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Adaptive Estimation for Varying1

Coefficient Models2

Yixin Chen, Qin Wang and Weixin Yao3

Abstract4

In this article, a novel adaptive estimation is proposed for varying coefficient5

models. Unlike the traditional least squares based methods, the proposed approach6

can adapt to different error distributions. An efficient EM algorithm is provided7

to implement the proposed estimation. The asymptotic properties of the resulting8

estimator are established. Both simulation studies and real data examples are used9

to illustrate the finite sample performance of the new estimation procedure. The10

numerical results show that the gain of the new procedure over the least squares11

estimation can be quite substantial for non-Gaussian errors.12

Key words: Adaptive estimation; EM algorithm; Kernel smoothing; Local maximum13

likelihood; Varying coefficient models.14
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1 Introduction15

Since the introduction in Cleveland et al. (1991) and Hastie and Tibshirani (1993),16

varying coefficient models have gained considerable attention due to their flexibility17

and good interpretability. They are useful extensions of the classical linear models and18

have been widely used to explore the dynamic pattern in many scientific areas, such19

as finance, economics, epidemiology, ecology, etc. By allowing coefficients to vary over20

the so-called index variable, the modeling bias can be significantly reduced and the21

‘curse of dimensionality’ can be avoided (Fan and Zhang, 2008). In recent years, varying22

coefficient models have experienced rapid developments in both theory and methodology,23

see, for example, Wu et al. (1998), Hoover et al. (1998), Fan and Zhang (1999, 2000),24

Cai et al. (2000), Fan and Huang (2005), Wang et al. (2009), Wang and Xia (2009), etc.25

We refer to readers to Fan and Zhang (2008) for a nice and comprehensive survey.26

Let y ∈ R1 be the response, x = (x1, . . . , xd)
T ∈ Rd be the covariate vector, and27

u ∈ R1 is the index variable. The varying coefficient model is defined as28

y =

d
∑

j=1

gj(u)xj + ǫ, (1.1)

where {g1(u), . . . , gd(u)}T are unknown smooth coefficient functions. Throughout this29

article, we assume the random error ǫ to be independent of (u, x), with mean 0 and a30

finite second-order moment σ2. By setting x1 ≡ 1, it allows a varying intercept in the31

model.32

Hastie and Tibshirani (1993), Hoover et al. (1998), Chiang et al. (2001) and Eu-33

bank et al. (2004) proposed using smoothing spline to estimate coefficient functions.34

Polynomial spline was used in Huang et al. (2002, 2004) and Huang and Shen (2004).35

Wu et al. (1998), Hoover et al. (1998), Fan and Zhang (1999) and Kauermann and36

Tutz (1999) adopted kernel smoothing to estimate coefficient functions. Fan and Zhang37
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(2000) further studied a two-step estimation procedure to deal with the situation where38

the coefficient functions admit different degrees of smoothness. Recently, Wang and Xia39

(2009) proposed a shrinkage estimation procedure to select important nonparametric40

components. Wang et al. (2009) developed a highly robust and efficient procedure based41

on local ranks. Nevertheless, most existing methods used least squares type criteria in42

estimation, which corresponds to the local likelihood when the error ǫ is distributed as43

a normal random variable. However, in the absence of normality, the traditional least44

squares based estimators will lose some efficiency.45

In this article, we propose a novel adaptive kernel estimation procedure for varying46

coefficient models. It combines the kernel density estimation and the local maximum47

likelihood estimation so that the new estimator can adapt to different error distributions.48

The new estimator is “adaptive” and “efficient” in the sense that it is asymptotically49

equivalent to the infeasible local likelihood estimator (Staniswalis, 1989; Fan et al., 1998),50

which requires the knowledge of the error distribution. An efficient EM algorithm is51

proposed to implement the adaptive estimation. We demonstrate through a simulation52

study that the new estimate is more efficient than the existing least squares based53

kernel estimate when the error distribution deviates from normal. In addition, when the54

error is exactly normal, the new method is broadly comparable to the existing kernel55

approach. We further illustrate the effectiveness of the proposed adaptive estimation56

method through two real data examples.57

The rest of the article is organized as follows. In section 2, we introduce the new58

adaptive estimation for the varying coefficient models and the EM algorithm. In section59

3, we compare our proposed approach with the traditional least squares based estimation60

for five different error densities through a simulation study and then apply the new61

method to two real data examples. We conclude this article with a brief discussion in62

Section 4. All technical conditions and proofs are relegated to the Appendix.63
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2 New Adaptive Estimation64

2.1 Introduction to the new method65

Suppose that {xi, ui, yi, i = 1, . . . , n} is a random sample from model (1.1). For u in a66

neighborhood of u0, we can approximate the varying coefficient functions locally as67

gj(u) ≈ gj(u0) + g′j(u0)(u− u0) ≡ bj + cj(u− u0), for j = 1, . . . , d. (2.1)

The traditional local linear estimation of (1.1) is to minimize68

n
∑

i=1

Kh(ui − u0)

[

yi −
d
∑

j=1

{bj + cj(ui − u0)}xij

]2

, (2.2)

with respect to (b1, ..., bd) and (c1, ..., cd) for a given kernel density K(·) and a bandwidth69

h, where Kh(t) = h−1K(t/h). It is well known that the choice of kernel function is not70

critical in terms of estimation efficiency. Throughout this article, a Gaussian kernel will71

be used for K(·). Due to the least squares in (2.2), the resulting estimate may lose some72

efficiency when the error distribution is not normal. Therefore, it is desirable to develop73

an estimation procedure which can adapt to different error distributions.74

Let f(ǫ) be the density function of ǫ. If f(ǫ) were known, it would be natural to75

estimate the local parameters in (2.1) by maximizing the following local log-likelihood76

function77

n
∑

i=1

Kh(ui − u0) log f

[

yi −
d
∑

j=1

{bj + cj(ui − u0)}xij

]

. (2.3)

However, in practice, f(ǫ) is generally unknown but can be replaced by a kernel density78

estimate based on the initial estimated residual ǫ̃1, . . . , ǫ̃n,79

f̃(ǫi) =
1

n

n
∑

j 6=i

Kh0
(ǫi − ǫ̃j) , for i, j = 1, 2, ..., n (2.4)
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where ǫ̃i = yi −
∑d

j=1 g̃j(ui)xij and g̃j(·) can be estimated by least squares (or L1 norm,80

i.e., median regression) based local linear estimate (2.2). Here we use leave-one-out kernel81

density estimate for f(ǫi) to remove the estimation bias. Let θ = (b1, . . . , bd, c1, . . . , cd)
T .82

Then our proposed adaptive local linear estimate for the local parameter θ is83

θ̂ = argmax
θ

Q(θ), (2.5)

where84

Q(θ) =

n
∑

i=1

Kh(ui − u0) log

(

1

n

∑

j 6=i

Kh0

[

yi −
d
∑

l=1

{bl + cl(ui − u0)}xil − ǫ̃j

])

. (2.6)

The idea of adaptiveness can be traced back to Beran (1974) and Stone (1975),85

where the adaptive estimation was proposed for location models. Later, this idea was86

extended to regression, time series and other models, see Bickel (1982), Manski (1984),87

Steigerwald (1992), Schick (1993), Drost and Klaassen (1997), Hodgson (1998), Yuan88

and De Gooijer (2007), and Yuan (2009). Linton and Xiao (2007) proposed an elegant89

adaptive nonparametric regression estimator by maximizing the local likelihood function.90

In fact, the adaptive method proposed in Linton and Xiao (2007) can be seen as a special91

case of ours when d = 1 in (1.1). Recently, Wang and Yao (2012) and Yao and Zhao92

(2013) extended the idea of adaptive estimation to sufficient dimension reduction and93

linear regression, respectively.94

2.2 Computation: an EM algorithm95

Unlike least squares criterion, (2.5) does not have an explicit solution due to the sum-96

mation inside the log function, which is similar to the mixture structure. In this section,97

we propose an EM algorithm to maximize it by extending the generalized modal EM98

algorithm proposed in Yao (2013).99
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Let θ(0) be an initial parameter estimate, such as the least squares (or L1 norm, i.e.,100

median regression) based local linear estimate. We can update the parameter estimate101

according to the following algorithm.102

Algorithm 2.1. At (k + 1)th step, we calculate the following E and M steps:103

E-Step: Calculate the classification probabilities p
(k+1)
ij ,

p
(k+1)
ij =

Kh0

[

yi −
∑d

l=1{b
(k)
l + c

(k)
l (ui − u0)}xil − ǫ̃j

]

∑

j 6=iKh0

[

yi −
∑d

l=1{b
(k)
l + c

(k)
l (ui − u0)}xil − ǫ̃j

]

∝Kh0

[

yi −
d
∑

l=1

{b(k)l + c
(k)
l (ui − u0)}xil − ǫ̃j

]

, 1 ≤ j 6= i ≤ n. (2.7)

M-Step: Update θ(k+1),

θ(k+1) =argmax
θ

n
∑

i=1

∑

j 6=i

{

p
(k+1)
ij Kh(ui − u0) log

(

Kh0

[

yi −
d
∑

l=1

{bl + cl(ui − u0)}xil − ǫ̃j

])}

=argmin
θ

n
∑

i=1

∑

j 6=i

{

p
(k+1)
ij Kh(ui − u0)

[

yi − ǫ̃j − z
T
i θ
]2
}

,

=

(

n
∑

i=1

∑

j 6=i

p
(k+1)
ij Kh(ui − u0)ziz

T
i

)−1 n
∑

i=1

∑

j 6=i

p
(k+1)
ij Kh(ui − u0)(yi − ǫ̃j)zi

(2.8)

where zi = {xT
i , x

T
i (ui−u0)}T and the second equation follows the use of Gaussian104

kernel for density estimation.105

The above EM algorithm monotonically increases the estimated local log-likelihood106

(2.6) after each iteration, as shown in the following proposition. Its proof is given in the107

appendix.108

Proposition 2.1. Each iteration of the above E and M steps will monotonically
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increase the local log-likelihood (2.6), i.e.,

Q(θ(k+1)) > Q(θ(k)),

for all k, where Q(·) is defined as in (2.6).109

2.3 Asymptotic result110

We now establish the consistency and derive the asymptotic distribution of the proposed

adaptive local linear estimator of θ. Define µk =
∫

ukK(u)du and νk =
∫

ukK2(u)du.

Let H = diag(1, h)⊗ Id with ⊗ denoting the Kronecker product and Id being the d× d

identity matrix. Let q(·) denote the marginal density of u, and

Γjk(ui) = E(xijxik|ui) for 1 ≤ j, k ≤ d, i = 1, ..., n, (2.9)

Γ(u0) = {Γjk(u0)}16j,k6d . (2.10)

Theorem 2.1. Under the regularity conditions in the Appendix, with probability

approaching 1, there exists a consistent local maximizer θ̂ = (b̂1, . . . , b̂d, ĉ1, . . . , ĉd)
T

of (2.6) such that

H(θ̂ − θ) = Op{(nh)−1/2 + h2}.

111

Based on Theorem 2.1, we can know that the proposed adaptive local linear estimator112

of θ is consistent and its proof is provided in the Appendix. Next, we provide the113

asymptotic distribution of the proposed estimator.114

Theorem 2.2. Suppose that the regularity conditions in the Appendix hold. Then
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θ̂, given in Theorem 2.1, has the following asymptotic distribution

√
nh

{

H(θ̂ − θ)− S
−1h

2

2

d
∑

j=1

g
′′

j (u0)ψj(1 + op(1))

}

D→ N(02d, [E{ρ′(ǫi)2}]−1q(u0)
−1
S
−1ΛS

−1),

where 02d is a 2d×1 vector with each entry being 0, ρ(·) = log f(·), S =







1 0

0 µ2






⊗115

Γ(u0), Λ =







ν0 ν1

ν1 ν2






⊗Γ(u0), ψj =







µ2

µ3






⊗ (Γjk(u0))

T
1≤k≤d, and Γ(u0) is given116

by (2.10).117

A sketch of the proof of the above theorems is provided in the Appendix. As shown118

in Linton and Xiao (2007), one important property of the proposed adaptive estimate119

is that it achieves the same asymptotic efficiency as if the error density were known.120

Therefore, estimating f by kernel density estimation will not affect the asymptotic dis-121

tribution of the resulting estimator of θ. As Linton and Xiao (2007) pointed out that122

such a new estimation method can “do as well as the corresponding estimator one would123

compute if one knew the error density.” However it is not possible to achieve the lower124

bound here (Fan, 1993). Any specific estimator can be bettered for some specific model125

setting.126

Note that the least squares based local linear estimate (Zhang and Lee, 2000), by127

minimizing (2.2), has the same asymptotic bias as the new method but slightly different128

asymptotic variance, which replaces [E{ρ′(ǫi)2}]−1 by σ2 = E(ǫ2). Based on Cauchy-129

Schwarz inequality, we have130

E{ρ′(ǫi)2}E(ǫ2) ≥ [E{ǫρ′(ǫ)}]2 = 1

and the equality holds if and only if ρ′(ǫ) ∝ ǫ, i.e., f(ǫ) is a normal density. Therefore,131
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[E{ρ′(ǫi)2}]−1 ≤ σ2 and the asymptotic variance of the new estimator is no larger than132

that of least squares based local linear estimate for any error density f(ǫ).133

3 Examples134

3.1 Simulation study135

In this section, we conduct a simulation study to compare the proposed adaptive es-136

timation (Adapt) with the traditional least squares based kernel estimation (LS) for137

varying coefficient models. The following five error distributions of ǫ were considered in138

our numerical experiment:139

1. N(0, 1);140

2. t3;141

3. 0.5N(−1, 0.52) + 0.5N(1, 0.52);142

4. 0.3N(−1.4, 1) + 0.7N(0.6, 0.42);143

5. 0.9N(0, 1) + 0.1N(0, 102).144

The standard normal distribution serves as a baseline in our comparison. The second145

one is a t-distribution with 3 degrees of freedom. The third density is bimodal and the146

fourth one is left skewed. The last one is a contaminated normal mixture distribution,147

where 10% of the data from N(0, 102) are most likely to be outliers.148

For each of the above error distributions, we consider the following two models:149

Model 1: y = g1(u)+g2(u)x1+g3(u)x2+ǫ, where g1(u) = exp(2u−1), g2(u) = 8u(1−u),150

and g3(u) = 2 sin2(2πu).151

Model 2: y = g1(u) + g2(u)x1 + g3(u)x2 + ǫ, where g1(u) = sin(2πu), g2(u) = (2u −152

1)2 + 0.5, and g3(u) = exp(2u− 1)− 1.153
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In both models, x1 and x2 follow a standard normal distribution with correlation co-154

efficient γ = 1/
√
2. The index variable u is a uniform random variable on [0, 1], and155

is independent of (x1, x2). There are two bandwidths in the estimation, h in the local156

log-likelihood and h0 in the kernel density estimation. An asymptotic optimal h can157

be found by minimizing the asymptotic mean squared errors provide in Theorem 2.2158

and can be estimated by a plug-in estimator which replaces the unknown quantities in159

Theorem 2.2 by their estimates. In our examples, the bandwidth h is chosen by leave-160

one-out cross-validation with more details in Fan and Zhang (1999), and h0 = h/ log(n)161

following Linton and Xiao (2007). The performance of estimator ĝ(·) is assessed via the162

square root of the average squared errors (RASE; Cai et al., 2000; Wang et al., 2009),163

RASE2 =
1

N

N
∑

k=1

3
∑

j=1

[ĝj(uk)− gj(uk)]
2, (3.1)

where uk, k = 1, . . . , N, are the equally spaced grid points at which the functions gj(·)164

were evaluated. We conduct two sets of simulations with sample size n=200 and 400165

respectively, each with 200 data replications.166

The simulation results are summarized in Tables 1 and 2. We can clearly see that the167

proposed adaptive estimation outperforms the least squares method when the error is168

non-normal. The gain in estimation efficiency can be quite substantial even for moderate169

sample sizes. When the error follows exactly normal distribution, our approach is still170

broadly comparable with the least squares based method.171

Figures 1 and 2 plot the estimated coefficient functions and the 95% pointwise confi-172

dence intervals based on a typical sample when n=200 and the error distribution is the173

contaminated normal mixture (Case 5). Due to the complex forms of the asymptotic174

standard errors of the coefficient functions, similar to Wang, Kai and Li (2009), we adopt175

the bootstrap method to calculate the 95% pointwise confidence intervals. As expected,176
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the adaptive estimation method provides narrower confidence intervals than the least177

squares based method, since the adaptive method provides more accurate estimate than178

the least squares estimate when the error is not normal.179

Table 1: Model 1 estimation accuracy comparison–RASE and its standard error in
brackets.

ǫ n = 200 n = 400

LS Adapt LS Adapt

1 0.483(0.079) 0.439(0.081) 0.366(0.053) 0.324(0.053)

2 0.671(0.167) 0.601(0.139) 0.493(0.111) 0.422(0.086)

3 0.500(0.083) 0.401(0.077) 0.379(0.061) 0.277(0.048)

4 0.508(0.088) 0.376(0.082) 0.383(0.062) 0.262(0.045)

5 1.188(0.411) 0.720(0.220) 0.871(0.227) 0.459(0.098)

Table 2: Model 2 estimation accuracy comparison–RASE and its standard error in
brackets.

ǫ n = 200 n = 400

LS Adapt LS Adapt

1 0.362(0.077) 0.380(0.074) 0.263(0.051) 0.275(0.049)

2 0.618(0.301) 0.566(0.201) 0.431(0.129) 0.384(0.076)

3 0.412(0.091) 0.351(0.080) 0.290(0.059) 0.215(0.041)

4 0.407(0.102) 0.319(0.089) 0.291(0.061) 0.207(0.051)

5 1.133(0.397) 0.669(0.224) 0.828(0.224) 0.436(0.101)

3.2 Real-data applications180

Example 1 (Hong Kong environmental data). We now illustrate the adaptive estimation

method via an application to an environmental data set. The data were collected daily

in Hong Kong from January 1, 1994, to December 31, 1995 and have been analyzed by

11
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Figure 1: Estimated coefficient functions with 95% pointwise confidence intervals (blue dotted
line for Adapt and red solid line for LS) for model 1.
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Figure 2: Estimated coefficient functions with 95% pointwise confidence intervals (blue dotted
line for Adapt and red solid line for LS) for model 2.

Fan and Zhang (1999), Cai et al. (2000), Xia et al. (2002) and Fan and Zhang (2008). In

this data set, a collection of daily measurements of pollutants and other environmental

factors are included. Following Fan and Zhang (1999), we consider three pollutants:
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sulphur dioxide x2 (in µg/m3), nitrogen dioxide x3 (in µg/m3), and respirable suspended

particulates x4 (in µg/m3) (this variable is named as ‘dust’ in Fan and Zhang (1999),

Fan and Zhang (2008), and Cai et al. (2000)). The response variable y is the logarithm

of the number of daily hospital admissions. We set x1 = 1 as the intercept term and

let u denote time which is scaled to the interval [0, 1]. As in the previous analyses, all

three predictors are centered. The following varying coefficient model is considered to

investigate the relationship between y and the levels of pollutants x2, x3, and x4.

y = g1(u) + g2(u)x2 + g3(u)x3 + g4(u)x4 + ǫ.

We set aside 50 observations as the test set. The bandwidth h, selected by leave-181

one-out cross-validation, is around 0.146. The estimated coefficient functions together182

with 95% pointwise confidence intervals are depicted in Figure 3. We also compare183

the median squared prediction errors, MSPE = Median{(yj − ŷj)
2, j = 1, . . . , k}, from184

our adaptive approach and the traditional least squares estimation, where k = 50 and185

ŷj = ĝ1(uj) + ĝ2(uj)xj2 + ĝ3(uj)xj3 + ĝ4(uj)xj4. The MSPE from our adaptive approach186

is 0.0183, compared to 0.0178 from the LS estimation.187

In Figure 5 (a), we give the residual QQ-plot for Hong Kong environmental data.188

From the plot, we can see that the residual is very close to normal, which explains why189

the MSPE of the adaptive approach is close to the MSPE of the LS estimation.190

Example 2 (Boston housing data). The Boston Housing Data (corrected version in

Gilley and Pace (1996)), which has been analyzed by Fan and Huang (2005), Wang

and Xia (2009) and Sun et al. (2014), is publicly available in the R package mlbench,

(http://cran.r-project.org/ ). This data set includes the median value of owner-occupied

homes in 506 U.S. census tracts of the Boston area in 1970 and several variables that

might explain the variation of housing values. Following Fan and Huang (2005) and

Wang and Xia (2009), we considered seven independent variables: CRIM (per capita

13
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Figure 3: Estimated coefficient functions (solid curves) with 95% pointwise confidence intervals
(dotted curves) for Hong Kong environmental data.

crime rate by town), RM (average number of rooms per dwelling), TAX (full-value

property-tax rate per $10, 000), NOX (nitric oxides concentration parts per 10 million),

PTRATIO (pupil-teacher ratio by town), AGE (proportion of owner-occupied units built

prior to 1940), and LSTAT (lower status of the population). The response variable is

CMEDV (corrected median value of owner-occupied homes in USD 1000’s). We denote

the covariates CRIM, RM, TAX, NOX, PTRATIO and AGE to be x2, x3, . . . , x7, re-

spectively. Let x1 = 1 be the intercept term and u =
√
LSTAT be the index variable.

By doing so, we can fit different regression models at different lower status population

percentage (Fan and Huang, 2005). Following Fan and Huang (2005) we use the square

root transformation on the index variable LSTAT to make the data symmetrically dis-

tributed. The following varying coefficient model was fit to the data,

yi = g1(ui) +

7
∑

j=2

gj(ui)xij + ǫi.
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Similar to the analysis in the previous example, we set aside 50 observations for check-191

ing prediction errors. The bandwidth h was selected by leave-one-out cross-validation,192

which is around 0.294. The estimated coefficient functions are depicted in Figure 4.193

From the plot, we can see that the coefficient functions of x2 (CRIM) and x3 (RM) vary194

over time. The coefficient functions of x4 (TAX), x5 (NOX), and x7 (AGE) are very195

close to zero and the coefficient function of x6 (PTRATIO) shows no significant trend.196

These discoveries are consistent with those from Fan and Huang (2005) and Wang and197

Xia (2009). In terms of the median squared prediction error (MSPE), the MSPE from198

our adaptive approach is 0.0484, compared to 0.0604 from the LS estimation.199

In Figure 5 (b), the QQ-plot of residuals from the above fit showed a clear deviation200

from normality, which explains why the MSPE from the adaptive approach is much201

smaller than the MSPE from the LS estimation.202
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Figure 4: Estimated coefficient functions (solid curves) with 95% pointwise confidence intervals
(dotted curves) for Boston housing data.
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Figure 5: Residual QQ-plot for two data examples: (a) Hong Kong environmental data; (b)
Boston housing data.

4 Discussion203

In this article, we proposed an adaptive estimation for varying coefficient models. The204

new estimation procedure can adapt to different errors and thus provide a more efficient205

estimate than the traditional least squares based estimate. Simulation studies and two206

real data applications confirmed our theoretical findings.207

It will be interesting to know whether we can also perform some adaptive hypothesis208

tests for the coefficient functions using the estimated error density. For example, we209

might be interested in testing some parametric assumptions, such as constant or zero, for210

the coefficient functions. It requires more research about whether the Wilks phenomenon211

for generalized likelihood ratio statistic proposed by Fan et al. (2001) still holds for the212

proposed adaptive varying coefficient models.213

The idea of the proposed adaptive estimator might also be generalized to many other214

models, such as varying coefficient partial linear models and nonparametric additive215

models. In addition, by combining this adaptive idea with shrinkage estimation, we can216
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develop adaptive variable selection procedures. Such study is under way.217

Zhang and Lee (2000) investigated variable bandwidth selection for varying coef-218

ficient models and studied asymptotic properties of the resulting estimators and the219

bandwidth. It is our interest to extend their variable bandwidth selection method and220

the corresponding asymptotic properties to our adaptive estimation procedure.221

As one referee pointed out that we could also extend the idea of Yuan and De

Gooijer (2007) to derive an adaptive estimate for varying coefficient model. Let ǫi(θ) =

yi −
∑d

l=1[bl + cl(ui − u0)], and

fn(ǫi(θ)) =
1

n− 1

∑

j 6=i

Kh(r(ǫi(θ))− r(ǫj(θ))).

Based on Yuan and De Gooijer (2007), we can estimate θ by

θ̂ = argmax
θ

n
∑

i=1

Kh(ui − u0) log fn(ǫi(θ)).

Here, r(·) is some monotone nonlinear function that is used to avoid the cancelation222

of the intercept terms bls in fn(ǫi(θ)). One advantage of the above method is that it223

does not require an initial estimate. However, compared to the proposed estimate in224

this paper, the asymptotic variance of the above estimator depends on the choice of r(·)225

and generally does not reach the Cramér-Rao lower bound for a nonlinear function r(·).226

In addition, the computation of the above estimator is also more expensive due to the227

nonlinear function r(·).228
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Appendix233

We first list the regularity conditions used in our proof.234

Conditions:235

1. K(·) is bounded, symmetric, and has bounded support and bounded derivative;236

2. {xi}i, {ui}i, {ǫi}i are independent and identically distributed and {ǫi}i is indepen-237

dent of {xi}i and {ui}i, where {xi}i means {x1, . . . ,xn}, same for notations {ui}i238

and {ǫi}i. Additionally, the predictor x has a bounded support;239

3. The probability distribution function f(·) of ǫ has bounded continuous deriva-240

tives up to order 4. Let ρ(ǫ) = log f(ǫ). Assume E[ρ
′

(ǫi)] = 0, E[ρ
′′

(ǫi)] < ∞,241

E[ρ
′

(ǫi)
2] < ∞ and ρ

′′′

(·) is bounded;242

4. The marginal density of u has a continuous second derivative in some neighborhood243

of u0 and q(u0) 6= 0;244

5. h → 0, nh → ∞ as n → ∞ and h0 = h/ log(n);245

6. gj(·) has bounded, continuous 3rd derivatives for 1 ≤ j ≤ d.246

These conditions are adopted from Fan and Zhang (1999) and Linton and Xiao (2007).247

They are not the weakest possible conditions. For instance, we can relax the bounded248

support assumption of K(·). All the asymptotic results still hold if we put a restriction249

on the tail of K(·). For example, lim supt→∞ |K(t)t5| < ∞ (Fan and Gijbels , 1992).250

The independence of {xi}i and {ǫi}i can be relaxed based on the discussion of Section251

4 of Linton and Xiao (2007).252
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Proof of Proposition 2.1253

Note that

Q(θ(k+1))−Q(θ(k))

=
n
∑

i=1

Kh(ui − u0) log







∑

j 6=iKh0

[

yi −
∑d

l=1

{

b
(k+1)
l + c

(k+1)
l (ui − u0)

}

xil − ǫ̃j

]

∑

j 6=iKh0

[

yi −
∑d

l=1

{

b
(k)
l + c

(k)
l (ui − u0)

}

xil − ǫ̃j

]







=

n
∑

i=1

Kh(ui − u0) log
∑

j 6=i





Kh0

[

yi −
∑d

l=1

{

b
(k)
l + c

(k)
l (ui − u0)

}

xil − ǫ̃j

]

∑

j 6=iKh0

[

yi −
∑d

l=1

{

b
(k)
l + c

(k)
l (ui − u0)

}

xil − ǫ̃j

]





×





Kh0

[

yi −
∑d

l=1

{

b
(k+1)
l + c

(k+1)
l (ui − u0)

}

xil − ǫ̃j

]

Kh0

[

yi −
∑d

l=1

{

b
(k)
l + c

(k)
l (ui − u0)

}

xil − ǫ̃j

]





=
n
∑

i=1

Kh(ui − u0) log







∑

j 6=i

p
(k+1)
ij

Kh0

[

yi −
∑d

l=1

{

b
(k+1)
l + c

(k+1)
l (ui − u0)

}

xil − ǫ̃j

]

Kh0

[

yi −
∑d

l=1

{

b
(k)
l + c

(k)
l (ui − u0)

}

xil − ǫ̃j

]







,

where

p
(k+1)
ij =

Kh0

[

yi −
∑d

l=1{b
(k)
l + c

(k)
l (ui − u0)}xil − ǫ̃j

]

∑

j 6=iKh0

[

yi −
∑d

l=1{b
(k)
l + c

(k)
l (ui − u0)}xil − ǫ̃j

] .

From the Jensen’s inequality, we have

Q(θ(k+1))−Q(θ(k))

>

n
∑

i=1

Kh(ui − u0)
∑

j 6=i

p
(k+1)
ij log







Kh0

[

yi −
∑d

l=1

{

b
(k+1)
l + c

(k+1)
l (ui − u0)

}

xil − ǫ̃j

]

Kh0

[

yi −
∑d

l=1

{

b
(k)
l + c

(k)
l (ui − u0)

}

xil − ǫ̃j

]







.

Based on the property of M-step of (2.8), we have Q(θ(k+1))−Q(θ(k)) ≥ 0. �254
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Proof of Theorem 2.1255

Note that the estimator θ̂ is the maximizer of the following objective function256

argmax
θ

n
∑

i=1

Kh(ui − u0) log f̃

[

yi −
d
∑

l=1

{bl + cl(ui − u0)}xil

]

, (4.1)

where

f̃(ǫi) =
1

n

∑

j 6=i

Kh0
(ǫi − ǫ̃j)

is the kernel density estimate of f(·), and ǫ̃i is the residual based on the least squares257

local linear estimate. By the adaptive nonparametric regression result of Linton and Xiao258

(2007), the asymptotic result of θ̂ in (4.1) is the same whether the true density f(·) is259

used or not. Therefore, we will mainly show the existence and asymptotic distribution260

of θ̂ assuming f(·) is known.261

We will first prove that with probability approaching 1, there exists a consistent local

maximizer θ̂ = (b̂1, . . . , b̂d, ĉ1, . . . , ĉd)
T of (2.6) such that

H(θ̂ − θ) = Op{(nh)−1/2 + h2}.

Then we establish the asymptotic distributions for such consistent estimate.262

Denote θ∗ = Hθ, x∗
i = (xi1, xi2, ..., xid, (

ui−u0

h
)xi1, ..., (

ui−u0

h
)xid)

T , Ki = Kh(ui − u0),

R(ui,xi) =
∑d

j=1 gj(ui)xij −
∑d

j=1[bj + cj(ui − u0)]xij , and an = (nh)−1/2 + h2. Let

ρ(·) = log f(·), we have the objective function

L(θ) =
1

n

n
∑

i=1

Kiρ(yi − θ∗Tx∗
i ) = L(θ∗).
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It is sufficient to show that for any given η > 0, there exists a large constant c such that

P
{

sup‖µ‖=cL(θ
∗ + anµ) < L(θ∗)

}

≥ 1− η,

where µ has the same dimension as θ, an is the convergence rate. By using Taylor

expansion, it follows that

L(θ∗ + anµ)− L(θ∗) =
1

n

n
∑

i=1

Ki{ρ(ǫi +R(ui,xi)− anµ
Tx∗

i )− ρ(ǫi +R(ui,xi))}

= −1

n

n
∑

i=1

Kiρ
′

(ǫi +R(ui,xi))anµ
Tx∗

i +
1

2n

n
∑

i=1

Kiρ
′′

(ǫi +R(ui,xi))a
2
n(µ

Tx∗
i )

2

− 1

6n

n
∑

i=1

Kiρ
′′′

(zi)a
3
n(µ

Tx∗
i )

3

∆

= I1 + I2 + I3,

where zi is a value between ǫi + R(ui,xi) − anµ
Tx∗

i and ǫi + R(ui,xi). For I1 =

− 1
n

∑n
i=1Kiρ

′

(ǫi+R(ui,xi))anµ
Tx∗

i , E(I1) = −E
[

Kiρ
′

(ǫi +R(ui,xi))anµ
Tx∗

i

]

.We have,

ρ
′

(ǫi +R(ui,xi)) ≈ ρ
′

(ǫi) + ρ
′′

(ǫi)R(ui,xi) +
1

2
ρ

′′′

(ǫi)R
2(ui,xi).

Based on the assumption that ǫ is independent of u and x, and E[ρ
′

(ǫi)] = 0, we have

E(I1) ≈ −anE

{

Ki

[

ρ
′′

(ǫi)R(ui,xi) +
1

2
ρ

′′′

(ǫi)R
2(ui,xi)

]

µTx∗
i

}

.
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Since

R(ui,xi) =
∑d

j=1 gj(ui)xij −
∑d

j=1[bj + cj(ui − u0)]xij

=
d
∑

j=1

[
∞
∑

m=2

1

m!
g
(m)
j (u0)(ui − u0)

m]xij

= Op(h
2),

then 1
2
ρ

′′′

(ǫi)R
2(ui,xi) = [Op(h

2)]2 = Op(h
4), which is a smaller order than ρ

′′

(ǫi)R(ui,xi).

Thus,

E(I1) ≈ −anE
{

Kiρ
′′

(ǫi)R(ui,xi)µ
Tx∗

i

}

= −anE
[

ρ
′′

(ǫi)
]

E
[

KiR(ui,xi)µ
Tx∗

i

]

.

Since δ1 = E
{

ρ
′′

(ǫi)
}

, then

E(I1) ≈ −anδ1E
[

KiR(ui,xi)µ
Tx∗

i

]

= −anδ1E
{

E
{

R(ui,xi)µ
Tx∗

i |ui

}

Ki

}

.

By µTx∗
i ≤ ‖µ‖ · ‖x∗

i ‖ = c ‖x∗
i ‖, we have E(I1) = O(anch

2).

var(I1) =
1

n
var
{

Kiρ
′

(ǫi +R(ui,xi))anµ
Tx∗

i

}

=
1

n
{E(A2)− [E(A)]2},

where A = Kiρ
′

(ǫi +R(ui,xi))anµ
Tx∗

i . Since δ2 = E
{

ρ
′

(ǫi)
2
}

, then

E(A2) = E
{

K2
i ρ

′

(ǫi +R(ui,xi))
2a2n(µ

Tx∗
i )

2
}

≈ a2nE
{

K2
i ρ

′

(ǫi)
2(µTx∗

i )
2
}

= a2nδ2E
{

E
{

(µTx∗
i )

2|ui

}

K2
i

}

= O

(

a2nc
2 1

h

)

.

22



Note that [E(A)]2 = [O(anch
2)]

2 ≪ E(A2), then var(I1) ≈ 1
n
E(A2) = O

(

a2nc
2 1
nh

)

.

Hence, I1 = E(I1) + Op(
√

var(I1)) = Op(anch
2) + Op

(√

a2nc
2 1
nh

)

= Op(ca
2
n). For

I2 =
1
2n

∑n
i=1Kiρ

′′

(ǫi +R(ui,xi))a
2
n(µ

Tx∗
i )

2,

E(I2) =
1

2
a2nE

{

Kiρ
′′

(ǫi +R(ui,xi))(µ
Tx∗

i )
2
}

=
1

2
a2nE

{

ρ
′′

(ǫi)Ki(µ
Tx∗

i )
2
}

(1 + o(1))

=
1

2
a2nδ1E

{

E
{

µTx∗
ix

∗T
i µ|ui

}

Ki

}

(1 + o(1))

=
1

2
a2nδ1µ

TE
{

E
{

x∗
ix

∗T
i |ui

}

Ki

}

µ(1 + o(1)).

Note that x∗
ix

∗T
i =

(

xijxik

(

ui−u0

h

)l
)

1≤j,k≤d,l=0,1,2
and Γjk(ui) = E(xijxik|ui) for 1 ≤

j, k ≤ d, then

E

{

E

{

xijxik

(

ui − u0

h

)l

|ui

}

Ki

}

= E

{

E(xijxik|ui)

(

ui − u0

h

)l

Ki

}

= E

{

Γjk(ui)

(

ui − u0

h

)l

Ki

}

.

By using Taylor expansion, we obtain

E

{

E

{

xijxik

(

ui − u0

h

)l

|ui

}

Ki

}

=
1

h

∫

Γjk(ui)

(

ui − u0

h

)l

K(
ui − u0

h
)q(ui)dui

= q(u0)Γjk(u0)

∫

tlK(t)dt(1 + o(1)).

So we have

E(I2) =
1

2
a2nδ1q(u0)µ

TSµ(1 + o(1)),
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where S =







1 0

0 µ2






⊗ Γ(u0) is a 2d× 2d matrix. Thus,

E(I2) = O(a2nδ1q(u0)µ
TSµ)

and

var(I2) =
a4n
4n

var
[

ρ
′′

(ǫi +R(ui,xi))Ki(µ
Tx∗

i )
2
]

=
a4n
4n

{

E(B2)− [E(B)]2
}

,

where B = ρ
′′

(ǫi +R(ui,xi))Ki(µ
Tx∗

i )
2. Let δ3 = E

(

ρ
′′

(ǫi)
2
)

, then

E(B2) = E
{

ρ
′′

(ǫi +R(ui,xi))
2K2

i (µ
Tx∗

i )
4
}

≈ E
{

ρ
′′

(ǫi)
2K2

i (µ
Tx∗

i )
4
}

= δ3E
{

K2
i (µ

Tx∗
i )

4
}

= O

(

1

h

)

.

Note that [E(B)]2 = [O(1)]2 = O(1) ≪ E(B2), so var(I2) = O
(

a4
n

nh

)

. Based on the result

I2 = E(I2) +Op(
√

var(I2)) and the assumption nh → ∞, it follows that

I2 = a2nδ1q(u0)µ
TSµ(1 + op(1)).

Similarly, I3 = − 1
6n

∑n
i=1Kiρ

′′′

(zi)a
3
n(µ

Tx∗
i )

3 = Op(a
3
n).263

Assume δ1 < 0. Noticing that S is a positive matrix, ‖µ‖ = c, we can choose c264

large enough such that I2 dominates both I1 and I3 with probability at least 1 − η.265

Thus P
{

sup‖µ‖=cL(θ
∗ + anµ) < L(θ∗)

}

≥ 1−η. Hence with probability approaching 1,266
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there exists a local maximizer θ̂
∗
such that

∥

∥

∥
θ̂
∗ − θ∗

∥

∥

∥
≤ anc, where an = (nh)−1/2 + h2.267

Based on the definition of θ∗, we can get, with probability approaching 1, H(θ̂ − θ) =268

Op((nh)
−1/2 + h2). �269

Proof of Theorem 2.2270

Now we provide the asymptotic distribution for such consistent estimate. Since θ̂ max-

imizes L(θ), then L
′

(θ̂) = 0. By Taylor expansion,

0 = L
′

(θ̂) = L
′

(θ0) + L
′′

(θ0)(θ̂ − θ0) +
1

2
L

′′′

(θ̃)(θ̂ − θ0)2,

where θ̃ is a value between θ̂ and θ0. Then θ̂ − θ0 = −[L
′′

(θ0)]
−1L

′

(θ0)(1 + op(1)).

Since L(θ) = L(θ∗) = 1
n

∑n
i=1Kiρ(yi − θ∗Tx∗

i ) and yi − θ∗Tx∗
i = ǫi + R(ui,xi), then

L
′′

(θ∗) = 1
n

∑n
i=1Kiρ

′′

(ǫi +R(ui,xi))x
∗
ix

∗T
i . We have the following expectation,

E[L
′′

(θ∗)] = E
{

ρ
′′

(ǫi +R(ui,xi))Kix
∗
ix

∗T
i

}

≈ E
{

ρ
′′

(ǫi)Kix
∗
ix

∗T
i

}

= δ1E
{

E
{

x∗
ix

∗T
i |ui

}

Ki

}

= δ1q(u0)S(1 + o(1)).

Throughout this article, we consider the element-wise variance of a matrix,

var[L
′′

(θ∗)] =
1

n
var
{

Kiρ
′′

(ǫi +R(ui,xi))x
∗
ix

∗T
i

}

= O

(

1

nh

)

.
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Based on the result L
′′

(θ∗) = E[L
′′

(θ∗)] +Op(
√

var[L′′(θ∗)]) and the assumption nh →

∞, it follows that

L
′′

(θ∗) = δ1q(u0)S(1 + op(1)).

For L
′

(θ∗), we can divide it into two parts.

L
′

(θ∗) = −1

n

n
∑

i=1

Kiρ
′

(ǫi +R(ui,xi))x
∗
i

≈ −1

n

n
∑

i=1

Kiρ
′

(ǫi)x
∗
i −

1

n

n
∑

i=1

Kiρ
′′

(ǫi)R(ui,xi)x
∗
i

∆

= −wn − νn.

The asymptotic result is determined by wn. In order to find the order of νn, we compute

the following things.

E(νn) = E
[

Kiρ
′′

(ǫi)R(ui,xi)x
∗
i

]

= δ1E {E {R(ui,xi)x
∗
i |ui}Ki} .

Since g
′′′

j (·) is bounded, then we have

R(ui,xi) =

d
∑

j=1

{

∞
∑

m=2

1

m!
g
(m)
j (u0)(ui − u0)

m

}

xij =

d
∑

j=1

1

2
g

′′

j (u0)(ui − u0)
2xij(1 + op(1)).

By x∗
i = (xi1, ..., xid, (

ui−u0

h
)xi1, ..., (

ui−u0

h
)xid)

T ,

R(ui,xi)x
∗
i ≈





(

(ui − u0)
2

2

{

d
∑

j=1

g
′′

j (u0)xij

}

xik

)

1≤k≤d

,

(

(ui − u0)
3

2h

{

d
∑

j=1

g
′′

j (u0)xij

}

xik

)

1≤k≤d





T

2d×1

.

26



Since

E

{

E

{[

d
∑

j=1

g
′′

j (u0)xij

]

xik|ui

}

(ui − u0)
2

2
Ki

}

= E

{

d
∑

j=1

g
′′

j (u0)E(xijxik|ui)
(ui − u0)

2

2
Ki

}

= E

{

d
∑

j=1

g
′′

j (u0)Γjk(ui)
(ui − u0)

2

2
Ki

}

=
d
∑

j=1

g
′′

j (u0)E

{

Γjk(ui)
(ui − u0)

2

2
Ki

}

=
d
∑

j=1

g
′′

j (u0)
1

h

∫

Γjk(ui)
(ui − u0)

2

2
K(

ui − u0

h
)q(ui)dui

=
h2

2
q(u0)

d
∑

j=1

g
′′

j (u0)Γjk(u0)

∫

t2K(t)dt(1 + o(1))

and

E

{

E

{[

d
∑

j=1

g
′′

j (u0)xij

]

xik|ui

}

(ui − u0)
3

2h
Ki

}

= E

{

d
∑

j=1

g
′′

j (u0)Γjk(ui)
(ui − u0)

3

2h
Ki

}

=

d
∑

j=1

g
′′

j (u0)
1

2h
E
{

Γjk(ui)(ui − u0)
3Ki

}

=
h2

2
q(u0)

d
∑

j=1

g
′′

j (u0)Γjk(u0)

∫

t3K(t)dt(1 + o(1)),

then

E(νn) = δ1q(u0)
h2

2

d
∑

j=1

g
′′

j (u0)ψj(1 + o(1)),

where ψj =







µ2

µ3






⊗ (Γjk(u0))

T
1≤k≤d is a 2d × 1 vector for j = 1, ..., d. Since var(νn) =

var
{

Kiρ
′′

(ǫi)R(ui,xi)x
∗
i

}

/n = O(h3/n), then based on the result νn = E(νn)+Op(
√

var(νn))
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and the assumption nh → ∞, it follows that

νn = δ1q(u0)
h2

2

d
∑

j=1

g
′′

j (u0)ψj(1 + op(1)).

Then

θ̂∗ − θ∗ =− [L
′′

(θ∗)]−1L
′

(θ∗)(1 + op(1))

=− [δ1q(u0)S]
−1 (−wn − νn)(1 + op(1))

=
S−1wn

δ1q(u0)
(1 + op(1)) + S−1h

2

2

d
∑

j=1

g
′′

j (u0)ψj(1 + op(1)). (4.2)

Based on the assumption E[ρ
′

(ǫi)] = 0, we can easily get E(wn) = 0.

var(wn) =
1

n
var
{

Kiρ
′

(ǫi)x
∗
i

}

=
1

n
E
{

K2
i ρ

′

(ǫi)
2x∗

ix
∗T
i

}

=
1

n
δ2E

{

E
{

x∗
ix

∗T
i |ui

}

K2
i

}

.

Since x∗
ix

∗T
i =

(

xijxik

(

ui−u0

h

)l
)

1≤j,k≤d,l=0,1,2
and

E

{

E

{

xijxik

(

ui − u0

h

)l

|ui

}

K2
i

}

= E

{

E {xijxik|ui}
(

ui − u0

h

)l

K2
i

}

= E

{

Γjk(ui)

(

ui − u0

h

)l

K2
i

}

=
1

h
q(u0)Γjk(u0)

∫

tlK2(t)dt(1 + o(1)),

then

E
{

E
{

x∗
ix

∗T
i |ui

}

K2
i

}

=
1

h
q(u0)Λ(1 + o(1)),

where Λ =







ν0 ν1

ν1 ν2






⊗ Γ(u0) is a 2d× 2d matrix. So var(wn) =

1
nh
δ2q(u0)Λ(1 + o(1)).

We next use the Lyapunov central limit theorem to obtain the asymptotic distribution

28



of wn. The Lyapunov conditions are checked as follows. For any unit vector d ∈ R
2d,

let dTwn =
∑n

i=1 ξi, where ξi =
1
n
Kiρ

′

(ǫi)d
Tx∗

i . Since

E(ξ2i ) = E

{

1

n2
K2

i ρ
′

(ǫi)
2dTx∗

ix
∗T
i d

}

=
1

n2
δ2d

TE
{

K2
i x

∗
ix

∗T
i

}

d =
1

n2h
δ2q(u0)d

TΛd(1+o(1)),

then o
(

(
∑n

i=1 E |ξi|2
)3
)

= o
(

(

1
nh

)3
)

. Let δ4 = E
{

ρ
′

(ǫi)
3
}

, then

E(ξ3i ) = E

{

1

n3
K3

i ρ
′

(ǫi)
3(dTx∗

i )
3

}

=
1

n3
δ3E

{

K3
i (d

Tx∗
i )

3
}

= O(
1

n3h2
).

So
(
∑n

i=1 E |ξi|3
)2

= O
(

(

1
n2h2

)2
)

. Since
(

1
n2h2

)2
(nh)3 = 1

nh
→ 0, then

(

1
n2h2

)2
=

o
(

(

1
nh

)3
)

, which is equivalent to
(
∑n

i=1 E |ξi|3
)2

= o
(

(
∑n

i=1 E |ξi|2
)3
)

. Based on Lya-

punov Central Limit Theorem,

wn
√

var(wn)

D→ N(02d, I2d),

where 02d is a 2d × 1 vector with each entry being 0; I2d is a 2d × 2d identity matrix.

Previously, we already computed that var(wn) = 1
nh
δ2q(u0)Λ(1 + o(1)), by Slutsky’s

Theorem,
√
nhwn

D→ N(02d, δ2q(u0)Λ).

Based on (4.2), we have the following result

√
nh

{

H(θ̂ − θ)− S−1h
2

2

d
∑

j=1

g
′′

j (u0)ψj(1 + op(1))

}

D→ N(02d, δ
−2
1 δ2q(u0)

−1S−1ΛS−1).
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