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RESEARCH ARTICLE Open Access

Evaluating the quality of the 1000 genomes
project data
Saurabh Belsare1* , Michal Levy-Sakin2, Yulia Mostovoy2, Steffen Durinck3, Subhra Chaudhuri3, Ming Xiao4,
Andrew S. Peterson3, Pui-Yan Kwok1,2,5, Somasekar Seshagiri3 and Jeffrey D. Wall1,6*

Abstract

Background: Data from the 1000 Genomes project is quite often used as a reference for human genomic analysis.
However, its accuracy needs to be assessed to understand the quality of predictions made using this reference. We
present here an assessment of the genotyping, phasing, and imputation accuracy data in the 1000 Genomes
project. We compare the phased haplotype calls from the 1000 Genomes project to experimentally phased
haplotypes for 28 of the same individuals sequenced using the 10X Genomics platform.

Results: We observe that phasing and imputation for rare variants are unreliable, which likely reflects the limited
sample size of the 1000 Genomes project data. Further, it appears that using a population specific reference panel
does not improve the accuracy of imputation over using the entire 1000 Genomes data set as a reference panel.
We also note that the error rates and trends depend on the choice of definition of error, and hence any error
reporting needs to take these definitions into account.

Conclusions: The quality of the 1000 Genomes data needs to be considered while using this database for further
studies. This work presents an analysis that can be used for these assessments.

Keywords: 1000 genomes, Phasing, Imputation

Background
The 1000 Genomes Project (1000GP) was designed to
provide a comprehensive description of human gen-
etic variation through sequencing multiple individuals
[1–3]. Specifically, the 1000GP provides a list of vari-
ants and haplotypes that can be used for evolutionary,
functional and biomedical studies of human genetics.
Over the three phases of the 1000GP, a total of 2504
individuals across 26 populations were sequenced.
These populations were classified into 5 major
continental groups: Africa (AFR), America (AMR),
Europe (EUR), East Asia (EAS), and South Asia
(SAS). The 1000GP data was generated using a com-
bination of multiple sequencing approaches, including
low coverage whole genome sequencing with mean
depth of 7.4X, deep exome sequencing with a mean
depth of 65.7X, and dense microarray genotyping. These
sequences were used for calling genotypes and generating

the variant calls. In addition, a subset of individuals (427)
including mother-father-child trios and parent-child duos
were deep sequenced using the Complete Genomics plat-
form at a high coverage mean depth of 47X. The project
involved characterization of biallelic and multiallelic SNPs,
indels, and structural variants.
Given the low depth of (sequencing) coverage for most

1000GP samples, it is unclear how accurate the imputed
haplotypes are, especially for rare variants. We quantify
this accuracy directly by comparing imputed genotypes
and haplotypes based on low-coverage whole-genome
sequence data from the 1000GP with highly accurate,
experimentally determined haplotypes from 28 of the
same samples. Additional motivation for our study is
given below.

Phasing
It is important to understand phase information in ana-
lyzing human genomic data. Phasing involves resolving
haplotypes for sites across individual whole genome se-
quences. The term ‘diplomics’ [4] has been coined to de-
scribe “scientific investigations that leverage phase
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information in order to understand how molecular and
clinical phenotypes are influenced by unique diplotypes”.
The diplotype shows effects in function and disease re-
lated phenotypes. Multiple phenomena like allele-spe-
cific expression, compound heterozygosity, inferring
human demographic history, and resolving structural
variants requires an understanding of the phase of avail-
able genomic data. Phased haplotypes are also required
as an intermediate step for genotype imputation.
Phasing methods can be categorized into methods

which use information from multiple individuals and
those which rely on information from a single individual
[5]. The former are primarily computational methods,
while the latter are mostly experimental approaches.
Some computational approaches use information from
existing population genomic databases and can be used
for phasing multiple individuals. These, however, may be
unable to correctly phase rare and private variants,
which are not represented in the reference database
used. On the other hand, some methods use information
from parents or closely related individuals. These have
the advantage of being able to use Identical-By-Descent
(IBD) information, and allow long range phasing, but re-
quire sequencing of more individuals, which adds to the
cost. Commonly used computational phasing methods
are: BEAGLE [6], SHAPEIT [7, 8], EAGLE [9, 10] and
IMPUTE v2 [11].
Experimental phasing methods, on the other hand, often

involve separation of entire chromosomes followed by se-
quencing of short segments, which can then be computa-
tionally reconstructed to generate entire haplotypes.
These methods do not need information from individuals
other than the one being sequenced. They involve geno-
typing being performed separately from phasing. These
methods fall into two broad categories, namely dense and
sparse methods [12]. Dense methods resolve haplotypes in
small blocks in great detail, where all variants in a specific
region are phased. However, they do not inform the phase
relationship between the haplotype blocks. These involve
diluting high molecular weight DNA fragments such that
fragments from at most one haplotype are present in each
unit. Sparse methods can resolve phase relationships
across large distances, but may not inform on the phase of
each variant in a chromosome. In these methods, a low
number of whole chromosomes is compartmentalized
such that only one of each pair of haplotypes is present in
each compartment. These compartmentalizations are
followed by sequencing to generate the haplotypes.
In this work, we use phased haplotypes generated

using the 10X Genomics method which uses linked-read
sequencing [13]. This method can be best classified as a
dense phasing method. Most of the SNPs (~ 99%) are
phased. One nanogram of high molecular weight gen-
omic DNA is distributed across 100,000 droplets. This

DNA is barcoded and amplified using polymerase. This
tagged DNA is released from the droplets and undergoes
library preparation. These libraries are processed via
Illumina short-read sequencing. A computational algo-
rithm is then used to construct phased haplotypes based
on the barcodes. This method has been shown to have
the lowest error rate (0.064%) [14]. This error rate is
considerably lower than the error rate we observe for
the 1000 Genomes phasing (as reported in our Results).

Imputation
Imputation involves the prediction of genotypes not dir-
ectly assayed in a sample of individuals. Experimentally
sequencing genomes to a high coverage is an expensive
process. Low coverage sequencing or arrays can be used
as low-cost methods for sequencing. However, these
methods may lead to uncertainty in estimated genotypes
(low coverage sequencing) or missing genotype values
for untyped sites (arrays). Imputation can be used to ob-
tain genotype data for missing positions using reference
data and known data at a subset of positions in individ-
uals which need to be imputed. Imputation is used to
boost the power of GWAS studies [15], fine mapping a
particular region of a chromosome [16], or performing
meta-analysis [17], which involves combining reference
data from multiple reference panels.
Imputation uses a reference panel of known haplo-

types with alleles known at a high density of haplotyped
positions. A study/inference panel genotyped at a sparse
set of positions is used for sequences which need to be
imputed. A basic conceptual description of imputation
involves phasing genotypes at genotyped positions in the
study/inference panel, followed by matching haplotypes
which match in the genotyped positions [11]. Various
imputation algorithms perform these steps sequentially
and iteratively or simultaneously, while others further
improve on this basic approach by including probabilis-
tic modeling.
Factors affecting the quality of the phasing and imput-

ation are (1) size of reference panel (2) density of SNPs
in reference panel (3) accuracy of called genotypes in the
reference panel (4) degree of relatedness between se-
quences in reference panel and study sequences (5) eth-
nicity of the study individuals in comparison with the
available reference data and (6) allele frequency of the
site being phased or imputed [5].
Multiple methods have been developed for genotype im-

putation [18]. MACH [19, 20], minimac [21], BEAGLE
[6], and IMPUTE v2 [11] are some widely used methods
for imputation.
An analysis of the imputation accuracy for the Hap-

Map project has been performed about a decade ago
[22]. The 1000 Genomes project has performed a similar
analysis with the WGS data sequenced with Complete
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Genomics [3]. We present here a detailed alternative as-
sessment of the quality of phasing and imputation for
the 1000 Genomes database comparing with high cover-
age experimentally phased sequences sequenced using a
new method for experimentally resolving haplotypes,
particularly as a function of minor allele frequency and
inter-SNP distances for biallelic SNPs.

Results
The 1000 Genomes project chromosome-specific VCFs
for the GRCh38 assembly contain between 7.07M (chr2)
to 1.1M (chr22) variants over all the 2504 individuals.
After filtering for biallelic SNPs, phased, filtered for
PASS, removing indels, we are left with 6.78M (chr2) to
1.05M (chr22) variants. The experimentally phased data
from the 10X Genomics platform has different numbers
of called variants for each sequenced individual. For
chromosome 1, the number of called variants varies
from 414 K to 494 K across the 28 individuals, while, for
chromosome 22, the number of called SNPs varies from
104 K to 120 K. After performing a similar filtering for
the experimental data, the number of biallelic PASS
phased SNPs ranges between 298 K and 357 K for
chromosome 1 and 64 K and 75 K for chromosome 22.
The SNPs from the experimentally phased VCFs

(Fig. 1a), averaged over continent groups show that the
vast majority of SNPs in this selection have high contin-
ent-specific MAF values (> 5%). However, if we look at
all the SNPs in the 1000 Genomes Data (filtered for bial-
lelic PASS phased SNPs) as a function of continent-spe-
cific MAF, the distribution we observe has a very
different trend. There is a significant over-representation
of the very low continent-specific MAF SNPs (< 0.1%), ∼

5 ∗ 107, as compared to all the subsequent higher MAF
SNPs, which all range < 1 ∗ 107.
These discrepancies between the numbers in the 1000

Genomes data and in the experimentally phased data, as
well as the differing trends as a function of MAF occur
because the 1000 Genomes data includes a SNP if even
one individual in the 2504 individuals has a variant (het-
erozygous or homozygous-alternate) at that position
while the experimental data includes a SNP only if that
particular individual has a variant (heterozygous or
homozygous-alternate) at that position. This results in a
much larger number of overall SNPs being present in
the 1000 Genomes data as compared to the experimen-
tal and also the majority of the 1000 Genomes SNPs
having extremely low MAF, as those would occur only in
one or a few individuals.

Genotyping error
Genotyping error is computed comparing the 1000
Genomes genotypes with the experimental genotypes.
The experimental genotypes for all SNPs not present in
the experimental VCF for each individual are assumed
to be homozygous reference. Mismatched genotypes are
counted as errors. Figure 2a looks at the errors (fraction
of genotypes which are incorrect) for the experimental
VCF positions as a function of the continent-specific
minor allele frequencies. There is higher error at the
population invariant sites (MAF = 0.0%) in the African
and American populations than the European, East
Asian and South Asian populations. This correlates with a
lower total number of population invariant SNPs in those
continents (Fig. 1a). For non-invariant SNPs, we observe,
as expected, a decreasing error rate with increasing minor

a b

Fig. 1 Distribution of SNPs as a function of continent-specific minor allele frequencies a only experimental SNPs b all 1000 Genomes SNPs
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allele frequency, to a < 2% error genotyping error rate for
the SNPs with minor allele frequencies > 1%.
Within these errors in the experimental SNPs, we ob-

serve significantly different rates for SNPs which are het-
erozygous vs homozygous reference in the experimental
data (Fig. 2b). The error rate for SNPs which are homo-
zygous alternate in the experimental data is 1.5 times
the error rate for the SNPs which are heterozygous in
the experimental data.
Comparing false positive (sites non-homozygous refer-

ence in 1000 Genomes data and homozygous reference
in the experimental data) vs false negative (sites homozy-
gous reference in 1000 Genomes data and non-homozy-
gous reference in the experimental data) error rates for
all 1000 Genomes sites (Fig. 2c), we see that the East
Asian and South Asian populations both have mostly
low false positive rates, but show a wide range (factor of
2) of false negative rates, while showing only a ~ 15%
variation in the false positive rates for most individuals.
In contrast, the African individuals mostly have relatively
low false negative rates, but have among the highest false
positive rates. This indicates that the sequencing in the
1000 Genomes project has over called non-homozygous
reference variants in African individuals compared to
the rest, and over called SNPs as homozygous reference
in some of the East and South Asian individuals.

Phasing
Phasing errors are all analyzed for overall 1000 Genomes
minor allele frequencies, not continent specific MAFs.
Comparing the switch error across individual chromosomes
(Fig. 3), we observe that the switch error ranges between 20
and 30% for the rare MAF (< 0.1%) SNPs, falling to < 5%
for SNPs with MAFs 1–5%. The majority of SNPs, which
fall in the MAF > 5% category, have an error < 2.5%. How-
ever, a comparatively higher switch error at larger MAF
values (> 5%) is observed for chromosome 21. This plot
(Fig. 3) shows only a subset of chromosomes for a single

individual (GM18552), but this trend is observed for all
other chromosomes and individuals studied.
Figure 4a shows the total switch error for each of the

individuals. The total switch errors for all the individuals
studied go up to ∼ 2.5%. The switch errors for the East
Asian individuals are grouped together, while those for
the South Asian individuals show greater variability.
This is in line with the general observation that South
Asian populations have an overall greater heterogeneity
than do East Asian populations, which some of the au-
thors have observed in ongoing studies with hundreds of
individuals [J. Wall, Unpublished data].
Analyzing the switch error as a function of minor al-

lele frequency averaged over all chromosomes of all indi-
viduals of a population (Fig. 4b), we observe low switch
error, < 5%, for low minor allele frequencies (MAF) (1–
5%). For rare SNPs with MAF (0.2–1%), the switch error
is ∼ 5–10%. For extremely rare minor allele SNPs, i.e.
MAF < 0.2%, the error is much higher, i.e. 15–35%. For
all higher MAF values (> 5%), the error is < 2.5%. The
average error rate for the individuals from the African
populations is almost the same over the range of MAF
values > 0.1%.
As observed in Fig. 4c, the differences in the error

rates between individuals decrease with increasing minor
allele frequency. Individuals from South Asia show a lar-
ger variation in error as a function of MAF as compared
to individuals from East Asia. The individuals from the
African populations have the lowest switch error over
the range of MAF values. Individual NA20900, an indi-
vidual from the Gujarati Indians in Houston (GIH)
population has the lowest switch error as a function of
minor allele frequency for the low MAF SNPs. This indi-
vidual is not part of a trio in the 1000GP data, and fur-
ther analysis is required to ascertain why it shows much
lower switch error as compared to the other individuals
studied. One possible explanation is that the current
limited sampling of only 11 individuals from the South

a b c

Fig. 2 Genotyping error a in the experimental VCF positions (non-hom ref. SNPs) as a function of continent-specific minor allele frequency
averaged over all chromosomes over all individuals in each continent b in experimental VCF positions comparing SNPs with homozygous
alternate vs heterozygous calls in the experimental data c false positive vs false negative rates (defined in text) for all 1000 Genomes SNPs
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Asian population is not capturing the full spread of error
rate variation, and including more individuals might
show more individuals with comparable low error rates.
We also analyzed phasing error as a function of the

distances between SNPs (Fig. 5). The phasing error in-
creases as a function of the inter-SNP distance, i.e. SNPs
which are further apart are more likely to be out of
phase with each other. The within population trends are
the same as for switch error vs MAF, where the individ-
uals from South Asia show a larger spread as compared
to the individuals from East Asia. Individual NA20900

shows the lowest error rate, same as for the comparison
of error vs MAF (Fig. 4c).
Comparing the switch error as a function of MAF vs.

the switch error as a function of inter-SNP distance, we
see that the individuals from the African populations
show distinctly opposite trends. For low MAF SNPs, the
error is the lowest averaging over the African individ-
uals, while across the range of inter-SNP distances, the
average over the African individuals was the highest
error. The reason this occurs can be understood from
the fact that there are a higher number of low MAF

Fig. 3 Switch error as a function of Minor Allele Frequencies for different individual chromosomes. Chromosome 21 shows higher switch error for
large MAF values

a b c

Fig. 4 Switch error a Total switch error (number of switches in experimental SNPs/total number of experimental SNPs) for each individual b
Switch error as a function of Minor Allele Frequencies averaged over all individuals in each continent. c Switch error as a function of Minor Allele
Frequencies for all individuals colored by continent
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SNPs in the African individuals in the experimental data
(Fig. 1a), as well as an overall higher number of SNPs in
those individuals, leading to a higher SNP density for
these individuals. In addition, there is less linkage dis-
equilibrium (LD) in the individuals from the African
populations, which would make it harder to phase them
accurately [23, 24]. Hence, pairs of SNPs are more likely
to be out of phase with each other, leading to higher
switch error as a function of inter-SNP distance.

Imputation
Imputation error is computed as the fraction of SNPs
with incorrectly imputed genotypes (genotype discord-
ance). However, depending on the subset of SNPs under
consideration, the error can be computed in two differ-
ent ways, (1) fraction of experimental SNPs incorrectly
imputed and (2) fraction of all 1000GP SNPs incorrectly
imputed. In the case of the second definition of error,
the experimental calls for all the positions not in the ex-
perimental VCFs are assumed to be homozygous-
reference.
Figure 6a shows the total imputation error in the ex-

perimental SNPs while Fig. 6b shows the total imput-
ation error in the 1000GP SNPs for each of the
individuals. The total imputation errors in the experi-
mental SNPs for all the individuals studied go up to ∼
4%. For this subset of SNPs, the two American individ-
uals have the among the highest imputation errors. The
imputation errors for the East Asian individuals are
grouped together, while those for the South Asian indi-
viduals show greater variability. This agrees with our ob-
servations for the switch error (Fig. 4a). In the 1000GP
SNPs, on the other hand, since we are looking at a much

larger set of SNPs, most of which are homozygous-refer-
ence in any given individual, we see a much smaller
error < ∼ 1%.

Imputation error in experimental SNPs
Figure 7a shows the imputation error rates as function
of the continent-specific minor allele frequency. The
continent invariant positions (MAF = 0.0%) are imputed
almost as accurately as the high MAF (> 5% in 3 popula-
tions, and > 1% in two populations) SNPs. In these posi-
tions, we make the same observation as we did for the
original genotyping in the 1000 genomes reference data
(Fig. 2a), i.e. the errors in the European, East Asian and
South Asian individuals for these continent invariant po-
sitions are lower than those for the American and Afri-
can individuals. For the very rare SNPs, i.e. MAF < 0.2%,
the error is as high as ∼ 60%. These extremely high error
rates are only observed in the American individuals and
a few of the South Asian individuals. While this error
rate seems high, a likely explanation for that is that the
imputation method infers each allele by finding the most
likely haplotype match from the reference database for
the individual being imputed [11]. In the case of a SNP
with a rare variant, the best matching haplotypes are
likely to contain the reference allele, leading to a predic-
tion of homozygous reference genotype at that position.
However, the SNPs in the experimental VCFs only in-
clude positions for which there is a non-homozygous
reference genotype for that particular individual. As a re-
sult, any prediction of homozygous reference genotype
is going to be counted as an error, leading to compara-
tively high error rates at these very low MAF values. For
the rest of the individuals, the error rates are < 50%. In

a b

Fig. 5 Switch error as a function of inter-SNP distance a Switch error as a function of inter-SNP distances averaged over individuals in each
continent. b Switch error as a function of inter-SNP distances for all individuals colored by continent
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the mid-range of MAF values, i.e. 0.2 to 1%, the errors
range between 10 and 20%. The SNPs with higher MAF
values are fairly accurate, with errors < 2% for common
SNPs (MAF > 5%). This can also be seen looking at all the
individuals separately (Fig. 7b). The South Asian (Gujarati
in Houston, Texas) individual NA20900 still shows the
lowest error rate as a function of MAF for imputation, just
as it does for the switch error (Fig. 4c). Out of the imputed
experimental SNPs, a very small fraction have low

imputation INFO scores (Additional file 1: Figure S1a).
However, most of those are SNPs which are imputed in-
correctly, hence filtering out low INFO score SNPs gives
much smaller error rates throughout the range of MAF
values (Additional file 1: Figure S2b).

Imputation error in all 1000GP SNPs
Computing the error using all the 1000GP SNPs, we see
a different trend for the errors as a function of minor

a b

Fig. 6 Total imputation error a Total imputation error in experimental SNPs (number of incorrect genotypes in all experimental SNPs/total
number of experimental SNPs) for each individual b Total imputation error in all 1000GP SNPs (number of incorrect genotypes in all 1000GP
SNPs/total number of 1000GP SNPs) for each individual

a b

Fig. 7 Imputation accuracy experimental VCF positions a Imputation error in the experimental SNPs as a function of Minor Allele Frequencies
averaged over individuals in each continent. b Imputation error in the experimental SNPs as a function of Minor Allele Frequencies for all
individuals colored by continent
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allele frequency (Fig. 8a, b). The invariant sites have very
low errors ~ 10− 4. For the variant sites, the errors in-
crease as a function of minor allele frequency, as op-
posed to decreasing as they do in the experimental only
SNPs. The reason this happens is that contrasting the
number of experimental SNPs (Fig. 1a) with the num-
bers of all 1000GP SNPs (Fig. 1b), while the number of
low MAF SNPs is 1–2 orders of magnitude less than the
number of SNPs with MAF > 5% in the experimental
data, the number of very low MAF SNPs is 2–10 times
greater than the number of SNPs with MAF > 5% in the
whole 1000 Genomes data. The vast majority of the very
low MAF SNPs in the whole 1000 Genomes data are
homozygous-reference, since those SNPs show variation
in only one or very few 1000 Genomes individuals.
Hence, imputation predictions get most of those posi-
tions correct in most of the individuals. As a result, the
fraction of those very rare SNPs which are predicted
incorrectly is much lower when considering all the
1000 Genomes SNPs as compared to only considering
the experimental SNPs, where most of the SNPs are
high MAF SNPs. However, it is important to note
that a lot of the low MAF SNPs have low INFO
scores for imputation (Additional file 1: Figure S1b).
Hence filtering out SNPs with low INFO scores shows
a decreasing error rate with increasing MAF, as is ex-
pected (Additional file 1: Figure S3b).
Consistent with the observations for the experimental

only SNPs, at very rare SNPs (MAF < 0.2%), the Ameri-
can individuals still have the highest error rate. The indi-
viduals from the South Asian populations still show a
greater spread than those from the East Asian

populations. Individual NA20900 still shows the lowest
error rate as with previous observations.
An alternative measure of imputation accuracy is

genotype r2. Figure 9 shows the r2 as function of the al-
ternate allele frequency (AAF) (as opposed to minor al-
lele frequencies). This enables comparison to the
imputation accuracies reported in the 1000GP phase 3
paper [3], and we see higher accuracies for EAS individ-
uals and lower accuracies for AMR individuals at very
low alternate allele frequencies compared to those previ-
ously reported values. The accuracies reported for SNPs
with AAF > 1% are consistent with the previously re-
ported values in the 1000GP phase 3 paper. Consistent
with the observations in genotype discordance, the r2

values show the least accuracy for the American individ-
uals at low alternate allele frequencies.

Comparison of reference panels
Here, we compare the imputation errors resulting from
using different reference panels for imputation. A con-
tinent-specific reference panel for the individual of inter-
est, a reference panel which includes all of the 1000
Genomes individuals, and a continent-specific reference
panel for a different continent from the one from which
the individuals are, are chosen. The minor allele fre-
quencies used here are for all the overall 1000 Genomes
minor allele frequencies, instead of a continent-specific
minor allele frequency, since we want to understand the
impact of the choice of reference panel, and continent-
specific MAFs would not align with the whole reference
or the reference from another continent. In this case, we
used the South Asian reference panel as the different

a b

Fig. 8 Imputation accuracy all 1000GP SNPs a Imputation error in all the 1000 Genomes positions as a function of Minor Allele Frequencies
averaged over individuals in each continent. b Imputation error in all the 1000 Genomes positions as a function of Minor Allele Frequencies for
all individuals colored by continent
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continent panel and estimated imputation accuracies for
all the other individuals, using a reference panel corre-
sponding to that individual’s continent group, the South
Asian reference panel, and the whole 1000G reference
panel.
The observed result for experimental only SNPs

(Fig. 10a) when comparing reference panels for the AFR,
AMR, EUR, and EAS individuals is very similar when
looking at all 1000 Genomes SNPs (Fig. 10b). The imput-
ation accuracy when using the entire 1000 Genomes data
as a reference panel gives almost identical accuracy as
using a continent specific reference panel corresponding
to the individuals in 3 of the 4 continent groups. For the
AMR individuals, however, there is a marked improve-
ment in using the full 1000G reference panel than the
AMR specific reference panel. The error while using an
incorrect reference panel, in this case the SAS panel, how-
ever, is a factor of 2 or more greater than the error when
using the appropriate reference, or when using the whole
1000 Genomes reference panel. In particular, the choice of
the SAS panel gives significantly the highest error rate for
the AFR individuals. The trend of error as a function of
MAF for all 1000G SNPs is, again, the opposite of what
was observed when looking at only the experimental
SNPs, as discussed previously.

Discussion and conclusions
The 1000 Genomes Project data have been widely used
as a reference for estimating continent-specific allele
frequencies, and as a reference panel for phasing and
imputation studies. Since the project’s design involved
low-coverage (~7X) sequencing for most of the samples,
it was unknown a priori how accurate the 1000GP’s
genotype and haplotype calls were, especially for rare
variants. This accuracy obviously directly impacts the
usefulness of the 1000GP data. While some quantifica-
tion of imputation accuracy in the 1000GP has been per-
formed before [3], with the advent of inexpensive,
commercial platforms for experimentally phasing whole
genomes, it is possible to directly quantify the genotype
and haplotype error rates of the 1000GP data.
Our comparison of 28 experimentally phased genomes

with the 1000GP data found that the latter is highly ac-
curate for common and low-frequency variants (i.e.,
MAF ≥ 0.01). As expected, accuracy declined with de-
creasing MAF, with rare variants (MAF < 0.01) not reli-
ably imputed onto haplotypes. Surprisingly though, the
genotype calls were reasonably accurate even for rare
variants. This observation may not generalize to other
low-coverage sequencing studies due to the complicated
and labor-intensive protocol used for variant calling in

Fig. 9 Imputation accuracy all 1000GP SNPs r2 for allele frequency bins
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the 1000GP. We conclude that the 1000GP data is best
used as a reference panel for imputing variants with
MAF ≥ 0.01 into populations closely related to the
1000GP groups, and is probably of limited utility for im-
putation in rare variant association studies. Larger sub-
sequent imputation panels, such as the one generated by
the Haplotype Reference Consortium (HRC) [25], are
likely much more useful for imputing rare variants, at
least in well-studied European populations. However,
even this large reference panel may be of limited useful-
ness for imputation into other human groups. While our
results suggest that using a region-specific reference
panel (for the correct region) for imputation is only
slightly worse than using a worldwide panel, the choice
of an incorrect regional panel makes the imputation
considerably worse. So, large European-based haplotype
reference panels will be of limited utility for imputing
variants into East Asian, South Asian, or African-Ameri-
can genomes, while imputation studies involving under-
studied groups such as Middle Easterners, Melanesians
or Khoisan are likely to have error rates substantially
higher than what was observed in our study. This is a
consequence of the fact that most rare variants are re-
gion-specific; imputation only works when the variant
being imputed shows up often enough in the reference
panel. In summary, while the 1000GP and HRC provide
valuable genomic resources that can augment the power
of GWAS in groups with European ancestry, additional
large-scale genome sequencing of diverse human popu-
lations will be necessary to obtain comparable benefits
of imputation in genetic association studies of non-Euro-
pean groups.

Finally, we note that the absolute error rate varied by
an order of magnitude, depending on the specific defini-
tions of error that were used. This highlights the import-
ance of definitional clarity in studies that evaluate the
accuracy of genomic resources.

Methods
Input data
Processed VCFs were downloaded from the 1000
Genomes website. This data is available for each
chromosome separately. To obtain agreement with the
experimental data, 1000 Genomes VCFs corresponding
to the GRCh38 assembly were downloaded. Experimen-
tal data was sequenced using the 10X Genomics plat-
form for 28 individuals from the 1000 Genomes project.
Thirteen of these individuals were processed at UCSF
[26] and sequenced at Novogene, while the remaining
individuals were processed and sequenced at Genentech.
The populations from which each of the individuals
come (as listed in the Coriell Catalog) are:

� South Asia (SAS):
○ Gujarati Indians in Houston, Texas, USA
(HapMap) [GIH] - GM21125*, NA20900,
NA20902

○ Punjabi in Lahore, Pakistan [PJL] - HG03491,
HG03619

○ Sri Lankan Tamil in the UK [STU] - HG03679,
HG03752, HG03838*

○ Indian Telugu in the UK [ITU] - HG03968
○ Bengali in Bangladesh [BEB] - HG04153,
HG04155

a b

Fig. 10 Imputation error as a function of Minor Allele Frequencies for AFR (red), AMR (blue), EUR (black), and EAS (green) individuals comparing
the continent specific reference panel (solid lines + circles), a different continent specific panel (SAS, dotted lines + squares), and the entire 1000G
reference panel (dashed lines + triangles) a experimental SNPs b All 1000 Genomes SNPs
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� East Asia (EAS):
○ Han Chinese in Beijing, China (HapMap) [CHB]
- GM18552*, NA18570, NA18571

○ Chinese Dai in Xishuangbanna, China [CDX] -
HG00851*, HG01802, HG01804

○ Kinh in Ho Chi Minh City, Vietnam [KHV] -
HG02064, HG02067

○ Japanese in Tokyo, Japan (HapMap) [JPT] -
NA19068*

� Africa (AFR):
○ Luhya in Webuye, Kenya (HapMap) [LWK] -
GM19440*
○ Gambian in Western Division, The Gambia
[GWD] - HG02623*
○ Esan from Nigeria [ESN] - HG03115*

� Europe (EUR):
○Toscani in Italia (Tuscans in Italy) (HapMap)
[TSI] - GM20587*
○ British from England and Scotland, UK [GBR] -
HG00250*

○ Finnish in Finland [FIN] - HG00353*
� America (AMR):

○ Mexican Ancestry in Los Angeles, California,
USA (HapMap) [MXL] - GM19789*

○ Peruvian in Lima, Peru [PEL] - HG01971*

Asterisks next to sample IDs refer to samples proc-
essed at UCSF. ~ 99% of the SNPs are phased in all
the samples. For all the sequences, < 1% of each se-
quence has zero coverage. There are, however, differ-
ences in the exact protocols used for the samples
sequenced at Genentech and UCSF. As a result,
lengths of the phase blocks as well as the N50 values
for the phase blocks differ by a factor of 10 between
the two sets of samples. However, even the smallest
phase blocks are long enough for accurate phasing.
Statistics for the experimental sequencing like se-
quence coverage, N50, and fraction of SNPs phased
can be found in the Additional file 2.

Preprocessing 1000 genomes data
The 1000 Genomes data was separated into individual
and chromosome specific VCFs using vcftools [27].
Further, the variants were filtered for biallelic SNPs,
phased (i.e. variants already phased in the 1000 Ge-
nomes VCFs [8]), filtered for PASS, and indels were
removed. The experimentally phased data also had a
very small fraction of unphased SNPs, which were re-
moved by filtering with vcftools. The analysis was per-
formed only for autosomes.

Phasing analysis
The alternate (ALT) allele frequencies of all the SNPs
of interest were obtained from the 1000 Genomes

data and converted to minor allele frequencies to be
able to analyze switch error as a function of minor
allele frequencies. The filtered SNPs from the experi-
mental data were split into phase sets, based on
phase set information available in the experimental
VCF files. Long runs of homozygosity, leading to un-
certainty in the phasing method associated with the
experimental sequencing cause the phasing to be
broken off. This leads to the creation of multiple
phase sets in the final experimental sequences [28].
Switch error was calculated between the experimental
and 1000 Genomes data for each phase set in each
chromosome of each individual from the experimental
dataset. Switch error is defined as percentage of pos-
sible switches in haplotype orientation used to recover
the correct phase in an individual [29] or equiva-
lently, proportion of heterozygous positions whose
phase is wrongly inferred relative to the previous het-
erozygous position [30]. vcftools returns the switch
error as well as all positions of switches occurring
along the chromosome.

Switch error as a function of minor allele frequency
ALT allele frequencies were accessed for each of the
switch positions (i.e. both heterozygotes at the ends of
each out-of-phase segment) from the data and were con-
verted to minor allele frequencies. A distribution of all the
switch positions as a function of minor allele frequency
was plotted for each chromosome in each individual.

Switch error as a function of inter SNP distance
Positions of each SNP were accessed from the data. The
number of intermediate switches were counted for all
pair of SNPs, not only consecutive SNPs. If the number
of switches between two SNPs were odd, a switch error
was counted. This was used to calculate the distribution
of switch errors as a function of inter-SNP distance.

Imputation analysis
The entire imputation analysis is performed for each
chromosome for each individual.

Generate recombination map
IMPUTE v2 [11] makes available recombination maps
for each chromosome using the 1000 Genomes data for
the GRCh37 assembly. A recombination map was ob-
tained for each chromosome for GRCh38 by lifting over
the GRCh37 maps using the liftOver [31] software. ~ 8 k
positions (0.2%) were removed from the lifted over re-
combination map because liftover resulted in them being
in the incorrect order.
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Generate reference panel
A reference haplotype panel was generated for all indi-
viduals from the 1000 Genomes data by subsetting it to
the specific population of interest. 1000 Genomes data
for the individuals which were experimentally sequenced
was not included in the reference panel. Vcftools was
used to filter out the individuals of interest from the
1000 Genomes data. Bcftools was used to convert the
VCF data to haps-sample-legend format. An alternate
approach was also used, where the entire 1000 Genomes
data was used to generate a reference haplotype panel.
The number of haplotypes in the population specific ref-
erence panels were: AFR-1316, AMR-690, EUR-1000,
EAS-990, SAS-956.

Generate study panel
A study panel was generated for the experimentally se-
quenced individuals selected. The study panel is as-
sumed to be genotyped at positions corresponding to
the Illumina InfiniumOmni2.5–8 array. Array positions
were lifted over from GRCh37 to GRCh38 using liftOver.
1000 Genomes haplotypes (since 1000 Genomes data is
prephased, the study panel is also in the form of haplo-
types rather than genotypes) from the 1000 Genomes
final calls for those positions for those individuals were
selected to create the study panel using vcftools. Filtered
VCF files were converted to the haps-sample format
using bcftools.

Run imputation
Missing positions are imputed using IMPUTE v2. Imput-
ation was performed in 5Mb windows. The genotype
output by imputation was converted to VCF format
using bcftools. VCFs produced over all windows were
combined using vcf-concat. IMPUTE v2 generally phases
the typed genotyped sites in study panel. This is followed
by imputation. IMPUTE v2 then performs an iterative
process performing multiple Monte-Carlo steps alternat-
ing phasing and imputation. For this analysis, however,
as haplotypes from the 1000 Genomes project were dir-
ectly used to generate the study panel, the phasing step
was not performed.

Filter positions
For one part of the analysis, i.e. estimating errors in the
positions represented in the experimentally phased VCFs
(called experimental SNPs throughout the manuscript),
the positions from those VCFs were filtered from the im-
puted data using vcftools. Experimental genotypes from
the experimental VCFs were obtained for each individual
of interest using vcftools. SNPs with duplicate entries in
either the imputed or experimental data were removed.
Continent-specific allele frequencies were obtained for
the experimental SNPs from the 1000 Genomes data

using vcftools, to be able to analyze switch error as a
function of Minor Allele Frequencies. For the other part
of the analysis, i.e. estimating errors for all positions in
the 1000 Genomes data, the allele fractions were simi-
larly obtained for all of the SNPs.

Imputation error
Imputation error was computed in the form of genotype
discordance (fraction of genotypes being incorrectly identi-
fied). Imputation error was computed for both, the SNPs in
the experimental data and all the SNPs in 1000 Genomes
data. Error is computed as a function of minor allele fre-
quency. The continent-specific minor allele frequencies
were used for analyzing the imputation error. r2 between
the imputed and experimental genotypes for each SNP is
another common method used to estimate imputation ac-
curacy, and is considered to minimize the dependence on
the allele frequency. However, we only have between 2 and
11 individuals in each continental group experimentally se-
quenced and phased in our experiments, which are too
small numbers to be able to compute an r2 value for each
SNP. Hence r2 values have been computed for all SNPs in
each allele frequency window. These windows are com-
puted with alternative allele frequencies instead of minor al-
lele frequencies to allow comparison with previously
estimated imputation accuracies [3].
For all analysis where error rate is computed as a func-

tion of the continent-specific minor allele frequency
(genotyping error and imputation error; Figs. 1, 2, 7, 8),
the minor allele frequencies are binned as MAF = 0.0%,
0.0–0.2%, 0.2–0.5%, 0.5–1%, 1–5%, MAF > = 5%. For the
analysis where all 1000 Genomes minor allele frequen-
cies are used (phasing error and imputation error com-
paring use of multiple reference panels; Figs. 3, 4, 10),
the minor allele frequencies are binned into only five
bins, i.e. there is no MAF = 0.0% bin. Rest of the bins are
the same as for the continent-specific MAF bins.
In addition, imputation accuracy was also computed as

genotype r2 (Fig. 9) for all 1000GP SNPs. This is plotted
against alternate allele frequency (instead of minor allele
frequency) to enable comparison with the previous ac-
curacy estimates in the 1000GP phase 3 paper [3]. r2

values are computed for all genotypes values of all SNPs
in each alternative allele frequency (AAF) bin instead of
per SNP to deal with the fact that the AFR, AMR, and
EUR populations have only 3, 2, and 3 individuals re-
spectively. The AAF values are binned as AAF < 0.2%,
0.2–0.5%, 0.5–1%, 1–2%, 2–5%, 5–10%, 10–20%, 20–
50% and 50–100%.

Experimental methods
Samples processing
High Molecular Weight (HMW) Genomic DNA was ex-
tracted and converted into 10x sequencing libraries
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according to the 10X Genomics (Pleasanton, CA, USA)
Chromium Genome User Guide and as published previ-
ously [28]. Briefly, Gel Bead-in-Emulsions (GEMs) were
made with 1.25 ng HMW template gDNA, Master-mix
Genome Gel Beads and partitioning oil on the microflui-
dic Genome Chip. Isothermal incubation of the GEMs
(for 3 h at 30 °C; for 10 min at 65 °C; stored at 4 °C) pro-
duced barcoded fragments ranging from a few to several
hundred base pairs. After dissolution of the Genome Gel
Bead in the GEM Illumina Read 1 sequencing primer,
16 bp 10x barcode and 6 bp random primer are released.
The GEMs were then broken and the pooled fractions
were recovered. Silane and Solid Phase Reversible
Immobilization (SPRI) beads were used to purify and
size select the fragments for library preparation. Library
prep was performed according to the manufacturer’s in-
structions described in the Chromium Genome User
Guide Rev. C. Libraries were made using 10x Genomics
adapters. The final libraries contain the P5 and P7
primers used in Illumina bridge amplification. The bar-
coded libraries were then quantified by qPCR (KAPA
Biosystems Library Quantification Kit for Illumina plat-
forms). Sequencing was done using Illumina HiSeq 4000
with 2 × 150 paired-end reads. Raw reads were proc-
essed, aligned to the reference genome, and had SNPs
called and phased using 10X Genomics’ Long Ranger
software (version 2.1.1 or 2.1.6) with the “wgs” pipeline
with default settings.

Additional file

Additional file 1: Figure S1. Representative distribution of INFO scores
for chromosome 1 in HG00250 in (a) experimental SNPs (b) all 1000G
SNPs. Figure S2. Imputation error in experimental SNPs after filtering low
INFO score (< 0.3) SNPs (a) Total imputation error (b) imputation error as
a function of minor allele frequency. Figure S3. Imputation error in all
1000G SNPs after filtering low INFO score (< 0.3) SNPs (a) Total
imputation error (b) imputation error as a function of minor allele
frequency. (DOCX 593 kb)

Additional file 2: Statistics for the experimental sequencing. (XLSX 21 kb)
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