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Bernal, for supporting all my projects and their immense love. Thank you to my beloved
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Abstract

Topics in representations of orbifold and surface groups

by

Carmen Galaz-Garćıa

This thesis presents three projects whose common thread is the study of representa-

tions of orbifold and surface groups. These projects move from studying orbifold groups

in PSL(2,R) using tools from hyperbolic geometry to exploring surface subgroups in

PSL(n,R) with n > 2 using algebraic, dynamic, and geometric group theoretic ap-

proaches. In the first project, we build a new infinite family of non-commensurable pseu-

domodular groups obtained via the jigsaw method. The second project is concerned with

obtaining families of Zariski dense rational surface group representations into SL(n,R)

for odd n > 2 by bending orbifold representations. The final project uses the composition

of Hitchin representations into PSL(3,R) with a generalization of the irreducible repre-

sentation from PSL(2,R) to PSL(n,R) to construct families of Anosov representations

outside the Hitchin component.
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Overview

The results in this dissertation lie broadly in the fields of low-dimensional topology

and geometric group theory, with a focus on hyperbolic geometry. The general question

motivating them is:

what is the relation between the geometry of a space

and the representations of its fundamental group?

This query with roots in Thurston’s geometrization conjecture has powered research in

several areas of mathematics for over 30 years. In particular, the study of representations

of the fundamental group of a surface S of negative Euler characteristic into a semisimple

Lie group of higher rank is a current topic of particular interest with deep connections

to geometry, dynamics, algebraic geometry, geometric group theory, and analysis. In

this context, this dissertation details results about the existence and classification of

representations of surface and orbifold groups with properties like modularity (thms. 2.4

and 2.5), Zariski density (thm. 3.1), and P -Anosov (thm. 4.1).

In the seventies, Thurston recast discrete and faithful representations of the funda-

mental group π1(S) of a surface S of negative Euler characteristic into PSL(2,R) as

objects encoding hyperbolic geometric structures on S. By the end of the 20th century

Hitchin established fundamental results about the connected components of the represen-

tation space Rep+(π1(S), PSL(n,R)). The so-called Hitchin component, which contains

an embedded copy of Teichmüller space, was introduced in this work. A unifying geomet-

ric interpretation of surface group representations in the Hitchin component came more

than a decade later when Labourie built on the work of Choi and Goldman to define

Anosov representations as holonomies of Anosov dynamical structures on the surface S.

This dissertation takes place against this backdrop and branches into three projects:
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1. Classifying pseudomodular groups (chap. 2).

2. Constructing rational Zariski dense surface groups representations (chap. 3).

3. Exploring surface Anosov representations outside the Hitchin component (chap. 4).

These projects stem from ideas and problems introduced by Long, Reid, Lou, Tan, and

Vo for (1), Long, Reid, and Thistlethwaite for (2), and Guichard, Wienhard, Kapovich,

Leeb, and Porti for (3), among others. Their common thread is:

how can we control the geometry of a space to obtain specific properties

on the representations of its fundamental group?

To approach this question we use tools from geometric group theory, representation theory

and low dimensional topology, buildings and orbifold geometry, as well as software coding

for computer exploration.
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Chapter 1

Hyperbolic objects

1.1 The hyperbolic plane

Consider the set

H2 = {x+ iy ∈ C | y > 0}.

If γ(t) = (x(t), y(t)) with t ∈ [a, b] is a curve in H2 then the hyperbolic length of γ is

`(γ) =

∫ b

a

√
x′(t)2 + y′(t)2

y(t)
dt.

This endows H2 with a metric d such that for any p, q ∈ H2

d(p, q) = inf{`(γ) | γ is a curve connecting p and q}.

The upper half-plane model of the hyperbolic plane is the metric space (H2, d). Geodesics

in H2 are either half-circles whose center is on the real axis or vertical lines. The boundary

at infinity of H2 is ∂∞H2 ≡ R ∪ {∞}.
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Hyperbolic objects Chapter 1

The group Isom(H2) of isometries of H2 consists of functions of the form

z 7→ az + b

cz + d
with ad− bc = 1, or z 7→ az̄ + b

cz̄ + d
with ad− bc = −1.

The first kind of isometries form the subgroup Isom+(H2) of orientation preserving isome-

tries. The group Isom(H2) can be identified with PGL(2,R) = GL(2,R)/Z(GL(2,R)),

while Isom+(H2) is isomorphic to PSL(2,R) = SL(2,R)/{±Id}.

The action on H2 of an isometry A ∈ PSL(2,R) extends to ∂∞H2. We can classify

A into one of three types of isometries depending on its fixed points in H2 t ∂∞H2. We

have that A is

• elliptic if A has a fixed point in H2, this is the unique fixed point in H2 t ∂∞H2;

• parabolic if A has a single fixed point in ∂∞H2; or

• hyperbolic if A has two fixed points in ∂∞H2.

It is not hard to check that A will be elliptic if and only if |tr(A)| < 2, parabolic if and

only if |tr(A)| = 2 and hyperbolic if and only if |tr(A)| > 2.

1.2 Hyperbolic surfaces

A hyperbolic structure on a topological surface S is an atlas of charts {φi : Ui →

H2}i∈∆ where each Ui is an open set in S, such that for any two charts φi, φj the compo-

sition φj ◦ φ−1
i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj) is the restriction of an orientation-preserving

isometry of H2.

Any closed orientable surface S of genus ≥ 2 admits a hyperbolic structure. Geodesics

on S are defined locally by using the chart maps to pull back the geodesics in H2. The

metric in S also comes from pulling back the metric in H2. The universal cover S̃ of

2



Hyperbolic objects Chapter 1

a compact surface is a complete, connected, simply-connected hyperbolic surface. This

implies S̃ is isometric to H2. For details on these results we refer the reader to chapter

2 of [1].

A choice of isometry D : S̃ → H2 is called a developing map. This gives us a way

to translate the action of π1(S) on S̃ by deck transformations into an isometric action

of π1(S) on H2. In other words, if D : S̃ → H2 is a developing map then there exists a

group homomorphism

ρ : π1(S)→ Isom+(H2) ≡ PSL(2,R)

called a holonomy such that for every γ ∈ π1(S) the following diagram commutes

S̃ H2

S̃ H2

D

γ ρ(γ)

D

Given a hyperbolic structure on S its developing map is uniquely defined up to compo-

sitions with isometries of H2, which in turn corresponds to conjugating ρ by an element

of PGL(2,R). Holonomies are the first examples we give of representations, one of the

main objects of study in this work.

Definition 1.1 A representation of a group Γ is a group homomorphism ρ : Γ → G

where G is a matrix Lie group. A representation ρ is faithful if Ker(ρ) = {Id} and it is

discrete if ρ(Γ) is a discrete subset of G.

A holonomy ρ is a faithful representation because the action of π1(S) on S̃ by deck

transformations is free. Moreover the action of ρ(π1(S)) on H2 turns the hyperbolic plane

into a covering space for S, so holonomies are also discrete. Thus every hyperbolic struc-

ture on S defines a discrete and faithful representation π1(S) → PSL(2,R), and this is

3



Hyperbolic objects Chapter 1

unique up to conjugation. On the other hand, given a discrete and faithful representation

ρ : π1(S) → PSL(2,R) we can define a hyperbolic structure on S via the identification

S ≡ H2/ρ(π1(S)).

Definition 1.2 A Fuchsian representation is a discrete and faithful representation

ρ : π1(S) → PSL(2,R) ≡ Isom+(H2), where S is a closed orientable surface of genus

≥ 2. The set of PGL(2,R) conjugacy classes of Fuchsian representations is called the

Teichmüller space of the surface S.

We usually refer to the fundamental group of a closed orientable surface of genus ≥ 2 as

a surface group. In section 3.1 we will look more closely at the space of representations of

surface groups into PSL(n,R) for n > 2 and introduce the so-called Hitchin component,

a higher rank analogue of Teichmüller space.

It is worth noting that if ρ : π1(S) → PSL(2,R) is a Fuchsian representation then

ρ(γ) is hyperbolic for every γ 6= Id and thus it is conjugate to a matrix of the formλ 0

0 1
λ

 with λ > 1. In particular ρ(π1(S)) has no torsion. In the upcoming section we

will introduce a second kind of hyperbolic object which contains elliptic elements in its

fundamental group.

1.3 Hyperbolic orbifolds

In this section we will consider the action on H2 of a discrete subgroup Γ of PSL(2,R)

in which the stabilizer for any point of H2 is finite. The quotient H2/Γ still inherits a

hyperbolic metric from H2, but it can have singular points of three types: cone points,

reflexion lines or corner reflectors. The resulting space is called a hyperbolic orbifold. In

terms of charts a point in an orbifold which is not a singularity will have a neighborhood

around it which is homeomorphic to an open set of H2, while a singularity will have a

4
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neighborhood homeomorphic to the quotient of an open set of H2 by the action of a finite

group of isometries. For a precise definition of orbifolds in terms of charts we refer to

section 2 of [2].

In practice we can also define a topological orbifold by specifying an underlying

topological surface and its singularities. In the following chapters we will only use of

orbifolds whose only singularities are cone point singularities. If O is such an orbifold,

with underlying topological space a closed orientable surface of genus g and n cone points

with cone angle 2π/pi, then a presentation for π1(O) is

〈
a1, b1, . . . , ag, bg, x1, . . . , xn | xpii = 1,

g∏
i=1

[ai, bi]xi . . . xn = 1

〉
.

Intuitively, if we have a surface S and include a cone point p with cone angle 2π/k then

this cone point will create an obstruction to π1(S) in which a loop going around p can

only by retracted if it loops around p a multiple of k times.

Given integers l,m, n ≥ 2 such that 1
l

+ 1
m

+ 1
n
< 1 there is (up to isometry) a unique

hyperbolic triangle T with angles π
l
, π
m
, π
n
. The triangle T generates a tiling of H2 with

symmetry group ∆∗(l,m, n) ⊂ Isom(H2) ≡ PSL(2,R). This group is generated by the

reflections a, b, c on the sides of T and can be given the presentation

∆∗(l,m, n) = 〈a, b, c | a2 = b2 = c2 = (ab)l = (ca)m = (bc)n = 1〉.

Let ∆(l,m, n) < ∆∗(l,m, n) be the subgroup of orientation preserving symmetries. Its

generators are the rotations x = ab and y = ca by 2π
l

and 2π
m

around the corresponding

vertices of the triangle T . The product z = xy = cb is the rotation by 2π
n

around the

5
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remaining vertex. A presentation for this group is

∆(l,m, n) = 〈x, y | xl = ym = (xy)n = 1〉.

A fundamental domain for the action of ∆(l,m, n) on H2 is the quadrilateral T ∪ b(T ).

This is a double cover of the triangle T , from which we get that [∆∗(l,m, n) : ∆(l,m, n)] =

2. The quotient H2/∆(l,m, n) is homeomorphic to the orbifold S2(l,m, n) whose under-

lying topological space is S2 and has three cone points of orders l, m and n. By standard

orbifold theory π1(S2(l,m, n)) is isomorphic to ∆(l,m, n). Up to conjugation, the iso-

morphism π1(S2(l,m, n))→ ∆(l,m, n) is the unique discrete and faithful representation

of π1(S2(l,m, n)) into PSL(2,R). In other words π1(S2(l,m, n)) does not admit any

non-trivial deformations inside PSL(2,R).

Covering spaces for orbifolds are defined similarly as for surfaces, just taking some

extra care in the covering of singular points. As we are used to, every subgroup of π1(O)

corresponds to a covering space of the orbifold O. All but four types of 2-dimensional

orbifolds are covered by a surface ([2] thm. 2.3), those which are not are called bad and

none of them will appear in our work.

1.4 Hyperbolic groups

Fundamental groups of hyperbolic surfaces and hyperbolic orbifolds are both examples

of hyperbolic groups. The definition of these groups is based on two beautiful ideas

in geometric group theory: that a group can be naturally seen as a metric space and

that there is an expanded notion of curvature that does not depend on a space being a

manifold. In this section we review these concepts and introduce some of the objects we

will use in chapters 3 and 4. For a more detailed introduction to these topics we refer to

6
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chapters 7 and 9 of [3].

Let G be a group and S a generating set for G. The word length of an element g ∈ G

with respect to S is the shortest word in S ∪ S−1 that is equal to g. For example, the

identity in G has length 0. This allows us to define the distance between two elements

g, h ∈ G as the word length of g−1h and thus obtain a word metric on G. Changing the

generating set of G does not necessarily give isometric word metrics on G. To bypass

this change in the metrics we need a weaker notion of isometry that allows for dilation

and possible bad behavior on a controlled small scale.

Definition 1.3 Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is

called a quasi-isometric embedding if there are constants K ≥ 1 and C ≥ 0 such that

1

K
dX(x1, x2)− C ≤ dY (f(x1), f(x2)) ≤ KdX(x1, x2) + C

for all x1, x2 ∈ X. A quasi-isometric embedding f : X → Y is a quasi-isometry if there

is a constant D > 0 such that for every point y ∈ Y there is an x ∈ X such that

dY (f(x), y) ≤ D.

If G is a finitely generated group then the word metrics on G with respect to any

two finite generating sets are quasi-isometric. In general, quasi-isometries will allow us

to compare whether two spaces have similar coarse or large scale geometric properties.

Theorem 1.4 (Milnor-Schwarz lemma) Let G be a group and X be a proper geodesic

metric space. Suppose that G acts properly discontinuously, cocompactly and by isome-

tries on X. Then G is finitely generated and G is quasi-isometric to X.

The previous fundamental result in geometric group theory tells us, for example, that

both surface groups and fundamental groups of compact hyperbolic orbifolds (orbifold

groups) are quasi-isometric to H2.

7
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Definition 1.5 Consider a metric space X. Let Nδ(A) denote the δ-neighborhood of

the set A. A geodesic triangle with sides α, β, γ is δ-thin if α ⊂ Nδ(β ∪ γ) and the other

two similar inclusions hold. A metric space X is δ-hyperbolic if every geodesic triangle

in X is δ-thin.

Some well known examples of δ-hyperbolic spaces are trees and the hyperbolic plane

H2. For length metric spaces δ-hyperbolicity is preserved under quasi-isometries. Then

it makes sense to say a group is hyperbolic if it is δ-hyperbolic for some δ > 0 and some

finite generating set. Since surface and orbifold groups are quasi-isometric to H2, these

are examples of hyperbolic groups.

Definition 1.6 A geodesic ray in a metric space X is an isometry γ : [0,∞)→ X such

that each segment γ : [0, t) → X is a path of shortest length from γ(0) to γ(t). Two

geodesic rays γ1, γ2 are defined to be equivalent if there is a constant k > 0 such that

d(γ1(t), γ2(t)) < k for all t. The visual boundary of X is the set of equivalence classes

under the previous relation:

∂∞X = {[γ] | γ geodesic ray in X}.

There are different ways to endow ∂∞X with a topology. In what follows we will assume,

unless stated otherwise, that ∂∞X has the cone topology in which intuitively two geodesic

rays are close if for every m > 0 the rays stay for a long time within distance m. For

a more detailed discussion of this topic see chapter II.8 in [4]. For example, in the case

of the upper half-plane model of H2 the visual boundary is precisely the boundary at

infinity ∂∞H2 ≡ R∪{∞}. This is homeomorphic to S1 and H2t∂∞H2 is homeomorphic

to the closed unit disk in R2. This last homeomorphism is easier to appreciate in the

Poincaré disk model of hyperbolic space. For δ-hyperbolic spaces the visual boundary is

8
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a large-scale geometric feature preserved under quasi-isometries. So surface and orbifold

groups also have visual boundary homeomorphic to S1.

9



Chapter 2

New examples from the jigsaw

group construction

A pseudomodular group is a discrete subgroup Γ ≤ PGL(2,Q) which is not commensu-

rable with PSL(2,Z) and has cusp set precisely Q ∪ {∞}. The existence of such groups

was proved by Long and Reid. Later, Lou, Tan and Vo constructed two infinite families

of non-commensurable pseudomodular groups which they called jigsaw groups. In this

chapter we construct a new infinite family of non-commensurable pseudomodular groups

obtained via this jigsaw construction. We also find that infinitely many of the simplest

jigsaw groups are not pseudomodular, providing a partial answer to questions posed by

the aforementioned authors.

2.1 Background

A Fuchsian group Γ is a discrete subgroup of PSL(2,R). Such a group acts properly

discontinuously by fractional linear transformations on H2, the upper half-plane model

of hyperbolic space. This Γ-action extends to the boundary at infinity ∂∞H2 ≡ R∪{∞}.

10
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If an isometry γ ∈ Γ has a fixed point on ∂∞H2 then it is either one of a pair of fixed

points, in which case γ is called hyperbolic, or the fixed point is unique and we say γ is

parabolic. The cusps of a Fuchsian group Γ are the points in ∂∞H2 fixed by parabolic

elements of Γ.

An example where the cusp set is easily calculated is when Γ = PSL(2,Z) is the

modular group. Consider first the parabolic element T =

1 1

0 1

 ∈ PSL(2,Z). For

every x ∈ ∂∞H2 we have that T (x) = x+ 1, so∞ is a fixed point of T and thus a cusp of

PSL(2,Z). For any p
q
∈ Q with gcd(p, q) = 1 we can find a, b ∈ Z such that bp+ aq = 1.

Then M =

p −a
q b

 ∈ PSL(2,Z) is such that M(∞) = p
q
. Since the trace is preserved

by conjugation, MTM−1 is a parabolic in PSL(2,Z) that fixes p
q
. Thus Q ∪ {∞} is

contained in the cusps of PSL(2,Z). On the other hand, solving the equation ax+b
cx+d

= x

we get that x ∈ Q ∪ {∞}. Therefore cusps(PSL(2,Z)) = Q ∪ {∞}.

Two Fuchsian groups are commensurable if they share a common subgroup that has

finite index in both. It is known that commensurable Fuchsian groups have the same cusp

set. In [5] Long and Reid explore the converse question: if Γ1 and Γ2 are finite covolume

subgroups of PSL(2,R) with the same cusp set, are they commensurable? The answer

was on the negative and in theorem 1.2 of [5] they produced several examples of finite

covolume Fuchsian groups with cusp set Q∪{∞} which are not commensurable with the

modular group PSL(2,Z). This motivates the following definition:

Definition 2.1 A pseudomodular group is a discrete subgroup Γ ≤ PGL(2,Q) which is

not commensurable with PSL(2,Z) and has cusp set precisely Q ∪ {∞}.

Subsequently Ayaka and Tan [6] found another isolated example of a pseudomod-

ular group and later Lou, Tan and Vo [7] constructed two infinite families of non-

commensurable pseudomodular groups which they called jigsaw groups. In this chapter

11
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we examine a new infinite family of non-commensurable pseudomodular groups obtained

via the jigsaw construction. We also find that infinitely many of the simplest jigsaw

groups, called Weierstrass groups, are not pseudomodular.

To describe the jigsaw construction from [7] first let ∆n, for n ∈ N, be the ideal

oriented triangle in H2 with vertices ∞,−1 and 0, and marked points

x1 = −1 + i, x 1
n

=
−n+ i

√
n

n+ 1
, xn = i

√
n (2.1)

on the sides [∞,−1], [−1, 0] and [0,∞] respectively. A tile of type n is any isometric

transformation of ∆n, keeping track of the images of marked points. The sides of a tile

of type n will be called of type 1, type 1
n

or type n according to which has the image of

x1, x 1
n

and xn. Consider the π-rotations ρi about the marked points xi, represented here

as elements of PSL(2,R):

ρ1 =

 1 2

−1 −1

 , ρ 1
n

=
√
n

 1 1

−n−1
n

−1

 , ρn =
1√
n

 0 n

−1 0

 . (2.2)

Definition 2.2 The n-th Weierstrass group Wn is the discrete group Wn = 〈ρ1, ρ 1
n
, ρn〉.

For any n ∈ N the quotient surface H2/Wn is an orbifold with a single cusp and three

cone points of degree 2. Given the choice of marked points the element ρ1ρ 1
n
ρn ∈ Wn is

parabolic. Since the vertices of ∆n are in Q ∪ {∞}, then Wn ≤ PSL(2,Q) and all the

vertices of the tiling of H2 generated by the action of Wn on ∆n are in Q ∪ {∞}. In the

notation of [7] ∆n = ∆(1, 1/n, n) and Wn = Γ(1, 1/n, n).

By gluing different tiles together we can create groups that are more complex than

the Weierstrass groups. If we have two tiles ∆ and ∆′ with sides s1, s2, s3 and s′1, s
′
2, s
′
3,

and marked points x1, x2, x3 and x′1, x
′
2, x
′
3 respectively, we say the sides si and s′j match

12
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if both sides are of the same type. As explained in definition 2.2 of [7] this means that if

we glue ∆ to ∆′ along si and s′j by identifying xi to x′j, then the π-rotation about xi = x′j

will send ∆ to ∆′. In this way, by gluing finitely many tiles we obtain a triangulated

ideal polygon with marked points on the interior and exterior sides of the triangulation,

such a polygon is called a jigsaw.

Definition 2.3 The jigsaw group ΓJ associated to a jigsaw J is the Fuchsian group

generated by the π-rotations about the marked points of the (exterior) sides of J .

As a convention we will require that the jigsaw J used to define the jigsaw group ΓJ

has a tile ∆n with vertices ∞, -1 and 0 in it. The balancing condition on each tile of the

jigsaw J ensures the quotient H2/ΓJ is a complete orbifold with a single cusp and N + 2

cone points of order 2, where N is the number of tiles that make up the jigsaw. Then ΓJ

generates a tiling of H2 and J is a fundamental domain of the action of the group.

In theorems 2.4 and 2.5 of [7] Lou, Tan and Vo examine jigsaw groups composed of

tiles of types 1, 2 and 3. They prove that jigsaws composed only of tiles of types 1 and 2

have cusp set equal to Q∪{∞}, and those that consist of a single tile of type 2 and n tiles

of type 1 are all pseudomodular and pairwise non-commensurable. On the other hand,

they prove jigsaws made with tiles of type 1 and type 3 produce both an infinite family

of pseudomodular groups and an infinite family of non-pseudomodular groups. Here we

examine the groups generated by jigsaws made of tiles of types 1 and 4.

Theorem 2.4 Let Jm,n be the jigsaw formed by the ∆1 tile followed by m−1 ≥ 0 tiles of

type 1 glued to the left and n ≥ 1 tiles of type 4 glued to the right of ∆1, so that all tiles

in Jm,n share ∞ as a common vertex (see figure 2.1). Then the associated jigsaw group

Γm,n has cusp set Q ∪ {∞}. The infinite families Γ1,n and Γm,1 are pseudomodular and

pairwise non-commensurable.

13
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Figure 2.1: Jigsaw Jm,n

To prove this we refine the process followed in [7]. We first see that the cusp set of

these groups is Q ∪ {∞} by finding an explicit covering of R by killer intervals, a tool

introduced by Long and Reid in [5] (see definition 2.6). Then we check they are non-

commensurable by proving that each jigsaw group in the given families is non-arithmetic

and equals its commensurator. By carefully analyzing the combinatorics of gluing tiles

together we can extend the examples of pseudomodular groups to jigsaws with more than

one tile of type n > 1.

Since the submission for publication of the work in this chapter Lou, Tan and Vo

have expanded the results of the families Γ1,n for n ≥ 5 (see theorem 1.2 in [8]).

In the final section of this chapter we investigate whether there are only finitely many

pseudomodular Weierstrass groups Wn, a question posed by Lou, Tan and Vo in section

9 of [7] which is a particular instance of the first open question posed by Long and Reid

section 6 of [5]. The following result provides a partial answer to these questions.

Theorem 2.5 The groups Wn with n ≥ 6 and congruent to 0, 2 or 6 modulo 8 are not

pseudomodular.

For small values of n ≡ 4 (mod 8) we have found that Wn is not pseudomodular. To

construct these examples we have developed a computer program which tries to determine

14
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whether a given jigsaw group has cusp set equal to Q ∪ {∞} or contains a hyperbolic

element fixing two rational points in ∂∞H2 ≡ R ∪ {∞}. This python library is available

in the following GitHub repository: https://github.com/carmengg/pseudomodular_

groups. A survey of whether Wn is pseudo-modular or not for n ≤ 28 can be found at

the end of section 2.4.

2.2 Cusp set of the Γm,n jigsaw groups

Let Γ < PSL(2,Q) be a Fuchsian group such that the quotient H2/Γ has a single

cusp. Assume that ∞ is fixed by a parabolic element in Γ, so that the orbit of ∞ under

the action of Γ equals the cusp set of Γ. Since Γ ≤ PSL(2,Q) then Γ · ∞ ⊆ Q ∪ {∞}.

Therefore to prove cusps(Γ) = Q ∪ {∞} we only need to see that Q ⊆ Γ · ∞. To check

this Long and Reid introduced the following concept in example 1 of [5].

Definition 2.6 Let p ∈ Q be a cusp of Γ. A killer interval I around p is an interval

I ⊂ R with p ∈ I for which there exists γ ∈ Γ such that if k ∈ I is a rational number,

then the absolute value of the denominator of γ(k) is strictly smaller than that of k.

If R can be covered by killer intervals then for every k ∈ Q there will be a γ ∈ Γ such

that γ(k) = ∞. It is easy to see that every rational cusp of Γ has a killer interval

around it. In detail, if γ ∈ Γ < PSL(2,Q) is parabolic then we can always find a matrix

g =

a b

c d

 ∈ PGL(2,Q) such that a, b, c, d ∈ Z, gcd(a, b, c, d) = 1 and both γ and g

have the same action on H2. Then a
c

is a cusp of Γ and (a
c
− 1

c
, a
c

+ 1
c
) is a killer interval

around it with associated map γ.
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Definition 2.7 Let L =

1 1

0 1

 and suppose Γ contains some power of L. Then

`(Γ) = min{k ∈ Z>0 | Lk ∈ Γ}

is the fundamental length of Γ. A fundamental interval for Γ is any interval [k, k + `(Γ)]

with k ∈ Z.

If I = [k, k+`(Γ)] is a fundamental interval for Γ then every x ∈ R can be moved into

I by a power of L`(Γ). Translating by a power of L does not increase the denominator

of a rational number. Then to prove Q ⊆ Γ · ∞ we just have to cover a fundamental

interval of Γ with killer intervals.

Now let Jm,n be the jigsaw formed by the ∆1 tile with vertices -1, 0 and ∞ followed

by m− 1 ≥ 0 tiles of type 1 glued to its left and n ≥ 1 tiles of type 4 glued to its right,

so that all tiles in Jm,n share∞ as a common vertex (see figure 2.1). Let N = m+n and

v0, v1, . . . , vN+1 be the cyclically ordered vertices of Jm,n, so that v0 =∞, v1 < v2 < . . . <

vN+1. For each 0 ≤ i ≤ N let xi be the marked point on the side [vi, vi+1] and xN+1 be

the marked point on [vN+1, v0]. Let Γm,n be the jigsaw group associated to Jm,n. If ρi is

the π-rotation around xi then Γm,n = 〈ρ0, ρ1, . . . , ρN+1〉. Clearly the vertices v1, . . . , vN+1

are in the orbit of v0 so H2/Γm,n has a single cusp. Proposition 4.5 in [7] proves that

ρN+1ρN . . . ρ0 =

1 `(Γm,n)

0 1

 (2.3)

and `(Γm,n) = 3m + 6n. Then v0 = ∞ is fixed by a parabolic element of Γm,n. This

implies that every vertex of a tile in the triangulation of H2 induced by Jm,n is a cusp of

Γm,n.

16
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In the following let ∆(a, b, c) be the ideal triangle with vertices a, b, c and sides [a, b],

[b, c] and [c, a]. Denote the π-rotation about a point (x, y) ∈ H2 by Rx,y. When x, y ∈ Q

it is possible to represent Rx,y as a matrix

a b

c d

 ∈ PGL(2,Q) with gcd(a, b, c, d) = 1,

this will allow us to calculate lengths of killer intervals.

In the triangulation of H2 produced by a jigsaw a vertical tile is one that has ∞ as a

vertex. A vertical side of the triangulation induced by a jigsaw on H2 is one that has ∞

as an endpoint, it can be interior or exterior.

Proposition 2.8 (4.3 in [3]) Let T = ∆(∞, x1, x2) be a vertical tile of type 4 in the

triangulation of H2 produced by a jigsaw. Let the sides of T be e1 = [∞, x1], e2 = [x1, x2]

and e3 = [x2,∞] , so that ei has type ki and marked point pi. Then there are three

possible configurations for T :

• if k1 = 1 then k2 = 1
4
, k3 = 4 and x2 = x1 + 1. The marked points are p1 = (x1, 1),

p2 = (x1 + 1
5
, 2

5
) and p3 = (x1 + 1, 2). The vertical tile to the right of T has type 4.

• if k1 = 4 then k2 = 1, k3 = 1
4

and x2 = x1 + 4. The marked points are p1 = (x1, 2),

p2 = (x1 + 2, 2) and p3 = (x1 + 4, 2). The vertical tiles to the right and left of T

have type 4.

• if k1 = 1
4

then k2 = 4, k3 = 1 and x2 = x1 + 1. The marked points are p1 = (x1, 2),

p2 = (x1 + 4
5
, 2

5
) and p3 = (x1 + 1, 1). The vertical tile to the left of T has type 4.

All vertical tiles of type 1 are of the form ∆(∞, x, x+ 1) with m ∈ Z. The marked points

on the sides [∞, x], [x, x+1] and [x+1,∞] are (x, 1), (x+ 1
2
, 1

2
) and (x+1, 1) respectively.

In all figures a solid line indicates an exterior side of a tile and a dashed line indicates

an exterior side. Dotted lines indicate sides that could be either interior or exterior.

17
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Theorem 2.9 Let Jm,n be a jigsaw as in theorem 2.4 and Γ its associated jigsaw group.

Then cusps(Γ) = Q ∪ {∞}.

Proof. We will prove there is a covering of R by killer intervals of cusps of Γ. Consider

the triangulation of H2 generated by the action of Γ on the triangulated jigsaw Jm,n.

Since all tiles in Jm,n are of type 1 or 4, proposition 4.3 in [7] implies that the vertices of

a vertical tile that lie on R are integers at distance 1 or 4 from each other. Then R can

be divided into consecutive intervals of lengths one and four, with each endpoint being

an integer.

If v is an endpoint of a vertical side with v 6=∞, then v is a cusp of the jigsaw group

and by proposition 4.6 in [7] the killer interval around v is (v − 1, v + 1). Then to cover

R with killer intervals it will be enough to cover the gaps of length 4 between cusps.

By proposition 2.8 a vertical tile T0 with vertices m and m + 4 has to be a tile of

type 4 where the side [m,m+4] is of type 1. Without loss of generality we may translate

this tile and assume T0 = ∆(∞, 0, 4), its marked points are (0, 2), (2, 2) and (4, 2). Let

T1 = R2,2(T0), so T1 is adjacent to T0 along the side [0, 4] and has vertices 4, 0 and 2.

Case 1: T1 is a tile of type 4. For this case see figure 2.2. Since 0 and 4 are

endpoints of a vertical side the killer intervals around these cusps are (−1, 1) and (3, 5).

The tile T1 is type 4, so by proposition 4.7 in [7] the killer interval around 2 is (1, 3).

Then to cover the interval [0, 4] it will be enough to check that 1 and 3 are cusps of Γ.

We will use the following matrices for calculations:

R2,2 =

2 −8

1 −2

 , R3,1 =

−3 10

−1 3

 , R 16
5
, 2
5

=

−16 52

−5 16

 .

Since T1 = R2,2(T0), then the side [2, 4] of T1 is type 4 with marked point R2,2(0, 2) =

18
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(3, 1). The tile adjacent to T1 along [2, 4] is T2 = R3,1(T1) = ∆(4, 2, 10
3

), it is of type 4 as

well. The side [2, 10
3

] has type 1 with marked point R3,1(2, 2) = (16
5
, 2

5
). Finally, consider

the tile T3 that is adjacent to T2 along [2, 10
3

]. We have that T3 = R 16
5
, 2
5
(T2) = ∆(2, 10

3
, 3).

This proves 3 is a vertex of a tile in the triangulation and therefore a cusp of Γ. By a

similar argument we can prove 1 is a cusp of Γ. Notice this case also covers all jigsaws

of the form J0,n.

Figure 2.2: Tile T1 is of type 4

Case 2: T1 is a tile of type 1. Since 0 and 4 are endpoints of vertical sides, the

killer intervals around them still are (−1, 1) and (3, 5). The tile T1 now has type 1, so by

proposition 4.7 [7] the killer interval around 2 is (3
2
, 5

2
). We will see that (1, 5

3
) and (7

3
, 3)

are killer intervals for 4
3

and 8
3

respectively. Then the killer intervals for 0, 4
3
, 2, 8

3
and

4 will cover [0, 1] \ {1, 3}. To finish it will only be necessary to check that 1 and 3 are

cusps of Γ.

If the side [0, 4] of T0 was exterior, then by rotating around the marked point (2, 2)

we would get that T1 is also of type 4. Thus it must be that [0, 4] is an interior side.

Then T0 is in the Γ-orbit of the unique tile T ′0 of type 4 in the initial jigsaw Jm,n that

shares an interior side with a tile of type 1. Since T ′0 has an exterior side of type 1
4

(see
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figure 2.1) then in T0 the side [4,∞], which has type 1
4
, must be exterior too. The side

[0,∞] of T0 is only exterior when n = 1. For a jigsaw J1,n the tiling follows the pattern

shown in figure 2.3 and for a jigsaw Jm,n with m ≥ 2 the tiling is as in figure 2.4.

Figure 2.3: Vertical tiles for a jigsaw J1,n

Figure 2.4: Vertical tiles for a jigsaw Jm,n with m ≥ 2

• 3 is a cusp. Notice that [4,∞] is an exterior side with marked point (4, 2) and 8

is a vertex of the tiling for every Jm,n. Then R4,2(3) = 8 implies 3 is a cusp of Γ. To

find an element of Γ that sends ∞ to 3 we will have to consider two cases. For a jigsaw
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J1,n the sides [∞, 7] and [7, 8] are exterior of type 1 with marked points (7, 1) and (15
2
, 1

2
)

respectively. Rotating around these points we get that S = R4,2R 15
2
, 1
2
R7,1 ∈ Γ sends ∞

to 3. For Jm,n with m ≥ 2 the side [8,∞] is exterior with marked point (8, 1). Therefore

S ′ = R4,2R8,1 ∈ Γ sends ∞ to 3. It can be calculated that

S =

12 −64

4 −21

 and S ′ =

12 −100

4 −33

 ,

so in both cases we obtain that (3− 1
4
, 3 + 1

4
) is a killer interval around 3.

• 4
3

is a cusp. The side [2, 4] is exterior with marked point (12
5
, 4

5
) in every Jm,n,

so R 12
5
, 4
5
∈ Γ. Since 3 is a cusp of Γ, then 4

3
= R 12

5
, 4
5
(3) is too. For J1,n we get that

R 12
5
, 4
5
S ∈ Γ sends ∞ to 4

3
. For Jm,n with m ≥ 2 we see that R 12

5
, 4
5
S ′ ∈ Γ does the same.

By making R 12
5
, 4
5

=

12 −32

5 −12

 we have that

R 12
5
, 4
5
S =

4 −24

3 −17

 and R 12
5
, 4
5
S ′ =

4 −36

3 −26

 .

This shows the killer interval around 4
3

is (1, 5
3
).

• 1 is a cusp. The marked point on the side [0, 2] of T1 is (8
5
, 4

5
), then T2 = R 8

5
, 4
5
(T1) =

∆(0, 4
3
, 2) is in the triangulation. For every Jm,n the tile T2 is of type 1, so the marked

point on the side [0, 4
3
] is (6

5
, 2

5
) = R 8

5
, 4
5
((2, 2)). Therefore 1 = R 6

5
, 2
5
(2) is a cusp.

• 8
3

is a cusp. Since R 12
5
, 4
5
∈ Γ for all Jm,n, then 8

3
= R 12

5
, 4
5
(0) is a vertex of the tiling

and a cusp of Γ. To find an element in Γ that sends∞ to 8
3

recall that T0 is in the Γ-orbit

of the unique tile of type 4 in Jm,n that has an interior side adjacent to a tile of type one.

Then there must be an n ∈ N and G ∈ Γ so that the tile T = ∆(∞, n, n + 1) is in the

triangulation, has sides [∞, n], [n, n+ 1] and [n+ 1,∞] of types 1, 1
4

and 4 respectively,
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and G(T ) = T0. In particular we have that G(∞) = 0. A direct calculation shows we

can write G =

 0 4

−1 n+ 1

. Thus R 12
5
, 4
5
G =

8 4− 8n

3 2− 3n

 ∈ Γ sends ∞ to 8
3
. This

shows the killer interval around 8
3

is (7
3
, 3). �

2.3 Non-commensurability of the Γ1,n and Γm,1 jigsaw

groups

The commensurator of a subgroup Γ of PSL(2,R) is the subgroup

Comm(Γ) = {g ∈ PSL(2,R) | gΓg−1 commensurable with Γ}.

It is a theorem by Margulis [9] that if Γ is non-arithmetic then Comm(Γ) is the unique

maximal element (with respect to subgroup inclusion) in the commensurability class of

Γ. Following sections 7 and 8 in [7], to see that jigsaw groups Γ of the form Γ1,n and

Γm,1 are pairwise non-commensurable we will check that each Γ is non-arithmetic and

Γ = Comm(Γ). To prove the latter we analyze the location of tangency points on the

maximal horocycle of the orbifold H2/Γ.

2.3.1 Non-arithmeticity.

By Takeuchi [10] if a non-compact Fuchsian group Γ ≤ PSL(2,R) of finite covolume,

with no elements of order 2 and with invariant trace field Q is arithmetic, then tr(γ2) ∈ Z

for all γ ∈ Γ. Since tr(γ2) = (trγ)2 − 2 it is enough to see whether (trγ)2 ∈ Z.

Let J be a jigsaw as in theorem 2.4 with associated jigsaw group Γ, and let ρ0, . . . , ρN+1

be the generators of Γ as in (2.3). We will see the subgroup of index two Γ(2) consisting
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of all elements of Γ with even word length is non-arithmetic, and therefore Γ is non-

arithmetic too. Notice the group Γ(2) still has finite covolume, a fundamental domain for

Γ(2) is J ∪ ρ0(J).

Proposition 2.10 Let Jm,n be a jigsaw as in theorem 2.4 and Γ its associated jigsaw

group. Then Γ is non-arithmetic.

Proof. It is enough to see that there exists γ ∈ Γ(2) such that tr(γ)2 /∈ Z. Let

ej = [xj,∞] and ek = [xk,∞] be exterior vertical sides in the tiling of H2 induced by

Jm,n. Assume that ej is of type 4 and ek is of type 1, so their marked points are (xj, 2)

and (xk, 1) respectively. Since ej and ek are exterior sides the π-rotations

Rxj ,2 =
1

2

xj −(x2
j + 4)

1 −xj

 and = Rxk,1 =

xk −(x2
k + 1)

1 −xk


are elements of Γ. We have that (tr(Rxj ,2Rxk,2))2 = 1

4
(−(xk − xj)2 − 5)2, so

(tr(Rxj ,2Rxk,2))2 ∈ Z ⇔ (−(xk − xj)2 − 5)2 ≡ 0 (mod 4)

⇔ −(xk − xj)2 − 5 ≡ 0 (mod 2)

⇔ (xk − xj)2 ≡ 1 (mod 2)

⇔ xk − xj ≡ 1 (mod 2).

Then if Γ(2) is arithmetic the distance between the real vertex of a vertical side of type

1 and the real vertex of a vertical side of type 4 must be odd. However, the jigsaw Jm,n

has a tile T of type 1 with two exterior sides, so there is a tile in the orbit Γ · T where

both exterior type 1 sides are vertical and at distance one from each other. Therefore

one of these consecutive exterior vertical sides of type 1 will be at even distance from a

vertical side of type 4.
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�

2.3.2 Tangency points of maximal horocycle

Let Γ be the jigsaw group associated to a jigsaw J = Jm,n as in theorem 2.4. Then

the orbifold O = H2/Γ has N = m+ n cone points of order 2, a cusp and finite volume.

Let π : H2 → O be the corresponding quotient map. The lift of the cone points of O to

H2 is the set of all marked points on exterior sides in the tiling Γ · J of H2. Since Jm,n

only has tiles of type 1 and type 4, by proposition 2.8 all the marked points in the tiling

are on or below the line y = 2.

Recall that a horocycle in H2 centered at ξ ∈ ∂∞H2 ≡ R∪{∞} is a curve α\{ξ} ⊂ H2

where α is a Euclidean circle tangent to R at ξ, if ξ ∈ R, or α is a line parallel to the

x-axis if ξ =∞. A curve C in O is a horocycle if C is the image under π of a horocycle in

H2 and does not self-cross. For t > 0 let αt be the line y = t. When t > 2 the horocycle

π(αt) loops once around the cusp of O without self-intersecting and the length of π(αt)

goes to 0 as t goes to ∞. The maximal horocycle in O is then C = π(α2). The curve

C is tangent to itself at the cone points of O that are projections of marked points of

exterior sides in H2 with y-coordinate equal to 2. The lift C̃ = π−1(C) to H2 is formed by

the horizontal horocycle α2, horocycles of radius 1 which are tangent to α2, and smaller

horocycles based at the other cusps which are disjoint from α2.

To prove that Γm,n = Comm(Γm,n) when m = 1 or n = 1 we will analyze the location

of tangency points of C̃ along α2. This will be used to see that H2/Γm,n cannot be a

proper finite cover of the orbifold H2/Comm(Γm,n). Recall that the horizontal translation

in H2 by `(Γm,n) = 3m + 6n is the smallest horizontal translation that is an element of

Γ.
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Lemma 2.11 Let J = Jm,1 with m ≥ 1 and associated jigsaw group Γ. Let T be a

horizontal translation by less than `(Γ). Then there is a pair of tangency points p1, p2 of

C̃ such that, if L 6= Id is a horizontal translation by less than `(Γ), then L(p1) and L(p2)

are no longer tangency points of C̃.

Proof. The tile E = ∆(∞, 0, 1) is the unique tile of type 4 in J . Its sides [0, 1] and [1,∞]

are exterior of type 1
4

and 4 respectively, the marked point on [1,∞] is p1 = (1, 2). Then

E ′ = R1,2(E) = ∆(∞, 1, 5) is of type 4 and has [5,∞] as an exterior side with marked

point p2 = (5, 2). The next tile E ′′ = R5,2(E ′) = ∆(∞, 5, 6) is of type 4 but now [6,∞]

is an interior side and therefore there is no (exterior) marked point on it. Since E is the

unique tile of type 4 in J , the tiles E, E ′ and E ′′ are the only vertical tiles of type 4 with

vertices on the fundamental interval I = [0, 3m + 6]. Therefore p1 and p2 are the only

two tangency points of C̃ at height 2 on I × [0,∞). If L is a translation by 0 < k < `(Γ)

where L(p1) is a tangency point of C̃, then it must be that k = 4 and L(p1) = p2. But

L(p2) is on a vertical type 1 side, so it cannot be a tangency point.

�

To prove a similar result for jigsaws J1,n with n > 1 we will need not a pair but a

triple of tangency points on α2. To find these we examine patterns of consecutive vertical

tiles.

Definition 2.12 The width of a vertical tile is the distance between its vertices on the

x-axis. For i = 1, . . . , k let Ti = ∆(∞, xi, xi+1) be a vertical tile with xi < xi+1 and width

wi. The width pattern of the consecutive tiles T1, . . . , Tm is the tuple (w1, . . . , wm).

By proposition 2.8, tiles of type 1 always have width 1 and tiles of type 4 have width

either 1 or 4. In the proof of 2.13 we will also use half tiles, these are translations of

either ∆(∞, 0, 4) ∩ ([0, 2] × R) or ∆(∞, 0, 4) ∩ ([2, 4] × R). Half tiles have width 2 and
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can be included in a list of adjacent vertical tiles to generate a width pattern. The width

pattern (2, 2) is allowed to indicate two halves of the same tile of type 4 and width 4. We

will need half tiles to account for marked points on the non-vertical sides of tiles of type

4. Finally, notice that not any tuple with coordinates 1, 2 or 4 corresponds to a width

pattern. For example (4, 4), (2, 4) and (4, 2) would indicate two adjacent tiles of type 4

and width 4, which cannot be by proposition 2.8. And since half tiles are actually part

of a ”full” tile, we cannot have (1, 2, 1) in any width pattern.

Lemma 2.13 Let J = J1,n with n > 1 and associated jigsaw group Γ. Then there is a

triple of tangency points p1, p2, p3 of C̃ such that, if L 6= Id is a horizontal translation by

less than `(Γ), then L(p1), L(p2) and L(p3) are no longer tangency points of C̃.

Proof. Let J = Jm,n be a jigsaw as in theorem 2.4, so that every tile in J is vertical. Let

E be the unique tile of type 4 in J that has two exterior sides. We will consider cases

depending on the congruency of n modulo 3.

• Case 1: n ≡ 0 (mod 3), n ≥ 3. The tangency points in α2 ∩ J are the points

(3 + 6(j − 1), 2) with j = 1, . . . , n
3

(see figure 2.5). Consider p1 = (2n− 3, 2), the last of

these points. The vertical tile adjacent to J to the right of [2n,∞] is of type 4, and since

n ≡ 0 (mod 3) it has width 1. The sides [∞, 2n] and [2n + 1,∞] are exterior of types

1 and 4 respectively, so p2 = (2n + 1, 2) is the next tangency point on α2. The vertical

tile to the right of [2n + 1,∞] is of type 4 and width 4. Since the side [2n + 1, 2n + 5]

is exterior of type 1, the next tangency point on α2 is p3 = (2n + 3, 2). Let L be a

horizontal translation by less than `(Γ) and suppose L(pi) = p′i ∈ α2 are tangency points

of C̃. Since deuc(p
′
2, p
′
3) = deuc(p2, p3) = 2 the width pattern of the tiles between p′2 and

p′3 is (1, 1) or (2).

To get the width pattern (1,1) with the desired tangency points p′2 and p′3 we need

two tiles ∆(∞, k, k+1) and ∆(∞, k+1, k+2) of type 4 and width 1 with exterior vertical
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Figure 2.5: Tangency points for n ≡ 0 (mod 3)

sides [k,∞] and [k+2,∞] of types 1
4

and 4 respectively. Since the tile E of J has interior

side of type 1
4
, the tile ∆(∞, k, k + 1) is not in the orbit Γ · E. Thus the sides [k, k + 1]

and [k + 1,∞] are interior. Then in the adjacent tile ∆(∞, k − 4, k) the sides [k − 4,∞]

and [k− 4, k] are interior. Since 4 = deuc(p1, p2) = deuc(p
′
1, p
′
2), then p′1 = (k− 4, 2) which

is not a tangency point.

If the width pattern between p′2 and p′3 is (2) we must have a tile T = ∆(∞, k, k+ 4)

of type 4 and exterior sides [∞, k] and [k, k + 4]. The two tiles that follow T to the left

must be of type 4 and width 1, with exterior sides [k − 1,∞] and [k − 2, k − 1]. Thus

the tile ∆(∞, k − 2, k − 1) is a vertical tile in the orbit Γ · E. This implies we obtain

∆(∞, k− 2, k− 1) by translating E by a multiple of `(Γ) and L must be this translation.

Therefore L = Id.

• Case 2: n ≡ 1 (mod 3) and n ≥ 4. In this case the tangency points in α2∩J which are

not on vertical sides are the points (3+6(j−1), 2), with j = 1 . . . n−1
3

. Let p1 = (2n−5, 2)

be the last of such tangency points. Since n ≡ 1 (mod 3) the next vertical tile to the

right of J is of type 4 and width 4. The sides [∞, 2n−1] and [2n+3,∞] are exterior with

types 4 and 1
4

respectively, so p2 = (2n − 1, 2) and p3 = (2n + 3, 2) are tangency points

of the horocycle (see figure 2.6). As before, assume L is a horizontal translation by less

than `(Γ) and p′i = L(pi) are tangency points. Since deuc(p
′
1, p
′
2) = deuc(p1, p2) = 4 the
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possible width patterns for tiles between p′1 and p′2 are (4), (1,1,2) , (2,1,1) and (1,1,1,1).

Figure 2.6: Tangency points for n ≡ 1 (mod 3) for n ≥ 4

To get the width pattern (4) between p′1 and p′2 we need a tile E ′ = ∆(∞, k, k + 4)

of type 4 with vertical external sides, so E ′ is in the Γ-orbit of E (see figure 2.7). Since

J has more than one tile of type 4, the tile T1 = ∆(k, k + 4, k + 2) adjacent to E ′ must

be of type 4 with external side [k + 2, k + 4]. Let R ∈ Γ be the π-rotation about the

marked point p′2 on [k + 4,∞]. Then T2 = R(T1) = ∆(∞, k + 5, k + 6) has [k + 6,∞]

as an exterior vertical side of type 4. It follows that the tile adjacent to T2 to the right

has width 4 with interior side [k + 6, k + 10]. Since deuc(p
′
2, p
′
3) = deuc(p2, p3) = 4, then

p′3 = (k + 8, 2) which is not a tangency point.

If the width pattern between p′1 and p′2 is (1,1,2) then we must have a tile T1 =

∆(∞, k, k + 4) of type 4 where the side [k, k + 4] is exterior. Since the tile E in J has

interior side of type 1, T1 /∈ Γ · E. Then the sides [∞, k] and [k + 4,∞] are interior (see

figure 2.8). The tiles T2 = ∆(∞, k − 1, k) and T3 = ∆(∞, k − 2, k − 1) to the left of

T1 must be of type 4 and width one, with [k − 1,∞] interior of type 1 and [k − 2,∞]

exterior of type 1
4
. Having two interior vertical sides implies that T2 is in a translation

of the initial jigsaw J , and thus T3 is too. However in J the exterior vertical sides have

types 1 and 4, so this tile configuration is not possible.

If we have width pattern (2,1,1) or (1,1,1,1) between p′1 and p′2 then there is a tile
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Figure 2.7: Width pattern (4) Figure 2.8: Width pattern (1,1,2)

T1 = ∆(∞, k, k + 1) of type 4 whose side [k + 1,∞] is exterior of type 4 and has p′2

in it. The tile adjacent to T1 to the right has to be of type 4 and width 4, let this be

T2 = ∆(∞, k + 1, k + 5). Because deuc(p
′
2, p
′
3) = 4, we have that p′3 ∈ [k + 5,∞], so this

side must be exterior. This implies [k,∞] is exterior too and so T3 = ∆(∞, k − 1, k) is

of type 4 with exterior sides [k− 1, k] and [k,∞]. Thus T3 is obtained by translating the

tile E in J by a multiple of `(Γ). Since L must be this translation, we get that L = Id.

• Case 3: n ≡ 2 (mod 3). The last tangency points on α2 ∩ J are p1 = (2n − 1, 2)

and p2 = (2n + 1, 2). The next tangency point along α2 is p3 = (2n + 7, 2) (see figure

2.9). Let L be a horizontal translation by less than `(Γ) and suppose L(pi) = p′i ∈ α2 are

tangency points of C̃. Since deuc(p
′
1, p
′
2) = deuc(p1, p2) = 2 the width pattern of the tiles

between p′1 and p′2 is (1,1) or (2).

Figure 2.9: Tangency points for n ≡ 2 (mod 3)
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Suppose the width pattern between p′1 and p′2 is (1,1). Then we have two adjacent

tiles ∆(∞, k, k + 1) and T1 = ∆(∞, k + 1, k + 2) with exterior vertical sides [k,∞] and

[k+ 2,∞] of types 1
4

and 4 respectively. Their common side [k+ 1,∞] is interior of type

1. Since the tile E in J has an exterior sides of type 1, these tiles are not in the Γ-orbit

of E. Thus the sides [k, k + 1] and [k + 1, k + 2] must be interior. The tile to the right

of T1 has type 4 and width 4, with exterior sides [k + 2, k + 6 and [k + 6,∞]. Then the

tile T2 = ∆(∞, k+ 6, k+ 7) must be of type 4 with side [k+ 6,∞] of type 1
4
. Notice that

if v is a vertex of a tile in J which is not E or ∆1, then three sides of tiles in J meet at

v, two exterior and one interior. Then by looking at the vertex ∞ of T2 we get that the

side [k + 7,∞] is exterior of type 1. Then ∆(∞, k + 7, k + 8) is a tile of type 4 in the

tiling and its side [k+ 8,∞] is exterior. Since deuc(p
′
2, p
′
3) = deuc(p2, p3) = 6 we have that

p′3 = (k + 8, 2) is not a tangency point.

Figure 2.10: Width pattern (1,1)

If (2) is the width pattern between p′1 and p′2 then these tangency points are on a tile

∆(∞, k, k+4) with exterior sides [k, k+4] and [k+4,∞] of types 1 and 1
4
. This tile must

then be a translation of E in J by a multiple of `(Γ). As before this leads to L = Id.

�

Corollary 2.14 Let Jm,n with m = 1 or n = 1 be a jigsaw as in theorem 2.4 and Γm,n

its associated jigsaw group. Let C̃ be the preimage in H2 of the maximal horocycle of the
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orbifold O = H2/Γm,n and L a horizontal translation of H2 by less than `(Γm,n). Then

L(C̃) 6= C̃.

Proof. A horizontal translation that preserves C̃ must preserve the set of tangency

points of C̃. Lemmas 2.11 and 2.13 show this is not possible for a translation by less

than `(Γm,n).

�

Proposition 2.15 Two distinct groups in the families Γ1,n and Γm,1 are non-commensurable.

Proof. Let Γ = Γm,n be a jigsaw group with m = 1 or n = 1 and let [Γ] be its com-

mensurability class. The group Γ is non-arithmetic by proposition 2.10, so its commen-

surator Comm(Γ) is the unique maximal element in [Γ] [9]. In terms of covering spaces

Comm(Γ) is the fundamental group of a unique minimal orbifold O′ = H2/Comm(Γ)

which is finitely covered by any other orbifold H2/G with G ∈ [Γ].

Suppose that Γ is a proper subgroup of Comm(Γ) and let O = H2/Γ. Let C be the

maximal horocycle in O′ and C̃ be the preimage of C to H2. The orbifold O has a single

cusp, so C̃ is the preimage of the maximal horocycle in O too. Since O covers O′ the lift

C̃ must be invariant under a horizontal translation by k where 0 < k < `(Γ). However,

this would contradict corollary 2.14. Therefore Γ = Comm(Γ).

�

Theorem 2.9 and proposition 2.15 complete the proof of theorem 1.

2.4 Non-pseudomodular Weierstrass groups

In this final section we prove theorem 2.5 which states the Weierstrass groups Wn

with n ≥ 6 congruent to 0, 2 or 6 mod 8 are not pseudomodular.

31



New examples from the jigsaw group construction Chapter 2

By definition a pseudomodular group Γ is discrete, so no element in R∪{∞} ≡ ∂∞H2

can be simultaneously fixed by a parabolic and a hyperbolic element in Γ. Then to see

that a given Γ < PGL(2,Q) is not pseudomodular it suffices to find a hyperbolic element

in Γ that fixes a rational number. Following [5] we call such a hyperbolic element a

special element of Γ, and its fixed points special points in Q. By constructing special

elements we prove infinitely many of the Wn jigsaw groups are not pseudomodular. This

result provides a partial answer to whether all but finitely many Weierstrass groups are

non-pseudomodular, a question posed at the end of [7].

Proposition 2.16 The Weierstrass groups Wn with n > 2 and congruent to 0, 2 or 6

mod 8 contain a special element.

Proof. From definition 2.2 the generators of Wn can be represented by the matrices

a =

 1 2

−1 −1

 , b =
√
n

 1 1

−n−1
n

−1

 , c =
1√
n

 0 n

−1 0


in PSL(2,R). Recall that a matrix in PSL(2,R) represents a hyperbolic element of

the isometries of H2 if its trace is bigger than 2. Let us examine each congruency class

separately.

• Case 1: n = 8k, for k ≥ 1. Consider A = cba =

1 8k + 2

0 1

 ∈ Wn. A direct

calculation shows that cabaAk−1caba has trace 4k + 1
4k
> 2 and its fixed points are the

integers −4k and 4k − 2, so this is a special element in W8k.

• Case 2: n = 8k+2, for k ≥ 1. Let A = abc =

1 −8k − 4

0 1

 ∈ W8k+2. It can be di-

rectly calculated that the rationals 2
8k+1

and −8k−2
4k+3

are fixed points of cA4k−1ababaA−k+1ca,

thus this is a special element in W8k+2.
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• Case 3: n = 8k + 6, for k ≥ 0. Let A = cba =

1 8k + 8

0 1

 ∈ W8k+6. A direct

computation shows that the element aAkcababac fixes 1 and has trace 9 + 24k + 16k2 +

1
(3+4k)2

, which is greater than 2. Thus we have found a special element in W8k+6.

�

Theorem 2 immediately follows from the previous proposition.

We have found that Wn has a special element for small values of n ≡ 4 (mod 8),

though no clear pattern in the fixed points or the word of the element is clear. The

computer program we developed to obtain these examples tries to determine whether a

given rational is a special point by exploring its Γ-orbit. A survey of whether Wn has a

special for n ≤ 28 follows.

Group Pseudomodular or special Group Pseudomodular or special
W1 pseudomodular [7] W15 contains a special
W2 pseudomodular [7] W16 contains a special
W3 contains a special W17 contains a special
W4 pseudomodular (theorem 2.4) W18 contains a special
W5 contains a special W19 could not be determined
W6 contains a special W20 contains a special
W7 contains a special W21 contains a special
W8 contains a special W22 contains a special
W9 contains a special W23 contains a special
W10 contains a special W24 contains a special
W11 could not be determined W25 could not be determined
W12 contains a special W26 contains a special
W13 could not be determined W27 contains a special
W14 contains a special W28 contains a special

Table 2.1: Survey of small Weierstrass groups
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Chapter 3

Zariski dense surface subgroups in

SL(n,Q)

Constructing Zariski dense surface subgroups in SL(n,R) has attracted attention as a

step to finding thin groups, these are infinite index subgroups of a lattice in SL(n,R)

which are Zariski dense. Finding thin subgroups inside lattices in a variety of Lie groups

has been a topic of significant interest in recent years, in part from the connections thin

groups have to expanders and the affine sieve of Bourgain, Gamburd, and Sarnak [11][12].

Though thin subgroups are in a sense generic [13][14], finding particular specimens of

thin surface subgroups in a given lattice remains a difficult task. In this direction Long,

Reid and Thistlethwaite [15] produced in 2011 the first infinite family of nonconjugate

thin surface groups in SL(3,Z). Their approach relies on parametrizing a family of

representations ρt of the triangle group ∆(3, 3, 4) in the Hitchin component, so that for

every t ∈ Z the subgroup ρt(∆(3, 3, 4)) is in SL(3,Q) and has integral traces. By results of

Bass [16] these two properties together with ρt(∆(3, 3, 4)) being non-solvable and finitely

generated guarantee that it is conjugate to a subgroup of SL(3,Z). In 2018 Long and

Thistlethwaite [17] used a similar approach to obtain an infinite family of non-conjugate
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Zariski dense surface subgroups in SL(4,Z) and SL(5,Z).

Ballas and Long [18] in turn used the idea of ”bending” a representation of the

fundamental group of a hyperbolic n-manifold π1(N) along an embedded totally geodesic

and separating hypersurface to obtain thin groups in SL(n+ 1,R) which are isomorphic

to π1(N). The goal of this chapter is to combine the aforementioned approaches to

construct a family of Zariski dense rational surface group representations by bending

orbifold representations. Our main result is the following:

Theorem 3.1 For every surface S finitely covering the orbifold O3,3,3,3 and every odd

n > 1 there exists a path of discrete, faithful and irreducible representations ρt : π1(S)→

SL(n,R), so that

1. ρ0(π1(S)) < SL(n,Z),

2. ρt is Zariski dense for every t > 0 and

3. ρt(π1(S)) < SL(n,Q) for every t ∈ Q.

Every representation ρt in theorem 3.1 is a surface Hitchin representation. Several of

its properties are derived from the seminal work of Labourie [19] on Anosov representa-

tions, the classification of Zariski closures of surface Hitchin representations by Guichard

[20] and the recent introduction of orbifold Hitchin representations by Alessandrini, Lee

and Schaffhauser [21]. We provide an overview of these results in sections 3.1 and 3.2.

At the end of section 3.2 we also prove the following criterion for Zariski density, which

will be subsequently used to discard Zariski closures.

Proposition 3.2 Let ρ : π1(O)→ PSL(n,R) be an orbifold Hitchin representation such

that

• if n = 2k is even then ρ(π1(O)) is not conjugate to a subgroup of PSp(2k,R) or,
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• if n = 2k+ 1 is odd then ρ(π1(O)) is not conjugate to a subgroup of PSO(k, k+ 1).

Then ρ(H) is Zariski dense in PSL(n,R) for every finite index subgroup H of π1(O).

In section 3.3 we give a general construction to obtain a path of representations as in

theorem 3.1. This is based on bending the fundamental group π1(O) of a hyperbolic

2-dimensional orbifold along a simple closed curve in O with infinite order as an element

of π1(O). Theorem 3.1 then follows from applying the results in section 2 to a suitable

representation of the fundamental group of the orbifold O3,3,3,3 whose underlying topo-

logical space is S2 and has four cone points of order 3. This final step is covered in section

3.4.

Remark. During the finalization of this project, Long and Thistlethwaite used bend-

ing to construct thin surface groups in SL(n,Z) for every odd n [22], the even case remains

open.

3.1 Hitchin representations

In this section we give an introduction to surface and orbifold Hitchin representations.

We will make extensive use of these representations in this and the upcoming chapters.

Recall a subgroup H < GL(n,R) is irreducible if the only invariant subspaces for the

action of H on Rn are {0} and Rn. A representation ρ : Γ → GL(n,R) is said to be

irreducible if the image subgroup ρ(Γ) is irreducible, and it is is strongly irreducible if

the restriction of ρ to every finite index subgroup is irreducible. These characteristics are

defined similarly for projective representations ρ : Γ→ PGL(n,R).
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3.1.1 Spaces of representations

Let G be a Lie group and let Γ be a group with a finite presentation

〈α1, . . . , αk | r1, . . . , rm〉. Then every relator ri defines a map Ri : G
k → G. If we

let Hom(Γ, G) = ∩mi=1R
−1
i (Id), then the map φ 7→ (φ(α1), . . . , φ(αk)) is a bijection be-

tween the set of all group homomorphisms from Γ to G and Hom(Γ, G). We will regard

Hom(Γ, G) as having the subspace topology from Gk. In general Hom(Γ, G) may have

singularities and not be a manifold.

The group G acts by conjugation on Hom(Γ, G), though this action may not be proper

or free. Thus the orbit space

Rep(Γ, G) = Hom(Γ, G)/G

is possibly non-Hausdorff or may have orbifold singularities. In the case of G =

PSL(n,R) (or more generally when G is a reductive group ([23] sec. 1.6)) it is useful to

restrict the G-action to a smaller set of Hom(Γ, G) to obtain better topological properties

in the orbit space. Let Hom+(Γ, G) be the subset of representations in Hom(Γ, G) which

decompose as a direct sum of irreducible representations and let

Rep+(Γ, G) = Hom+(Γ, G)/G

be the quotient space by the conjugation action. With the quotient topology Rep+(Γ, G)

has the structure of an algebraic variety ([23] sec. 5.2)
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3.1.2 The irreducible representation ωn : PSL(2,R)→ PSL(n,R)

In the following we will make extensive use of the representation

ω̃n : SL(2,R)→ SL(n,R) (3.1)

given by the action of SL(2,R) on the vector space P of homogeneous polynomials in

2 variables of degree n − 1. To construct this representation fix the ordered basis B =

{xn−1, xn−2y, . . . , xyn−2, yn−1} of P . If we identify the variables x, y with the canonical

unit vectors e1, e2 in R2 then for any matrix in SL(2,R) we have that

a b

c d

 · x = ax+ by and

a b

c d

 · y = bx+ dy.

For any g ∈ SL(2,R) we define ω̃n(g) ∈ GL(P) by its action on the basis B:

ω̃n(g)(xn−1−iyi) = (g · x)n−1−i(g · y)i.

If n = 2k is even, the image of ω̃n is contained in the symplectic group Sp(2k,R), and if

n = 2k + 1 is odd, it is contained in a group isomorphic to SO(k, k + 1).

It is well known that the representation ω̃n is absolutely irreducible. For completeness

we sketch a proof of this fact (for details see [24] sec. 4.2). Since SL(2,R) is a connected

Lie group, the representation ω̃n is irreducible if and only if the associated representation

of Lie algebras wn : sl(2,R) → sl(n,R) is irreducible. Furthermore, wn is irreducible if

and only if the unique complex-linear extension wn : sl(2,C) → sl(n,C) is irreducible.

The matrices H =

−1 0

0 1

, X =

0 1

0 0

, Y =

0 0

1 0

 form a basis for sl(2,R) and

it can be calculated that for every element xn−1−kyk in the basis of the homogeneous
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polynomial space P we have that

wn(X)(xn−1−kyk) = −(n− 1− k)xn−2−kyk+1 and wn(Y )(xn−1−kyk) = −kxn−kyk−1.

If W is a non-zero invariant subspace of wn(sl(2,R)) and p ∈ W is a non-zero polynomial,

then we just need to apply wn(X) enough times to p to get a non-zero multiple of yn−1

in W , and thus yn−1 ∈ W . Then applying wn(Y ) to yn−1 we will obtain that each vector

in the basis of P is in W . Up to conjugation ω̃n is the unique irreducible representation

from SL(2,R) into SL(n,R) ([24] thm. 4.32).

The representation ω̃n : SL(2,R) → SL(n,R) induces a projective representation

ωn : PSL(2,R)→ PSL(n,R) which is also irreducible and unique up to conjugation (see

[25] def. 16.45).

3.1.3 Hitchin representations of surface groups

Let S be a closed surface of genus g > 1. In 1988 Goldman proved that

Rep+(π1(S), PSL(2,R)) has 4g − 3 connected components, two of which are diffeomor-

phic to R6g−6 and called these Teichmüller spaces ([26] thm. A, see also note at end of

thm. 10.2 in [27]). The two Teichmüller spaces T ±(S) are precisely the sets of conjugacy

classes by PSL(2,R) of Fuchsian representations, which are discrete and faithful repre-

sentations ρ : π1(S)→ PSL(2,R) ≡ Isom+(H2). As explained in section 1.2, Teichmüller

spaces can be identified with equivalence classes of holonomies of hyperbolic structures

on S, each component corresponding to whether the associated developing map preserves

fixed (arbitrary) orientations on S and H2. When we look at the bigger representation

space Rep+(π1(S), PGL(2,R)) then the equivalence classes of discrete and faithful rep-

resentations π1(S)→ PGL(2,R) ∼= Isom(H2) form a single component T (S), also known

as Teichmüller space ([23] sec. 4.3).
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Definition 3.3 For n > 2 a representation r : π1(S)→ PSL(n,R) is called Fuchsian if

it can be decomposed as r = ωn◦r0 where r0 : π1(S)→ PSL(2,R) is discrete and faithful,

and ωn : PSL(2,R)→ PSL(n,R) is the unique irreducible representation introduced in

subsection 3.1.2

Definition 3.4 The Fuchsian locus is the set of all PSL(n,R) conjugacy classes of

Fuchsian representations, namely the set ωn(T ±(S)).

In 1992 Hitchin ([27], thm. 10.2) used the theory of Higgs bundles to prove that for

n > 2 the space Rep+(π1(S), PSL(n,R)) has three topological connected components if

n is odd and 6 if n is even. The Fuchsian locus is contained in one component in the

odd case and in two components in the even case. Moreover, he proved each of these

distinguished components, which are now called Hitchin components, is diffeomorphic

to R(1−n2)(1−g). When n > 2 is even both Hitchin components are related by an inner

automorphism of PSL(n,R). In the odd case, where there is only one, we will denote

the Hitchin component by Hit(π1(S), PSL(n,R)).

Definition 3.5 Let S be a closed surface of genus greater than one. A representation

r : π1(S) → PSL(n,R) is a surface Hitchin representation if its PSL(n,R)-conjugacy

class belongs to a Hitchin component of Rep+(π1(S), PSL(n,R)).

In the introduction of [27] Hitchin noted that the analytical point of view he used to

examine the topology of Rep+(π1(S), PSL(n,R)) does not cast light on the geometric

meaning of surface Hitchin representations, and so the parallelism between the Hitchin

component and Teichmüller space remained incomplete. A year later, in 1993, Choi and

Goldman proved that Hit(π1(S), PSL(3,R)) parametrizes convex real projective struc-

tures on S [28][29]. More than a decade later Labourie defines P -Anosov representations

as holonomies of Anosov dynamical structures on the unit tangent bundle of the surface
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S which depend on a choice of parabolic subgroup P of PSL(n,R) ([19] sec. 2.0.1).

In chapter 4 we will examine an equivalent definition of Anosov representations from

the perspective of geometric group theory. For now we limit ourselves to using these

representations and their characteristics. In [19] Labourie proves that surface Hitchin

representations are B-Anosov where B is any Borel subgroup of PSL(n,R) and uses this

geometric condition to prove important properties of Hitchin representations.

Definition 3.6 ([30] sec. 2.2) A matrix A ∈ SL(n,R) is purely loxodromic if it is

diagonalizable over R with eigenvalues of distinct modulus. If A ∈ PSL(n,R) then we

say A is purely loxodromic if any lift of A to an element of SL(n,R) is purely loxodromic.

Theorem 3.7 ([19] thm. 1.5, lemma 10.1) A surface Hitchin representation

r : π1(S)→ PSL(n,R) is discrete, faithful and strongly irreducible. Moreover, the image

of every non-trivial element of π1(S) under r is purely loxodromic.

3.1.4 Hitchin representations of orbifold groups

Now let O be a 2-dimensional closed orbifold of negative orbifold Euler characteristic

χ(O) and let π1(O) be its orbifold fundamental group. For a definition of orbifold Euler

characteristic see section 13.3 of [31]. In [31] Thurston proves there is a connected

component of the representation space Rep(π1(O), PGL(2,R)) which is homeomorphic

to a ball of dimension −3|χ(O)| + 2k + l, where k is the number of cone points and l

the number of corner reflectors in O. Moreover, he showed this component parametrizes

hyperbolic structures on O and consists precisely of conjugacy classes of discrete and

faithful representations of π1(O) into PGL(2,R) ≡ Isom(H2), which we will call Fuchsian

representations too. By analogy with surfaces, this component is called the Teichmüller

space of the orbifold O, we will denote it by T (O).
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In 2019 Alessandrini, Lee and Schaffhauser used the irreducible representation ωn to

define the Hitchin component Hit(π1(O), PGL(n,R)) of Rep(π1(O), PGL(n,R)) as the

unique connected component in this representation space which contains the connected

Fuchsian locus ωn(T (O)) ([21] def. 2.3). They prove Hit(π1(O), PGL(n,R)) is homeo-

morphic to an open ball and give a formula for its dimension in terms of the cone points

and corner reflectors of O and the exponents of the Lie algebra sl(n,R)([21] thm. 1.2).

Definition 3.8 ([21] def. 2.4) Let O be a 2-dimensional connected closed orbifold

with negative orbifold Euler characteristic. A representation r : π1(O) → PGL(n,R)

is an orbifold Hitchin representation if its PGL(n,R)-conjugacy class belongs to the

Hitchin component Hit(π1(O), PGL(n,R)) of Rep(π1(O), PGL(n,R)).

Guichard and Wienhard in 2012 ([32] def. 2.10) generalized the definition of P -Anosov

representations to allow for representations of word hyperbolic groups into semisimple Lie

groups and proved they share many of the properties that Labourie’s P -Anosov surface

groups representations have. With this new definition it is natural to inquire whether

orbifold Hitchin representations are Anosov. This property follows from the fact that if

Γ′ < Γ is a finite index subgroup, then r : Γ→ G is P -Anosov if and only if r : Γ′ → G

is P -Anosov ([33] prop. 2.8) and that every orbifold O of negative Euler characteristic

is finitely covered by a surface of genus greater than one. Indeed, just as their surface

counterparts, orbifold Hitchin representations are also B-Anosov where B is a Borel

subgroup of PGL(n,R) ([21] prop. 2.16). This geometric characterization has been an

important tool for examining them.

Theorem 3.9 ([21] thm. 1.1) An orbifold Hitchin representation r : π1(O) →

PGL(n,R) is discrete, faithful and strongly irreducible. Moreover, the image of every

infinite order element of π1(O) under r is purely loxodromic.
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3.2 Zariski dense Hitchin representations

In this section we focus on Zariski density of Hitchin representations and prove corol-

lary 3.17 which gives a criterion to determine when the image of a finite index subgroup

of an orbifold group under a Hitchin representation is Zariski dense.

3.2.1 Zariski dense representations

Let G be an algebraic matrix Lie group, then G has both its standard topology as a

subset of some RN and the Zariski topology, where closed sets are defined by zero sets of

polynomials. If X is a subset of G then its Zariski closure is the closure of X in G with

respect to the Zariski topology. The Zariski closure of a subgroup H < G is the smallest

algebraic subgroup of G which contains H ([34] lemma 2.1), and is a closed Lie subgroup

of G. We say a subgroup H < G is Zariski dense in G if its Zariski closure equals G. A

representation r : Γ → G is Zariski dense if r(Γ) is Zariski dense in G. For a survey of

this subject see part 1 of [34] and chapter 1 in [35].

Proposition 3.10 Let V be an n-dimensional vector space, H < GL(V ) a subgroup and

H its Zariski closure. Then H is irreducible if and only if H is irreducible.

Proof. If H has an invariant non-zero proper subspace W < V then W is also an

invariant subspace for H < H.

Now suppose that H has an invariant subspace W of dimension 0 < k < n. We can

extend a basis for W to a basis of V to get a matrix g ∈ GL(V ) such that the conjugated

subgroup gHg−1 is block triangular, i.e. for every h ∈ H

ghg−1 =

Ak×k(h) ∗

0 B(n−k)×(n−k)(h)

 .
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Let pij ∈ F[x1, . . . , xn2 ] be such that pij(x) = xij for every x = (xij) ∈ GL(V ) and

denote its zero set in GL(V ) by Zij, each Zij is a closed set in the Zariski topology. Since

gHg−1 ⊂ Zij for every k + 1 ≤ i ≤ n and 1 ≤ j ≤ k, then gHg−1 ⊂ Zij for the same

indices. Since conjugation by g is a homeomorphism in the Zariski topology we have that

gHg−1 = gHg−1. Therefore gHg−1 has the same block triangular form as gHg−1 and

thus has W as an invariant non-zero proper subspace.

�

Corollary 3.11 Let r : H → GL(V ) be a representation. Then r is irreducible if and

only if the Zariski closure of its image r(H) < GL(V ) is irreducible.

3.2.2 Zariski closures of Hitchin representations

The image of the irreducible representation ωn : PSL(2,R)→ PSL(n,R) is contained

in a conjugate of the projectivization of the symplectic group PSp(n,R) if n is even, and

if n = 2k+ 1 is odd it is contained in a conjugate of the orthogonal group SO(k, k+ 1) =

PSO(k, k + 1). This implies that the images of Fuchsian representations are contained

in (a conjugate of) PSp(n,R) or SO(k, k + 1) depending on n, in particular they are

not Zariski dense. More generally, for surface Hitchin representations Guichard [20] has

announced a classification of Zariski closures of their lifts. An alternative proof of this

result has been given recently by Sambarino ([36] cor. 1.5). The version of this result we

cite here comes from theorem 11.7 in [37].

Theorem 3.12 ([20], [36]) If r : π1(S) → SL(n,R) is the lift of a surface Hitchin

representation and H is the Zariski closure of r(π1(S)), then

• If n = 2k is even, H is conjugate to either ωn(SL(2,R)), Sp(2k,R) or SL(2k,R).
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• If n = 2k + 1 is odd and n 6= 7, then H is conjugate to either ωn(SL(2,R)),

SO(k, k + 1) or SL(2k + 1,R).

• If n = 7, then H is conjugate to either ω7(SL(2,R)), G2, SO(3, 4) or SL(7,R).

Now consider O a 2-dimensional closed orientable orbifold of negative orbifold Euler

characteristic, finitely covered by a closed surface S. Since π1(S) is a normal finite index

subgroup of π1(O), given an orbifold Hitchin representation r : π1(O)→ PGL(n,R) the

identity components of the Zariski closures of r(π1(O)) and r(π1(S)) are equal. For this

context we can apply Guichard’s classification of Zariski closures for surface Hitchin rep-

resentations to orbifold groups. In theorem 6.3 of [21] Alessandrini, Lee and Schaffhauser

use this to classify orbifold groups for which all Hitchin representations into a specific

PGL(n,R) have image in (a conjugate of) the same proper algebraic subgroup. This

rigidity phenomenon contrasts with surface groups, for which Zariski dense representa-

tions are dense in the Hitchin component [20].

3.2.3 A criterion for Zariski density

Here we prove proposition 3.2 which gives us a criterion to find Zariski dense Hitchin

representations.

Lemma 3.13 Let ρ : π1(O) → PSL(n,R) with n even be an orbifold Hitchin represen-

tation. Then for every [α] ∈ π1(O) of infinite order there is a lift A ∈ SL(n,R) of ρ([α])

which has n positive distinct eigenvalues.

Proof. First consider a Fuchsian representation σ : π1(O) → PSL(2,R) and [α] an

infinite order element of π1(O). Since O is a hyperbolic orbifold, σ([α]) is conjugate

to a hyperbolic element

λ 0

0 1
λ

 ∈ PSL(2,R). This element can be lifted to a matrix
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λ 0

0 1
λ

 ∈ SL(2,R) with λ > 0. Let ω̃n : SL(2,R)→ SL(n,R) be the unique irreducible

representation in (3.1), then ω̃n

λ 0

0 1
λ

 ∈ SL(n,R) has n distinct positive eigenvalues

λn−1, λn−3, . . . , λ−(n−3), λ−(n−1) and is a lift of ωn ◦ σ([α]) ∈ PSL(n,R).

Now consider a Hitchin representation ρ : π1(O) → PSL(n,R). Let ρt be a path

of Hitchin representations such that ρ0 is Fuchsian and ρ1 = ρ. This induces a path

ρt([α]) ⊂ PSL(n,R). By the previous argument we may lift ρt([α]) to a path Ãt ∈

SL(n,R) such that Ã0 has n distinct positive eigenvalues. Since each eigenvalue of Ãt

varies continuously and det Ãt 6= 0, all eigenvalues of Ãt are positive. Moreover, by

theorem 3.9 the absolute values of the eigenvalues of ρt([α]) are distinct. This in turn

implies all the eigenvalues of Ãt are distinct. Therefore Ã1 ∈ SL(n,R) is a lift of ρ([α])

with n positive distinct eigenvalues.

�

To prove our criterion for Zariski density (propositions 3.15 and 3.16) we will make

use of the following theorem by Culver.

Theorem 3.14 ([38] thm. 2) Let C be a real square matrix. Then the equation C =

exp(X) has a unique real solution X if and only if all the eigenvalues of C are positive

real and no elementary divisor (Jordan block) of C belonging to any eigenvalue appears

more than once.

Proposition 3.15 Let ρ : π1(O)→ PSL(n,R) with n even be an orbifold Hitchin repre-

sentation so that ρ(π1(O)) is not conjugate to a subgroup of PSp(n,R). If S is a surface

finitely covering O then ρ(π1(S)) is Zariski dense.

Proof. Let S be a surface finitely covering O and suppose that ρ(π1(S)) is conjugate

to a subgroup of PSp(n,R) = Sp(n,R)/ ± I. Then there exists an alternating form
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Ω ∈ SL(n,R) such that

Sp(Ω) = {g ∈ SL(n,R) | gTΩg = Ω}

and ρ(π1(S)) ⊂ PSp(Ω) = Sp(Ω)/± I.

Let [α] ∈ π1(O) be an infinite order element. By lemma 3.13 we can lift ρ([α]) ∈

PSL(n,R) to a matrix A ∈ SL(n,R) with n positive distinct eigenvalues. Since π1(S)

has finite index in π1(O) there exists a k ∈ N such that ρ([α])k ∈ ρ(π1(S)). Then Ak is

a lift of ρ([α])k and Ak ∈ Sp(Ω). Given that A has n positive distinct eigenvalues, by

theorem 3.14 there is a unique X ∈ Mn×n(R) such that exp(X) = A. Then using that

exp(kX) = Ak preserves Ω we get that

exp(kX)TΩ exp(kX) = Ω ⇒ Ω−1 exp(kX)TΩ = exp(kX)−1

⇒ exp(Ω−1(kX)TΩ) = Ω−1 exp(kX)TΩ = exp(−kX).

Applying theorem 3.14 now to Ω−1 exp(kX)TΩ we obtain that

Ω−1(kX)TΩ = −kX ⇒ −Ω(kX)TΩ = −kX

⇒ Ω(kX)TΩ = kX.

This implies that kX ∈ sp(Ω) and thus A = exp(X) ∈ Sp(Ω). Given that A is a lift

of ρ([α]), we have that ρ([α]) ∈ PSp(Ω). Since π1(O) is generated by its infinite order

elements we get that ρ(π1(O)) ⊂ PSp(Ω), a contradiction. So it cannot be that ρ(π1(S))

is conjugate to a subgroup of PSp(n,R). In particular, if r is a lift of the Hitchin

surface representation ρ|π1(S) then the Zariski closure of r(π1(S)) cannot be conjugate to

a subgroup of Sp(n,R). By theorem 3.12 it must be that the Zariski closure of r(π1(S))
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is SL(n,R). Therefore the Zariski closure of ρ(π1(S)) is PSL(n,R).

�

In the case when n = 2k + 1 is odd, by theorem 3.12 the Zariski closure of ρ(π1(S))

where ρ is a surface Hitchin representation is either conjugate to a subgroup of SO(k, k+

1) or equals SL(n,R). By assuming there exists a symmetric bilinear form J such that

ρ(π1(S)) ⊂ SO(J) we have an analogous proof to that of 3.15 to get a criterion for Zariski

density of surface Hitchin representations in the odd case.

Proposition 3.16 Let ρ : π1(O) → SL(n,R) with n odd be an orbifold Hitchin repre-

sentation such that there is no real quadratic form J for which ρ(π1(O)) ⊂ SO(J). If S

is a surface finitely covering O then ρ(π1(S)) is Zariski dense.

Given that any finite index subgroup of π1(O) contains a surface subgroup which has

finite index in π1(O) we obtain the following result.

Proposition 3.17 Let ρ : π1(O) → PSL(n,R) be an orbifold Hitchin representation

such that

• if n = 2k is even then ρ(π1(O)) is not conjugate to a subgroup of PSp(2k,R) or,

• if n = 2k+ 1 is odd then ρ(π1(O)) is not conjugate to a subgroup of PSO(k, k+ 1).

Then for every finite index subgroup H of π1(O) the image ρ(H) is Zariski dense in

PSL(n,R).

3.3 Bending representations of orbifold groups

Theorem 3.21 in this section gives a general construction of a path ρt of Zariski dense

Hitchin surface representations into SL(n,R) for odd n. By requiring that the initial

representation ρ0 has image inside SL(n,Q) we obtain corollary 3.22, in which every

representation ρt with t ∈ Q also has image in SL(n,Q).
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3.3.1 Bending representations

Let O be a 2-dimensional orientable connected closed orbifold of negative orbifold

Euler characteristic and OL, OR be open connected suborbifolds with connected inter-

section OL ∩ OR. Then OL and OR satisfy the assumptions of Van Kampen’s theorem

for orbifolds ([39] thm. 4.7.1) and we have that π1(O) ' π1(OL) ∗π1(OL∩OR) π1(OR).

Given a representation ρ : π1(O) → G there is a standard way of bending ρ by an ele-

ment δ of the centralizer in G of ρ(π1(OL ∩ OR)). To do so we define a representation

ρ̃δ : π1(OL) ∗ π1(OR)→ G by

ρ̃δ(α) =


ρ(α), α ∈ π1(OL)

δρ(α)δ−1, α ∈ π1(OR)

.

Now let iL : π1(OL∩OR)→ π1(OL) be the morphism induced by the inclusionOL∩OR →

OL. To ease the notation, for any γ ∈ π1(OL ∩ OR) let γL = iL(γ) ∈ π1(OL). Similarly

define γR = iR(γ) ∈ π1(OR). Then

ρ̃δ(γLγ
−1
R ) = ρ̃δ(γL)ρ̃δ(γR)−1

= ρ(γ)(δρ(γ)δ−1)−1

= ρ(γ)(ρ(γ)δδ−1)−1

= e.

This shows H = 〈γLγ−1
R | γ ∈ π1(L∩R)〉 ⊂ Ker(ρ̃δ) and so the normal closure N of H is

also contained in Ker(ρ̃δ). Thus we may pass to the quotient to obtain a representation
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of the orbifold fundamental group

ρδ : π1(O) ' (π1(L) ∗ π1(R))/N → G

αN 7→ ρ̃δ(α).

From this definition we also obtain that

ρδ(π1(O)) = 〈ρ(π1(OL)), δρ(π1(OR))δ−1〉.

From now onwards we will consider the case where there is a simple closed curve

γ ⊂ O, not parallel to a cone point, that divides O into two orbifolds OL and OR which

share γ as their common boundary, so that

π1(O) ' π1(OL) ∗〈[γ]〉 π1(OR).

Proposition 3.18 Let ρ : π1(O) ' π1(OL) ∗〈[γ]〉 π1(OR) → SL(n,Q) be a representa-

tion for which ρ([γ]) has n distinct positive eigenvalues. Then there exists a path of

representations ρt : π1(O)→ SL(n,R) with t ≥ 0 such that

1. ρ0 = ρ,

2. ρt(π1(O)) = 〈ρ(π1(OL)), δtρ(π1(OR))δ−1
t 〉 for some δt ∈ SL(n,R) which commutes

with ρ([γ]), and

3. ρt has image in SL(n,Q) for every t ∈ Q.

Proof. The matrix ρ([γ]) is conjugate to a diagonal matrix D with entries λ1, . . . , λn > 0

along its diagonal. Now for every t > 0 define

δt = (tρ([γ]) + I) det(tρ([γ]) + I)−
1
n (3.2)
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Notice that det(tρ([γ]) + I) = det(tD+ I) = Πn
k=1(tλi+ 1) > 0, so tρ([γ]) + I is invertible

for all t. Then each δt is in SL(n,R) and we can check δt commutes with ρ([γ]). Since

ρ is a rational representation, whenever t ∈ Q the matrix tρ([γ]) + I has rational entries

and non-zero determinant, thus tρ([γ]) + I ∈ SL(n,Q) if t ∈ Q.

Let ρt : π1(O) → SL(n,R) be the representation such that ρt(π1(O)) =

〈ρ(π1(OL)), δtρ(π1(OR))δ−1
t 〉. Notice that ρ0 = ρ and that for every t ∈ Q the repre-

sentation ρt has image in SL(n,Q).

�

3.3.2 Discarding Zariski closures

For the rest of section 3.3 we will focus on the case where n = 2k + 1 is odd. Recall

that in this case SL(n,R) ≡ PSL(n,R).

Lemma 3.19 Let ρ : Γ → SL(n,R) be an irreducible representation and suppose there

is a quadratic form J such that ρ(Γ) ⊂ SO(J). Then J is unique up to scaling.

Proof. Suppose ρ(Γ) < SO(J1) ∩ SO(J2). Then for any ρ(γ) ∈ ρ(Γ) we have that

J−1
1 ρ(γ)J1 = ρ(γ)−T = J−1

2 ρ(γ)J2,

which implies that

ρ(γ)J1J
−1
2 = J1J

−1
2 ρ(γ).

Since n is odd, J1J
−1
2 has a real eigenvalue λ. Then Ker(J1J

−1
2 − λI) is a non-zero

invariant subspace for the irreducible representation ρ, which implies J1 = λJ2.

�
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Proposition 3.20 Let ρ : π1(O) ' π1(OL) ∗〈[γ]〉 π1(OR)→ SL(n,R) be a representation

in which the restrictions ρ|π1(OL) and ρ|π1(OR) are irreducible and ρ([γ]) has n positive

distinct eigenvalues. Suppose there is a quadratic form J such that ρ(π1(O)) ⊂ SO(J).

Then there exists a path of representations ρt : π1(O)→ SL(n,R) such that

1. ρ0 = ρ and

2. for each t > 0 there is no quadratic form J̃ such that ρt(π1(O)) ⊂ SO(J̃).

Proof. By proposition 3.18 we can use δt = (tρ([γ]) + I) det(tρ([γ]) + I)−
1
n to construct

a path of representations ρt : π1(O) → SL(n,R) such that ρ0 = ρ and ρt(π1(O)) =

〈ρ(π1(OL)), δtρ(π1(OR))δ−1
t 〉.

Now fix t > 0. Suppose there exists a quadratic form J̃ such that ρt(π1(O)) ⊂ SO(J̃).

Since ρ(π1(O)) ⊂ SO(J) in particular ρt(π1(OL)) = ρ0(π1(OL)) ⊂ SO(J) ∩ SO(J̃). The

restriction ρt|π1(OL) is irreducible, so by lemma 3.19 J is a real multiple of J̃ . Similarly,

by construction ρt(π1(OR)) ⊂ SO(δtJδ
T
t ) ∩ SO(J̃) and ρt|π1(OR) is irreducible too. Thus

δtJδ
T
t is also a multiple of J̃ . This implies there is a λ ∈ R such that λJ = δtJδ

T
t and

then λn = det(δt)
2 = 1. Since n is odd it must be that λ = 1 and we obtain δt ∈ SO(J).

Given that

(tρ([γ]) + I)J(tρ([γ])T + I) = t2J + tJ(ρ([γ])T )−1 + tJρ([γ])T + J,

having J = δtJδ
T
t would imply that µI = ρ([γ])−1 + ρ([γ]) for some µ ∈ R. Recall

that ρ([γ]) is conjugate to a diagonal matrix D whose eigenvalues are all distinct. If

µI = ρ([γ])−1 + ρ([γ]) then by conjugating we would obtain that µI = D−1 + D, which

is not the case given that n > 2.

�

52



Zariski dense surface subgroups in SL(n,Q) Chapter 3

3.3.3 Representations of surface groups

Recall we are assuming that O is a 2-dimensional orientable connected closed orbifold

of negative orbifold Euler characteristic. Such orbifolds are always finitely covered by a

surface S of genus greater than one, so π1(S) is a finite index subgroup of π1(O). Given

a representation ρ : π1(O)→ G we will denote the restriction of ρ to π1(S) by ρS.

Theorem 3.21 Suppose π1(O) ' π1(OL)∗〈[γ]〉π1(OR) with [γ] an infinite order element.

Let ρ : π1(O) → SL(n,R) be an orbifold Fuchsian representation such that the restric-

tions ρ|π1(OL) and ρ|π1(OR) are irreducible. If S is a surface finitely covering O then there

exists a path of representations ρSt : π1(S) → SL(n,R) such that ρS0 = ρS and ρSt is a

Zariski dense surface Hitchin representation for each t > 0.

Proof. Since ρ : π1(O) → SL(n,R) is an orbifold Hitchin representation with odd

n = 2k + 1 and [γ] has infinite order, then ρ([γ]) has n positive distinct real eigenvalues.

Moreover, since ρ is Fuchsian its image is contained in a conjugate of SO(k, k+1). Using

proposition 3.20 we obtain a path of representations ρt : π1(O) → SL(n,R) such that

ρ0 = ρ and for each t > 0 there is no real quadratic form J such that ρt(π1(O)) ⊂ SO(J).

By proposition 3.16 each ρt(π1(S)) is Zariski dense in SL(n,R).

Now consider the continuous path [ρt] ∈ Rep(π1(O), PGL(n,R)) for t ≥ 0. Its

image is connected so all PGL(n,R)-conjugacy classes [ρt] are contained in the same

connected component of Rep(π1(O), PGL(n,R)). Because the representation ρ0 = ρ

is Fuchsian, [ρ0] is in the Hitchin component Hit(π1(O), PGL(n,R)) and so is every

[ρt]. Thus, by theorem 3.9, each ρt is discrete, faithful and strongly irreducible. Since

π1(S) has finite index in π1(O), each restriction ρSt : π1(S) → SL(n,R) is irreducible.

In particular ρS0 is a surface Fuchsian representation. Then [ρSt ] is a continuous path in

Rep+(π1(S), SL(n,R)) with [ρS0 ] ∈ Hit(π1(S), SL(n,R)). Since the Hitchin component

is path connected [ρSt ] ∈ Hit(π1(S), SL(n,R)) for all t ≥ 0.

53



Zariski dense surface subgroups in SL(n,Q) Chapter 3

�

To finish this section notice that the construction of the path of Zariski dense rep-

resentations in the previous theorem is based on proposition 3.18, so we may add the

assumption of ρ(π1(O)) ⊂ SL(n,Q) to obtain that the image of every ρt is in SL(n,Q)

for every t ∈ Q.

Corollary 3.22 Let ρ : π1(O)→ PSL(n,Q) be a representation satisfying the assump-

tions of theorem 3.21. If S is a surface finitely covering O then there exists a path

ρSt : π1(S)→ SL(n,R) of Hitchin representations such that ρS0 = ρS, ρSt is Zariski dense

for each t > 0 and ρSt has image in SL(n,Q) for every t ∈ Q.

3.4 Representations of π1(O3,3,3,3)

In this section we look at the orbifold O3,3,3,3 and find a Fuchsian representation

ρ : π1(O3,3,3,3)→ SL(n,Z) satisfying the assumptions of corollary 3.22.

3.4.1 The orbifold O3,3,3,3

In what follows we focus on the triangle group ∆(3, 4, 4) ⊂ PSL(2,R). Triangle

groups were introduced in section 1.3. The generators of ∆(3, 4, 4) are the rotations x

and y by 2π
3

and π
2

around the corresponding vertices of the triangle T with angles {π
3
,

π
4
, π

4
}. This group has presentation

∆(3, 4, 4) = 〈x, y | x3 = y4 = (xy)4 = 1〉. (3.3)

The quotient H2/∆(3, 4, 4) is homeomorphic to the orbifold S2(3, 4, 4) whose underlying

topological space is S2 and has three cone points of orders 3, 4 and 4. This defines up

to conjugation an isomorphism π1(S2(3, 4, 4))→ ∆(3, 4, 4) ⊂ PSL(2,R).
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Figure 3.1: Orbifold S2(3, 4, 4)

For our purposes we will need a representation of π1(S2(3, 4, 4)) with image in

SL(n,Z), which can be obtained by finding an integral representation of the triangle

group ∆(3, 4, 4).

Proposition 3.23 ([22] thm. 2.1 ) Let ωn : PSL(2,R) → PSL(n,R) be the unique

irreducible representation between these groups. Then for every odd n the restriction

φn = ωn|∆(3,4,4) is conjugate to a representation ρn : ∆(3, 4, 4)→ PSL(n,Z).

By gluing four copies of a fundamental domain of ∆(3, 4, 4) around one of its vertices

with angle π
2

we obtain an equilateral hyperbolic octagon K with angles alternating

between 2π
3

and π
2
. Let v1, . . . , v4 be the vertices of K with angle 2π

3
ordered cyclically

and let θi be the rotation by 2π
3

around vi. By using the generators x, y of ∆(3, 4, 4) in

the presentation 3.3 we let

θ1 = x and θi = yθi−1y
−1 for i = 2, 3, 4. (3.4)

Then 〈θ1, . . . , θ4〉 is a subgroup of ∆(3, 4, 4) whose action on H2 has the octagon K as a

fundamental domain. The quotient of H2 by the action of 〈θ1, . . . , θ4〉 is homeomorphic

to the orbifold O3,3,3,3 with underlying topological space S2 and 4 cone points of order 3.
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By construction we obtain that O3,3,3,3 is an index four orbifold covering of S2(3, 4, 4).

If γ1, . . . , γ4 are loops around the cone points of O3,3,3,3, then the orbifold fundamental

group has the presentation

π1(O3,3,3,3) = 〈γ1, . . . , γ4 | γ3
1 = . . . = γ3

4 = γ1γ2γ3γ4 = 1〉. (3.5)

Identifying each γi with the rotation θi gives an isomorphism π1(O3,3,3,3) ∼= 〈θ1, . . . , θ4〉

which defines (up to conjugation) a discrete and faithful representation

σ : π1(O3,3,3,3)→ ∆(3, 4, 4) < PSL(2,R). (3.6)

Lemma 3.24 The representation σ : π1(O3,3,3,3)→ PSL(2,R) defined in (3.6) is Zariski

dense.

Proof. We will check that the group σ(π1(O3,3,3,)) = 〈θ1, . . . , θ4〉 < ∆(3, 4, 4) is Zariski

dense. Hyperbolic triangles with the same angles are isometric, so for our purposes we

will fix the hyperbolic triangle with angles {π
3
, π

4
, π

4
} by placing it symmetrically along

the y-axis in the upper-half plane. By having the generators x, y of ∆(3, 4, 4) defined in

(3.3) in rational canonical form we obtain that:

x =

0 −1

1 1

 and y =

 0 −1−
√

2

−1 +
√

2
√

2

 . (3.7)

This choice of generators fixes a representative in the conjugacy class of the repre-

sentation σ. Notice that θ2θ1 = yxy−1x is an infinite order element in ∆(3, 4, 4)

and is therefore hyperbolic. By using the matrices in (3.7) we can explicitly find

P,D ∈ PGL(n,R) with D diagonal so that P−1(θ2θ1)P = D. It suffices then to see

that the conjugated representation P−1σP is Zariski dense. Let H be the Zariski closure
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of P−1σ(π1(O3,3,3,3))P in PSL(2,R) and h its Lie algebra. First notice that the Zariski

closure of 〈D〉 is the algebraic torus whose Lie algebra is the span of X1 =

1 0

0 −1

.

Taking X2 = AdP−1θ1θ2P (X1) and X3 = AdP−1θ21θ2P
(X1) we obtain three linearly inde-

pendent vectors in h. Then dim(h) = 3 = dim(sl(2,R)) so the two algebras must coincide

and so H = PSL(2,R).

�

3.4.2 Rational representations of π1(O3,3,3,3)

We will now focus on the case n = 2k + 1 and the representation

ωn ◦ σ : π1(O3,3,3,3)→ SL(n,R), (3.8)

where σ is the representation defined in (3.6) and ωn : PSL(2,R) → PSL(n,R) =

SL(n,R) the irreducible representation introduced in 3.1.2. Since ωn ◦ σ is an orb-

ifold Fuchsian representation, it is in particular irreducible. By proposition 3.23 we can

conjugate ωn ◦ σ to obtain an integral representation

ρ : π1(O3,3,3,3)→ SL(n,Z) < SL(n,R). (3.9)

Now let γ ⊂ O3,3,3,3 be a simple closed loop dividing O3,3,3,3 into two orbifolds OL and

OR which share γ as their common boundary and have two cone points of order 3 each.

Then [γ] ∈ π1(O3,3,3,3) is an infinite order element and π1(O3,3,3,3) ' π1(OL)∗〈[γ]〉 π1(OR).

Proposition 3.25 Let ρ : π1(O3,3,3,3) ' π1(OL) ∗〈[γ]〉 π1(OR) → PSL(n,Z) be the rep-

resentation defined in (3.9). Then the restrictions of ρ to π1(OL) and π1(OR) are irre-

ducible.
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Proof. To see that ρ|π1(OL) is irreducible it suffices to see that the restriction of ωn ◦σ to

π1(OL) is irreducible. By the proof of lemma 3.24 we have that σ(π1(OL)) is Zariski dense

in PSL(2,R). By corollary 3.11, to see the representation ωn : σ(π1(OL))→ PSL(n,R)

is irreducible is equivalent to checking that the Zariski closure of its image is irreducible.

This holds since ωn : PSL(2,R) → PSL(n,R) is an irreducible representation and a

morphism of algebraic groups, so ωn(PSL(2,R)) = ωn(σ(π1(OL)) ⊆ ωn ◦ σ(π1(OL)).

To see ρ|π1(OR) is irreducible it is enough to notice that the proof of 3.24 also holds

for π1(OR) by using the generators θ3 and θ3 instead of θ1 and θ2.

�

Knowing that ρ is an integral orbifold Fuchsian representation, the previous propo-

sition shows ρ satisfies the assumptions of theorem 3.21. Thus we obtain the following

application of corollary 3.22.

Theorem 3.26 For every surface S finitely covering the orbifold O3,3,3,3 and every odd

n > 1 there exists a path of Hitchin representations ρt : π1(S)→ SL(n,R), so that

1. ρ0(π1(S)) ⊂ SL(n,Z),

2. ρt is Zariski dense for every t > 0 and

3. ρt(π1(S)) ⊂ SL(n,Q) for every t ∈ Q.
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Chapter 4

Constructing non-Hitchin Anosov

representations

In 2006 Labourie introduced Anosov representations to generalize Fuchsian representa-

tions of surface groups and encode Anosov dynamic structures on a closed hyperbolic

surface. The definition and properties of Anosov representations have since been ex-

panded from surface groups to hyperbolic groups by Guichard and Wienhard [32]. These

representations are now widely studied and have proven central to gaining a deeper un-

derstanding of the Hitchin component Hit(π1(S), PSL(n,R)), a connected component

of the space of representations Rep+(π1(S), PSL(n,R)) in which every representation is

Anosov (see sec. 3.1).

More recently Kapovich, Leeb and Porti [40][41][42] defined uniformly regular and

undistorted (URU) representations. URU representations are equivalent to Anosov rep-

resentations, but their definition is based on the dynamic at infinity of the action induced

by a representation ρ : π1(S) → PSL(n,R) on the symmetric space Xn of PSL(n,R).

The role of parabolic subgroups in Anosov representations as defined by Labourie is now

played by simplices in the spherical building at infinity of Xn.
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In this chapter, we use the URU approach to construct Anosov representations of sur-

face groups outside Hit(π1(S), PSL(n,R)). The images of these representations contain

matrices which are not purely loxodromic, and therefore the representations are contained

in a component of Rep+(π1(S), PSL(n,R)) different from the Hitchin component (see

thm. 3.7). This investigation of Anosov representations outside Hit(π1(S), PSL(n,R))

is motivated by the work of Barbot [43], who in 2010 constructed a connected family

of non-Hitchin Anosov representations into PSL(3,R) and inquired whether the set of

Anosov representations not in the Hitchin component was connected.

To construct these non-Hitchin representations we look at the composition of a Hitchin

representation ρ : π1(S)→ PSL(3,R) with a generalization of the irreducible representa-

tion PSL(2,R)→ PSL(n,R) (see sec. 3.1.2). To verify these representations are URU,

in section 4.3 we introduce signatures, a combinatorial tool for encoding the location of

a simplex in the boundary at infinity of the symmetric space. Our main result in this

chapter is the following (definitions will follow):

Theorem 4.1 Let σ3
f ⊂ ∂∞X3 be the fundamental chamber and ρ : Γ → PSL(3,R)

be a σ3
f -URU representation. Fix n =

(
d+2

3

)
for some d ∈ N, and let τnf ⊂ ∂∞Xn be

the simplex of signature (1, 1, n − 4, 1, 1) in the fundamental chamber of ∂∞Xn. Let

ωn : PSL(3,R) → PSL(n,R) be the representation induced by the action of PSL(3,R)

on the space of homogeneous polynomials of degree d in three variables. Then ωn◦ρ : Γ→

PSL(n,R) is a τnf -URU representation and ωn ◦ ρ is not in Hit(π1(S), PSL(n,R)).

In sections 4.1 and 4.2 we give an overview of buildings, symmetric spaces and their

boundaries at infinity. The goal of these two sections is to introduce all the objects and

properties needed to define uniformly regular and undistorted representations in section

4.4. The construction of the non-Hitchin Anosov representations and the proof of theorem

4.1 are in section 4.5.
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4.1 Buildings and symmetric spaces

A building is a simplicial complex ∆ that can be expressed as a union of subcomplexes

called apartments with the following axioms:

(1) each apartment Σ is isomorphic to a Coxeter complex,

(2) for any two simplices τ, τ ′ ∈ ∆ there is an apartment Σ that contains τ and τ ′, and

(3) if Σ and Σ′ are apartments containing simplices τ, τ ′ then there is an isomorphism

between Σ and Σ′ that fixes τ and τ ′ pointwise.

A chamber in a building is a simplex of maximal dimension. A properly contained

simplex in a chamber σ is a face of σ. In particular, codimension 1 faces are the walls

of the chamber. We often single out a specific apartment in the building and call it the

fundamental apartment. Inside the fundamental apartment we fix a chamber σf which is

called the fundamental chamber.

There are various ways to construct a building associated to a group G. In this

section we give an overview of the building ∆(X) on the boundary at infinity ∂∞X of

the symmetric space X of G.

4.1.1 The building ∆(X)

Let G be a semisimple connected Lie group with finite center and a left-invariant

Riemannian metric. A symmetric space for G is a quotient X = G/K where K is a

maximal compact Lie subgroup of G. We assume X is of non-compact type. Since the

symmetric space is a quotient manifold, it inherits a Riemannian metric from G. In the

following, we explain how to construct a building associated with G on the boundary at

infinity of its symmetric space.
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A geodesic ray in X is an isometry γ : [0,∞)→ X such that each segment γ : [0, t)→

X is a path of shortest length from γ(0) to γ(t). Two geodesic rays γ1, γ2 are defined

to be equivalent if there is a constant k > 0 such that d(γ1(t), γ2(t)) < k for all t. The

boundary at infinity of X is the set of equivalence classes under this relation:

∂∞X = {[γ] | γ geodesic ray in X}.

The union Xt∂∞X admits a compact topology called the cone topology that restricts

in X to its usual topology (see [4] part II, chap. 8). Moreover, for a fixed point x ∈ X,

the symmetric space X is diffeomorphic to TxX via the exponential map, and ∂∞X =

{[γ] | γ geodesic ray in X starting at x}. Then ∂∞X can be identified with the sphere

at infinity of TxX and X t ∂∞X is homeomorphic to a closed Euclidean ball (see [44]

sec. 3.1 ).

Definition 4.2 A flat F in X is a totally geodesic submanifold of X that is isometric

to Euclidean space. A maximal flat is a flat of maximal dimension. The dimension of a

maximal flat in X is called the rank of G.

For example, if G has rank one then maximal flats in its symmetric space are simply

geodesics. In general, groups of rank one are better understood, but their properties fail

to generalize easily to higher rank groups.

If f is an isometry of X then it sends geodesics to geodesics preserving equivalence

classes, so f can be continuously extended to ∂∞X by defining f([γ]) = [f(γ)]. The Lie

group G acts by isometries on its symmetric space X, so the G-action extends continu-

ously to ∂∞X. However, when rank > 1, the G-action on ∂∞X is not transitive as it is

on X. To see this, first notice that any geodesic ray in X is contained in a maximal flat.

Definition 4.3 A geodesic ray is singular if it is contained in more than one maximal
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flat, otherwise it is regular. If γ is a singular (resp. regular) geodesic ray we say that [γ]

is a singular point (resp. regular point) in ∂∞X.

The G-action on ∂∞X sends singular points to singular points and regular points to

regular points. Groups of rank one are the only ones where all points in ∂∞X are

regular.

To give ∂∞X a building structure, fix a maximal flat F ⊂ X. The action of the Weyl

groupW ofG on F induces a chamber decomposition of F where the walls of the chambers

are fixed points of elements of W . This, in turn, creates a simplicial decomposition of

∂∞F corresponding to the triangulation of a sphere. Since G acts transitively on the set

of all maximal flats we can define a simplicial structure on all of ∂∞X by looking at the

G-orbit of ∂∞F . Define an apartment in ∂∞X to be any image g ·∂∞F . Then ∂∞X with

this system of apartments forms the building ∆(X) associated to the symmetric space

of G. Since G acts transitively by isometries on X the building structure of ∂∞X does

not depend on the initial choice of maximal flat.

Definition 4.4 ([41] sec. 2.2) The interior of a simplex τ ⊂ ∆(X) is the complement

in τ of the union of subsimplices not containing τ , we denote it by int(τ).

Points in the interior of a chamber are regular points, while points in the boundary of a

chamber are singular points (see [44] sec. 3.8).

4.1.2 Types of points and simplices

As mentioned before, when the rank of G is at least two the G-action on ∂∞X is not

transitive as it is on X. However, the group G acts strongly transitively on the building

∆(X) ≡ ∂∞X, this means:

(1) G acts transitively on the set of pairs (Σ, σ) where Σ is an apartment and σ ∈ Σ is

a chamber, and
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(2) the action preserves the dimension of the simplices in σ.

In particular, for any x ∈ ∂∞X the orbit G · x intersects every chamber of ∆(X) once,

so the orbit space ∂∞X/G can be identified with the fundamental chamber σf ⊂ ∆(X).

Definition 4.5 ([45] sec. 2.3) The type map is the projection

θ : ∂∞X → σf . (4.1)

- The type of a point x ∈ ∂∞X is its image θ(x) ∈ σf .

- On every chamber of ∆(X) the type map restricts to an isometry. Then the type

of a simplex τ ⊂ ∆(X) is the simplex θ(τ) ⊂ σf .

The type map θ gives a convenient way of selecting a region of ∂∞X by looking at

the preimage of a certain subset of the fundamental chamber σf ⊂ ∆(X). For example,

the set of regular points in ∂∞X equals θ−1(int(σf )). To allow for generalizations of

regularity we will consider regularity relative to a simplex τf ⊂ σf .

Definition 4.6 ([45] sec. 5.1) Let τf be a simplex in the fundamental chamber σf of

∆(X).

- The open star of τf in σf is the subset of ∂∞X formed by the union of the interiors

of all simplices in σf that contain τf , we denote it by ost(τf ).

- The τf -regular part of ∂∞X is the set

∂
τf−reg
∞ X = θ−1(ost(τf )) ⊂ ∂∞X.
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4.2 The symmetric space of PSL(n,R)

For the rest of the chapter we focus on the case where G = PSL(n,R) =

SL(n,R)/{±Id}. Notice that when n is odd PSL(n,R) = SL(n,R). The group

PSL(n,R) is a non-compact semisimple Lie group of dimension n2 − 1. We can

give a PSL(n,R)-invariant Riemannian metric to PSL(n,R) by letting 〈A,B〉g =

tr((g−1A)(g−1B)T ) for any g ∈ G and A,B ∈ TgG. On its Lie algebra sl(n,R), which is

the vector space of n×n traceless matrices, the metric simplifies to 〈A,B〉Id = tr(ABT ).

A maximal compact subgroup of PSL(n,R) is K = PSO(n,R), so the symmetric

space for PSL(n,R) is the quotient space PSL(n,R)/PSO(n,R). Let Xn be the space

of n× n positive definite real symmetric matrices of determinant one. Then PSL(n,R)

acts on Xn by

g ·X = gXgT .

The action is well defined since (−g) · X = g · X for any g ∈ SL(n,R). This action is

transitive and the stabilizer of Id is PSO(n,R), so we may identify

Xn ≡ PSL(n,R)/PSO(n,R).

The symmetric space Xn can be seen as a submanifold of PSL(n,R), and as such it

inherits a Riemannian metric.

Let

Fn = {A ∈ Xn | A is diagonal with positive entries }. (4.2)
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This is a maximal flat in Xn and

log : Fn → Rn

diag(λ1, . . . , λn) 7→ (log(λ1), . . . , log(λn))

is an isometric embedding of this flat into Rn. Therefore rank(PSL(n,R)) = dim(Fn) =

n− 1.

Example 4.7 When n = 2, the symmetric space X2 of PSL(2,R) is diffeomorphic to

H2. Geodesics in H2 are the maximal flats. Since any two points in ∂∞X2 = ∂∞H2 are

the endpoints of a geodesic, in the building ∆(X2) any pair of points form an apartment,

and every point is a chamber. In other words, the building structure ∆(X2) is trivial.

Moreover, since any geodesic ray is part of a unique geodesic, every point in ∂∞X2 is a

regular point.

4.2.1 Apartments in ∆(Xn)

In the following, we focus on the case where n ≥ 3. To better understand the structure

of an apartment in ∆(Xn) consider the Weyl group of PSL(n,R) :

W = {n× n permutation matrices} ' Sn.

This group creates a chamber decomposition of Fn in the following way. For each 1 ≤

i < j ≤ n let σi,j ∈ W be the matrix whose action on Xn exchanges the i-th and the j-th

entries in the diagonal of an element in Fn. Let Hi,j = Fix(σi,j) ∩ Fn. If x ∈ Hi,j then

the i-th and j-th entries in its diagonal are equal, and the geodesic ray joining Id and x

is a singular geodesic. Each set Hi,j is a totally geodesic subspace of Xn and thus a flat

that forms a wall of a chamber in Fn.
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This chamber decomposition of Fn induces a simplicial decomposition of ∂∞Fn iso-

morphic to the Coxeter complex of Sn. We choose this triangulation of ∂∞Fn as the

fundamental apartment in ∆(Xn). Consider the cone

Cn = {D = (dij) ∈ Fn | d11 ≥ d22 ≥ . . . ≥ dnn }. (4.3)

The flats Hi,i+1 for i = 1, . . . , n define the walls of Cn, and lower dimensional faces of Cn

are intersections of these Hi,i+1. As fundamental chamber in ∆(Xn) we fix σf = ∂∞Cn.

For each 1 ≤ i < n define the geodesic ray γi : [0,∞)→ Cn as

γi(t) = diag(et, . . . , et︸ ︷︷ ︸
i

, e−t
i

n−i , . . . , e−t
i

n−i︸ ︷︷ ︸
n−i

). (4.4)

Then the vertices of the fundamental chamber σf are the points at infinity [γ1], . . . , [γn−1].

Example 4.8 Consider the symmetric space X3 = SL(3,R)/SO(3,R) and the maximal

flat F3 in it. This is a 2-dimensional flat, so its walls Hi,j are geodesics. The walls of F3

are

H1,2 = {diag(eλ, eλ, e−2λ) | λ ∈ R},

H2,3 = {diag(e−2λ, eλ, eλ) | λ ∈ R},

H1,3 = {diag(eλ, e−2λ, eλ) | λ ∈ R},

they are shown in figure 4.1. Each wall is the union of two singular geodesic rays starting

at the identity and going in opposite directions. The apartment we get as the triangu-

lation of ∂∞F3 is a hexagon where each vertex is a singular point and each point in the

interior of an edge is regular.

Consider the geodesic rays γ1(t) = diag(e2t, e−t, e−t) and γ2(t) = diag(et, et, e−2t) with
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t > 0, then v1 = [γ1] and v2 = [γ2] are the vertices of the fundamental chamber σf . For

any simplex τ ⊂ ∆(X3) we have that its type θ(τ) equals v1, v2 or σf . Following definition

4.6 we have that ost(vi) = {vi} ∪ int(τf ) and ost(τf ) = int(τf ).

Figure 4.1: Walls in F3 ⊂ X3 and the fundamental apartment in ∆(X3)

4.3 Signatures

The goal of this section is to combinatorially encode the location of a simplex in the

building ∆(Xn) relative to another. This approach will simplify the way we check repre-

sentations are uniformly regular and undistorted in section 4.5. The following definitions

are motivated by the terms used for flags, which are increasing sequences of subspaces

of a finite dimensional vector space. Flags in Rn form a building which is isomorphic to

∆(Xn).

Definition 4.9 The set of signatures for the building ∆(Xn) is the set of tuples

Sn =
{

(m1, . . . ,mK) | 2 ≤ K ≤ n,
∑

mi = n
}
.
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If τ is a simplex in the fundamental chamber σf of ∆(Xn), then there are indices i1 <

. . . < ik such that τ is the convex hull of the points at infinity [γi1 ], . . . , [γik ] defined in

(4.4). Let

m1 = i1, m2 = i2 − i1, . . . , mk+1 = n− ik.

Then the map

π : {simplices in σf} → Sn (4.5)

τ 7→ (m1, . . . ,mk+1)

is a bijection. Injectivity follows because a simplex in ∆(Xn) is completely determined

by its vertices. To see π is onto take a tuple (m1, . . . ,mK) ∈ §n and let ik =
∑k

j=1mj for

1 ≤ k ≤ K − 1. Then the simplex τ ⊂ σf whose vertices are [γi1 ], . . . , [γiK−1
] is such that

π(τ) = (m1, . . . ,mK).

To assign a signature to every point in ∂∞Xn and to every simplex in ∆(Xn) recall

that given a simplex τ ⊂ ∆(Xn), the unique simplex in σf that is in the PSL(n,R)-orbit

of τ is its type, denoted by θ(τ).

Definition 4.10 Since ∆(Xn) is a simplicial complex, every point p ∈ ∂∞Xn is contained

in the interior of a unique simplex τp ⊂ ∆(Xn). Define the signature map as

s : ∂∞Xn → Sn

p 7→ π ◦ θ(τp),

where π is the map defined in (4.5).

- The signature of a point p ∈ ∂∞Xn is the tuple s(p).

- The signature of a simplex τ ⊂ ∆(Xn) is the tuple s(p) where p is any point in the
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interior of τ , we denote it as s(τ).

Notice that the signature map is invariant under the PSL(n,R)-action on ∂∞Xn and

∆(Xn).

Example 4.11 Using the notation of example 4.8 we see that the set of signatures of

∆(X3) is

S3 = {s(v1) = (1, 2), s(v2) = (2, 1), s(σf ) = (1, 1, 1)}.

If p is a point in the interior of a chamber in ∆(X3) then s(p) = (1, 1, 1). If v is a vertex

in ∆(X3) then s(v) = (1, 2) or s(v) = (2, 1). In figure 4.2 we can see the signatures for

points in the fundamental apartment.

Figure 4.2: Signatures for points in the fundamental apartment of ∆(X3).

For every point p ∈ ∂∞Xn there is a geodesic ray γ : [0,∞) → Xn with γ(0) = Id

such that p = [γ]. The following proposition shows how γ can be used to calculate the

signature of p. With this viewpoint s(p) is encoding the type of the smallest simplex in

∆(Xn) that contains p and the relative order and multiplicities of the eigenvalues along

γ.
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Proposition 4.12 Let γ : [0,∞)→ Xn be a geodesic ray such that γ(0) = Id. Suppose

that for some t0 > 0 the eigenvalues of γ(t0) are λ1 > . . . > λk, with corresponding

multiplicities m1, . . . ,mk. The following hold

(i) for all t > 0 the matrix γ(t) has k distinct eigenvalues λ′1 > . . . > λ′k with corre-

sponding multiplicities m1, . . . ,mk,

(ii) s([γ]) = (m1, . . . ,mk) for [γ] ∈ ∂∞Xn.

Proof. (i) Since γ(t0) is a symmetric positive definite matrix, there exists a matrix

M ∈ SO(n,R) such that M · γ(t0) = Mγ(t0)MT is diagonal with positive diagonal

entries, this means M · γ(t0) is in the maximal flat Fn. Next we can use a permutation

matrix w ∈ SO(n,R) to organize the diagonal entries of M ·γ(t0) in non-increasing order

starting at the top-left entry, so that (wM) · γ(t0) ∈ Cn. We get that (wM) · γ(0) = Id

and (wM) · γ(t0) is a point in the interior of the cone Cn or a point in the interior of a

face f of Cn, where

f =

(
m1−1⋂
i=1

Hi,i+1

)
∩

(
m2−1⋂
i=m1+1

Hi,i+1

)
∩ . . . ∩

 n−1⋂
i=m1+...+mk−1+1

Hi,i+1

 . (4.6)

The action of wM is isometric, so in the latter case (wM) · γ(t) is a geodesic with two

points in f . Because f is geodesically embedded in Xn it must be that (wM) · γ(t) ⊂ f .

Moreover, since (wM) ·γ(0) = Id is the vertex of f and (wM) ·γ(t0) is in the interior of f ,

we have that (wM) ·γ(t) is in the interior of f for all t > 0. Notice that all matrices in the

interior of f are diagonal with k distinct eigenvalues λ′1 > . . . > λ′k with corresponding

multiplicities m1, . . . ,mk, and for every t we have that (wM) · γ(t) is conjugate to γ(t).

When (wM) · γ(t0) is in the interior of Cn a similar argument shows γ(t) has n distinct

eigenvalues.
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(ii) From part (1) we know there is a g ∈ SL(n,R) such that g · γ(t) is a geodesic ray

pointing towards the interior of Cn or towards the interior of a face f as defined in (4.6).

In the first case [g · γ] ∈ ∂∞Xn is a point in the interior of the fundamental chamber σf

and so

s([γ]) = s(g[γ]) = s([g · γ]) = π(σf ) = (1, . . . , 1︸ ︷︷ ︸
n

).

In the case when [g · γ] ∈ int(∂∞f), by definition ∂∞f is a simplex in the fundamental

chamber of ∆(X) and we obtain that

s([γ]) = s(g[γ]) = s([g · γ]) = π(∂∞f) = (m1, . . . ,mk).

�

4.3.1 τf-regularity in terms of signatures

Simplices in the fundamental chamber σf of ∆(Xn) have a partial order given

by inclusion. The set of signatures Sn inherits a partial order via the bijection

π : {simplices in σf} → S defined in (4.5).

Proposition 4.13 Let (m1, . . . ,mk) and (m̃1, . . . , m̃k̃) be signatures in Sn. Then

(m1, . . . ,mk) ≤ (m̃1, . . . , m̃k̃) if and only if there exist s1, . . . , sk ∈ Z+ with s1+. . .+sk = k̃

such that

m1 = m̃1 + . . .+ m̃s1 ,

m2 = m̃s1+1 + . . .+ m̃s1+s2 ,

...

mk = m̃s1+...+sk−1+1 + . . .+ m̃k̃.
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Proof. Let σf be the fundamental chamber of ∆(Xn) and τ, τ̃ ⊂ σf be simplices such

that π(τ) = (m1, . . . ,mk) and π(τ̃) = (m̃1, . . . , m̃k̃). For i = 1, . . . , n − 1 let γi be the

geodesic ray in Xn defined in equation (4.4), so that vi = [γi] ∈ ∂∞Xn are the vertices

of σf . Then τ has vertices vi1 , . . . , vik−1
where il = m1 + . . . + ml, and τ̃ has vertices

vj1 , . . . , vjk̃−1
with jl = m̃1 + . . .+ m̃l. By definition, (m1, . . . ,mk) ≤ (m̃1, . . . , m̃k̃) if and

only if τ is contained in τ̃ , and this happens if and only if the vertices of τ are a subset

of the vertices of τ̃ .

Suppose {vil}k−1
l=1 ⊆ {vjl}

k̃−1
l=1 . Then there is a sequence 0 < S1 < S2 < . . . < Sk−1 <

k ≤ k̃ of indices such that il = jSl
. This implies that

m1 = m̃1 + . . .+ m̃S1 ,

m1 +m2 = m̃1 + . . .+ m̃S2 ,

...

m1 + · · ·+mk−1 = m̃1 + . . .+ m̃Sk−1
.

Making s1 = S1, sl = Sl−Sl−1 for 1 < l < k and sk = k̃−Sk−1 we satisfy the conditions

of the proposition. Conversely, if we have s1, . . . , sk as in the statement then

vi1 = vjs1 , vi2 = vjs1+s2
, . . . , vik−1

= vs1+...+sk−1
.

�

Proposition 4.14 Let p be a point in ∂∞Xn and τf be a simplex in the fundamental

chamber σf . The following are equivalent:

(i) p is in the τf -regular part of ∂∞Xn,
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(ii) θ(p) ∈ ost(τf ),

(iii) s(τf ) ≤ s(p).

Proof. Statements (i) and (ii) are equivalent by definition 4.6. Given p ∈ ∂∞Xn, its type

θ(p) is in the interior of a unique simplex τθ(p) contained in the fundamental chamber

σf . Then θ(p) ∈ ost(τf ) if and only if τf ⊆ τθ(p). Using the G-invariance of the signature

map, the latter happens if and only if s(τf ) ≤ s(τθ(p)) = s(θ(p)) = s(p).

�

Example. Consider the set of signatures for X4, this is

S4 = {(1, 1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 2), (1, 3), (3, 1)}.

Using proposition 4.13 it is easy to see that (1, 3) = (1, 1 + 1 + 1) so (1, 3) < (1, 1, 1, 1).

Similarly (1, 3) = (1, 1 + 2) = (1, 2 + 1) so (1, 3) < (1, 1, 2) and (1, 3) < (1, 2, 1). By 4.13

there are no other signatures that greater or equal to (1, 3). Now let τf be the simplex

in the fundamental chamber with signature (1, 3), this is an edge of the chamber. By

proposition 4.14, a point p is in the τf regular part of ∂∞Xn if and only if s(p) equals

(1, 3), (1, 1, 2) or (1, 1, 1, 1).

4.3.2 Opposition in terms of signatures

A Cartan involution is an isometry f of a symmetric space X such that f 2 = Id and

has an isolated fixed point x ∈ X. In particular dfx = −Id on TxX. Like all isometries,

a Cartan involution extends to a simplicial isomorphism of the building ∆(X) ≡ ∂∞X.

Definition 4.15 ([45]) Two simplices in the building ∆(X) are opposite simplices if a

Cartan involution of X can exchange them.
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Notice that opposition of simplices is preserved under the PSL(n,R)-action on ∆(X).

Given two opposite simplices τ+, τ− ⊂ ∆(Xn) we are interested in the relation between

their signatures s(τ±).

Definition 4.16 A pair of signatures (m1, . . . ,mk), (m̃1, . . . , m̃k) ∈ Sn are complemen-

tary if for each 1 ≤ i ≤ k − 1 we have

m1 + . . .+mi + m̃k−i + . . . m̃1 = n.

Notice that a first requirement for a pair of signatures to be complementary is that

as tuples they both have the same length. It is easy to see that a signature (m1, . . . ,mk)

has a unique complementary signature and this is (mk, . . . ,m1).

Definition 4.17 A signature is self-opposite if it is complementary to itself.

Notice that any two chambers in ∆(Xn) have signature (1, . . . , 1)︸ ︷︷ ︸
n

, which is self-opposite.

Example 4.18 Consider the vertex [γi] of the fundamental chamber, where γi is the

geodesic ray defined in (4.4). We have that s([γi]) = (i, n− i) by proposition 4.12. The

map f : x 7→ (x−1)T is a Cartan involution of Xn that sends the fundamental apartment

to itself. Then f(γi) : [0,∞)→ Xn is the geodesic ray

f(γi)(t) = diag(e−t, . . . , e−t︸ ︷︷ ︸
i

, et
i

n−i , . . . , et
i

n−i︸ ︷︷ ︸
n−i

),

and s([f(γi)]) = s([γn−i]) = (n− i, i) by proposition 4.12. Therefore [γi] and its opposite

[f(γi)] have complementary signatures.

We wish to extend the previous observation to any pair of opposite simplices in ∆(Xn).
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Lemma 4.19 Let f1, f2 be two Cartan involutions of X with isolated fixed points pi.

Suppose there exist maximal flats Fi in X such that pi ∈ Fi and ∂∞F1 = ∂∞F2 as subsets

of ∂∞X. Then f1(ξ) = f2(ξ) for every ξ ∈ ∂∞Fi.

Proof. Because the flats F1 and F2 are isometric with Rk and have the same boundary at

infinity, there exists an isometry T : F1 → F2 so that T (p1) = p2 and for every v ∈ T 1
p1
F1

we have that dTp1v is the unique vector in T 1
p2
F2 for which [exp(tv)] = [exp(t(dTp1v))].

This means that the geodesic ray starting at p1 with direction v and the geodesic ray

starting at p2 with direction dTp1v define the same point in ∂∞X. In particular, for any

ξ ∈ ∂∞Fi there is a unique v ∈ T 1
p1
X such that ξ = [exp(tv)]. Then

f1(ξ) = f1[exp(tv)]

= [exp(td(f1)p1v)]

= [exp(−tv)]

= [exp(−tdTp1v)]

= [exp(td(f2)p2dTp1v)]

= f2[exp(t(dTp1v))]

= f2(ξ).

�

Corollary 4.20 A simplex in ∆(X) has exactly one opposite simplex in a given apart-

ment.

Proof. Let σ be an apartment in ∆(X), it is enough to see that every point ξ ∈ σ has

a unique opposite point in σ. Suppose f1 and f2 are Cartan involutions of X such that

f1(ξ) and f2(ξ) are in the apartment σ. Let pi be isolated fixed points of fi, there are
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maximal flats Fi such that pi ∈ Fi and ∂∞Fi = σ. Then by lemma 4.19 we have that

f1(ξ) = f2(ξ).

�

Proposition 4.21 Let τ± ⊂ ∆(Xn) be opposite simplices. Then the signatures s(τ+)

and s(τ−) are complementary.

Proof. Recall that the PSL(n,R)-action is strongly transitive on ∆(Xn) and leaves

the signature map s : ∆(Xn) → Sn invariant. Then to calculate the signatures of τ+

and τ− we may assume without loss of generality that τ± are opposite simplices in the

fundamental apartment and τ+ is a simplex in the fundamental chamber. Let τ+ be the

convex hull of the vertices [γi1 ], . . . , [γik ] as defined in (4.4), so that i1 < . . . < ik. Then

s(τ+) = (i1, i2− i1, i3− i2, . . . , n− ik). Since the Cartan involution f : x 7→ (x−1)T sends

the fundamental apartment to itself, by corollary 4.20 it must be that f(τ+) = τ−. Given

that θ([f(γi)]) = θ([γn−i]), the type of τ− is the simplex in the fundamental chamber

with vertices [γn−ik ], . . . , [γn−i1 ]. Therefore s(τ−) = (n− ik, ik− ik−1, . . . , i2− i1, i1) is the

signature complementary to s(τ+).

�

Notice that two simplices τ and τ ′ having complementary signatures is a necessary but

not sufficient condition for τ and τ ′ to be opposite. For example, any two chambers c, c′

in ∆(Xn) have signature (1, . . . , 1︸ ︷︷ ︸
n

), which is a self-opposite signature, but two adjacent

chambers in the same apartment are not opposite.
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4.4 Uniformly regular and undistorted representa-

tions

If τf is a simplex in the fundamental chamber σf ⊂ ∂∞X, selecting the τf -regular

part of ∂∞X allows controlling the dynamics at infinity of the action of a discrete group

Γ < G on the symmetric space X. For such a subgroup Γ its visual limit set Λ(Γ) is the

set of accumulation points of an(y) Γ-orbit Γ · x ⊂ X, this is

Λ(Γ) = Γ · x ∩ ∂∞X.

Definition 4.22 ([40] def. 2.33) A discrete subgroup Γ < G is uniformly τf -regular if

θ(Λ(Γ)) ⊂ ost(τf ),

this is if the visual limit set of Γ is contained in the τf -regular part of ∂∞X.

Though we will not make use of it, we want to mention that there is also a notion of

non-uniform τf -regularity defined in section 2.2.1 of [46] as follows. Fix a point p ∈ X

and for any Ω ⊂ σf let V (p,Ω) ⊂ X be the union of all geodesic rays γ starting at p such

that [γ] ∈ Ω, this is the cone on Ω. Let τf ⊂ σf be a simplex and ∂st(τf ) be the union

of the simplices in σf which do not contain τf . Then a sequence {xn} in C = V (p, σf ) is

τf -regular if it drifts away from V (p, ∂st(τf )) ⊂ ∂C, this is

d(xn, V (p, ∂st(τf )))→∞.

A sequence {xn} in C is uniformly τf -regular if it drifts away at linear rate with respect
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to ||xn||, this is

lim inf
n→∞

d(xn, V (p, ∂st(τf )))/||xn|| > 0.

An arbitrary sequence {xn} in X is (uniformly) τf -regular if the sequence dC(p, xn) of

C-valued distances is (uniformly) τf -regular. A discrete subgroup Γ < G is (uniformly)

τf -regular if any of its orbits is. This last definition of uniformly τf -regular is equivalent

to the one given in definition 4.22.

Definition 4.23 ([40] def. 3.22) For a simplex τf with self-opposite signature, a finitely

generated discrete subgroup Γ < G is uniformly τf -regular and undistorted (τf -URU) if

it is

(i) undistorted, i.e. an(y) orbit map Γ → Γ · x ⊂ X is a quasi-isometric embedding

with respect to a word metric on Γ, and

(ii) uniformly τf -regular.

If ρ : Γ → G is a representation from a hyperbolic group Γ to G, then ρ is a uniformly

τf -regular and undistorted representation (τf -URU) if the group ρ(Γ) < G is τf -URU. If

ρ is τf -URU for some simplex τf we simply say it is uniformly regular and undistorted

(URU).

Example 4.24 Let S be a closed surface of genus > 2 and consider a discrete and

faithful representation ρ : π1(S) → PSL(2,R). It is well known that by fixing a point

x ∈ H2 the orbit map π1(S)→ π1(S) ·x is a quasi-isometry between π1(S) and H2. Thus

the representation ρ is undistorted. Recall from example 4.7 that the building structure

of ∆(X2) ≡ ∂∞H2 is trivial: every point is a chamber and every point in ∂∞H2 is a

regular point. Since Λ(π1(S)) = ∂∞H2, we obtain that ρ is uniformly σf -regular, where

σf is the fundamental chamber of ∆(X2). Therefore ρ is σf -URU. As we will see in the

coming section, the theory becomes richer for representations into higher rank groups.
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Uniformly τf -regular and undistorted representations, defined by Kapovich, Leeb

and Porti in 2014, are equivalent to Anosov representations as defined by Guichard

and Wienhard ([32] def. 2.10) based on the work of Labourie [19]. A representation

ρ : Γ → G is τf -URU if and only if it is P -Anosov, where the parabolic group P is the

stabilizer of τf under the G-action on ∂∞X. In the case that concerns us, which is that

of representations π1(S)→ PSL(n,R), being τf -URU where τf is a simplex of signature

(m1, . . . ,mk) is equivalent to being P -Anosov when P < PSL(n,R) is the subgroup that

stabilizes the flag 〈e1, . . . , em1〉 < 〈e1, . . . , em1+m2〉 < . . . < 〈e1, . . . , em1+...+mk
〉 < Rn,

where e1, . . . , ek is the canonical basis for Rn.

Example 4.25 Let ρ : π1(S) → PSL(n,R) be a representation in the Hitchin compo-

nent of Rep+(π1(S), PSL(n,R)). By work of Labourie we know that ρ is B-Anosov,

where B is a Borel subgroup of PSL(n,R). We can take B to be the group of

upper triangular matrices in PSL(n,R), this is the stabilizer of the complete flag

〈e1〉 < 〈e1, e2〉 < . . . < 〈e1, . . . , en−1〉 < Rn. This flag corresponds to the signature

(1, . . . , 1)︸ ︷︷ ︸
n

, therefore ρ is σf -URU where σf is the fundamental chamber of ∆(Xn).

4.5 The representation ωn : PSL(3,R)→ PSL(n,R)

In this section we construct a generalization of the irreducible representation of

PSL(2,R) into PSL(n,R) we used in section 3.1.2.

Let Pd be the vector space of homogeneous polynomials of degree d in three variables.

This space has dimension n =
(
d+2

2

)
. An ordered basis for Pd is

B = {xd, xd−1y, . . . , xyd−1, yd, xd−1z, xd−2yz, . . . , xyd−2z, yd−1z, . . . , xzd−1, yzd−1, zd}.

If we identify the variable x with the canonical unit vector (1, 0, 0) in R3 then for any
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matrix g = (aij) ∈ SL(3,R) we have that g · x = a11x + a21y + a31z. By identifying y

with (0, 1, 0) and z with (0, 0, 1) we can calculate g · y and g · z similarly. Then for any

g ∈ SL(3,R) we define ωn(g) ∈ GL(Pd) by its action on the basis B:

ωn(g)(xiyjzk) = (g · x)i(g · y)j(g · z)k.

By identifying Pd with Rn using the basis B we obtain the representation

ωn : SL(3,R)→ SL(n,R). (4.7)

It will also be useful to construct the representation ωn in a different way. Let

V = 〈x, y, z〉 and, as before, identify V with R3 by making x ≡ (1, 0, 0), y ≡ (0, 1, 0) and

z ≡ (0, 0, 1). Given d ≥ 2 consider the tensor product Ṽ = V ⊗ · · · ⊗ V︸ ︷︷ ︸
d

. The symmetric

group on d letters Sd acts on Ṽ and the subspace W that is invariant under this action

is isomorphic to the space of homogeneous polynomials Pd. The action of SL(3,R) on V

extends to Ṽ : if A ∈ SL(3,R) then A · (v1⊗· · ·⊗ vd) = (A · v1)⊗· · ·⊗ (A · vd). When we

restrict the action of SL(3,R) to the subspace W we obtain the same action of SL(3,R)

on Pd we had previously constructed. To obtain a matrix ωn(A) ∈ SL(n,R) from this

action it is necessary to fix a basis for W and look at the action of A on this basis. For

every 0 ≤ i, j ≤ d such that i+ j ≤ d let

wij = x⊗ · · · ⊗ x︸ ︷︷ ︸
i

⊗ y ⊗ · · · ⊗ y︸ ︷︷ ︸
j

⊗ z ⊗ · · · ⊗ z︸ ︷︷ ︸
d−(i+j)
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and λij = 1
1+|Sn−Stab(wij)| . Consider the basis C for W given by the vectors

λij

wij +
∑

σ/∈Stab(wij)

σ · wij

 .

Each of these vectors can be identified with the polynomial xiyjzd−(i+j) ∈ Pd, this way

we can order the basis C by matching the order of the basis B of Pd. Then for every

A ∈ SL(3,R) the matrix representation of the action of A on the basis C is the matrix

ωn(A) ∈ SL(n,R).

From the identification of V with R3 we get that V inherits the usual inner product

〈 , 〉 in R3, making {x, y, z} an orthonormal basis. Consider now Ṽ with the inner

product

β(v1 ⊗ · · · ⊗ vd , w1 ⊗ · · · ⊗ wd) =
d∏
i=1

〈vi, wi〉.

The basis C for W is orthogonal, so when we look at β restricted to the subspace W we

obtain that β(v, w) = ([v]C)
TD[w]C, where D is a diagonal matrix with positive diagonal

entries and [v]C is the coordinate vector of v ∈ W with respect to the basis C. Since any

matrix A ∈ SO(3,R) preserves the inner product β, when we look at the action of A on

the subspace W we obtain that ωn(A)TDωn(A) = D. By adjusting the matrix D so that

it has determinant one we obtain the following result.

Proposition 4.26 There is a diagonal matrix J ∈ SL(n,R) with positive diagonal en-

tries such that

ωn(SO(3,R)) ⊂ SO(J) = {g ∈ SL(n,R) | gJgT = J}.

In what follows we let ωn : PSL(3,R) → PSL(n,R) be the projectivization of the

representation we have defined.
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4.5.1 The induced map ω̃ : X3 → Xn

Let J ∈ PSL(n,R) be as in proposition 4.26 and M ∈ PSL(n,R) such that J =

MMT . Then ωn(PSO(3,R)) is contained in PSO(J) = MSO(n,R)M−1, which is a

maximal compact subgroup of PSL(n,R). Knowing where the image of PSO(3,R) goes

to, we can construct a well defined map between quotient spaces:

PSL(3,R)/PSO(3,R) → PSL(n,R)/PSO(J)

gPSO(3,R) 7→ ωn(g)PSO(J).

We wish to transform this into a map ω̃n : X3 → Xn between the symmetric spaces X3

and Xn. To do so recall that for every A ∈ X3 there is a matrix g ∈ PSL(3,R) such that

A = ggT . If g̃ ∈ PSL(3,R) is another matrix such that A = g̃g̃T then g̃ = gh for some

h ∈ PSO(3,R). Thus we obtain the following identification

X3 → PSL(3,R)/PSO(3,R)

ggT 7→ gPSO(3,R).

Now consider the action of PSL(n,R) on Xn where g ·A = gAgT for any g ∈ PSL(n,R)

and A ∈ Xn. The group PSO(J) is the stabilizer of J ∈ Xn and

PSL(n,R)/PSO(J) → Xn

gPSO(J) 7→ g · J = gJgT
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is a diffeomorphism between both spaces (see [47] chap. 21). Then the induced map ω̃n

on symmetric spaces is

ω̃n : X3 → Xn (4.8)

ggT 7→ ωn(g)Jωn(g)T = ωn(g) · J.

Proposition 4.27 The map ω̃n : X3 → Xn defined in (4.8) is such that

(i) ω̃n(h ·X) = ωn(h) · ω̃n(X) for every h ∈ SL(3,R) and X ∈ X3, and

(ii) ω̃n sends geodesics rays to geodesics rays.

Proof. To check (i) let X ∈ X3 and take g ∈ SL(3,R) such that X = ggT . For any

h ∈ SL(3,R) we have that h ·X = hggThT = (hg)(hg)T . Then

ω̃n(h ·X) = ωn(hg) · J = ωn(h) · (ωn(g) · J) = ωn(h) · ω̃n(X).

To prove (ii) first consider the geodesic ray

γr : [0,∞) → X3

t 7→


et(2−r)

et(2r−1)

et(−r−1)

 (4.9)

with r ∈ [0, 1]. For each t ≥ 0 there exists a diagonal matrix gt ∈ PSL(3,R) such that

γr(t) = (gt)
2. Similarly for J there exists a diagonal matrix M ∈ PSL(n,R) such that
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J = M2. Since ωn(gt) and M are both diagonal and commute we have that

ω̃n(γr(t)) = ωn(gt)Jωn(gt)
T

= ωn(gt)M
2ωn(gt)

= Mωn(gt)ωn(gt)M

= Mωn(γr(t))M
T

= M · ωn(γr(t)).

For any r ∈ [0, 1] and t ≥ 0 the matrix ωn(γr(t)) is in the cone Cn and it is easy to see

that αr : [0,∞)→ Xn such that αr(t) = ωn(γr(t)) is a geodesic ray in Xn starting at the

identity. Since the action of M on Xn is by isometries and ω̃n(γr) = M · αr, then ω̃n(γr)

is a geodesic ray in Xn.

Now consider any geodesic ray β : [0,∞) → X3. There is an h ∈ PSL(3,R) such

that h · β = γr for some r ∈ [0, 1]. Then by (i) we have that

ω̃n(β) = ωn(h−1) · ω̃n(h · β) = ωn(h−1) · ω̃n(γr).

Since ω̃n(γr) is a geodesic ray and ωn(h−1) acts by isometries then ω̃n(β) is also a geodesic

ray.

�

Lemma 4.28 There is a K > 0 such that dX3(Id,D) = KdXn(Id, ωn(D)) for every

diagonal matrix D in X3 with positive diagonal entries.

Proof. Recall that the set of diagonal matrices in Xm with positive diagonal entries

forms a maximal flat Fm ⊂ Xm where log : Fm → Rm given by log(diag(λ1, . . . , λm)) =
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(log(λ1), . . . log(λm)) is an isometric embedding. Then for any D ∈ Fm we have that

dXm(Id,D) = dRm(0, log(D)) = || log(D)||.

Let D = diag(ea, eb, e−(a+b)) ∈ F3, then

|| log(D)||2 = ||(a, b,−(a+ b))||2 = 2(a2 + b2 + ab).

On the other hand, every vector in the basis B for the space of polynomials Pd has the

form xiyjzd−(i+j) with 0 ≤ i, j ≤ d and i+ j ≤ d. Then

D · xiykzd−(i+j) = ea(2i+j−d)+b(2j+i−d)xiykzd−(i+j).

It can be checked that

d∑
i=0

d−i∑
j=0

(i−j)2 =
∑

0≤i,j≤d
i+j≤d

(2i+j−d)2 =
∑

0≤i,j≤d
i+j≤d

(2j+ i−d)2 =
∑

0≤i,j≤d
i+j≤d

2(2i+j−d)(2j+ i−d).

Therefore

|| log(ωn(D))||2 =
∑

0≤i,j≤d
i+j≤d

(a(2i+ j−d)+ b(2j+ i−d))2 =

(
d∑
i=0

d−i∑
j=0

(i− j)2

)
(a2 + b2 +ab).

The statement follows from this equality.

�

Proposition 4.29 The map ω̃n : X3 → Xn induced by the representation

ωn : PSL(3,R)→ PSL(n,R) is a bi-Lipschitz embedding.

Proof. Consider two matrices A1, A2 ∈ X3, there exists a g ∈ PSL(3,R) such that
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g ·A1 = Id and D = g ·A2 is in the maximal flat F3. The matrix D is a diagonal matrix

with positive diagonal entries. Since F3 is geodesically embedded in X3, the shortest

path connecting D and Id belongs to the flat F3. Then the distance between D and Id

in X3 is the distance these two points have in F3. Therefore by lemma 4.28

dX3(A1, A2) = dX3(Id,D) = KdXn(Id, ω̃n(D)) = KdXn(ω̃n(A1), ω̃n(A2)).

�

4.5.2 Extending ω̃n to ∂∞Xn

From propositions 4.27 and 4.29, we know that ω̃n : X3 → Xn sends geodesic rays

to geodesic rays, and it is a bi-Lipschitz embedding. Therefore it is possible to extend

ω̃n : ∂∞X3 → ∂∞Xn by making ω̃n[γ] = [ω̃n(γ)]. In this section, we focus on calculating

what is the image under ω̃n of the fundamental chamber σ3
f in the building ∆(X3) and

finding the signatures of the points in ω̃n(σ3
f ) ⊂ ∂∞Xn.

Lemma 4.30 For every r ∈ [0, 1] let Dr = diag(e2−r, e2r−1, e−r−1) ∈ PSL(3,R). Let

d ∈ N, n =
(
d+2

3

)
and ωn : PSL(3,R) → PSL(n,R) be the representation defined in

(4.7). Then

(i) ωn(Dr) has repeated eigenvalues if and only if r = p
q
∈ Q with gcd(p, q) = 1 is such

that q ≤ d, and

(ii) the largest, second largest, smallest and second smallest eigenvalues of ωn(Dr) all

have multiplicity one.

Proof. It is easy to calculate that ωn(Dr) is a diagonal matrix whose diagonal entries

are

{ea(2−r)+b(2r−1)+c(−r−1) | a, b, c ∈ [0, d] ∩ Z and a+ b+ c = d}. (4.10)
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Since we are only interested in the multiplicity and relative order of the diagonal entries

in (4.10), we can instead consider their logarithms: a(2 − r) + b(2r − 1) + c(−r − 1).

Making c = d− (a+ b) the previous expression simplifies to 3(a+ rb)− d(r+ 1) with the

conditions

a, b ∈ [0, d] ∩ Z, (4.11)

a+ b ≤ d. (4.12)

To prove (i) notice that ωn(Dr) will have repeated eigenvalues if and only if there

are two distinct tuples a, b and a′, b′ that satisfy (4.11), (4.12) and such that 3(a+ rb)−

d(r + 1) = 3(a′ + rb′)− d(r + 1), which is equivalent to r(b− b′) = a′ − a. Assume such

a pair of tuples exists. Having b − b′ = 0 would force a′ − a = 0, so let b > b′. Then

r = a′−a
b−b′ ∈ Q. Since 0 ≤ b′ < b ≤ d, the denominator b− b′ is between 1 and d as desired.

For the converse suppose r = p
q
∈ [0, 1]∩Q is in lowest terms and q ≤ d. Then the tuples

a = 0, b = d and a′ = p, b′ = d− q satisfy the desired conditions.

To prove (ii) take r ∈ (0, 1), assume ωn(Dr) has k distinct eigenvalues and let mi be

the multiplicity of its i-th largest eigenvalue. Each pair a, b satisfying (4.11) and (4.12)

corresponds to a diagonal entry e3(a+rb)−d(r+1) of ωn(Dr). Then finding extrema among

the diagonal entries amounts to analyzing the extrema of E(a, b) = a+rb on the set Z2∩T ,

where T ⊂ R2 is the triangle with vertices (0, 0), (0, d) and (d, 0). The function E with

domain T attains its absolute maximum and minimum once, it does so at (d, 0) and (0, 0)

respectively. Thus m1 = mk = 1. Since r < 1 the second smallest value of E on Z2∩T is

E(0, 1) = r. It is easy to see E(a, b) > r for any other (a, b) ∈ (Z2 ∩ T ) \ {(0, 0), (0, 1)},

then mk−1 = 1. If a + b < d then a + rb < d − 1 + r < E(0, d). Along the segment

from (0, d) to (d, 0) the function increases as we go towards (d, 0). Therefore the second

biggest value of E on Z2 ∩ T is attained once at (d− 1, 1) and we get m2 = 1.
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�

Proposition 4.31 For every r ∈ [0, 1] let γr be the geodesic ray

γr : [0,∞) → X3

t 7→


et(2−r)

et(2r−1)

et(−r−1)

 .

and consider the map between symmetric spaces ω̃n : X3 → Xn defined in (4.8). Then

the signature of ω̃n([γr]) ∈ ∂∞Xn satisfies

(i) s(ω̃n([γr])) < (1, . . . , 1︸ ︷︷ ︸
n

) if and only if r = p
q
∈ Q with gcd(p, q) = 1 such that q ≤ d,

and

(ii) (1, 1, n− 4, 1, 1) ≤ s(ω̃n([γr])) for r 6= 0, 1.

Proof. From the proof of (ii) in proposition 4.27 we know there is a matrix M ∈

PSL(n,R) such that ω̃n(γr(t)) = M · ωn(γr(t)). Since the signature is invariant under

the PSL(n,R) action we get that

s(ω̃n([γr])) = s([ω̃n(γr)]) = s([M · ωn(γr)]) = s(M · [ωn(γr)]) = s([ωn(γr)]).

Let mi be the multiplicity of the i-th largest diagonal entry of ωn(γr(1)) =

ωn(diag(e2−r, e2r−1, e−r−1)), then s([ωn(γr)]) = (m1, . . . ,mk) by proposition 4.12. To

prove (i) notice that s([ωn(γr)]) < (1, . . . , 1) is equivalent to ωn(γr(1)) having repeated

diagonal entries. For part (ii), by proposition 4.13 we have that (1, 1, n − 4, 1, 1) ≤

s([ωn(γr)]) = (m1, . . . ,mk) if and only if m1 = m2 = mk−1 = mk = 1. These two

statements follow from lemma 4.30.
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�

Proposition 4.32 Let σ3
f ⊂ ∂∞X3 be the fundamental chamber of ∆(X3), and let τnf ⊂

∂∞Xn be the simplex of signature (1, 1, n−4, 1, 1) in the fundamental chamber of ∆(Xn).

Let ∂
σ3
f−reg
∞ X3 be the σ3

f -regular part of ∂∞X3, and ∂
τnf −reg
∞ Xn be the τnf -regular part of

∂∞Xn. Then

ω̃n(∂
σ3
f−reg
∞ X3) ⊆ ∂

τnf −reg
∞ Xn.

Proof. Recall that C3 is the cone made of all diagonal matrices in X3 with positive

diagonal entries in non-increasing order and σ3
f = ∂∞C3. For every r ∈ [0, 1] define

the geodesic ray γr : [0,∞) → C3 as in proposition 4.31. Then int(σ3
f ) = int(∂∞C3) =

{[γr] | r ∈ (0, 1)}. Take ω̃n(x) ∈ ω̃n(∂
σ3
f−reg
∞ X3). By proposition 4.14 we know that ω̃n(x)

is in ∂
σ3
f−reg
∞ X3 if and only if (1, 1, n − 4, 1, 1) = s(τf ) ≤ s(ω̃n(x)). Since x is in the σ3

f -

regular part of ∂∞X3 there is a g ∈ SL(3,R) such that x = g · [γr] for some r ∈ (0, 1).

We then have that

s(ω̃n(x)) = s(ω̃n(g · [γr])) = s(ωn(g) · ω̃n([γr])) = s(ω̃n([γr])).

From part (ii) of proposition 4.31 we know that (1, 1, n− 4, 1, 1) ≤ s(ω̃n([γr])).

�

4.6 Composition of representations

In this section we examine the composition of Hitchin representations ρ : π1(S) →

PSL(3,R) with the representation ωn : PSL(3,R) → PSL(n,R) defined in (4.7). The

question of when a composition of representations is Anosov has been previously ad-

dressed by Guichard and Wienhard (see [32] sec. 4.1). Their work uses parabolic sub-

groups instead of simplices at infinity. We further examine where these compositions
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are located within the representation space. Theorem 4.34 and proposition 4.35 in this

section complete the proof of theorem 4.1.

Proposition 4.33 Let ωn : PSL(3,R) → PSL(n,R) be the representation defined in

(4.7) and ω̃ : X3 → Xn its induced map between symmetric spaces as defined in (4.8).

Then for any representation ρ : Γ→ PSL(3,R) we have that Λωn◦ρ = ω̃n(Λρ).

Proof. Recall that for any representation r : Γ→ PSL(m,R) its visual limit set is Λr =

or(Γ)∩∂∞Xm, where or : Γ→ Xm is any orbit map for r. Let oρ : Γ→ X3, γ 7→ ρ(γ)·Id

be the orbit map of ρ, and oωn◦ρ : Γ→ Xn, γ 7→ ωn(ρ(γ)) · J be the orbit map of ωn ◦ ρ.

Notice that oωn◦ρ = ω̃n ◦ oρ.

From propositions 4.27 and 4.29 we know that ω̃n : X3 → Xn sends geodesic rays to

geodesic rays and is bi-Lipschitz. Then we may extend ω̃n to a topological embedding

ω̃n : X3 t ∂∞X3 → Xn t ∂∞Xn, where both compactifications have the cone topology.

Given that ω̃n is injective,

ω̃n(Λρ) = ω̃n(oρ(Γ) ∩ ∂∞X3) = ω̃n(oρ(Γ)) ∩ ω̃n(∂∞X3).

Since X3 ∪ ∂∞X3 is compact, then ω̃n restricts to a homeomorphism onto its image.

Then ω̃n(oρ(Γ)) = ω̃n(oρ(Γ)), where this closure is taken with respect to ω̃n(X3 t ∂∞X3).

The image ω̃n(X3 t ∂∞X3) is closed in Xn t ∂∞Xn because X3 t ∂∞X3 is compact and

Xnt∂∞Xn Hausdorff. Then the closure of ω̃n(oρ(Γ)) with respect to ω̃n(X3t∂∞X3) and

with respect to Xn t ∂∞Xn are the same. We have then that

ω̃n(Λρ) = ω̃n(oρ(Γ)) ∩ ω̃n(∂∞X3)

= ω̃n(oρ(Γ)) ∩ ω̃n(∂∞X3)

= oωn◦ρ(Γ) ∩ ω̃n(∂∞X3).
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Now since oωn◦ρ(Γ) = ω̃n(oρ(Γ)) ⊂ ω̃n(X3 ∪ ∂∞X3) then

oωn◦ρ(Γ) ∩ ∂∞Xn ⊂ ω̃n(X3 ∪ ∂∞X3) ∩ ∂∞Xn = ω̃n(∂∞X3).

Therefore

ω̃n(Λρ) = oωn◦ρ(Γ) ∩ ω̃n(∂∞X3) = oωn◦ρ(Γ) ∩ ∂∞Xn = Λωn◦ρ.

�

Theorem 4.34 Let σ3
f ⊂ ∂∞X3 be the fundamental chamber of ∆(X3), and let τnf ⊂

∂∞Xn be the simplex of signature (1, 1, n−4, 1, 1) in the fundamental chamber of ∆(Xn).

Let ρ : Γ → SL(3,R) be a σ3
f -URU representation and ωn : SL(3,R) → SL(n,R) be the

representation defined in (4.7). Then ωn ◦ρ : Γ→ SL(n,R) is a τnf -URU representation.

Proof. Let oρ and oωn◦ρ = ω̃n ◦ oρ be the orbit maps for ρ and ωn ◦ ρ used in the proof of

4.33. Since ρ is σ3
f -URU in particular it is undistorted, so oρ is a quasi-isometric embed-

ding. From proposition 4.29 we know that ω̃n is bi-Lipschitz, therefore the composition

ω̃n ◦ oρ = oωn◦ρ is a quasi-isometric embedding too. This proves ωn ◦ ρ is undistorted.

Next we verify that Λωn◦ρ is contained in ∂
τnf −reg
∞ Xn, the τnf -regular part of ∂∞Xn. By

proposition 4.33 we know that Λωn◦ρ = ω̃n(Λρ). Since ρ is σ3
f -regular then Λρ is contained

in ∂
σ3
f−reg
∞ X3, the σ3

f -regular part of ∂∞X3. Therefore using proposition 4.32 we obtain

that Λωn◦ρ = ω̃n(Λρ) ⊆ ω̃n(∂
σ3
f−reg
∞ X3) ⊆ ∂

τnf −reg
∞ Xn.

�

Remark. Proposition 4.3 in [32] can be used to see that the composition of rep-

resentations constructed in 4.34 is τf -URU where τf ⊂ ∂∞Xn is a simplex of signature

(1, n− 2, 1).
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Proposition 4.35 Let ρ : π1(S)→ PSL(3,R) be a representation in the Hitchin compo-

nent Hit(π1(S), PSL(3,R)) and ωn : SL(3,R) → SL(n,R) be the representation defined

in (4.7). Then ωn ◦ ρ : π1(S)→ PSL(n,R) is not in Hit(π1(S), PSL(n,R)).

Proof. Consider first a Fuchsian representation ω3,2 ◦ r : π1(S) → PSL(3,R), where

r : π1(S) → PSL(2,R) is discrete and faithful and ω3,2 : PSL(2,R) → PSL(3,R) is

the unique irreducible representation between PSL(2,R) and PSL(3,R). For any γ ∈

π1(S) we have that r(γ) is conjugate to a matrix D =

λ 0

0 1
λ

, and so ω3,2(D) =


λ2

1

1
λ2

. Let ρ0 = ω3,2 ◦ r. We can calculate that ωn ◦ ρ0(γ) has 1 as an eigenvalue

with multiplicity greater than one. Since every representation in Hit(π1(S), PSL(n,R))

is purely loxodromic (see def. 3.6), then ωn ◦ ρ0 is not in Hit(π1(S), PSL(n,R)). Now

let ρ : π1(S) → PSL(3,R) be a representation in Hit(π1(S), PSL(3,R)). There exists

a path of representations ρt : [0, 1] → Hit(π1(S), PSL(3,R)) such that ρ0 is a Fuchsian

representation and ρ1 = ρ. Since the path of representations ωn ◦ ρt is connected and

ωn◦ρ0 is not in Hit(π1(S), PSL(n,R)), then ωn◦ρ is not in the Hitchin component either.

�

Theorem 4.1 follows now from theorem 4.34 and proposition 4.35.
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[23] S. Bradlow, O. Garćıa-Prada, W. Goldman, and A. Wienhard, Representations of
surface groups: Background material for aim workshop, .

[24] B. Hall, Lie groups, Lie algebras, and representations: an elementary introduction,
vol. 222. Springer, 2015.

[25] B. C. Hall, Quantum theory for mathematicians. Springer, 2013.

[26] W. M. Goldman, Topological components of spaces of representations, Inventiones
mathematicae 93 (1988), no. 3 557–607.

[27] N. J. Hitchin, Lie groups and teichmüller space, Topology 31 (1992), no. 3 449–473.

[28] W. Goldman, Convex real projective structures on compact surfaces, Journal of
Differential Geometry 31 (1990), no. 3 791–845.

95



[29] S. Choi and W. M. Goldman, Convex real projective structures on closed surfaces
are closed, Proceedings of the American Mathematical Society 118 (1993), no. 2
657–661.

[30] M. Bridgeman, R. Canary, and F. Labourie, Simple length rigidity for hitchin
representations, Advances in Mathematics 360 (2020) 106901.

[31] W. Thurston, The geometry and topology of 3-manifolds, Lecture notes (1978).

[32] O. Guichard and A. Wienhard, Anosov representations: domains of discontinuity
and applications, Inventiones mathematicae 190 (2012), no. 2 357–438.

[33] O. Guichard and A. Wienhard, Topological invariants of anosov representations,
Journal of Topology 3 (2010), no. 3 578–642.

[34] N. R. Wallach, Geometric invariant theory. Springer, 2017.

[35] A. Borel, Linear Algebraic Groups, vol. 126 of Graduate texts in mathematics.
Springer Science & Business Media, 2nd enl. ed. ed., 1991.

[36] A. Sambarino, Infinitesimal zariski closures of positive representations, arXiv
preprint arXiv:2012.10276 (2020).

[37] M. Bridgeman, R. Canary, F. Labourie, and A. Sambarino, The pressure metric for
anosov representations, Geometric and Functional Analysis 25 (2015), no. 4
1089–1179.

[38] W. J. Culver, On the existence and uniqueness of the real logarithm of a matrix,
Proceedings of the American Mathematical Society 17 (1966), no. 5 1146–1151.

[39] S. Choi in Geometric Structures on 2-Orbifolds: Exploration of Discrete Symmetry.
Mathematical Society of Japan, 2012.

[40] M. Kapovich, B. Leeb, and J. Porti, Lectures on anosov representations i:
Dynamical and geometric characterizations, Preprint, January (2016).

[41] M. Kapovich, B. Leeb, and J. Porti, Dynamics on flag manifolds: domains of
proper discontinuity and cocompactness, Geometry & Topology 22 (2017), no. 1
157–234.

[42] M. Kapovich, B. Leeb, and J. Porti, A morse lemma for quasigeodesics in
symmetric spaces and euclidean buildings, Geometry & Topology 22 (2018), no. 7
3827–3923.

[43] T. Barbot, Three-dimensional anosov flag manifolds, Geometry & Topology 14
(2010), no. 1 153–191.

96



[44] Y. Guivarc’h, L. Ji, and J. C. Taylor, Compactifications of symmetric spaces,
vol. 156. Springer Science & Business Media, 2012.

[45] M. Kapovich, B. Leeb, and J. Porti, Morse actions of discrete groups on symmetric
space, arXiv preprint arXiv:1403.7671 (2014).

[46] M. Kapovich, B. Leeb, and J. Porti, Some recent results on anosov representations,
arXiv preprint arXiv:1511.08940 (2015).

[47] J. M. Lee, Smooth manifolds, in Introduction to Smooth Manifolds, pp. 1–31.
Springer, 2013.

97


	Abstract
	Overview
	Hyperbolic objects
	The hyperbolic plane
	Hyperbolic surfaces
	Hyperbolic orbifolds
	Hyperbolic groups

	New examples from the jigsaw group construction
	Background
	Cusp set of the m,n jigsaw groups
	Non-commensurability of the 1,n and m,1 jigsaw groups
	Non-pseudomodular Weierstrass groups

	Zariski dense surface subgroups in SL(n,Q)
	Hitchin representations
	Zariski dense Hitchin representations
	Bending representations of orbifold groups 
	Representations of 1(O3,3,3,3)

	Constructing non-Hitchin Anosov representations
	Buildings and symmetric spaces 
	The symmetric space of PSL(n,R)
	Signatures
	Uniformly regular and undistorted representations
	The representation n2mu-:6muplus1muPSL(3,R) P SL(n,R)
	Composition of representations

	Bibliography



