þ

where l is a scale parameter selected to have the value of
0.3, based on recommendations by Misirli et al. [2003]. The

Table 3. Scalar Evaluation Criteria for the Leaf River (Water Years 1963–1988) From HYDMUS Parameters and Past Four

Deterministic Studies

Evaluation Criteria Equations SCE Brazil MACS RFC

HYDMUS

Minimum Maximum Median

Total bias
Pn¼9498

t¼1

Qsim;t �
Pn¼9498

t¼1

Qobs;t , t = days, 4576 5395 4449 6753 1596 3550 2298

Mean absolute bias (annual)
Pn¼26

t¼1

jQsim,t � Qobs,tj, t = years 1885 2151 1804 2595 1255 1592 1353

Mean absolute bias (monthly)
Pn¼312

t¼1

jQsim,t � Qobs,tj, t = months 236 246 230 286 212 326 248

Mean absolute bias (daily)
Pn¼9498

t¼1

jQsim,t � Qobs,tj, t = days 11 11 11 12 11 20 13

DRMS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn¼9498

t¼1

Qsim;t � Qobs;t

� �2
;

s
t = days 20 22 23 23 20 35 28

Rcoeff sQobs;tQsim;t
sQobs;tsQsim;t

; t = days 0.95 0.95 0.94 0.94 0.92 0.95 0.94
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Figure 7. Simulated annual yield of 26 years (WY 1963–1988) resulting from 100 simulations of the
HYDMUS posterior distribution and the four deterministic past studies compared with the observed
annual flows.

Figure 8. The monthly hydrograph (WY 1963–1965) observed flow and the prediction uncertainty
derived from 100 simulations from the HYDMUS posterior distribution.
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monthly flow duration curve (Figure 9) indicates that the
performance of the four deterministic studies is similar and,
except for about 10% of the highest monthly flows, they
consistently overestimate the observed monthly flow. One
exception is the SCE-UA, which underestimates the lowest
80–100% exceedance of monthly flow. The ensemble of
flows obtained using the HYDMUS procedure captures the
highest 5% observed monthly flow events and the medium
flow magnitude that is between 15–30% exceedance.
Overall, it is observed that the HYDMUS overestimates
and underestimates the highest and lowest monthly flows,
respectively.
[46] Finally, the mean daily flow, which was not consid-

ered as a criterion in the HYDMUS calibration, was
evaluated. Figures 10a and 10b present the measured and
the HYDMUS simulated mean daily flow (m3 s�1) and
Box-Cox transformed flow in the 1964 water year, respec-
tively. From Figure 10a it can be seen that the HYDMUS
simulation captures the dynamics and magnitude of the wet
season flow events; however, the HYDMUS parameters are
underestimating the low-flow events mainly in the drier
seasons (Figure 10b).
[47] Further exploration of the daily flow is provided in

Figure 11, which shows the duration curve of the daily Box-
Cox transformed flow for the evaluation data set. In this
curve, the measured, the HYDMUS ensemble simulations,
and the aforementioned past studies are shown. Again, as
also inferred from the monthly duration curve (Figure 9),
the deterministic studies shown in Figure 11 are consistently
overestimating the flows, except from the highest-flow
events. One exception is the SCE-UA, which underesti-
mates the low-flow events. The HYDMUS captured the
high-flow events (0–5% exceedance) and the middle flow
range of about 40–85% exceedance; however, it overesti-
mated the 10–40% and underestimates the low flow (85–
100%).

[48] Prediction of high-flow episodic events is clearly a
performance that is required from a flood prediction model
such as SAC-SMA. Although the HYDMUS procedure was
not explicitly calibrated to meet this objective, the results
for high-flow events can also be examined. In Figure 12,
26 observed daily flow events that exceeded 500 m3 s�1 are
plotted with their counterpart simulations from the
HYDMUS and the past studies. In Figure 12 the dots
represent the median, and the error bar represents the
maximum and minimum flow values resulting of 50 simu-
lations from the posterior parameter distribution of the third
iteration. It is evident that the ranges yielded from the
HYDMUS contain the values resulting from the determin-
istic studies. In some cases, some results from the
HYDMUS perform better than the deterministic study, such
as in the case of the two extreme events.
[49] In summary, it appears that the HYDMUS procedure

performed better than the four deterministic procedures at
the yearly and record extent timescales. At the monthly
timescale, using HYDMUS, results in overestimating the
high flows and underestimating the low flows, whereas the
previous studies consistently overestimated the monthly
flow. The HYDMUS procedure results in parameters that,
in general, provide less systematic (random, less biased)
residuals compared with the past studies, which mostly tend
to overestimate the flow. This may be because the past
studies give higher priority to the high-magnitude events,
which resulted in an overestimation at lower magnitude
time steps. For daily timescales, the HYDMUS performance
is comparable to the other studies in all of the flow regimes
and, in some respects, even performs better (for instance
when capturing the middle-flow magnitude).
[50] The previous four studies have an overall similar

behavior, while the HYDMUS procedure produced a dif-
ferent set of parameters and streamflow behavior. This is
clearly a result of the new descriptor-based sequential

Figure 9. The monthly duration curves of the Box-Cox transformed observed (solid thick line), 100
simulations from the HYDMUS posterior distribution (shaded lines), and the past four deterministic
studies (dashed lines).
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approach, which accentuates an exploration of new accept-
able regions in the parameter space.

6. Discussion

[51] The presented HYDMUS method is a parameter
estimation scheme that requires user interaction in a set of
relevant decisions such as selection of the descriptors,
defining the priorities of the model objectives, and
selection of the threshold values in the procedure. The
identification of hydrograph descriptors within the
HYDMUS procedure requires analyses and subjective
decisions that prioritize the timescale and the important
streamflow responses. This action consequently incorpo-

rates some of the qualities of manual calibration into the
automatic procedure.
[52] The derivation of descriptors from streamflow, which

compared to other fluxes (e.g., precipitation, evapotranspi-
ration) is a hydrologic flux that is relatively less prone to
measurement errors and uncertainty associated with time
and space interpolation, provides reliable information on the
system response. Such descriptors, if consistent (i.e., re-
peatable with small dispersion when analyzed in various
time periods) and distinguishable (i.e., unique for a given
basin), can capture intrinsic physiographic characteristics of
basins. In addition, descriptors that are well chosen (i.e.,
consistent and distinguishable) can decrease the dependency
of the parameter estimation on the data sets selected for the

Figure 10. The daily hydrograph (WY 1964) observed flow (circles) and the prediction uncertainty
derived from the HYDMUS scheme (shaded lines). (a) Flow (in m3 s�1) and (b) the Box-Cox
transformed flow.
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calibration. An extensive discussion and demonstration of
the concept of descriptors is provided by Shamir [2003]. In
this paper, we focused on defining simple descriptors that
capture the dynamics and the variability of the stream that
are believed to summarize important information about the
dominant processes.
[53] At various timescales, driven by the climatology and

basin physical properties, different dominant processes are
expressed in the basin hydrological cycle. For example,

evapotranspiration is a process that affects the overall water
balance and thus is dominant at seasonal and annual time-
scales, while infiltration is dominant in the episodic time-
scale (e.g., hourly, daily). However, hydrologic models are
often constructed to describe the mechanistic response of
the basin to an episodic event (e.g., a precipitation event for
flood warning). Furthermore, the calibration using the
traditional objective functions treats the residuals at the
timescale of the simulation. Although these conceptual

Figure 11. The daily duration curve of the Box-Cox transformed flow for 26 years (WY 1963–1988) of
the observed (thick solid line), 100 simulations from the HYDMUS posterior distribution (shaded lines),
and the past deterministic studies (dashed lines).

Figure 12. Daily flows that are greater than observed 500 m3 s�1 (26 events in the evaluation data sets
(WY 1963–1988)). The black dots represent the median, and the error bars represent the maximum and
minimum flow values resulting from 50 simulations of the HYDMUS third iteration.
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models spatially lump the processes to an integrated re-
sponse, in the temporal sense, these models describe the
episodic timescale mechanism. It is reasonable to state that a
robust model, even if constructed to describe episodic
events, should be required to perform well at different
timescales.
[54] In this study, to assure model performance in multi-

ple temporal scales, we selected a sequential timescale
calibration method. In other words, selected model param-
eters at a finer timescale are estimated from the posterior
distribution developed from parameters that satisfy a coarser
temporal scale. It was found that, even without consider-
ation of the daily timescale in the HYDMUS procedure, the
performance at the daily time step is comparable to deter-
ministic methods. The parameters selected from the
HYDMUS procedure appear different from those provided
by the other deterministic studies, indicating that the mul-
tidimensional parameter space is complex and may have
different subregions of attraction that satisfy the hydrologic
response in different ways. Note, however, that the param-
eter regions derived using HYDMUS could be different if a
selection of different timescales, descriptors, and resampling
sequence was made.
[55] It should be mentioned that this procedure does not

contradict existing parameter estimation procedures. In fact,
the practice of selecting descriptors as a measure of fit can
be incorporated to complement other parameter estimation
procedures, such as the generalized likelihood uncertainty
estimation (GLUE) [Beven and Binley, 1992].
[56] The HYDMUS procedure also provides a test for

parameter identifiability and its role in different timescales.
For example, in the SAC-SMA model, the PCTIM, ADIMP,
and UZTWM parameters clearly represent the response
characteristics of the upper soil surface. Consequently, these
parameters affect the fast response of the system to an
episodic event. In the HYDMUS procedure, it was seen that
the PCTIM is already sensitive at the coarser timescale
(time extent), and the UZTWM and the ADIMP are
sensitive at the monthly timescales (Figure 5). This sensitive
behavior is explained by the level of control in the evapo-
transpiration processes which affect the long-term water
balance. On the other hand, UZFWM and UZK, parameters
that characterize the upper zone drainage rates, were found
to be insensitive to the longer timescale.

7. Summary and Conclusions

[57] This paper has presented the results of a parameter
estimation approach based on hydrograph analyses to iden-
tify distinct nonparametric descriptors that are characteristic
of the time series. The descriptors were selected to measure
important streamflow characteristics at three timescales
(monthly, annual, and the record extent). A parameter
estimation scheme HYDMUS (hydrograph descriptors mul-
titemporal sensitivity analyses) was developed based on
Monte Carlo sampling applied in a stepwise approach, so
that parameter estimation at shorter timescales were con-
strained by the estimated posterior distribution of the
behavioral parameters at the coarser timescales. The final
product of the HYDMUS scheme is an ensemble of
simulations that indicates the parametric uncertainty asso-
ciated with the selection of the descriptors and the calibra-
tion timescales.

[58] The HYDMUS scheme was tested using the SAC-
SMA model applied to the Leaf River, Mississippi. The
procedure resulted in a relatively narrow parameter range
for the 13 parameters. When evaluated on monthly, annual,
and flow extent, the results were significantly better than
four parameter sets derived from previous studies. At the
daily time step, the model performances using parameters
derived from the HYDMUS procedure were found to be
comparable to the deterministic studies in the middle flow
magnitudes, with a tendency to overestimate the high flows
and underestimate the low flows.
[59] We believe that the hydrograph descriptor approach

is a powerful way to obtain consistent parameter estimates
for watershed models, and future research should attempt to
explore the relationships between hydrograph descriptors
and physically measurable characteristics of a watershed.
Success in defining such links would potentially aid in
watershed modeling for ungauged basins.
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