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Wave Mixing Spectroscopy

Robert William Smith
Lawrence Berkeley Laboratory
University of California, Berkelev 94720

ABSTRACT

We have investigated several new aspects of nonlinear or wave
mixing spectroscopy, utilizing the polarization properties of the non-~
linear output field and the dependence of this field upon the occur-
rence of multiple resonances in the nonlinear susceptibility.

First, it is shown theoretically that polarization-sensitive de-
tection may be used to either eliminate or controllably reduce the
nonresunant background in coherent anti-Stokes Raman spectroscopy
(CARS), allowing weaker Raman resonances to be studied. These new
four-vave mixing techniques are called background suppression-CARS and
optical heterodyned det._ction-CARS. These are experimentally demon—
strated by studying the 992 cm_l Raman mode of benzene diluted in car-
bon tetrachloride, with an attained detection semsitivity of 10C ppm
of benzene. This corresponds to a ratio of resonant to nonresonant
susceptibilities of about 4 x 10—3. A discussion of experimental
techniques, possible applications, and limitations of these techniques
are also given.

The features of multi-resonant fovr-wave mixing are examined in
the case of an inhomogeneously broadened medium. It is found that the
linewidth of the nonlinear output narrows considerably (approaching
the homogeneous width) when the quantum mechanical expressions for the

doubly- and triply-resonant susceptibilities are averaged over a Dop-
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pler or strain broadened profile. Experimental studies of nonlinear
processes in P :Lal’, verify this linewidth narrowing, but indicate
that this strain broadened aystem cannot be treated with a single
broadening parameter as in the case of Doppler broadening in a gas.
We also measure geveral susceptibilities from which we deduce dipole
matrix elemants and Raman polarizabilities related to the 3!!4, 3“6'

and 3P0 levels of the praseodymium ions.



DEDICATION AND ACKNOWLEDGEMENTS

This thesis is dedicated to my wife, Sandra, and my children,
Emily and Melany, whose loving devotion and sacrifice have made this

thesis a reality.

There are many other people to whom I am Indebted for their sup-
port during the course of this work. I would like to particularly
thank:

Professor Y. R. Shen for his guidance and patience during my
research and in the preparation of this thesis and for instilling in
me his high standards of physics;

Drs. Donald Bethune, Steven Chu, and Jean-Louis Oudar, co-workers
and co—authors, who have imparted to me their wisdom of experimental
physics;

Alex Jacobson, Chenson Chen, Ray Hsu, Gary Boyd and the other
fellow students and post-docs of the Shen Croup who were always avail-
able for discussions of life and science;

Rita Jones and Gloria Pelatowski for their expert assistance in
preparing this manuscript.

This work was supported by the Division of Materials Sciences,
Office of Basic Energy Sciences, U. S. Department of Energy

under Contract 7405-ENG-48.



TABLE OF CONTENTS

I. INTRODUCTION
II. REVIEW OF FOUR-WAVE MIXING SPECTROSCOPY
A. Semiclassical Theory of Nonlinear Optics
B. Physical Properties of the Nonlinear Output Field
C. Analysis Techniques
D. Stimulated Raman Processes vs. Signal Generation Processes
and Specific Examples
E. Signal to Noise Analysis
Referenc -
Figure Captions
Figures
III. EXPERIMENTAL DEMONSTRATION AND DISCUSSION OF BACKGROUND
SUPPRESSION-CARS AND OPTICAL HETERODYNED DETECTION-CARS
A. The Standard Amplitude-CARS Terhnique and Apparatus
B. Polarization-Sensitive CARS Techniques and Apparatus
C. Background Suppression- and Optical Heterodyned Detection-
CARS: Experimental Measurements and Analysis
D. Applications and Limitations of Polarization-Sensitive
CARS Techniques
References

Figure Captions

Flgures

1v.

A.

MULTI-RESONANT FOUR-WAVE MIXING IN INHOMOGENEOUSLY BROAD-
ENED MEDIA — THEORY

Multi-Resonant Nonlinear Susceptibilities

Page

11

24
39
50
52

54

62
63

67

72

86

96

98

100

110

i1



1ii

Page

B. Inclusion of Inhomogeneous Broadening 116

C. Effects of One-Photon Absorption 125

References 129

Figure Captions 131

Figures 132
V. MULTI-RESONANT FOUR-WAVE MIXING IN INHOMOGENEQUSLY BROAD-

ENED MEDIA —— EXPERIMENT 135
A. Sample — Pr+3:Lal’3 136
B. Linear Absorption: 3H4 > 3P0 138
C. Triply-Resonant RIKES 143
D. Doubly-Resonant CARS -— Raman Resonance 151
E. Doubly-Resonant CARS — Upper State Resonance 161
References 165
Figure Captions 167

Figures 169



I. Introduction

The primary goal of general spectroscopy is to provide inforua-
tion about the physical properties of materials through the use of ex-
ternal probes. In particular, the interaction of matter and radia-
tion, optical spectroscopy, has been extremely fruitful in obtaining
data on material transitions and excitations. The development of the
laser has further stimulated the growth of this area of specti~scopy,
with such techniques as Raman scattering and Brillouin scattering be-
inpg commonly utilized. The demonstration of tunable dya lasers in the
late 1960's has led to the development of yet another form of spectro-
scopy — nonlinear or wave mixing spectroscopy.

Four-wave mixing spectroscopy, one of the better known examples,
involves the interaction of three optical fields within a medium ro
create a fourth coherent optical field. The coupling between these
fields is embodied in the nonlinear optical susceptibility, which con-
tains all pertinent information about the material system, e.g. the
characteristic resonances. With frequency-tunable input filelds it is
possible to probe the material excitaticns through the resonant inter-
action, thus observing resonant enhancement of the output field. 1In
this way, four-wave mixing may be used as a form of spectroscopy
which should be observable in media of 2ny macroscopic symmetry.

Wave mixing spectroscopy has many advantages over the convertion-
al forms of linear spectroscopy, e.g. spontaneous Raman scattering.
First of all, the nonlinear techniques are ccherent with the output
field propagating in a well defined direction. Such collimated out-

put allows collection efficiencies to approach unity and discriminates



against unwanted backgrouad fluorescence. This, together with the
fact that the nonlinear signals are usually much stronger than spon-
taneous signals, greatly reduces the time required to make a spectrum
(nonlinear spectrz require only minutes compared to the hours neces-
sary to make gome spontaneous spectra). Also, in coherent forms of
spectroscopy, the frequency resolution is determined by the linewidths
of the input lasers (as low as lo—acdnl), rather than the bandpass of
the detection system as in spontaneous scattering experiments. Final-
ly, using pulsed lasers, it is possible to obtain time resolved stud-
ies of transient phenomena. Exploiting these features, four-wave mix—
ing spectroscopy has bcen applied to many areas of research, including
high resolution spectroscopy, combustion research, and studies on
highly fluorescent biological samples.

As the area of four-wave mixing spectroscopy matures, there are
many variations of the basic wave mixing concept which have developed.
In Section II we review the general formalism used to describe these
effects, with emphasis placed on the various methods of analyzing the
nonlinear output beam, i.e. polarized and unpolarized detection. The
processes are then further classified by the frequency mixing involved,
with stimulated Raman scattering-type processes {output frequency de-
generate with an input frequency, e.g. Stimulated Raman Gain Spectro-
scopy, SRGS) distinguished from signal generation processes (output
frequency distinct from the input frequencies, e.g. Coherent Anti-
Stokes Raman Spectroscopy, CARS). We then describe the theoretical
analysis of two new forms of four-wave mixing: background suppres-
sion~CARS and optical heterodyned detection-CARS. Using these new

techniyuves it is possibie to produce spectra dependent upon either



IXR'Z' Im[xR], or Re[xR] (Hherexk'is the resonant susceptibility) with
the background nonresonant contribution to the signal either elimi-
nated or greatly reduced. A formal signal to noise aunalysis of the
various forms of CARS is performed to compare the techniques.

Section III contains the experimental demonstration of these new
CARS techniques. We first discuss the general methods and apparatus
used in conventional CARS, then include modifications needed to make
polarization-sensitive measurements. Experimental spectra are pre-
sented of the 992 cm_l Raman mode of benzene diluted in carbon tetra-
chloride, which confirm the expected lineshapes of the different tech-
niques. Measuremeat of the ratio of resonant to nonresonant suscepti-
bilities is analyzed and compared to previous work; and the minimum
detectable value of this ratio is established. Possible applications
and limitations of the polarization-sensitive CARS techniques are also
discussed.

In the first part of this thesis, we consider four-wave mixing
processes with only a single resonance (the most interesting case be-
ing two-photon resonances, e.g. Raman). In Section IV we include the
possibility of multiple resonances in the nonlimear susceptibility,
with explicit, quantur. mechanical expressions presented for several
doubly- and triply-resonant susceptibilities. We then consider the
consequences of inhomogeneous broadening on these multi-resonant sus-
ceptibilities — the cases of Doppler bruvadening and strain broaden-
ing considered as examples., After averaging over such broadening, it
is shown that in certain cases four-wave mixing processes show a line-
width narrowing that approaches the hcmogeneous width of the transi-

tion, Criteria are established to predict which processes will dis-



play this narrowing effect. The effects of linear absorption on the
nonlinear output signal are also important in multi-reponant cases and
are considered here in detail.

An experimental system used to examine the multi-resonant pro-
cesses in the presence of strain broadening is described in Section V.

+3 ions doped in lanthanum tri-

Using the sharp electronic limes of Fr
fluoride, the expected narrowing effects were observed (although the
presence of "accidental degeneracy" broadened the nonlinear output).
Measurements were also made to evaluate the strengths of the multi-

resonant susceptibilities associated with the 31! » 311 and 3P0 levels

of the Pr+3

6’
, from which the values of the dipole matrix clements and
Rawan polarizabilitv were determined. Although some values have
large uncertainties, new experiments are proposed to improve the

measurements.



II. REVIEW OF FODR-WAVE MIXING SPECTROSCOPY

A. Semiclassical ‘heory of Nonlinear Optics
In the classical theory of 1.'ad1.al::lon,1 the electromagnetic fields
are governed by Mauwell's equations with the properties of the material

system introduced through the constitutive relations
Bl = c@E@ and B = W),

In geaeral, the Fourier components of the fields at frequency w are
coupled by electric and magnetic permeability ter=eors, k4 and ‘1: respe--
tively, which are not only frequency dependent, but aiso field dependent.
It is this nonlinear dependence of B on £ which leads to the classical
theory of most nonlinear optical phenomena (magnetic related phenomena
will not be discussed here). In developing nonlinear optics theory.z
interest is usuvally fo-used on the polarization vector P=@3 - E)/4n
which contains the information about the material system and its nonlin-
earities. It 1s assumed that the nonlinear effects are small so the po-

larization can be expanded in a power series in the electric field
Blw) = ;(1) (-0sw) + Elw) + ;(2)(—w,ma,mb) :E(ua)g(mb)
+;(3)(—m,ma,wb,mc)Ef(ua)f(mb)g(c\c) e o o . (1)

The first term of this expansicn is the linear response of the medium to

the electric field E(m). It is described by the first-order suscepti-

(1)

-
bility ¥ , of which che real part contributes to the iinear refractive



index 2nd the imrginary part determiaes the linear absorption at w. The
second-order term, restricted to w = ma + mb, describes nonlinear mixing
processes involviag two input fields, E(u.) and E(wb). such as scw-fre-
quency generation or optical parametric amplification. The cubic field
dependence of the next term is coupled to the polarization by the third-

(

-(3)
order nonlinear susceptibiiity x 3 (0 ,u .uc) where now w = ma + ub

a’’b
+ wc. This term characterizes the parametric interaction of the "four-
wave mixing" process and will be examined in detail in this thesis.
Greater insight can be given to the susceptibilities if we regard
the medium as a quantum mechanical system, although still treating the
fields as classical quantities. This is the semiclassical treatment,
which is sufficlent to describe stimulated emission phenomena, however
it fails to predict any spontaneous emission phenomena. Expressions for
the susceptibilities can be fouud using the density matrix formalism ap-
plizd to perturbation theory of the electromagnetic 1nteraction.2 In

(3

particular the expressioan for contains 48 tems.3 Fortunately in
mest spectroscopic applications the particular resonance of interest ap-
pears in only a few of the possible terms, while the other terms remain

essentially nondispersive. "ften a fcrmal separation of these terms is

desirable
(3) _ (3 ,*@3)
X e tXg 2}
-
*(3) “(3)
where Xg and Xyr  2re the resonant and nonresonant susceptibilities
respectively.

The susceptibilities relate macroscopic fields, thus the quantum

mechanical susceptibilities for individual atoms or molecules must be



suitably averaged over the spatisl arrangement of the atoms or molecules.

“(3)

Therefore the tensor elements of x are constrained by the spatial

symmetry of the macroscopic .nedium. Examination of sll symmetries indi-

0(3)

cates that x 18 never necessarily identically zero, consequently
"four-wave mixing" processes cam occur in all materials. Since electric-
dipole second-order processes are forbidden in isotropic media, third-
order processes are the lowest order nonlinear effects observable im 1i-
quids and gases.

Returning to Maxwell's equations, we use the nonlinear polarization

as a source term and write the driven wave equation for E(w) as
2 n2 m)wz - 41!'.12 (3) 3
CEGEw) + L0 gq ) - - A 3, 3)
c c

= "*(3 .
where, 1-5(3) (?‘,m) = )(( )(—w,ma,mb,mc) ZE(-{',ma)E(:‘,mb)E(;,mc) and all
fields are assumed to be plane waves of the form

> >
k,°r

i
E(-lt,mj) =g(_lt.wj)e i,

The z-axis is chosen to coincide with -l:, the output wavevector. Assum—

ing the rate of change of g(_t:,m) across one wavelength is small, we can

write £¢. (3) as

ng - AT
Bz oy Fm 3O 0 ) B TR @)

- =+ +> > -+
with Ak = ka + k'b -+ kc - k being the wavevector mismatch due 1n part to
the linear dispersion of the refractive index and in part to the geome-

try of the wavevectors. Integration of Eq. (4) with the boundary of the



nonlinear medium at z = 0 yields

z(z,m) = Z(O,N) +1i

- 12k _
%;‘;c X (3 {(~w ,cus,wb,mc) QZ(ma)z (mb )K(mc){ﬁ_’_l}

n 1Ak » z
(5)

E(o,u) is the field at w incident on the nonlic_dar medium at z = 0.
Here we assume the small sig:zl limit, i.e. there is no depletion or al-
teraticn of the polarization state of the beams at ma, ub, mc as they
propagate through the medium, although these assumptions may be lifted.‘.
The importance of the wavevector mismatch is shown by the bracketed
term in Eq. (5), which has a maximum value of z when &K = 0 and falls to
zero when Ak + z = 21. Thus we must ensure that Ak is minimized to have
maximum output. In the normal experimental setup, one can usually con-
trol the directions of the beams to achieve phasematching in many pos-
sible ways. In some cases, the choice of four-wave mixing process gives
automatic phasematching — independent of the beam geometry. More often
though, the beam geometry determines both the phasematching and the in-
teraction length, 2z, of the input beams. 1In the following discussionm,
it is assumed that phasematching has been achieved.

The output field of a four-wave mixing experiment is thus described

by

g(z,m) = g(O,w) + 18;(3) (—m,ma,wb,mc) Eg(ma)z'(wb)z.(mc) (6)
where we define g = nZ(ﬂﬂ:u)zc. This result follows using infinite plane

waves, but the use of other beam profiles only alters the form of 8.
The analysis of this signal field depends only on the general form of

Eq. (6), not the specific form cf 8, and is the subject of the mnext



part of this section.

B. Physical Properties of the Nonlinear Output Field

To begin the discussion of the analysis of the nonlinear output, we
first enumerate the physical properties upon which this output field is
dependent. In nonlinear optical experiments these are (1) the output
frequency; (2) the pclariza*ton state of the output field; (3) the tem-
poral behavior of the input beams znd the response time of the medium;
(4) the momentum-space dependence of the output. The latter two .- ._per-
ties will not be considered here beyond the fact that we are concerned
with steady-state, phasematched sclutions to the wave equation as given
in Eq. (6). Work in the time domain and moaentum space can be found in
the literature.5’6 In this section emphasis will be placed on the spec-
tral and polarization properties of the nonlinear output.

In all spectroscopy experiments the output field E(z,m) is strongly
dependent on the output frequency. It is this strong variation which
allows these nonlinear techniques to be used as spectroscopic techniques.
The spectral dependence of g(z,m) is determined by the frequency depen—
dence of the nonlinear susceptibility which is contained in the resonant
part of ;(3). It is informative to show explicitly one term from the

quantum mechanical expression for ;é3).3 One term of

[Xlgs)(‘“’""a’“’b"“c)]ijkz= Z Efi

g,n,n'n" h3

)

b:4:4

g—(wa+mb)—1fn.g)(mn"g—w-irn"g)
[¢))]

h =E -E -
where, wng 0 e is the energy diffterence and an the phenomenolo

<g|ri|n"><nlrj|g><n'|rk|n><n"|r2|n'>p

x T
(mng—wa—lrng)(mn.



gical damping constant between quantum states |n> and |g>, - e<nlrj|g>
®
88
fractional population initially in state |g>. and N is the density of

i1s thei th component of the electric dipole matrix element, p is the

particles. Examination of Eq. (7) shows both one-photon and two-photon
(3)

resonances are included in ;R . Single photon resonances, e.g. wa »>
wng’ also appear in the linear susceptibility and thus can b2 probed
through linear spectroscopy. The major interest in four-wave mixing
spestroscopy has been to examine two-photon resonances, e.g. w, + w b d
wn'g' Two-photon absorption (TPA) resonances occur when w, >0, wy > 0;
and Raman resonances occur when w, >0 and ©p < 0. The output frequency
in cither case is still w = v + vy + B, where w, can be independently
chosen. For example, choosing ER > 0 we can monitor an infrared (Raman)
transition and have the output frequency in the visible (where photomul-
tipliers are more efficient). This is a very attractive feature of
four-wave mixing spectroscopy.

Of equal interest to the spectral variation of the susceptibility
is a complete description of the polarization properties of the output
field g(z,w). % show below that in general the polarization state of
E(z,w) is also dispersive, i.e., explicit expressions for parameters
describing the polarization state show resonance behavior, similar to
the resonant susceptibility. This allows the added freedom of polari-
zation analysis of nonlinear signals to determine spectroscopic informa-
tion.

To see that the output polarization state is dispersive we begin

by rewriting Eq. (6) using the formal separation of Eq. (2)

Ew) = 0,0 + 180 (w000 ) B B @I cont'd

10



1850 w0 0y 1) 1w DB (0 ), ®)

(The z-dependence of the output field will henceforth be suppressed.)

We gather the first and second terms together and write Eq. (8) as

Tw =8 w + 8w 9

NR

*(3) f . .
18xp (—w,wa,wb,wc).E(wa)g(wb)g(mc). iwte that as the resonance is

where T () = E(0,0) + B3 (w00 0) o ) (0, )E () and &) =

scanned gLO (the so-called local oscillator field) 1s unchanging, while
the resonant field gR will vary in magnitude and changes phase relative
to ELO' The combination of these two filelds leads to a total output po-
larizatlon state which is dispersive. Omly if KR and gLO are in the
same polarization state will there be no dispersion in the output polar-
ization state.

Thus we see that there are two physical properties of the output
which allow four-wave mixing to be used as a spectroscopic technique.
One can find the dispersion in the nonlinear susceptibility by measuring
the variation of the output field amplitude. Or one can obtain similar
information by determining the change in the output field's polariza-
tion state as the resonance is scanned. Detailed analysis of these

techniques and possible hybrid techniques are discussed in section IIC.

C. Analysis Techniques
In this sub-section we consider four possible general forms of
four-wave mixing spectroscopy experiments. Explicit expressions are

given for the detected signal in each case, and the important features

11



of each technique are emphasized. The discussion begins with a descrip-
tion of the detection system to be considered.

In all of the experimental arrangements proposed, it is assumed
that the optical detector, either photomultiplier or photodiode, is op-
erated at light levels such that it is a perfect square-law detector.
The important quantity is not the output field reaching the detector
én(m), but its square magnitude lznlz. As pari of the detection system,
we include the possible use of a general elliptical polarization analy-
zer which transmits the polarization stace éa to be described below. In
this case only the a-component of output field actually arrives at the
detector. It is assumed that the photocurrent is electronically pro-
cessed and eventually displayed on a recorder versus the relevant fre-
quency parameter. (In the last case considered below, we assume that
the polarization analyzer is adjusted to give a null signal from the op-
tical detector.)

It is useful at this point to review and define some terms related
to the general elliptical polarization state.7 Several sets of paiame-
ters are commonly used to describe the general polarization state.

These are (1) the two components of the field along orthogonal axes,
(2) the complex number which is the ratio of these two components and
(3) the inclination angle of the semimajor axis and the eccentricity
angle of the ellipse. Figure 1 shows the relationship between these
pairs of parameters. A useful form for the general polarization unit

vector is

éu = {cos® cos$ + 1 sind sin¢)§ + (sin® cos¢ - 1 cosb sin¢)§ {10)

12
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where 9 is the inclination angle of the semimajor axis relative to amn
arbitrary x-axis, 0 S8 <w; and ¢ is the eccentricity angle, ¢ =
t:an_1 (b/a) as in Fig. 1, - 7/4 S ¢ S nf/4. The sign of ¢ is taken posl-
tive for right elliptical polarizations, and negative for left ellipti-
cal polarizations. For example, ¢ = 0, 4+ = n/4 represents the right
circular polarization state (RCP), ¢ = 0, ¢ = - /4 represents left cir-
cular polarization (LCF), and states with ¢ = O are linearly polarized.
1f e, is polarization state orthcgonal to éu, we have for unit vectors

£

k. N N .
e »~e, =0 e, "€, =€ * e, = 1 e, =z xe (11)

(éu, éB’ z) form a generalized orthonormal coordinate system to describe
a vector field & propagating in the z-direction. 2 is separated into
components as
2ot B 2 L&y
(eu )eu + (ee )eB.
With this background we now return to the analysis of the four-wave mix-

ing output field E(w)-

1. Amplitude Analysis

smplitude analysis is the simplest form of analysis technique, and
is thus the most widely used method in four-wave mixing spectroscopy.s’9
The simplicity of this approach arises because no form of polarization
analysis is performed, so the typical apparatus needs only the minimum

equipment with the detection system consisting primarily of the optical

detector. This type of experimental arrangement measures [g(m)lz. The



appropriate physical quantity for this discussion is the optical inten-
sity at the detector ID(tu). Using Eq. (9), we have

=

@ =2 @+l

- 2, g 2 gt L2
g [Bol® + 50 [Bg1% + 2 rel¥], - &)

.1m+1R+1H (12)

where IH = z—: Re[xzo . zR] i1s the heterodyned intensity, I!.O (IR) is the
intensity at the detector if only gm (IR) is present. and n is the in-
dex of refraction at w. Of particuleir intesrest in spectroscopy is the
lineshape of the output signal which depends strongly on the relative
strengths of the three terms 1[.0' IR’ and IH. We examine two extreme
cases — I > ;5 and I < Lo

If |gR( > IELOI’ the output signal shows a resonance proportional
to the square magnitude of the resonant susceptibility, and so the
strength of this resonance will increase quadratically with N, the den-
sity of resonant =~atterers. The lineshape, in this case, is compli-
cated by the presence of the local oscillator and may show a relative
minimum anywhere within the spectrum due to the interference effects of
the heterodyne term, IH' Unlike I‘LO and IR which represent the actual
intensities of the separate fields, the heterodyne intemsity, IH' is not
a true intensity and can take on either positive or negative values.
Furthermore, when several closely-spaced resonances are involved, the
lineshape is determined by lilm + E(ER)1|2 with the sum over all reson-

ances, Cross-terms between different resonant fields severely distort

14
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the spectrum, limiting its usefulness for spectroscopy.

At the other extreme, for a weak resomance with ILD » IR’ the dis-
persive signal is carried on the heterodyne term, IH (assuming the com-
ponent of ELO along ER is much larger than |3R|). The output signal now
consists of the li.rge nondispersive off-set due to the strong local os-
cillator upon which is superimposed the lineshape of a linear combina-
tion of the real and imaginary parts of the resonant susceptibility from

I The resonant signal will decrease linearly with N instead of quad-

0
ratically, thus the sensitivity falls off in the same way as in linear
scattering experiments. When several resonances are present, the signal
term becomes <2 I Re[g* . (E ).}, so all contributions are linearly

4n § L0 R17”
superinposed. In such a spectrum, it 1s relatively easy to separate the
individual resonances.
When dealing with the ultimate detection sensitivity of these non-

linear techniques, this weak resonance limit is of interest. In parti-

cular the modulation depth of the signal is important, as defined by

I, 2Relér, - £

- _H
Mg = L, I§L ' a3
0
where we let gLO = IELOleLO' The condition of a weak resonance ensures

that MAHP <€ 1. This ratio of dispersive signal to nondispersive signal
will be useful in determining the detection limit as described in part

E of this section.

2. Polarization Analysis - Nulled Local Oscillator

This technique of analysis requires the addition of a general po-

10,11

larization analyzer in the detection system, consisting of a quar-



ter-wave plate followed by & linear analyzer. Adjusting the axes of
these two optical elements any pure elliptical polarization state can
be analyzed. Figure 2 shows the orientation of the axes to transait the
polarization state ;u as defined in Eq. (10).

With the introduction of a polarization analyzer before the detec-

tor we reduce the output field reaching the detector to

L AENCIER (B

% % -
= (eu . ILO + e, - tn)eu. (14)

A particularly interesting situation occurs when the analyzer exactly
nulls the contribution to KD from the local oscillator. This is the

X e
case when e - o= 0. The intensity at the detector becomes

N LS AL as

Only the component of the resonant field which £s orthogonal to the lo-

cal oscillator contributes to the signal. There is no nondispersive

contribution to the signal — the spectrum sh only r .

The result given in Eq. (15) is independent of the relative
strength of za and ILO’ but does depend on the square magnitude of the
resonant susceptibility. Unliike the amplitude analysis case discussed
above, with the local oscillator rejected the detected signal is always
quadratic in the density N. Thus, al_hough tke constant background has

been removed, the small signal from a weak resonance mav he obscured by

various noise sources, leading to reduced sensitivity (see section IIE



for the signal to noise analysis).

ok
We note that the detected intensity depends on e, " . {

R’ where e, is

orthogonal to the local oscillator field. For a given resonant and non-
resonant susceptibilities and input field strengths, the magnitude of

é: . ER depends only on the choice of the polarization states of the in-
put fields. Varying the input polarizations alters the direction of ik
and ELO {and thus éa), whi/« the magnitude of 3R (and the nonlinear por-
tion of ELO) also changes. Thus the detected intensity im Eq. (15) can
be optimized by the proper choice of input polarization states. This
type of optimization applies to all forms of analysis discussed in this
section, with specific examples given in subsection D.

So far we Lave dealt only with the nulling of the nondispersive lo-
cal oscillator, but this nulling technique can also be extended to in-
clude cancellation of contributions from particular resonances. Consi-
der, for example, two resonances separated in frequency by several line-
widths — one resonance greatly dominating the other. The total output

field is
W =& + &, + 8, W

with gRl (ERZ) due to the strong (weak) resonance. In a limited spec-
tral range around the central frequency of the weak resonance, the field
ERl(m) will change only slightly in magnitude and phase. Thus the po-
larization analyzer may be adjusted to nearly null the local oscillator
and the strong resonance fields in this spectral region. In this case
the output signal shows essentially only the component of 3R2 orthogonal

to (zLO + le). This generalization may be useful to study previously
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undetectable resonances.

j. Polarizaticn Analysis — Heterodyned Local Oscillator
Another form of polarization snaiysis, the heterodyned local oscil-

10,11 combines the attractive features of the two pre-

lator technique,
viously described methods. ‘In this case, the polarization analyzer is
rotated away from the position of nulled local oscillator discussed
above, allowiug a small fraction of this field to be transmitted. The
strength of this leakage local oscillator field can be adjusted guch
that it is dominant over the resonant field while still being much weak-
er than the full local oscillator field. Thus, as in the nulled local
oscillator case, the spectrum shows quite strongly the dispersive sig-
nal, while this signal now .omes from the heterodyning of ~he leakage
local oscillator and resonant fields and is linear in Xg» as in the amp-
litude analysis case. This polarization technique allows onc to scale
the strength (and to alter the phase) of the local oscillator so that
the modulation depth of the resonant signal is fixed above the possible
noise fluctuations of the leakage local oscillator.

To formalize this discussion, we assume the polarization analyzer
now transmits the polarization state éu. which is close to the state éa
which exactly nulls the local oscillator field. We define a generalized
complex small angle @ between the polarization state éa' and the local
oscillator unit vector éLO

% -~
ea, T e . {16)

The quantity O then describes the amount of local oscillator to be al-
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lowed to leak through the analy»=r The output field at the detecter

from Eq. (14) becomes
ok “ & R
zD(”) = [(eu' * eLO)IILOI + €at ° zR]eu'
= (o0& ] + é: - 12, an

ak )]
where we have assumed that || **] so that e - IR = e 'iR' and the

detected intensity is

_cn . o* 2
) =52 |0 [ + e - By
=|0|2 +I' + I (18
Lo R H '

where ILO is the intensity at the detector due to the full local oscil-
lator, I& is the resonant intensity at the de_ector as in the nulled lo-

cal oscillator case, and

-} a* Sl
1= o relCo € gD - €]

=g Ireln @ - B (19)

Neglecting the term Ii in the case of a weak resonance, Eq. (18) shows
explicity the reduced local oscillator intensity and the heterodyned
signal term. From Eq. (19) the complex nature of & can be exploited to

]
examine both the real and imaginary parts of ea . ER'

An informative expression for © can be derived when the state éa.
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is obtained from Ea by infinitesimal changes in the characteristic

angles 6 and ¢ of éa. We have

aéa a“a
ér=e +Wde+a—¢-d¢
é +“*de £18& d
=a 3 -
8 g 4
with éB orthogonal to éu' So,
=,.* ~
= e %o
= (cos2g do - 1 dg)(&: - & ) 20
= (cos2¢y do - 0 - &, (20)

where there is an overall phase factor 8; . éLO of the local oscillator
state relative to polarization state éﬂ' de is the change in the inclin-
ation angle of the axis and d¢ is the change in the eccentricity angle of
the elliptical polarizatiorn state. Relating these angles to the inclio-
ation angles of the quarter-wave plate, n, and the linear amalyzer, g,

as in Fig. 2, we have
A% -
8=1[-1idg + (cos2(g - n) + i}dn](eB . eLo). (21)

Simple cases occur when dn = 0, i.e., heterodyning by only uncrossing
the linear anmalyzer (0 =-id;(é; . éLO) and when dn = dz, i.e., uncross-
ing both quarter-wave plate and linear analyzer by the same amount (B =
cos2(g - n)d;(é; . ELO)). Thus by proper choice of dn and dz the phase

of © can assume any value and can be adjusted to display only the real

20
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or the imaginary part of the susceptibility. This added flexibility
over the standard amplitude analysis technique makes this heterodyned
local oscillator method more useful to sort out complicated spectra.
Again, to determine the semsitivity and to compare this case with the

amplitude case, we define the modulation depth as

I zaele*(é: . ER) 1

2 = Z
lol” 54 lol” 18,1

A crude comparison of this exprission with Eq. (13) shows that the he-

(22)

Mygr =

terodyne case improves the modulation by a factor of about IOI_I. Since
typically |o] ~102 - 10_3, there will be two or three orders of magni-
tude improvement in the detection sensitivity when using this polariza-

tion analysis technique. This is born out in the more detailed sigmal

to noise calculation of section IIE.

4. Polarization Analysis - Coherent Nnnlinear Ellipsometry
An alternate form of spectroscopy, coherent ellipsometry,12 exam—
ines explicitly the dispersion of the output ficld's polarization state.
This can be done by measuring the angles (8,¢) describing the elliptical
polarization as a function of the characteristic frequency parameter.
As in normal ellipsometry, these angles are dei>rmined by varying both
the quarter-wave plate and the linear analyzer to obtain a null of the
nonlinear signal. In principle, one can then relate this dispersion of
the polarization state to the dispersion of the resonant susceptibility.
To begin this discussion, we introduce two angles (8',¢') which are
easily determined from the components of the output field g(m).

The components are taken with respect to the orthogonal polarization
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gtates éa and éB’ with éu orthogonal to the local oscillator as before.
* “ k & n - -
= (6 o . . = & + & .
g (eu ER)ea + (eB ELO + eB ZR)e8 X Be8

The angles 8' and ¢' are given by the :elations

zRe[&*GB]
18,1 - &1
21m[&:88]

sin2¢’' = (23)

2 2"
e 12+ [z,

The definition of these angles 1Is a generalfization of the inclination
and cocentricity angles which are defined with the same relations as Eg.
(23) but with respect to the linear polarization states éx and éy. By
using the "natural” polarization states of the problem, the interpreta-
tion of the dispersion is clearer. For exampie, when the resonance is

weak, we have |ﬂu| < |58| = |é; . aLOI and

el €6, - 8", - 2 )
“;; ) EL0|2

2m( &) - 8" @ - E o)

125 - 5l ,

tan28' = 28' = -

sin24' = 29" (24)
thus 6' is dispersive as the real part of an effective resonant field
while ¢' shows the dispersion of the imaginary part of this field.
These angles are both linear in the resonant susceptibility with all the
advantages this entaills.

Of course, in any experiment the angles 8 and ¢ describing the po-

larization state are measured, but 8' and ¢' can be deduced from the re-



lations

- sin28 cos2¢
sin2¢u sin2¢ + c052¢u cos2$ cos20

tan29'
sin2¢' = cosZ¢u sin2¢ - sin2¢u cos2¢ cos20. (25)

These relations are derived using Eq. (23) with ﬂu and 88 written in
terms of x,y coordinates. In Eq. (25), we have assumed that the state
éu Is described by an inclination angle eu chosen to be zero, and an ec-
cintricity angle equal to ou.

Although coherent non’inear ellipsometry involves actual determina-
rion of elliptical ;>larization angles 8 and ¢, it 1s closely related to
the preiously Jdescribed polarization analysis techniques. In the
nulled and het.-.dyned local oscillator techniques the analyzer is fixed
at one polarization state as the frequency is scanned through the reson-
ance, while in ellipsometry the analyzer and frequency are simultaneous-
ly adjusted. Th latter requires a point by point spectrum be taken,
incrementing the frequency, then searching fur the null. It is often
easier to make a polarization-sensitive spectrum of iatensity through a
fixed analyzer versus frequency, as in the previously described tech-
niques. Basically, the simplicity of the nulled or heterodyned local
oscillator technique occurs because information is being determined
about either Re(xR), Im(xR), or |xR|2, whereas the ellipsometry tech—
nique determines both Re(xR) and Im(xR) in the course of one spectral
scan.

Since an ellipsometry experiment searches only for a ouli, in prin-

ciple it does not depend at all on the input beams absolute power or the
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fluctuations in the power. This, together with the simple dependence
on the resonant susceptibiliry, makes coherent ellipsometry a useful al-

ternate form of nonlinear spectroscopy.

D. Stimulated Raman Processes vs. Signal Generation Processes and Sw:-—

cific Examples

In the previous discussions of the theory of four-wave mixing and
the various analysis techniques, the general frequency mixing case is
used throughout. We now want to consider the further classification of
these nonlinear techniques by the particular type of frequency mixing
that is involved. (This approach can be contrasted to that of Owyoung13
in which the frequency classification has primary importamce.) A dis-
tinction is made between stimulated Raman processes with the output w
and K degenerate with one of the input beams, although the polarization
may be different, and signal generation processes with w being at a fre-
quency not identical to the three pump frequencies. We consider briefly
the general characteristics of these two types of processes, then more
specific examples are detailed. Emphasis is placed on signal generation

processes, which are demonstrated in the experimental section (section

I11).

1. Scimulated Raman Scattering (SRS) Processes

In the SRS processes we have

w =W and i = i, (26)

thus the input field at we also serves as the linear local oscillator
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field, E(O,m). The nonlinear signal appears as a change in magnitude
and/or polarization of this beam as it passes through the nonlinear mix-

ing region. For energy conservation and phase matching, we require that

which is simply satisfied by the presence of 2 single input beam, called
the "pump" beam. In this case, phasematching is automatic, i.e., re-
quires no special geometry. Another advantage of this type ~f process
is that it is easily analyzed since one monitors induced changas ‘n the
"probe" beam at w, - Typically, the probe beam is intense enough that
detection can be done using high quantum efficiency photodiodes. A ser-
ious difficulty with this SRS-type process is the need for a stable in-
tensity probe beam when doing amplitude analysis, for the full intensity
of the probe beam strikes the detector. In practical cases the detec-
tion sensitivity in amplitude analysis will bte limited by the intensity
fluctuations in the probe laser. A second prv lem arises with the po-
larization analysis techniqucs — linearly scattered light of the probe
beam also strikes the detector. This problem can be minimized but it
cannot be prevented, for there is no possibility of frequency discriw. -
nation against this noite source. Thus, there are some disadvantages io
using the SRS processes as forms of nonlinear spectroscopy.

Most experimental work which has been ¢one using the SRS process has
involved studies of Raman-type two-photon resonances. As each analysis
technique has been established, it has been given a new name. For ex-
ample, the SRS form of amplitude analysis has been highly developed by

9,13 and has the acronym SRGS, for Stimulated Raman Gain Spec-
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troscopy. The polarization analysis counterparts have been studied pre-
dominantly by Levensonlo’14 under the acronyms RIKES (Raman Induced Kerr
Effect Spectrogcopy) and OHD-RIKES (Optical Heterodyned Detection-~
RIKES). A brief description of typical experimental arrangenents used
in these forms of nonlinear spectroscopy is included below.

As mentioned above, in SRGS the most serious problem is the stabil-
ity of the probe laser, thus it is very desirable to use a CW laser
rather than a pulsed laser. It is found that the amplitude noise spec-
trum of a CW laser using a commercial noise suppression system is great-
ly reduced if one examines only the higher frequency components. This
is accomplished by modulating the pump beam (another CW laser) at 25kHz
and using lock-in detection for signal collection (see Fig. 3). Since
CW lasers are used for both pump and probe, very high resolution spectra
(10_6 cm_l) are obtainable. However, due to the low power level of the
CW pump the gain coefficient, G, is quite small (G ~ 10_5 have been ub-
served with the setup). This technique is used predominantly with lim-
ear input polarizations in gaseous, and therefore isotropic, medfa. Ir

this case, Eq. (1?) becomes

16n8

Im[ﬂ . XR.eaeaeC]I(m )}

) = I(m){

I{w) {1 + G} @7

where I(w) is the intemnsity at the probe frequency, I(ma) is the inten-
sity at the pump frequency, éc and éa describe the polarization states
of the probe and pump fields, respectively. If all fields are zlong the

x-direction, SRGS examines the tensor element [xR 0 =w, - e +u )]1111
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describing pciarized scattering. With the pump beam along x and the
probe along §, [XR(w =w o -w + mc)]lzzl’ related unpolarized scatter-
ing, is studied.

The polarization forms of stimulated Raman scattering, iIKES and
OHD-RIKES, involve slightly different setups as shown in Fig. &4 (also sew
Ref. 15). The rejection of nearly ;11 the probe (local oscillator)
field makes these techmiques much less sensitive to probe laser stabil-
ity, so experiments can be done with either CW orpulsed probe lasers and
pulsed pump lasers. The common setup uses a CW-probe laser at a fixed
frequency and a tunable, high power, pulsed dye laser as the pump laser.
The probe beam may be chopped to prevent sample heating. Gated detec-
tion examines the signal only during the pulsewidth of the pump laser.

In the nulled local oscillator technique, RIKES, we have from Eq.
(15)

n_)z 2) .

o - ()

oa a%ke 122
= - . )i
o (w va w, + L.c).eaeaec, 1 (rua)I(mc) (28)

a xR
- Lk -

where e, is defined such that 2 " ec = 0. The standard RIKES setup has
é =xand e = L (x + y), so the effective susceptibility is

(o} a ﬁ
tllxglug =y —wy +w )y + Xgluy = u, =0y + 0 )1y} for an iso-
tropic medium. To date, a slight variation of this experiment has been
performed — for convenience, only the linear part of the local oscilla-
tor is nulled, i.e., the probe beam is nulled when the pump beam is not
present. In this case the nonresonant susceptibility must be included
with the resonant susceptibility above.

If the polarization analyzer is now adjusted such that d¢ = dn =

90, we have one possible heterodyned {orm of RIKES. For the same input



fields conaidered above, the OHD-RIKES intensity at the detector (Eq.

(18)) becomes

_ 1618

22 o tablxglyyp * Diglyppi)} @9

1) ™ 1(uc){ef,

where the freg y d dence of the rtibility has been suppressed.

P

Comparing this to the SRGS expression, there is the expected reduction
of the local oscillator and the improved signal modulation depth. One
distinction in this case is that SRGS examines either [xR]1111 or
while this case of OHD-RIKES involves [xR]1122 + (xR]1212 =

Ixgly221
last equality being true in isotropic media

(xglypna — [Xglyazy (the

although not necessarily true for other material synnettieslG). There-
fore, OHD-RIKES measures the difference between the polarized and unpo-
larized scattering while SRGS measures each separately. Further discus-
sion of these SRS processes can be found in the two recent review

articles.10’13

2. Signal Generation Processes

The second frequency mixing case considered here is the class of
processes | nown as signal generation processes.17 In this case, the out-
put frequency and wavevector are not identical to auy of the three input
pump fields. Furthermore, it is generally true that there is no linear
term in the expression for the local oscillator field. The principal
advantage of the signal generation process is that the output is at an
independent frequency, therefore frequency dispersive elements can be
used to totally isolate the output signal from the pump frequencies. No

linear background light from the input lasers should reach the detector.

28



In dispersive mediz, there is the added advantage that the output wave-
vector is spatially separated from the others, due to the phasematching
condition. In signal generation processes (without a linear local oscil-
lator) there are also much less restrictive requirements on laser stabil-
ity. In fact, we shall see below that the presence of the nonlinear lo-
cal oscillator can be used to provide a nonlinear reference signal for
normalization against laser fluctuations.

On the other hand, the nonlinear nature of the output means that
the signal is weak, requiring photomultipliers as detectors with their
relatively low quantum efficiency and high shot noise. Another disadvan-
tage is the lack of automatic phasematching. This has several ramifica-
tions: (1) the linear dispersion of the medium must be known well enough
to achieve phasematching, (2) once achieved, the phasematching must be
maintained over the desired spectral range,la and (3) the usual finite
crossing angles of the input beams limit the interaction length and so
limit the strength of the output signal. (In some studies requiring
high spatial resolution within the medium, the latter point is consi-
dered an advantage.lg) Often in signal generation experiments a double
monochromator is needed to separate the signal from the pump lasers. It
is then necessary to ensure that the monochromator is scanned synchron-
ously with the changing output freguency. Even with these disadvantages,
signal generation processes have become a popular form of nonlinear spec-
troscopy.

As with the SRS processes, Raman resonances have receivad the most
attention for study by signal generation processes. In these experi-
ments, the frequency difference, w, T W, of two of the input beams is

scanned near the Raman resonance frequency, Wpe The most straightfor-
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ward experiments, involving caly two input frequencies, Wy =W Orw =
Ws mix one of the two input frequencies with this difference fre-
quency. The resulting output frequency is at either

(a) m=wa+(wa-wc)-Zun—mc=u‘+uR
or
(&) wEe T (ma-mc)-Zu:c-ma=uc-uR.

In the first case, the output is upshifted to approximately the anti-
Stokes frequency from ma, while the second case downshifts the output to
the Stokes side of W, The mixing process expressed in (a) has been
dubbed: CARS for Coherent Anti-Stokes Raman Spectroscopy-zo By analogy
the second case 1s called CSRS (pronounced scissors) or Coherent Stokes
Raman Spectroscopy.

Next we consider the possible ways to amalyze the output from these
signal generation processes. With only two exceptions, the only analy-
sis technique previously used 1s the amplitude scheme described in the
first part of section IIC. The two exceptions are the recent work of
Akhmanov, et al.]'2 on coherent Raman ellipsometry and Song, et al.21 on
a specialized form of nulled local oscillator detection (background sup-
pression) involving the use of three independen: input frequencies.

This thesis contains a complete discussion of the polarization analysis
techniques as they are applied to the signal generation case, and section
III presents experimental work deomonstrating the usefulness of polari-

zation-sensitive detection in a CARS experiment.
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Before the new techniques of polarization analysis are described,
we review the standard form of CARS (for example) in which only the amp—
litude of the nonlinear signal is measured. Figure 5 shows the pormal
CARS setup in which two input lasers are used, with o= w, and Eb = ia.
The output signal is linear in the intensity Iimc) and quadratic in
I(ma), thus pulsed lasers are often used. The angle between the two in-
put beams is adjusted to achieve phasematching k= Zia - Ec’ and the
double monochromator is set to transmit the output frequency, o = Zua -
e As one of the input frequencies is scanned (usually uc), the output
signal will show enhancement from the resonant susceptibility. The de-

tected intensity is given by Eq. (12)
1w = £ 8% kg (w0 VB0 B @ B )
+ ;R(—w,wa,ma,—wc)Ez(wa)Z(ma)E*(uc)‘z
- (g_:)zsz“xmz]nu * ["Rlulllzlz(“’a)““'c)' (30)

The latter expression applies to the case of linear input polarizations
parallel to the x-axis in an isotropic medium, a typical experimental
situation, The interference effects between resonant and nonresonant
susceptibilitries are clearly shown in this expression. For this exam-

ple the modulation depth of the resonant signal 1s simply

" ) 2Re([x311111)
AMP-CARS [XNR]llll

where we have assumed that the nonresonant susceptibility is a pure
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real quantity. In most experimental arrangements, the limiting value of
HAMP-CARS will be determined by the fluctuations in the laser intensi-
ties, which cause variations in the strength of the relatively large
nonresonant signal. We delay the formal signal to noise analysis until
the new forms of polarization sensitive-CARS are described.

It i{s natural at this point to describe two new forms of four-wave
mixing spectroscopy — Background Suppression-CARS (BS-CARS) and Optical
Heterodyned Detection-CARS (OHD-CARS). Within the framework established
in section IIC, these two techniques follow logically as specific foras
of polarization-sensitive signal generation processes — direct ana-
logues of the SRS techniques RIKES and OHD-RIKES. 1In fact, we can now
establish the hierarchy of four-wave mixing Raman techniques as shown in
Fig. 6. Each acronym thus has its own place within this general struc-
ture. Of course, this framework applies equally well to thelesser stud-
ied two-photon absorption resonances, only :he catchy acronyms have yet
to be invented.

For completeness, however, let us describe these new techniques and
indicate explicit expressions for the output intensity at the detector
and modifications in the experi:nental apparatus of Fig. 5. In the case
of background suppression (nulled local oscillacor), the polarization
analyzer is adjusted to null the output signal with :he.frequency far
from resonance. As one scans through the resonmance the detected intem-
sity as given by Eq. (15) is

2. 2).%

{87 ¢ o = - 12 & %1242
I (w) _(cn) 8%le, xR(cu =w tw wc).eaeaecl 1 (ma)I(wc)

-
Py = + -
where ea is orthogonal to the polarization state of )(NR(Lu wa v



mc)iéaéaé:. As a concrete example, we return to the case of linear in-
put polarizations and an isotropic medium. We choose the wy beam to be
polarized along the x-axis and the @, beam to be polarized at angle §

to the o, beam.
e =x éc = cosé x + siné 9

so that the effective nonresonant and resonant susceptibilities are

. e . .k
ie e

Kyri®a®ate = [xypl11110058 X + baglyppysind ¥

. WK

xpie 8 8. = Ixglyy,; 0088 x + Ixgl 4y 510t ¥

and

= Liyglygog5in8 x + Ixgplyyqgc088 ¥

e = =1
sin‘é]’

1)

a 2 2 2
IIXNR]1111°°S 8 + Iqgliza

where the frequency dependence of the susceptibilities are suppressed.

The total output signal becomes
pNR)siné cosé |2

(c0525 + D:R s;nz,’»)'ﬁ

o - (Bl

2
Py 1 (wa)l(wc) (32)

2
Hxglygy!

where pyr = Dtygliz201/ Diwrligng 20 pg = Uxglypg /glyqg,- It can be
shown22 that Pr is the depolarization ratio for the Raman mode; DNR is
similarly defined. As mentioned in the general discussion, one can

optimize the output signal by choosing the proper input polarization

states. In the example, we are free to cptimize ID(m) with respect to

a3
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tue choice of 6. The signal is wmaximized when
tans = (o) 2. (33)

2
If the isotropic medium obeys the Kleinmwan symmetry, 3 we have Par = 1/3

and 6§ = 60°. FPor a strongly polarized Raman mode, P = 0, we can evalu-

ate Eq. (32),

Iplw) = (Sﬂ)z 2(16)“XR unl 12("’a"("’c" (34)

This can be compared to the signal one would have 1f there were no non-
resonant term, i.e., this is in the limit of a strong Raman mode. 1In
this case optimization occurs when all polarizatioms are parallel with
the resulting idealized output
O L L S [ PR TP

We see that the use of polarizatiom analysis has reduced the signal by a
factor of 16 (compare with Eq. (34)). In most cases, this loss in sig-
nal can be either tolerated or overcome with increased input intensi-
ties. Clearly, it 1is possible to take a background free CARS spectrum
without sacrificing too much signal, thus eliminating the lineshape dis-
tortions caused by the interferemce with the nonresonant term.

On the other hand, in the limit of s weak Raman moade, we should
compare the intemnsity in Eq. (34) with the intensity of the total signal

one would measure in an amplitude CARS experiment,



( )28 (cos s + p;Rsinzs)[XNR]illllz(ma)I(uc)

(8")2 2( )[anuul (w,)1qu,) (35)

<n

where § and Pxr 3T evaluated at 60° and 1/3 as above. Forming the ra-
tio of the signal transmitted through the analyzer (Eq.(34)) and the sig-
nal incident on the analyzer IAMT (which will be essentially totally ce-

jected), we have

Ix,1 9
_ 3 | Rlnn
I = 16 [[x ]1111} . (36)

This expression shows two Interesting features. First, the expected
quadratic dependence on the ratio of resonant to nonresonant suscepti-
bilities, which means the actual detected signal strength will become
very weak for weak resonances. From this point of view, background sup-
pression may not be the best technique to detect weak resonances. A se-
cond point to be made Is the independence of this ratio on the laser
powers. If, as part of a background suppression setup, the rejected
signal from the analyzer is also monitored, we have a "built-in" normal-
ization signal to eliminate fluctuations in the BS-CARS signal due to
laser power fluctuatious. A general experimental arrangement is indi-
cated in Fig, 7.

Finally, let us compare this form of background suppression with
that proposed by Song, et al.2l Figure 8 shows the polarization arrange-
ment suggested in their Letter. The frequency difference w, =W, drives
the Raman mode. With this polarization arrangement the nonlinear local

oscillator field is of the form
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where v = w, +uw - v, in this "four-color" CARS experiment and where
Kleinman's symmetry 1s assumed. The orientation of the analyzer along >
is correct to suppress the nonresonant susceptibility contribution in
this cate. Hence, this is the first example of polarization amalysis
used for background suppression in a CARS experiment. Unfortumately, it
requires the use of a third input frequency, not commonly available in
most amplitude CARS setups. Furthermore, Song, et al. describe only
minor variations in their technique to compensate for the fact the Klein-
man's symmetry 1s not precisely obeyed and do not address the more gen-
eral polarization situation. The technique described in this section
only requires the two input lasers normally used in CARS and can be useil
with general input polarization states. As such, the method described
here is far superior to the previous techniques.

The second form of polarization-sersitive detection in signal gen-
eration processes is OHD-CARS, in which the analyzer is uncrossed to al-
low heterodyning between the nonresonant and rescnant parts of the sig-
nal. Applying the general form of Eqs. (18) and (19) with w = w, + @,
R to the example used in the description of BS-CARS above, the de-

tected intensity is
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) = 12 R
Iy lef Lo+ LY

with

-

8n\2,2 2 2 2 2
1o = (G)76" tcos™s + ostn) gy, T (0 TG0 )

1 = (2620 - opgdsiné cosslxgly; ) 2Re o’ Ing)y ;)T W )T ()
37)

where @ is the generalized uncrossing angle, as defined in Eq. f21).

The heterodyned term in this case is proportional to the product of the

nonresonant and the real part o: a phased portion of the resonant sus-

ceptibility. A more explicit form for O is needed before the lineshape

of this heterodyned term can be established. We have from Eq. (31)

2

= (cos$ ii—pNRsinG 9)/(cosz6 + ;;NRsinZG);s

o>
It

and

. 2 L .
1o = 1Blxyglin118 )8 (w)é, = 1B 5] (18, (38

The angles of the quarter-wave plate and linear analyzer, n and f, re-

spectively, which block the polarization state, can be found to be

-1
n =7 = tan (— ——————-—). (39)
pNRtan6

Therefore, the expression for © in Eq. (21) becomes
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0 = (dg ~ dn) + 1 dn (40)

where dt is a small uncrossing of the linear analyzer alone and dn is
similarly defined for the quarter-wave plate. Combining this with Eq.

(37) the heterodyned term becomes

v {8m\2,2
Iy = (EH) [ (pR - ONR)sinG cos&[xNRllllll(dn Re([lellll) + (dn - dg)

x imdIxglyy 2@ I ). 1)

The simplest heterodyned spectra occur when either only the linear ana-
lyzer is uncrossed or when both quarter-wave plate and linear amalyzer
are uncrossed together by the same angle. In the first imstance we have

dn =0 = Iﬁ « Im([xR] (42a)

1111°

and in the second case

= 1
dn = dg = Iy & Re[(xp)y;q,]- (42b)
Thus, under easily achievable circumstances, either the real or the ima-
ginary part of the resonant susceptibility can be displayed superimposed
on the leakage local oscillator signal. The modulation depth for heter-

odyned detection becomes

= 2
Yomp = !Il'i“lel Tro

cont'd



i (DR - pNR)sin5 cosé 2Im([xR]1111)

cos?s + o;Rsinza 8 D111

(43)

where dn = U and df = 80. The factor involving the polarization angle &

can be optimized by choosing tand = (pNR) . For MR = 1/3 and PR = 0,

the expression for MOHD becomes
ImCIxgly397)
I (4a)
o "NR"1111

Comparing this to the modulation depth in the amplitude case, and assum-
ing the Raman line is an isolated Lorentzian, we have an increase in the
modulation by a factor of 6;1 when using the OHD technique. (Since che
value of 80 is as yet arsitrary, this increase may become infinite as

80 - 0, 1.e., in the background suppression case.) To confirm that this
improvement carries over to the detection sensitivity we now perform a
signal to noise analysis for the various forms of CARS experiments. We
shall also find that there is an optimum value for Bo, as discussed be-

low.

E. Signal to Noise Analysis

In the previous section, the signal terms for the various forms of
CARS experiments are written out explicitly for the specific case of
linear input polarizations in isotropic media. We now want to consider
the possible noise sources which cause fluctuations in this signal le-
vel. Three major noise sources can be identified and characterized;
these are (1) laser intensity fluctuations; (2) finite extinction ra-

tio of polarization analyzer, and (3) shot noise. Other noise sources
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briefly considered are dark current, electronic noise, and linear light
scattering. After the signal to noise ratio is established, it is in-
verted to give the limiting value of detectivity as determined by the
ratio of the resonant to nonresonant susceptibilities. Typical numbers
are then used to compare the techniques.

Laser intensity fluctuations are almost always the leading source
of noise, especially when pulsed lasers are used. To characterize these

fluctuations, the fractiomal mean square fluctuation is defined aslb

€3 % {(I(‘“i))z - (I(“’t))z}/(l(”i))z 45

where the bar indicates averaging over many pulses. For pulsed laser
systems this mean square fluctuation may range from 10'4 to 10_1‘ The

variation in the nonlinear signal can be calculated from

(FE@) - Zil(g—;(%i—,)i (T@p) 6)
where the sum is over all independent frequencies involved in the non-
linear mixing.

The finite extinction ratio of the polarization leads to a leakage
even in the null case. This leakage will show the same intensity fluc-
tuations as the output intensity, but it is am incoherent form of back-
ground. We define the extinction ratio in terms of an angle ee. such
that the fractional leakage of the imperfect polarizer is equal to a
perfect polarizer rotated by an equivalent angle ee. Common polarizers

4 -6 -2

have extinction ratios between 10 & - 107", so ee ~ 10 © - 10"3 (1 to 10

nmrad uncrossing angle).



The ultimate detection limit will be determined by the quantized
nature of the output photons and is termed the shot noise limit.24 It
is assumed that photons arrive at the detector in a random fashion, so
that the mes: square fluctuation in the number of photons equals the

numbs: of photons. The mean square current generated by a photodetector

of quantum efficiency q, gain g, and area A is given by

— 22
( 2 )= 2g ehgwAI(w) Av wn

*shot

where e is the electronic charge, 1 is the optical intensity incident on
the detector, hw is the energy of each photon, and Av is the bandwidth
of the detection system. As the signal intensity becomes very small
shot noise will begin to dominate the other noise sources.

Other noise sources (not considered in the following calcvlation)
are the dark current, electronic noise, and linear light scattering.
Dark current acts as an additional source of shot noise, but proper
choice of photomultiplier and gared detection should minimize its con-
tribution to the noise. Electronic noise (or thermal noise) is due to
variations in the electrical signal introduced by the detection system
itself, and should be made unimportant by the proper design of the elec-
tronics. Light striking the photomultiplier from other than the norlin-
ear source ronstitutes another form of noise which is eliminated by pro-

per spatial and spectral filtering of the output beam.

1. Signal to Noise — Amplitude CARS
0f the total intensity reaching the detector in this case, the re-

sonance is carried on the heterodyned term, IH’ as defined in Eq. (12).
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The signal current generated by the photodetector due to IH is
1 = (ﬂ) I,. 48)
3 hw H

Next we evaluate the noise contributions. The predominant inten-
sity at the detector comes from the nonlinear local oscillator term, ILo
@« Iz(ma)l(mc). Fluctuation in the intensities leads to a mean square

fluctuation in the photocurrent of

3 _ [geqa)l .2
(difluct) a ( f ) ILO“Ea + Ec} (49)
and the mean square shot noise contribution will be

(12 )= 2g%e%qn av (50)
shot hw LotV

Thus, the signal to noise ratio is

i
s

Sl RN

Iy

=72 Zhwhv L
(IL0(4Ea *ed +( T ) I1.0)

In the limit of large fluctuations, this becomes

(/W)

(51)

o Mue-cars _ 2Re(lxglingy)/ Doglingy)

(4e, + ec);‘ (e, +c )"

(S/N)AMT. CARS (52;

(fluctuation)

where M

E
L MP. CARS is the mpdulation depth and (45a + sc) is the rms



fluctuation in the background signal. S/N = 1 when these quantities are

equal.

The shot noise limit will be reached when the fluctuations satisfy

2huwav ~ = 108
(ln-_-a + ec) 3 IQ/ILo where IQ @ If we assume hw = 3eV, Av = 10

Hz (1 usec gate time), q = .1 so that IQA ~ 10-11W and that the nonres-
onant susceptibility of ~ 10-14 esu and input powers of 1 kW lead to

an output signal power of IO—GW, we find (lu-:a + t-:c);i <3 x 10—3. Thus,
about .1%Z rms fluctuation in each input laser power will bring the sig~-

nal to noise ratio to the shot limit, which is given by

a~ E
M pp. cars ™ Tn/ Tglre?

(shot)
8n IZ(ma)I(mc) :
B (EE)B 2Rellxglyyy)? I, : 63
2. Signal to Noise - Background Suppression-CARS
In this case, the signal current is given by
- BegA (54)

i = hw Ims

where IBS is the intensity ID(m) from Eq. (32). There is also a nonlin-
ear incoherent source which strikes the photomultiplier — the polariza-

tion analyzer leakage intemnsity, IL’
I, - o2 (55)

For weak resonances, this leakage intensity dominates the signal inten-

sity, and fluctuations in IL are an additional source of noise. We have
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(BEA) ps

2 2 1
geqA\2.4. 2 2g7e"qA 2 k3
[( hw ) eeIl.O(M:a te) + TS A\’(ee]:u) * IBS)

(5/Mgs_cars

1
BS . (56)

T 2 2 I
(2% e, + € ) + (001 + LLOT ]

Considering again the two limits:

I

BS
) ~
BS-CARS 2 L
(fluctuation) eeILO(l”:a + Ec)
2
~{3 [Ixglyggy !
"G 02 ligli11 (4, *+ €0 en
etXurl11111%¢5 T Ec

where we have used the same example to evaluate the ratio. Ome finds

that (S/N) optimizes when tané = (pm)_l, while the signal alone

BS-CARS
maximizes for tané = (pNR)J’. Upon evaluation, this results in only a
25% change in the signal to noise ratio and is ignored in the present
calculation. In the shot noise limit, we have
i
s 8w 12 (wa) L (wc )

(8/Mps_cars ~ Tps/TQ)" = (;)e % Ixglipa —IQ— - 68

(shot)

Comparing .ne shot noise limits for BS-CARS and AMP-CARS, assuming a
Lorentzian lineshape so that the maximum value of ZRe(xR) equal the max-
imum value of |xR|, we see that there is only a factor of four differ-
ence in the limits (AMP-CARS being more sensitive). Approximately half
of this factor of four can be attributed to the difference in input po-
larizations used in the two setups, while the other factor of two is due

to the use of the polarization analyzer which rejects approximately half

4



of the signal intensity.

3. S5ignal to Noise — Optical Hetered—ed Detection-CARS

For OHD-CARS it is assumed that enough intensity is leaked through
the analyzer such that the linear heterodyned term is much stronger than
the term proportional to ]xR|2. Thus, the signal current is derived
from the intensity Iﬁ of Eq. (41). We must comsider all sources of
noise — fluctuations in the background signal from the uncrossed ana—-
lyzer (see Eq. (37)), fluctuations in the background signal from the

finite extinction of the analyzer (see Eq. (53)), and the shot noise

from these backgrounds

/M) o cars ~
(52) =

[(geqt\2f, 112, 2 . .2 .2 25%¢%qa f).,2 2. 1"
I\ hw ) {(Iel Lo * (B Ly }(l‘ea T g {lol ot eeIl..O}

Il
H
= - %)
(clol* + 9;‘) Iio(loea +e)+ (lo]? + ez)xquff

Since the value of |0|, the polarizer uncrossing amgle, is an indepen-
dent parameter, it is adjusted to give the best signal noise ratio.16

First consider the shot noise limit with ideal polarizer and no la-
ser fluctuations, 1l.e., ee = 0 and Ea = Ec = 0. The signal to noise
ratio of Eq. (59) then becomes optimized at |@] = 0 (S/N + % ), but this
is simply an artifact of ignoring the |XRIZ terms. In fact, the optimum
S/N is given by Eq. (58) of the previous section.

In the limit of large fluctuations and non-negligible extinction



ratio, we have

* !51;, L
OHD~CARS 4 4
(fluctuation) [|0| + ee] ILD(AEA + ec)

(S/N)

lo] 1 mllxgli11y)

4, 4% % [xgp)
(o™ + 02)" (4e  + ¢ ) mr'1111

(60)

where the last expression has been evaluated for the example discussed

above. The signal to noise is maximized when |0[ = ee and is given by

1 In([xgly1q4)

OHD-CARS ", % (1 4 e )2 gl
e a [

(S/N) . (61)

4. Comparison of CARS Techniques v

To make a comparison of these CARS techkniques, consider the detec-
tion limit, defined as the ratio of resonant to nonresonant susceptibil-
ities when §/N = 1. Solving Eqs. (52), (57), and (61) for XR/XNR’ as-

suming Lorentzian lineshapes for the resonant susceptibility and drop-

ping the tensor subscripts, we have

Og/XyR avp-cars = (455 + €)%

4
p/%yr)Bs-cars ~ e B lhe, + e )%

_ %
Ot/ Xy onp—cars =72 O (45, + €0 (e

In a typical experiment, each laser may fluctuate by 15% (rms) and the

extinction ratio of a moderate quality pola.izer may be about 10-4.
-4
)31

Thus, €, = € = (.15)2, Ge = (10 and avéxaging over 10 pulses (1 sec
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time constant), we have

~ 1071
Op/ Yp) rep-cans ~ 10
o/ Yo ~8 x 1073
Xg' XNR’ BS-CARS
~ -3
~1.6 x 107, 63)

g/ Xwr om-cars

Thus, in typical situations the best signal to noise occurs in the he-
terodyned form of CARS. As one can see from Eq. (62), OHD-CARS is ap-
proximately a factor of ({ie)-1 more sensitive than amplitude CARS.
Knowing the strength of Xg for the bulk material allows one to pre-
dict how small of concentration will be observable using the CARS tech-
nique. Naturally if the resonant material 1s strongly diluted in a se-
cond substance, the nonresonant susceptibility is determined by the sol-
vent. Ideally, one wants to use a solvent with a small Xyr t° increase
the sensitivity. In a typical setup, it should be possible to achieve
an extinction of 10-6 under favorable circumstances, while little im~
provement in laser stability can be expected (¢ = .05). With this im
provement, one speculates the practical liwit of detection sensitivity

to be

~ 104 . o
XR/XNR 10 (practical limit).

As an example, consider detecting benzene, using its sctrong 992 cm-1 Ra-

man mode (xR ~ 30 x 10_14 esu for pure benzene), diluted irto carbon

14

tetrachloride (x, ~ 1 x 10 " esu). The practical detection limit is



reached after a volume reduction of 3 x 105, or for concentrations of
benzene less than 10 ppm.

Before ending this discussion, it should be cautioned that this
practical limit may not be achievable if the input laser powers are low.

In a previous discussion it is shown that IQA d 10—11 W while ILOA =

10-6 W for 1 kW input beams and YR " 10_14 esu. Using this information

one can determine Xg when S/N = 1 in the shot noise limit from Eq. (53).
One finds

X ~3 x 10—17 esu.

The shot noise limit becomes xR/xNR ~ 3 x 10—3. Thus, the practical
limit of 10—4 in the benzene case is not attainable in this situation.
Fortunately, it 1s possible to use highex powered laser systems which

3/2 ~ 30 for each order of magnitude

lower the shoc noise limit by (16)
increase in input laser power. Therefore, using 10 kW lasers the prac~
tical and shot noise limits are identical, while at higher input powers,
shot noise is no longer a limitation.

As mentioned in the discussion of background suppression CARS in
part D, there exists the possibility of monitoring the rejected beam
from the polarizer and using it for normalization against laser fluctua-
tions. The only noise sources in this case come from shot noise and
electronic noise of signal processing, the latter being more important
in the experimertal setup described in the next section., Principal
problems are the difference in response of the two independent optical
detectors needed in this arrangement and the electronic signal process—

ing which requires dual input chaonels and ratioing. With some effort,
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photo tubes can be matched and a microprocessor cam process the data on
a shot-to-shot basis, thus minimizing the electronic noise. To incor-
porate this noise source into the signal to noise analysis we assume
that the electronic noise Is proportional to the ratio being measured,
similar to the laser power fluctuation contribution of Eq. (45). In the
limit of large electronic noise, we have the S/N = 1 limfting suscepti~
bility ratio of

6 (¢ )t

Op/ x> onp-cars electronic

where ¢ is the mean square fluctuation in the ratio due to

electronic
electronic noise. This can be compared to the result in Eq. (62) for
large intensity fluctuations. Using the proper techniques,

( );i 3 10_‘2 - 10-3, 80 increasing the sensitivity by one or

~

€electronic

two more orders of magnitude.

To summarize, this section has presented a new perspective on non-
linear spectroscopy. Two new techniques BS-CARS and OHD-CARS are ob-
viously needed to complete theoverall framework discussed. It is shown
that these new arrangements theoretically lead to improvements in the
detection sensitivity of two to three orders of magnitude over the usual
amplitude CARS case. In the next section, experimental verification ot

these results is presented.
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Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
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Figure Captions

Possible pairs of parameters used to describe a general pulari-
zation state. (ax'&y)’ (£,8), or (6,¢4).

Orientation of quarter-wave plate and linear analyzer to trans-~
mit the elliptical polarization state, éu’ defined in Eq. (10);
propagating along + z-axis. The fast axis of the quarter~wave
plate makes an angle n with the x-axis; the transmission axis of
the linear analyzer makes an angle ¢ with the x-axis. For
transmission of éa‘ n=06and =0 + ¢.

Typical Stimulated Raman Gain Spectroscopy (SRGS) experimental
setup, using cw probe and amplitude modulated-ecw pump beams and
lock~in detection.

Typical Raman Induced Kerr Effect Spectroscopy (RIKES) experi-
mental satup, using cw probe and pulsed pump beams with gated
detection. Note polarization-sensitive detection.

Typlcal Coherent Anti-Stokes Raman Spectroscopy (CARS) experi-
mental setup, using pulsed probe and pump beams with gated de-
tection.

Hierarchy of four-wave mixing spectroscopy techniques.

SRS -~ Stimulated Raman Scattering Processes.

SG - Signal Generatijon Processes.

See text for explanation of acronyms.

General polarization-sensitive CARS experimental setup. Compare
with the CARS setup of Fig. 5, noting the addition of polarizers
in the probe and pump heams and the signal beam analyzer (A/4

plate and linear polarizer). The additional double monochroma-



Fig. 8
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tor and PMT (photomultiplier tube), drawn with fine lines, are
used in the ratioing scheme described in the text.

The polarization arrangement of Song, et 31.21 for background
suppression in four-color CARS experiment, w = W, + wp T ows

This has been appropriately dubbed "asterisk.™
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III. EXPERIMENTAL DEMONSTRATION AND DISCUSSION OF BACKGROUND SUPFRES-

SION-CARS AND OPTICAL HETERODYNED DETECTION-CARS

The theoretical background for many forms of four-wave mixing spec-
troscopy has been presented in the preceding section, with emphasis
placed on the possible forms of coherent anti-Stokes Raman spectroscopy
(CARS). Amplitude-CARS (CARS without polarization analysis) has been a
well established technique1 and has become the most popular type of non-
linear spectroscopy.2 In Section II we have introduced two new methods
of performing CARS experiments using polarization-sensitive detection
techniques. With one polarization arrangement, the nonresonant back-
ground may be eliminated leaving only the resomant spectrum — this has
been called "background suppression"-CARS or BS-CARS. A modified polar-
ization scheme may allow the examination of either the real or the ima-
ginary part of the resonant susceptibility and has been named "optical
heterodyned detection”~CARS or OHD-CARS. 1In both cases, it has been
predicted that there should be an increase in the ability to detect weak
resonances over the amplitude-CARS technique. 1In this section, we pre-
sent the results of experimental studies3 made to demonstrate BS-CARS
and OHD-CARS and to evaluate their detection sensitivity.

We begin this section with a description of the technique and ap-
paratus used earlier in our laboratory to perform amplitude-CARS mea-
surements. This was the basic nonlinear spectroscopy system which was
later modified to make polarization-sensitive measurements, although
many of its features remained unchanged. Next, the method to separate
the resonant and nonresonant contributions to the CARS signal iu des-

cribed in a form appropriate for the experimental work to be presented.
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Included in this discussion are the explicit changes made in the ampli-
tude~CARS setup. This is followed by the experimental demonstration of
BS- and OHD-CARS, including a discussion of the sample, the experimental
spectra, the analysis of these spectra and the detection sensitivity of
these techniques. This section concludes with = liscussion of the types
of problems which can be studied with these polarization-sensitive tech-

niques and their limitations.

A. The Standard Amplitude-CARS Technique and Apparatus

In the usual CARS setup two pulsed lasers with frequency separation
equal approximately to a vibrational excitation of the sample are used
to generate a nonlinear output beam at frequency w = Zwa - wes where
w, > w, are the two input frequencies. As described in Section II, when
w_ - w_ matches a Raman-active excitation, there is an enhancement in
the resonant susceptibility which enhances the nonlinear output (thus
allowing CARS to be used as a form of spectroscopy). In this segment,
we describe the experimental aspects of this tecknique.

The primary parts of the CARS setup (and of .en the most expensive)
are the laser sources. High peak power (> 1 kW) and narrow bandwidth
(<1 cm-l) characterize useful laser systems for nonlinear spectroscopy,
since the nonlinear output is strongly dependent on the input intensi-
ties and typical Raman modes have widths from 1 to 10 cmnl. Furthermore,
at least one of the laser sources must be tunable, so that the disper-
sion of the susceptibility can be measured. Flashlarp~pumped dye lasers
satisfy these criteria and were easily constructed for use in chese ex-

periments. (Details of this system can be found in Ref. 4), Tuning

of the dye lasers
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was achieved by either an interference filter/etalon combination5 or a
telescope/grating combination,6 with each scheme giving a linewidth less
than 0.2 cm_'l and peak power of 1-10 kW. Operating at 10 pps, this la-
ser system has proven quite nzeful for CARS medsurements.

Another important experimental consideration, especially in disper-
sive media, is the achievement of phasematching as described in Section
IIA. Essentially, this is a statement of momentum conservation among
the four photons. Materials with normal dispersion ( g£-> 0) require
the use of a noncollinear geometry to achieve phasematching. The usual
arrangement for phasemztching is shown in Fig. 1, with the angle y be-
tween Ka and Kc being about 1-2°, To calculate ¥, precise information
is needed about n{w), the linear refractive index. In many cases { can
only be roughly estimated, thus the experimental setup must allow for
the optimization of the phasematching by having ¢y be easily adjustable.
A convenient arrangement to bring the two inpat beams to a common focus
while maintaining the flexibility in the phasematching angle is shown
in Fig., 2. The two input beams are made parallel before they are
brought to a focus by lens L1. The angle ¥ is determined by the spacing
of the beams before the lens and the focal length of L1. The phase-
matching is adjusted by varying the separation of the beams through
translation of mirror M2 normal to the axis of the lens. (This arrange-
ment also allows easy alignment of the detection system along the ex-—
pected output beam path. The o, beam can be translated to duplicate the
direction of the output beam as shown in the insert of Fig. 2.)

Figure 2 also indicates the other major part of a CARS setup — the
detection system. A photomultiplier (PMT) is usually needed to detect

the nonlinear output in experiments involving the generation of a new



frequency (signal generation processes. section IID), such as CARS. The
spatial separation of the beams after the sample (due to the phasematch-
ing condition) aids inm discriminating against the input beams, while the
double monochromator further spectrally discriminates against linear
scattering of the input frequencies. It is possible then to obtain a
PMT signal dependent only on the nonlinear output and the ever-present
dark current. The latter is minimized by using gated detection of the
PMT signal. The present system included dual-channel gated electrome-
ters7 (reference and signal channels) with the capability of outputting
the analogue quotient of these signals onto a recorder.

An amplitude-CARS spectrum is recorded by the following procedure:
(1) input frequencies adjusted tc the desired frequency difference, (2)
the phasematching angle calculated and the appropriate separation of the
input beams set, and (3) the detection system approximately aligned (as
described above) and the double monochromator adjusted to the output fre-
quency. The nonlinear signal will be present even if the frequency dif-
ference does not match the Raman mode, due to contributions from the
nonresonant susceptibility (Section IIA). Once the nonlinear signal is
found and optimized, the dispersion of nonlinear signal can be recorded
versus the difference frequency wy T oW The CARS system in Fig. 2 is
capable of scanning over a range of approximately 100 t:m_l while taking
an undistorted spectrum. (Note: This scanning range requires that the
donble monochromator be continuously adjusted to match the changing out-
put frequency.) For usual Raman resonances, 1-10 cm-1 wide, this scan-
ning range is adequate to record useful CARS spectra.

The dispersion of the amplitude-CARS signal is a direct measurement

of the square magnitude of the resonant and nonresonant susceptibilities
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(see Section IID for details and Section IVC for the inclusion of linear
absorption effects). The presence of the nonrescnant background alters
the lineshape of the resonant signal through interference effects and
provides a nondispersive background whose fluctuations mask weak reson-
ances. 1lnspite of these problems, amplitude-~-CARS spectra are very in-
formative and relativ.ly easy to obtain (spontaneous Raman spectra re-
quiring hours are being supplanted by CARS spectra taken in a few min-
utes). The principal information in these spectra are the frequency and
strength of the Raman resonances. Because four photons are involved, a
great deal about the polarization properties of the resonani suscepti-
bility can also be extracted. As shown in Fig. 2, each input beam is
polarized before entering the sample. The inclusion of a half-wave
plate in the w, beam allows this beam's lipear polarization to be rota-
ted to an arbitrary angle to the w, beam's polarization. In isotropic
media, we are generally only interested in two input polarization ar-
rangements — w, parallel to w, or W, perpendicular to Wor From the
strengths of [XR]1111 and [XR]IZZI’ all independent elements of Xp can
be found.8 In crystalline medla, there is a wealth of information to be
learned using an oriented sample and different polarization combinations
— each case must then be considered separately.9

We end this section by briefly describing the limitations of this
CARS setup. First of all, fluctuations in the laser intensity, includ-
ing long term drifts, were uncompensated, since the use of nonlinear re-
ference signal required additional detectinn equipment. Variations in
the CARS spectrum from this source could be eliminated only by ensuring
the stability of the input lasers (using new dye, flashlamps, etc.). A

second source of distortion in the spectra results from a deviation from
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perfect phasematching as the difference frequency is scanned. For
small Raman shifts the phasematching angle ¢ is linearly proportional
to the Raman shift — typically ¥ ~ 30 mrad for w ™ 1000 cm L and the
phasematching peak has a half-width of about 1 mrad. Scans of 30 cm—l
or more require adjustment of ¢. Our CARS setup had no provision for
such adjustments, except for manual changes made during the scan. Fi-
nally, a nonlinearity in the electro-mechanical linkage which simul-
taneously varied the wc laser frequency and the double monochromator
setting caused loss of signal during extended scans. It was empiri-
cally determined that useful scans of ™ 200 cm_l could be made if the
monochromators were used at low resolution (8 = 204, 500 um slits)
and if ¢ was tweaked during the scan. 1If reductions of the slit
widths became necessary to eliminate unwanted signals, the aseful fre-
quency range was greatly reduced - in some instances scans had to be
limited to ~ 10 cm_l. However, being cognizant of these shortcomings,
this system proved quite adequate to perform CARS experiments, includ-

ing the polarization-sensitive measurements described in the next sec—

tion.

B. Polarization-Sensitive CARS Techniques and Apparatus

To circumvent the basic limitations of the amplitude-CARS tech-
nique one needs to control the nonresonant contribution to the nonlin-
ear signal, so the resonant part can be studied in more detail. The
technique described here to manijulate the nonresonant contribution is
polarization-sensitive detection, i.e. the introduction of a polariza-
tion analyzer into the nonlinear output beam before it reaches the de-

tector.



The first use of such a detection scheme in a CARS system was by
Levenson and Bloembergen10 in studies of Raman modes in benzene and
diamond. They clearly demonstrated that near a Raman resonance the
polarization state of the total nonlinear output is highly dispersive
by measuring the variation with frequency of the angle of the semi-
major axis of the elliptically polarized output (see Fig. 6, Ref. 10).
To observe this dispersive behavior, it was necessary to introduce an
angle (other than 0° or 90°) between the linear polarizations of the
inputfields,g(wa) and E(wc). Also included in this work were sever-
al polarization-sensitive CARS spectra in which the signai intensity
through a fixed polarizer was monitored versus Wy T Although omne
of the polarization arrangements used by Levenson and Bloembergen with
benzene completely eliminated the resonant contribution to the output,
the ability of the technique to discriminate against the nonresonant
background was not discussed or demonstrated.

The full utility of polarization-sensitive CARS was not under-
stood until a simple distinction was made between the resonant and
nonresonant parts of the total :onlinear output field.3 In the simple

case of benzene used in Ref. 10, we can write

1%

2™ B{[lellllcosé x + [XR1122151n6 v}

2%

NR = B{[XNR]llllcosd x + [XNR]lzzlsinG v} (48]
where we have written the resonant (R) and nonresonant (NR) fields for
an isotropic medium8 assuming the input fields to be polarized as

&(wa) = x and S(mc) = cosé x + sind y. B is a nondispersive constant.
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1f we assume that the nonresonant susceptibility is also nondispersive
and is a real quantity (away from any resonances), then ENR is in a
fixed linear polarization state and is constant in magnitude. On the
other hand the resonant susceptibility is very dispersive in both mag-
nitude and in phase (relative to E&R). It is usually true however,
that the ratio [XR]1221/[XR]1111 is real and nondispersive for tens of
wavenumbers, sn that ER 1s also in a fixed linear polarization state.
Figure 3 shows one possible set of directions of the input and output
polarizations using the strongly polarized 992 cm_l Raman mode of ben-
zene as an example.

With the separation of the resonant and nonresonant fields as in
Eq. (1) it is immediately clear how polarization-sensitive detection
can totally eliminate the nonresonant field leaving only a spectrum of
resonances. We insert a linear polarization analyzer after the sample
and adjust it ro transmit the polarization state orthogonal to gNR'
(In Fig. 3 the transmission axis is indicated by ). Experimentally,
this can be done by nulling the nonlinear signal when the frequency
difference is far from any Raman resonance, then only the nonresonant
field contributes. To achieve a good null (say reduction of the sig-
nal strength by four to six orders of magnitude), a calcite Glan-
Thompson prism polarizer mounted on a precision rotational mount with
3 mrad resolution should be used as the analyzer. (Similar polarizers
should be used to define the polarization states of the incoming laser
beams). In addition, one should expect ENR to be slightly ellipri-
cally polarized, since there is nearly always a residual strain bire-
fringence in the sample cell windows or in the other pleces of optics

in the beam path. A quarter-wave plate shoul? help to eliminate this

69



slight ellipticity and can be as simple as a plastic-sheet wave plate
or as sophisticated as a Babinet-Soleil compensator. Figure & shows a
complete experimental setup to eliminate the nonresonant field — a
technique we call "background suppression'-CARS. The only distinction
between the setup in Fig. 4 and the standard amplitude-CARS setup in
Fig. 2 is the addition of a collimating lens, a quarter-wave plate,
and a Glan-Thompson polarizer. Thus only minor modifications are nec-
essary to make the conversion from amplitude-CARS to background sup-
pression-CARS. (See Section II for additional theoretical details,
such as the optimal choice of rhe angle §).

The experimental apparatus for the second new variation of the
CARS technique, optical heterodyned detection-CARS, is identical to
that used for background suppression — only the technique is alter-
ed. The basic idea is illustrated in Fig. 5(a), where the transmis-
sion axis of the linear analyzer, [, is rotated by a small angle 90.

The intensity transmitted through the analyzer becomes

o2
I« |808NR + 8Rs1na|

2,2
o
9OaNR

+ ZGOENRsina Re[SR] (2)
where (GOSNR) is the amount of the nonresonant amplitude allowed to
leak through the analyzer; (&Rsina) is the component of a& which is
normally transmitted by the analyzer (even in the nuvll position). In
the second line of Eq. (2) we assume a weak resonance so the only
dispersion is linear in the real part of ER. Since Re[ER] o« Re[xR],

uncrossing the linrar polarizer ylelds a spectrum displaying the real
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part of the resonant susceptibility. [Note: if a quarter-wave plate
is present, it toc must be rotated by the same angle Bo so that its
axes match the axes of the polarizer, thus introducing the same phase
shift to the total transmitted field].

An alternate form of OHD-CARS involves the intentional inclusion
of a fixed quarter—wave plate wirh fast axis n along the direction of
g as shown in Fig. 5(b). Again the linear analyzer is rotated by Bo

NR

with the resulting transmission becoming
1o |-19 & - +& sinulz
0 NR R

« egafm + 20,8 sinoRe[-16, ] (3)
where now the quarter-wave plate has phase-shifted the nonresonant
contribution by -n/2 relative to the transmitted component of &R.
Since Re[-i&R] = Im[&R], this arrangement displays a spectrum of the
imaginary part of the resonant susceptibility. The ability to display
elther the real or the imaginary part of Xg is very useful in spectro-
scopy, especially when the spectrum contains many closcly spaced
lines.

As pointed out in Section IID, we have a "built-in" nonlinear
reference signal which can be used to eliminate power fluctuations in
the BS- or OHD-CARS signal. As shown in Fig. 7 of Section II, the
rejected signal from the Glan-Thompson (GT) polarizer is monitored for
this purpose, since it depends predominantly on the nondispersive,

nonresonant signal (at least in the weak resonance case). Although

conceptually correct, the apparatus described in this figure is some-~



what impractical, since it requires the i:e of a second double mono-
chromator. Two alternative systems using one double monochromator are
shown in Fig. 6. 1In part (a) of this figure the GT polarizer is held
in a fixed position after the double monochromator, while a half-wave
plate is used to rotate the output from the quarter-wave plate. Ro-
tating the half-wave plate is the equivalent to a rotation of the GT
polarizer. This setup was used in the experiment, but was found to
have poor extinction (nulls of only 10_3 could be obtained), since the
double monochromator altered the polarization state of the signal beam
before it reached the GT analyzer. The arrangement shown in PFig. 6(b)
is proposed to allow the polarization analysis before the double mono-
chromator. In this case the signal beam transmitted through the GT
polarizer and the redirected reMe (rejected) beam are passed
through the same monochromators but at different heights — and then
sent to different photomultipliers. Such a scheme thus eliminates any
polarization distortion occurring within the monochromators.

In conclusion, we have described the experimental techniques and
apparatus to be used in BS- and OMD-CARS. 1In addition we have indi-
cated futher modifications to the experimental setup to use the built-
in reference signal rejected by the polarization analyzer. Thus we
have seen how to control the nonresonant field E&R’ allowing normal-
ized spectra proportional to either IxR|2, Re[xR], or Im[xR] to be
taken. The experimental confirmation of these ideas is demonstrated

in the next section.

C. Background Suppression- and Optical Heterodyned Detection-CARS:

Experimental Measurements and Analysis
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This section provides experimental verification that polariza-
tion-gensitive CARS techniques can yield additional information about
the resonant susceptibility, beyond that attainable from amplitude-
CARS experiments. We present spectra demonstrating the suppression of
the nonresonant background and the exhibition of the separate real and
imaginary parts of Xg- Futhermore, it is shown that both BS~ and OHD-
CARS have much improved detection sensitivity over the previously used
CARS technique. The specific techniques and apparatus are described
in the two preceding parts of this section. We begin this segment
with a characterization of the sample and laser sources used in this
study. This is followed by a presentation of the experimental spectra
and an analysis of these measurements, including a comparison with

earlier work and an estimation of the detection sensitivity.

1. Sample Selection

Although many materilals exhibit Raman resonances, it was impor-
tant to choose a well characterized sample for demonstration purposes.
The Raman modes of benzene have been well studied, especially the
992 cm_l mode (the symmetric stretch wode, vz) which has been exam-
ined in both linear11 and nonlinear12 spectroscopy. Spontaneous Raman
spectra show that in addition to the strong mode v, at 992.2 cm_l
there are four weaker modes nearby. The strengths, widths, and fre-
quencies of these five modes have been measured by Lynch and Loteml
and a table of their results is presented in Fig. 7. The assumed form

of the resonant susceptibility 1s a sum of individual complex Lorent-

zlans. We write
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It has also been established that these modes are very strongly pol-
arized, that is the measured depolarization ratio, DR, is zero. As
pointed out in Section 1I, pg can be written as the ratio of [XR]IZZI
to [XR]1111’ so [XR]1221 = 0 for these modes.

To control the strength of the resonant susceptibility, increas-
ingly dilute solutions of benzeme in carbon tetrachloride wexe pre-
pared — from 10% to 0.1% by volume. Carbon tetrachloride was chosen
as the solvent because it is known to be nondispersive in this fre-
quency range and is readily available in high purity. Fufthetmore,
Levenson and Blcembergenl3 have previously made a direct comparison of
the resonan® susceptibility of benzene 2nd the nonresonant suscepti-
bility of carbon tetrachloride, which can be used for comparison with
the result determined here. As shown in Section II, it is this ratio
of xR/xNR which determines the signal to noise ratio for CARS; and it
is XR/XNR which can be measured from the CARS spectrum. A discussion

of the results Ref. 13 will be included with the analysis of the pre-

sent experimental determination given below.

2, Lasers

The general characteristics of the flashlamp-pumped dye lasers
used in the experiment have already been discussed. For the Raman
mode in benzene, the frequency separation of 992 cm_1 required the use
of two digferent laser dyes. For the wa—laser (upon which the signal

was quadratically dependent) we used Rhodamine 6G runed5 to Aa s
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5950A (16805 cm-l). The uc—laser was operated at a frequency of about
w, - 992 cm-1 or 15813 cm-l corresponding to 63234 (Kiton Red dye).

Both dyes were used at lO-AM concentrations in 1:1 water to methanol
solutions. During the course of the experiment the Rhodamine 6G laser
remained fixed at xa, while the Kiton Red laser was tuned.6 A hand-held
viewing etalon (Molectron) with a free spectral range of 1.1 cm_1 al-
lowed frequent observation of the lasers' linewidths, ensuring narrow-
band operation (< 0.2 cm_l).

The lasers had pulse d.rations of about 1 psec and operated at 10
pulses per second. For these experiment, the output powers were 7 kW at
Wy and 3 kW at W, in beams that were ~ 2 mm in diameter with a full
angle divergence of ~ 1 mrad. Both beams were predominantly linearly
polarized with multi-mode transverse profiles. Throughout these experi-

ments, laser characteristics remained stable.

3. Experimental Spectra

Using the experimental setup indicated in Fig. 4 (with an angle of
~ 71.5° between the input polarizations), initial observations were made
of polarization-sensitive spectra using a 10% solution of benzene in
CCEQ. Background supprescsion was achieved by nulling th- 1onlinear sig-
nal with the frequency detuned aproximately 40 cm_l below the.expected
Raman resonance. The scanable laser was then tuned through the reson-
ance, giving the spectrum proportional to ‘XRIZ with a very high signal
to noise ratio. The concentration of benzene was further reduced to
0.1%, and the spectrum repeated. The result is displayed in part (a) of
Fig. 8, which shows the "CARS" signal of the 992 cm—l Raman mode of ben-

1
zene free from any nonresonant contribution. t is weil known 2 that
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this mode of benzene is very nearly Lorentzian (as given in Eq. (4)),
therefore IXRIZ « (Amz + F:)-l where Aw = NR - (cua - wc;. Although this
spectrum of !lez is noisy, it has the general shape of a Lorentzian
without the distortion apparent in the usual amplitude-CARS spectrum.

In fact, a conventional CAR3 spectrum of this resonance with 0.1% ben-
zene would have a resonant signal strength of only about 3% of the non-
resonant background, which 1s more difficult to detect than the BS-CARS
signal in Fig. 8(a).

Using the heterodyning techniques described in part B, we have also
displayed the imaginary and real parts of this resonant susceptiuvility,
as shown in Figs. 8(b) and (c), respectively. These spectra were made
using the experimental apparatus of Fig. 6(a), which provides a normal-
ized output signal. To obtain the heterodyned spectrum of Im(xR), the
quarter-wave plate and Glan-Thompson analyzer were first set to the same
positions used in background suppression case discussed above, then only

the Glan-Thompson was rotated by an angle 0, = 2.7° or 47 mrad (see Eq.

0
(3)). Thedispersionof Re(xR) was recorded by rotating th2 analyzer to
about 8° or 140 mrad (see Eq. (2)) without including the quarter-~wave

plate in the apparatus. Again, assuming a complex Lorentzian form for

the frequency dependences of the imaginary and real parts are:

2.-1
®

XR’
Im(xR) @« (Amz + T and Re(xP) @« Am/(Aw2 + T;), which are approximate-
ly confirmed by the experimental spectra.

In Fig. 8 we have plotted the "relative" signal strength versus the
Stokes shift, W, T W, of the input frequencies. The relative signal
strength § is to be defined as the ratio of the intensities derived from

the output field components parallel to the transmission axis of the

analyzer (&") and orthogonal to this axis (&l). Formally,
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In cthis way the spectra in Fig. 8 are independent of the absolute sig-
nal strengths.

The heterodyned signals were taken already incorporating this
normalization, with the scales for these signals determined by the
heignt of the off-resonant (background) signal. The amount of the

2
nonresonant signal leaked through in this case was eo times the total

2
0

for the imaginary spectrum and & = (.140)% =

signal before the analyzer, so that & = 8- for the background level.

&= o4n? = 2.2 x 1072
20, x 10-'3 for the real spectrum (see the vertical scale of Fig. 8).
The background suppression spectrum, however, was not taken with
the normalization setup, and therefore required an independent meas-
urement of I_L to determine the relative signal strength. This meas-
urement was performed in the following way: (1) at the peak of the
IXR|2 spectrum, the height of the resonant signal was noted, (2) go-
ing far off resonance the analyzer was then uncrossed until the signal
level matched the resonant signal level, and (3) the uncrossing angle,
Y, was noted. yz became a measure of the ratio of resonant to non-
resonant signals, or i = yz. For the 0.1% benzene in carbon tetra~
chloride solution, we found y = 1.1° (19 mrad) + 15%. Thus the peak

0.36 x 1073, From

n

height of Fig. 8(a) was scaled to R = (.019)2
the information of the relative strengths of I" and Il we can deter-

mine the ratio of Xg for this solution of benzene and estimate the

/Xnr
detection sensitivity of these new techniques.

As a final note on the methods used to obtain the spectra in



Fig. 8, it should be noted that even in the null position the nonres-
onant signal was never totally extinguished by the polarization ana-
lyzer. Therefore, each spectrum had this residual background which
was subtracted from the signal before the relative scale was marked
on the vertical axir For the background suppression case, this re-
sidual background is indicated by the height of the zero level above

the baseline of the figure.

4. Analysis and Discussion
Using the information provided in the preceding section, we first

determine our experimental value of Xg for the benzene-carbon te-

Iy
trachloride solution, then compare this result with that obtained by
Levenson and Bloembergen.13 As we will see, addirional information
about this sample is obtained upon examining these spectra and making
this comparison. Also we estimate the limiting value of XR/XNR ob-
servable with this experimental setup and indicate what this limiting
value will be for other samples.

In the preceding section we have described experimental measure-
ments to determine the relative signal strength &, defined *a Eq. (5)
and used in Fig. 8; now we relate & to the fields and susceptibilities
involved in this sample. For example, in the background suppression
case we have (from Fig. 3) the field parallel to the analyzer axis
given by ﬁnsinu, while the orthogonal component is dominated by &NR'

Therefore,

2 2 2
1 idgetnal® gl

f|R=
IZ

(6)
2 2
8,2 log gl
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where we hrve taken a = 45° as in Fig. 3 and used the expressions for
the fields given in Eq. (1), which matches our experimental situation.
On the other hand, for the heterodyned cases, 5" can be deduced from
Eqs. (2) and (3), while the rejected intensity 1s still predominantly
due to the nonresonant field. For the real part of Xp Ve have

+ &Rsinul2

1o0knR

> ’2
& !

! =

~ 2
00 + BORe[xR]/xNR (7)

which clearly shows that away from resonance, we have the backpround
value of 6 = u; as discussed previously. A similar expression can be
derived for the imaginary part. (Here we have assumed 90 is a small
angle, but this restriction can be removed by proper consideration of
Fig. 5).

The best measurement of & (as it depends upon the resonant sus-
ceptibility) comes from the background suppression case, Eq. (6),
since this value is quadratically dependent on xR/ XyR* From the

measured value of  at the resonance peak, we have

2
!
2 IXRO

&« lz = XR/XNR= 2y (8)

I'IXNR

which implies XR/XNR = 2(.019) = .038 for our 0.1% sample. Correcting

for tiie reduced concentration, we have
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Xg (Cglig) /xyp(CC2,) = 38. )

where xR(C6H6) is the peak value of the resonant susceptibility for
pure benzene and xNR(ccza) is the nonresonant susceptibility of pure
carbon tetrachloride. The angle y was only measurable to #15% (this
corresponds to the 3 mrad accuracy of the rotation mount used in mak-
ing the measurement of the 19 mrad angle), thus this ratio may also be
in error by this percentage. Of course, the measurement accuracy of
Y would be much improved if we had chosen to perform the calibration
with a 1% solution, where y would be an order of magnitude larger.

Let us now compare this value of xR/;(NR with that obtained by
Levenson and Bloembergen (LB).13 In their case the ratio was meas-
ured by finding the frequency separation between the maximum and min-
imum of an amplitude-CARS spectrum.14 To predict the frequency sepa-
ration, A;-(cm—l), they first had to assume a form for the resonant
susceptibility — the Lorentzian form of Eq. (4) being their choice,
xR(Am) = XRPR/(Am ~ iPR). Since a conventional CARS signal is pro-

portional to ]XNR + XR(Am)lz, we can predict the frequency separation

(max to min) to be

- _ 2 1/2
by = TelGp/xg) ™ + 4]
inverting, we find

xg/xyg = L8T? - 4112

~ /Tl - Z(AG/rR)'ZJ (10
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where FR is also measured in t':m-1 .he latter expression applying for
A;YFR >>1). Thus the frequency separationexplicitly determines the
ratio of the susceptibilities. Since measurements of frequencies can
be made quite accurate, this approach is a potentially precise method
of finding XR/XNR'

LB have performed two measureinents of AV for samples of interest
here; the first for a spectrum of 50% benzene and 50% carbon tetra-
chloride, the second for a spectrum of pure benzene. From the former
we have a measure of XR(CGHG)/[XNR(CGHG) + XNR(CCEA)] and from the
latter just XR(CGHG)/XNR(CGHG)' In particular, AV = 15.5 r:m-1 for the
mixture and 27.5 r:m_l for neat (pure) benzene. LB also give the Raman
linewidth of the 992 <:m-1 mode with more precision than that given in

Fig. 7, FR =1.15 cm-l. Therefore we have,

Xp(C.H )
R'766 - 133
XNR(CGHG) + XNR(CC"A)
Xy (C.H )
R 65 53 (1)
g (CoHg)

From which we Find XR(COHG)/XNR(CCZQ) = 30.1.

Comparing the two values of XR(CGHG)/XNR(CCEA)’ 30.1 and 38., we
see a large discrepancy - even morc than the estimated 15% error
which would lead to 38. * 6. We must look elsewhere to find the rea-
son for this significant difference.

Careful examination of the experim tal spectra in Fig., 8 reveals

an important new feature overlaoked in our previous work.3 Although



these spectra have the general forws associated with a Lorentzian
lineshape, the linewidths do not match the expected width PR =1.15
cm—l. In fact, the experimentally determined lincwidth from the spec-
tra of the 0.1% benzene solution is PR = 0.8 cm-l (HWHM). Such a re-
duction in FR will strongly influence the peak magnitude of XR’ which
may be written as XR = AR/I‘R for a simple Lorentzian. In this case
let us reexamine the determination of the ratio of the resonant sus-
ceptibility of pure (100%) benzene to the nonresonant susceptibility
of pure carbon tetrachloride.

From Eqs. (6) and (8) we actually determine that the ratio
XR(O.IZCBHG)/XNR(99.9ZCC£4) = 0.038, where we have explicitly included

the concentration of each species. Since the 992 cm_l mode has been

well characterized as a Lorentzian,12 we can write (at the peak)
XR(O.lZCGHG) = AR(0.1%C6H6)/PR(O.IZCGHG) (12)

where AR(O.l%C6H6) and FR(O.l%C6H6) are the Raman amplitude and line-
width evaluated for a sample of 0.1% benzene. Normally we can assume
that the Raman amplitude is linearly proportional to the density of

benzene molecules and that the linewidth is independent of concentra-
tion, so that Xg is also linearly dependent on concentration. In ben-

zene, we still expect the usual dependence of the Raman amplitude:
AR(0.1406H6) = (O.IZ)AR(IOOAC6H6)

since, apart from the usual factor of the density, AR contains only

dipole matrix elements and nonresonant energy denominators which are
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quantities dependent on the internal structure of the benzene molecule
— not on the density of molecules. The Raman linewidth, on the cther
hand, is dependént upon both th: internal structure of the molecule
and the molecule's interaction with its enviroment. This latter ef-
fect can lead to a dependence of FR upon the density cthrough colli-

sion processes as we will see below. In benzene wi have observed

0.8 cm
F (0. l/C ) =\ r (lOO/C ) =0.70 T (1007C )
1.15 cm

Using these relationshins between parameters measured at 0.1% and at
100% benzene, we can determine the value of xR(100%C6H6)/xNR(IOOZCCLA)

in terms of the experimentally determined value of this ratio for 0.1%

benzene given above (0.038). One has

xR(lOOACGHE) _ AR(100/C )/F (1007C H )

% %CCR
XNR(IOO/CCEA) XNR(100/CC 4)

[AR(O.lZCGHG)/IO ]/[F (0. 17C )/0 70]

XNR(IOOZCCRA)

2
(7.0 x 10%) XR(O 1c )/xNR(loozchL )

1

26. (13)

where the 0.1% difference between XNR(99.9%CC£4) and XNR(100ZCCL4) is

neglected.
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Having made the correction we see that the value of the ratio has
been substantially reduced and the agreement with LB is somewhat bet-
ter. Of course, since we know the linewidth is concentration depend-

ent, we require that the value of Xg of LB similarly be corrected

IR
for the reduced linewidth which should have been present in their
spectra of the 50% benzene solution. Unfortunately, there were no
published plotsl3 of the CARS spectra used to determine the ratio of
susceptibilities, so the linewldth of the resonance at this concentra-
tion cannot be directly determined.

To estimate the Raman linewidth at 50% benzene concentration we
refer to the work o} Griffiths, et al.15 who have examined this prob-
lem using spontaneous Raman scattering and who offer a pausible ex-
planation of the effect. They point out that at high concentrations
of trnzene, there are a large number of collisions between benzene
umclecules during which it is energetically possible to undergo nonra-
diative transitions. The most favorable transition being an excita-

1 of

tion of the nearby 983.5 cm_l mode with the additional 8.7 cm
energy going into kinetic energy. As the concentration is decreased,
the number of collisions and nonradistive transfers decrease — lead-
ing to increased lifetime and decreased linewidth. Their data indi-
cates a limiting linewidth of 0.75 cm—l, which is in good agreement
with our measured value of 0.8 cm_l. Furthermore, the concentration
dependence of the linewidth is fairly linear with a value of 0.95 n::m-l
for a 50% solution of benzene.

Using this value of FR’ we can now correct the measured xR/xHR

of LB. Again, their ratio was xR(SOZC6H6)/xNR(CC24) = 30.1 and after

performing the corrections as in Eqs. (12) and (13), we find
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xR(1002 CSHS)

= 20 __ 2.9 (14)
Xy (100% €C2,)

Which is in excellent agreement with our value of 26. determined using
the polarization-sensitive detection techniques. As a further indica-
tion of the quality of this measurement, we show in Fig. 9 computer gen-
erated ploi= of the expected ratio signal strength IH/Il vs., Stokes
shift (assuming a Lorentzian resonance with FR = 0.8 cm—l and XR(O.IZ
CGH6)/XNR(CCEA)='038)' The computed lineshapes are also in good agree-
ment with the experimental ones of Fig. 8.

To conclude the discussion of the work on the 992 cm_l mode of ben~
zene, we consider what the experimental limits of detection are. The
analysis has shown that the ratio of XR/XNR is the important parameter
determinable from the spectra. Since the magnitude of Xg is a directly
proportional to the number of resonant scatterers while XNR is due only
to the solvent (for dilute solutions), the ratio XR/xNR is a direct mea-
sure of concentration of the resonant species. For 10“3 {by volume)
C6H6 in CC24, we have found xR/xNR 3,8 x 10_2. Consider now the sig-
nal to noise ratio, S/N, of Fig. 8(a) — the background suppression
spectrum ~— roughly $/N ~ 10, in this case. However, since the spectrum
is quadratic in the ratio of susceptibilities, we estimate a limiting
to be 3.8 x 1072/(10)* = 1.2 x 1072 or a ben-

zene concentration of 3 x 10_4.

(S/8 = 1) value of XR/XNR

The advantage of heterodyning becomes clear by examining Fig. 8(b),
which displays the imaginary part of Xg* Here again S/N ~ 10, but this

spectrum is linear in Xg* Thus, the heterodyned spectra will have S/N ~

1 for XR/ XNR = 3.8 x 10_3 or a benzene concentration of 10_4. This
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concentration would correspond to 100 ppm of benzene in carbon tetra-
chloride and is approximately two order of magnitude better than the de-

tection sensitivity of the conventional CARS technique.

D. Applications and Limitations of Polarization-Sensitive CARS Tech-
nigques
1. Applications
There are several interesting applications of these new techniques
which are discussed below. First, though, we will briefly summarize the
two applications emphasized in the experimental section — namely, the
measurement of relative susceptibilities and the detection of weak con-
centrations.
As demonstrated in part C, making a measurement of the relative
signal strength of the transmitted aad rejected signals (as suggested in

Fig. 6), is in effect making a mcasurement of Xg In the present

/XNR'
work we have only studied benzene diluted fn carbon tetrachloride, but
this is not an isolated example. Using other liquids with Raman modes
(either strong or weak), we can measure the ratio of their resonant sus-
ceptibility to XNR(CCEA) and so have a relative measurement of the re-
sonant susceptibilities. Similarly, different solvents may be used with
benzene to establish their relative nonresonant susceptibilities.

This technique 1is superior to that proposed by Levenson14 and used
in the above determination of xR(CGHG)/xNR(CCEA) by Levenson and Bloem-
bergen.l3 Although it is true that their technique involves only mea-
suring the ratio of AGYPR (the frequency splitting of the maximum and
minimum of the CARS signal over the Raman linewidth — HWHM), the depen-

dence of Xg on A;7FR for a particular concentration can only be de~

Mg
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termined by assuming that the resonance has a particular lineshape. On
the other hand, the polarization-sensitive technique presented here does
not rely on the lineshape of the resonance but only requires information
about the angle between ER and ENR which can be found experimentally, if
necessary.

At the end of the last section we established that the detection
limit of our apparatus was 100 ppm of benzene in CCEA or xR/xNR =4 ox
10—4. It is this latter number which should be emphasized. Consider,
as an illustration, an experiment involving the detection of low concen-
trations of hydrogen in a nitrogen atmosphere, such as exists in a meth-
ane flame.16 It is known that the Q1 Raman mode of H2 at STP has a re-
sonant susceptibility approximately 4 x 105 stronger than the nonreson-
ant susceptibility of nitrogen at STP. Using the polarization-sensitive
CARS techniques, the expected detection limit would be XR(HZ)/XNR(NZ) =
4 x 10—3, the same as before. In this illustration, however, the large
strength of the resonance implies a miniumum detectable concentration of
4 x 10_3/A x 105 or 10 ppb H2 in NZ' Previcus measurements using ampli-
tude-CARS were limited to 1-10 ppm.16

Another application of the polarization-sensitive detection schemes
was briefly discussed in Section IIC. The situation considered was a
weak resonance in the wing of a stronger resonance. It was described
how the polarization analyzer could be adjusted to null both the strong
resonance and the nonresonant background fields over a l.mited spectral
range. This allowed the weak mode to be more readily observable. We
have been able to experimentally demonstrate this application using the
Raman modes of benzene listed in Fig. 7. An approximate null of the

background and the strong 992.2 cm_1 mode was obtained near 975 cm_l



(Raman modes appear at 983.5 and 979.3 cm-l), then the polarizer was
slightly uncrossed (by 2°) to allow for some heterodyning of the weak
resonance. The resulting spectrum is shown in Fig. 10. The upper spec-
trum 15 the usual amplitude-CARS spectrum of the 4% C6H6 in CC14, show-
ing the weak Raman mode at 983.5 cm_l on the shoulder of the stronger
992,2 mu_1 mode. The lower spectrum (using the polarization analyzer)
shows much more clearly the 583.5 cm_l, even the measured width of 0.7
cm_l is in agreement with Lynch and Lotem.lz It is also apparent in Fig.
10(b) that the weaker mode at 979.3 cm—l 1is now observable, whereas it
was lost in the noise of the amplitude-CARS spectrum. Of course, the
polarization analysis of this form is useful only over a limited spec—
tral range, thus no attempt was made to examine the weak resonances on
the high frequency side of 992 cm_l. This would require a different po-
larization adjustment.

Firally, as a word of caution, there will always be some amount of
distortion of the weak sigral lineshape as we scan across the weak-re—
sonance frequency. This is due tn the slow variation with frequency of
the nonlinear output field associated with the strong Raman mode located
many linewidths away. Since the polarization analyzer is fixed during
the scan, varying amounts of this strong-resonance field will pass
through the analyzer and be detected along with the rapidly changing
field due to the weak-resonance under examination.

Yet another application of these techniques is to separate Raman
modes of different symmetries. The basic i1dea here is to set the polar-
ization analyzer to purposely discriminate against Raman modes for a
particular symmetry. Levenson and Bloembergen13 first did this when

they presented a CARS spectrum of benzene with the analyzer set ortho-
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gonal to the resonant field, e.g. along ¥ in Fig. 3. In their case,
only the nonresonant signal remained. A much more interesting situa-
tion has been recently presented by Rahn et 31.17 in which it is pointed
out that the degenerate vibrational and rotational transitions in gases
have a different symmetry from the symmetric Q-branch modes. (The form-
er are anisotropie, PR = 3/4, while the latter are isotropic, op = 0.)
It was then possible to produce spectra showing Q-branch modes but not
rotational modes and vice-versa. Discrimination such as this can be
quite useful in spectroscopic studies.

In related work, Koroteev et al.18 have used polarization-sensitive
CARS to study the broad, featureless Raman mode of water from 3200 cm_l
to 3600 cm-l. Making a series of spectra with differing polarization
arrangements, they have been able to partially resolve several lines of
different symmetries within this band. They also point out techniques
which can be used to separate closely spcted modes with differing depo-
larization ratios. Thus, polarization-sensitive detection has many pus=-

sible uses, especially in the area of nonlinear spectroscopy.

2, Limitations

In this segment, we discuss the limitations of polarization-sensi-
tive CARS, i.e., the factors which can improve and/or degrade the useage
of these techniques. We begin by considering possible improvements in
the previously described experimental setup.

Two features of the apparatus used in the demonstration of BS- and
OHD~CARS which can be improved are: the polarization optics and the data
acquisition system. The importance of quality polarization components

cannot be overly emphasized, since these techniques rely on thte electric
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fields being in nearly pure polarization states. With the simple setup
used in the background suppression case (Fig. 4) it was possible to
achieve an extinciion ratio (for th: nonlinear signal) of about 2-5 x
10-5, but with higher quality components it should be possible to obtain
an extinction of a few times 10-6. (This limit being due primarily to
scattering from the surfaces of the anclyzer.) This would lead to about
one order of magnitude improvement in the detection sensitivity, when
using the heterodyning techniques.

Further increase in the signal to noise ratio would occur if the
data acquisition system were modified to a shot-to-shot, digital data
processing system. Such a system-'would perform the ratio of I“ to Il
after each shot, then evaluate the average ratio of some specified num-
her of shots. The present syst:em7 instead performs an exponential aver-
age of each input channel over a specified time constant, then outputs
the analog ratio of the averaged signals. This type of system leads to
an unequal weighting of the pulses coming in during the time constant
and thus has additional electronic noise. The actual improvement in the
CARS signal to noise ratio to be expected by the use of the proposed
data processing system may be a factor of four or more. With these two
changes, the expected minimm detectable ratio of resonant to nonreson-

3 o 2 x 1077, Any lar-

ant susceptibility would be reduced from 4 X 10~
ger decrease iIn this ratio would be experimentally very difficulc.

Thus, we may claim that the practical detection sensitivity of these po-
larization-sensitive forms of CARS is

~2 x 1674 (practical iimit, 0)

g/ Xy PR~



which for benzene implies a concentration of about 5 ppm or for hydrogen
about 1 ppb.

At this point, we must also indicate that there are factors which
will cause a loss of sensitivity and, in effect, raise the practical
1limit proposed above. One source of this degradation is noise in the
CARS spectrum which may make the small signals of the weak rescnances
difficult to observe. As described in Section IIE, laser intensity
fluctuations are one source of noise in a spectrum without normaliza-
tion, and electronic noise in the detection system plays a simlilar rale
for intensity normalized spectra. Quantum fluctuations in the photon
field, i.e., shot noise, can also be an important noise source in mea-
surements involving small numbers of photons. To formalize the signal
to noise considerations, we draw on the amalysis given in Sectiom II.

In particular, Eq. (62) of that section gives the limiting value of xR/
XNR in terms of Bi, the finite extinction ratio of the polarization
analyzer, and €, and € the fractional mean square intensity fluctua-

tions on the input beams at @, and @, . For the casc of OHP-CARS we have

O/ min ~ 2 0, l4e, + ec)% (15

applying in the limit that fluctuations are dominant over shot noise.

Assuming €, = €. = (0.15)2 (15Z rms laser iuntensity fluctuations), and

4

6: = 10 ", we found that averaging with a one second time constant gave

a limiting value of XR/XNR ~2x .IO_3 for the detection sensitivity,
which compares reasonably well with the experimentally determined value

3

of ~ 4 x 107" determined above.

For the present discussion we want to pgeneralize Eq. (15) to inm-
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clude the shot noise contribution. This can be easily done starting
from Eq. (59) of Section II as before, but keeping the extra term des-

cribing the shot nolse. The resulting expression is

g/ Xdutn = V2 8 le + BTSN ae

where Nl" is the product of NP’ the number of photons incident on the de~
tector through the analyzer, and q, the detector's quantum efficiency
(L.e., NI; is the number of photoelectrons produced at the photocathode).
Here we have written e for either the total fluctuations due to the la-
ser intensitiesl (lu:a + ec) when no intensity normalization is used or

for ¢ when intensity normalization is included. Also in Eq.

electronic
(16), the increased sensitivity derived from averaging over.# measure-
ments of the same signal is explicitly shown.

Several features of Eq. (16) are important for the determination of
the limiting value of XRIXNR' As indicated previously, using a batter
analyzer (reducing Oe) or less fluctuating laser sources (reducing ¢)
help to decrease (XR/XNR)min' However, upon reducing ¢, the shot noise
term (Nl;)—l becomes increasingly important. In particular, consider the
case of an ideal laser system which has no shot-to-shot power fluctua-
tions, i.e., ¢ = 0 (or an ideai data acquisition system if normalization
is used). We can then show that the minimum detectable value of X is
determined — independent of XNR (as shown at the end of Section IIE).
Bascially, we have for € = 0
]

5 22
O/ Xmdmin = 8aNp~ = 8, (8 xg)
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where the latter proportionality uses the fact that NP (the number of
photons after the analyzer) is determined predominantly by the leakage
of the nonresonant signal through the analyzer, so “P is proportional to
the extinction ratio times the nonresonant signal (which goes as xﬁn),

or eexik' Rewriting the above, we see that

-1
Ca/*ygdmin = *ng

so, in this limit, the value of (x.) is actually determined, not the
R

min
ratio of resonant to nonresonant susceptibilities. In other terms, the
limiting detectable value of Xz 1s determined only by the shot noise

fluctuations of the leakage signal through the analyzer —— the smaller

N_, the larger (xR becomes.

P )min

Although the ideal case of no laser or electronic noise (¢ = 0) is
not attainable in practice, we can encounter the same problem, if (i‘lz'_,)"l
> ¢. This can happen if we are in a situation with weak signals. To
avold this limitation of the detection sensitivity, it is advisable to
use higher-powered laser systems to ensure that (Nl',)_1 not dominate the
fluctuation (c) term. Even though we have discussed the effect of shot
noise for the case of OHD-CARS, the conclusion of this analysis applies
equally well to both background suppression- and amplitude-CARS. 1In all
cases, we have maximum detection sensitivity by increasing the nonlinear

signal strength until e > (Né)-l.

o

For the present system (without normalization) € ¥ .1 so we require
Nf 2 10. With a typical quantum efficiency of 10%, we need at least 100
photons after the analyzer (or 106-107 photons in the signal after the

sample). One often overloocked advantage of this form of nonlimear spec-
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troscopy is that the nonlinear nature of the process can be used to en-
sure that the shot noise contribution to XRIXNR is minimized. (Of
course, when such high powered lasers are used, other nonlinear ef-
fects, such as ellipse rotation or self-focusing, may become impor-
tant.) On the other hand, if the number of photons does decrease into
the shot noise reg}.me, we can further improve the detection sensitiv-
ity only by averaging ovar many shots — the same technique used in
linear spectroscopy.
Also, it should be realized that the practical limiting value of

XR/XNR depends upon the symmetry of the Raman mode, i.e. upon the de-
palarization ratio, Pr* In fact, using the formalism defined in Sec-

tion II, we can include this dependence by the inclusion of a simple

multiplicative factor. In general,

Xg/Xyg = 2 % 10-1')/|3pR - 1| (practical limit)
where we have assumed Kleinman's symmetry (pm = 1/3). We note that
as the depolarization ratio approaches 1/3 the sensitivity decreases
rapidly (XR/XNR -+ ®)}, but this is to be expected since ER becomes more
nearly parallel to gNR (making polarization separation increasingly
difficult)., Fortunately, there is very little difference in the limit
for an isotropic mode with Pr = 0 and an anisotropic mode with PR = 3/4
(see Ref. 17).

Finally, the detection sensitivity may also depend upon the qual-
ity of the sample. Although a general elliptical birefringence in the
sample, e.g. optical activity in certain liquids or crystalline aniso-

tropy in solids, complicates the interpretation of the nonlinear output
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field, it does not destroy the purity of the output polarization state.
(The presence of such birefringence may preclude the possibility of
phasematching, however.) If there is an inhomogeneity in this bire-
fringence, such as from macroscopic strains in solids, the output
field will leave the sample in a nonuniform polarization state. It
will then be impossible to null the output over the entire beam pro-
file, i.,e. there will be poor extinction and, consequently, poor detec-
tion sensitivity.

In summary, this section has described the techmiques and appara—
tus used in making polarization-sensitive CARS measurements. Two new
techniques — background suppression- and optical heterodyned detec-
tion -CARS — have been experimentally demonstrated using the 992 cm“]'
Raman mode of benzene diluted in carbon tetrachloride, and the ratio
of resonant to nonresonant susceptibilities has been measured and com-
pared to other work. We have estimated the minimum detectable concen-
tration of benzene observable with this apparatus and suggested what
the practical limit might be. We also indicate the limitations of

these techniques and possible interesting applicatioms.
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6
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Figure Captions

Standard phasematching geometry in normally dispersive media.
The angle { between the two input wavevectors, i; and Ec, is
greatly exaggerated; typically ¢ = 1-2°. dote ¢ 1s deter-
mined in the medium of refractive index n.

Amplicude-CARS setup used in the laboratory. Half-wave plate
Wl and polarizer Pl allow rotation of “a polarization; P2 de-
fines polarization of wc. Fixed mirror M1, translatable mir-
ror M2, and lens L1 determine the phasematching angle. S -
sample, DM - double monochromator. Insert shows positioning
of M2 for alignment of detection system.

Unit vectors showing directioms of the input fields ia and

ﬁc and the resonant and nonresonant output & and &NR' re-

R
spectively. A strongly polarized Raman mode and Kleinman's
symmetry are assumed. & = 71.5°, a = 45°.

Basic polarization-sensitive CARS setup used for backgroumnd
suppression and heterodyning, showing the alteratioms in tne
detection system. Compare with Fig. 2.

Polarization arrangements used in OHD-CARS. (a) To display
the spectrum of Re(xR), (b) to display the spectrum of Im(xR).
E - transmission axls of linear analyzer, ﬁ - fast axis of
quarter-wave plate.

Pcssible detection systems for normalized polarization-sensi-
tive detection. (a) Setup actually used, with fixed Glan-
Thompson analyzer after the monochromator and separate PMTs.

(b) Proposet setup with Glan-Thempson before monochromator,



Fig. 7

Fig. 8

Fig. 9

Fig. 10

with separated beams going in at different slit heights.
Table of Raman parameter for benzeme near 992 cu_l. wp ~ cen-

tral frequency, AR - strength, ', - linewidth (HWHM), and

R
- maximum resonant susceptibility (AR/FR) for each Ra-

(Xg) nax
man mode.

Experimental spectra of 992 cm—l mode of 0.1% benzene in carbon
tetrachloride (a) using background suppression-CARS, (b) and
(c) using different arrangements of optical heterodyned detec~-
tion-CARS. The vertical scale - relative signal strength H!/PU
the horizontal scale - Stokes shift in cm_l.

Theoretical plot of polarization-sensitive CARS spectra in Fig.
8. We assume Lorentzian lineshape with FR = 0.8 cm_1 and
Xg(0-12 CGHo) /xp(CCL,) = 3.8 x 102, Compare with Fig. 8.
CARS spectra of 4% benzene in carbon tetrachloride in the vi-
cinity of 980 p— (a) Unpolarized detection, (b) tramnsmitted

signal through a quarter-wave plate and a slightly uncrossed

polarizer — arbitrary scale between (a) and (b).
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Figure 7
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Figure 10
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IV. MULTI-RESONANT FOUR-WAVE MIXING IN INHOMOGENEOUSLY BROADENED MEDIA

— THEORY

In Sections II and III we have discussed one method to study two-
photon transitions and to improve the detectivity of these single reson-
ances using polarization-sensitive detection. We now consider another
form of four-wave mixing spectroscopy which uses double or triple reson-
ances to yield additicnal spectroscopic informatiom and also improve de-
tection sensitivity.1 As each additiocnal resonance is approached the
strength of the resonant susceptibility increases dr2matically, as has
been recently demonstrated experimentally.2 It has also beem recently
shown by Druet, et 31.3 that it is possible to obtaim Doppler-free spec-
tra with multi-resonant four-wave mixing.

in this section, we give a more complete discussion of doubly and
triply resonant processes along the lines of Oudar and Shen.4 We begin
by deriving the forms of particular wulti-resonant nonlinear suscepti-
bilities for processes such as CARS, CSRS and RIKES (see Section II for
a description of these mixing processes). Of interest here is the non-
linear response of a medium showing inhomogeneous broadening, thus ex-
plicit expressions are derived to characterize this situation. We will
see that the singly-resonant susceptibility is always dominated by the
inhomogeneous broadening, while in some cases double and triple reson-
ances show considerable narrowing. The measured strength of Xy can be
used to determine matrix elements involved in the process. The discus-
sion here centers on studies of rare-earth ions in solids, but the Dop-
pler broadened case is also included. Since real absorption can occur

in multi-resonant processes, the nonlinear susceptibilities involve not
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only the transverse (off-diagonal) damping terms, but also longitudinal
(diagonal) damping. The effects of this linear absorption upon the non-
linear output are also considered. (The following section contains ex-

perimental work performed on Pr+3:LaF3.)

A. Multi-Resonant Nomlinear Susceptibilities
As pointed out in Section II, the density matrix formalism can be

used to find ;(3)

when the radiation fields are treated as a perturba-
tion.5 In pgeneral, there will be 48 terms in the third-order nonlinear
susceptibility. Recently, a diagrammatic technique has been utilized in
nonlinear calculations (Yee and Gustafsonﬁ) which allows one to easily

write out all terms in ;(3).

The following discussion makes use of this
technique without further explanation.

We are specifically interested in terms of the nonlinear suscepti-
bility which show double or triple resorances. The damping terms in-

cluded in the resonance denominators then take on great importance. The

relaxation of off-diagonal elements of the density matrix is written as7

(apnn‘)
at /damping 1“m.'l'pnn' &3

where I' _, is the phenomenological damping constant with I' , =T ,.
nn nn nn

The transverse relaxation time (Tz) = (I‘m_..)_1 describes t¥=> dephas—

nn'

ing of transitions between |n> and |n'>. The damping of on-diagonal

elements of the density matrix is given by

3p
an _ RO _ (@
( 3 )dmping = EI W (o = o iw) )E W o - e) (@)
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where whn" is the transition probability of going from state |n"> to
state |n> and 0:23" is the equilibrium population of state {n">. In a

n.n)'l. which

simple two level system there is only one time, (Tl)n - W
describes the decay of the population. However, in more complicated

systems, one cannot use the concept of a longitudinal relaxation time,
Tl’ unless simplifying assumptions are made. If we assume there is no
pumping into the state In> from the decay of higher levels, the first

sum on the right side of Eq. (2) can be neglected, lzaving an effective

damping constant T given by :: W , . We then have
nn ot nn

0
—an =-T o -0
( at )damping rnnmnn Pan ). 1)

In our derivation of nonlinear susceptibilities, we assume that the
damping 1s adequately described by the terms an. and rnn.

We consider four particular examples of multi-resonant four-wave
mixing of interest for our experimental studies. In each example, we
assume that only two input frequencies, wy and Wy are involved. Fur-
thermore, the material system is assumed to be initially in its ground
state |g>. A Raman-type, low-lying level is designated ‘g'>, while ex-

cited states are |n> and |n'>.

1. Doubly-Resonant Processes

The doubly-resonant processes of interest have a single-photon re-
sonance and a two-photon resonance. The firs- -:ample is double reson-
ance CARS which involves u, being resonant with the transition |g> + |n>

while w; - w, is resonant with |g> + |g'>, as shown in rig. 1(a). From

1
the diagram56 we find
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(0)
N{a
Ny ou - - ©ag)13¥arndi PngdsPep
[x {w,=w wy Fuw )],
R 301 27717 ke hz(m ~—w +il Y(w, ~w,~-w +ir )
1 ™mg “ng’ 1 2 g's Tg's
(%)
with
. ) ). y)
( ) Ehi [«(—Z.EL_’-_—E—J—‘“_ y * T +'1
-3 i ~ ml mz mmg 0y mz mmg'
+ terms with j and £ interchanged
where we have used H = - e; for the dipole moment and have defined the

Raman polarizability Eég,. Damping terms are shown explicitly only in
resonant denominators. Only transverse damping factors are necessary
since the CARS process cannot result in any population changes. This is
the familiar form of resonant CARS2 that is analogous to resonant Raman
scattering. The lineshape of this process in hcmogeneously broadened
media is discussed by Bloembergen et al.s.

Another type of CARS has the Raman resonance replaced by an upper
state resonance5 as depicted in Fig. 1(b). The frequency difference

w is equal to the splitting between states |n> and |n'>. The most

17 Y2

. il 4
strongly resonant terms of this susceptibility are

(0)
(3) - N(ann‘)i (u n g)J(ugn)kDgg
[xp " (w, =w +w)] = -
R 3 17 Y2 ijk2 hz(m e - w +ir )
1 2 n'n n'n
1 ~ L
(uJL - mn'g + 1I‘n,g) (wz - wng - 1I‘ng)

+ terms with j and % interchanged (5)
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with

("m')i("nn)l. -

2~ un'm)

Although the frequencies wy = Zwl - uy and @, - w, appear in the reson-

ant denominators, this process requires both wy and ©, to be tuned to
one~photon absorption transitions. The lineshape of the output must
then be corrected for the effects of these absorptions in both input
field strengths (see Sectira 1IVC).

CSRS (Coherent Stokes Raman Spectroscopy) is a techmnique very
simllar to TARS, except its output is at the Erequincy w, = 2wz -
(as discussed in Section II). We consider a two-photon Raman reson-—

ance as before, while w, is resonant between the excited stzte |n>

and the Raman level |g'> (Fig. 1(c)). The resonant susceptibility is

v) ), (u
[x(a)(m =w, ~w twl] = kl gn i ﬂ_s_l_&ﬂ_
R 4 1 273k hz(m -w +ﬂ' Yo, -w,-w - 1if )]
4 “ng' ng' 1 2 Tg's Tg'g
+ terms with j and 2 interchanged (6)
with

(g )y = 1y L) Oag s Mﬁ]
& = - .
- (ml mmg) (mz + mmg)
As we will show below, this process and the upper state resonance CARS
process have a feature which distinguishes them from other forms of

resonant CARS or CSRS. Even though we have examined only three doubly-

resonant possibilities, all other cases are easily managed with the
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4
diagrammatic technique.

2. Triply-R t Pr

We now consider what happens when all three denominators approach
resonances. As before, w= consider the case of only twe independent
input frequencies, W) > wye The process of interest here is a RIKES-
type process involving wy T wy < W + Wy s thus only a thrce level sys-~
tem need be considered (as shown ii. rig. 2). The three principal dia-

grams yield

MG e )y i) Gy e )

( gn'' i ‘n'g j gn L g8

N = - = -
Ixg™ Qg =y =y +upd )50 W - PPN
wZ angt nvgr
,[ 1
(ul—mn.g-1rn,g)(m1—u2-ug,g-1rg,g)
1 —-—
(irn'n')(ml T Yt + irn'g)

1
T 0oy = upo - 1rn.g)l

(7)

This resonant susceptibility shows both coherent anZ population-change
terms; the former involving only off-diagonal dsmping, the latter
showing explicitly the lifetime dependence of the level jn'>.

The multi-resonant susceptibilities derivcd above have assumed
that each scatterer is in exactly the same environment, thus only
homogeneous broadening was considered. We now examine the effects of

inhomogeneous broadening on these susceptibilities.
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B. 1Inclusion of Inhomogeneous Broadening

When the local environment of each resonant scatterer is not uni-
form, there is the possibility that the resonant energy levels of each
scatterer are also not identical. This leads to a distributiom of
rescnant frequencies for each state, dependent upon some physical
parameter of the local environment. For example, the apparent reson-
ant frequencies of molecules in a gas are deter+i-=2d by the longitu-
dinal velocity due to the Doppler shift effect. 1In solid state
physics the local crystal field causes a distribution in the transi-
tion frequencles. In general, we assume that there is a distribution
function, g(x,B,...). dependent on the physical parameters a,B8, etec.,
which describes the probability that a particular resonant frequency
will occur. Any physical property of the system dependent on the

(3)

L. d
transition frequencies, such an xR , must be averaged over this dis-

tribution. For example,

S5 = [ (dads.. Dg@,8,.. 0% ®)

We now examine more closely this general expression by consider-—
ing first the case of Doppler broadening in gases and then strain

broadening in solids.

1. Doppler Broadening

The best characterized form of inhomogeneous broadening is that
due to the Doppler effect in gaseous media., In this case there is es-
sentially only one physical parameter — the longitudinal velocity v,

and the functional form of the distribution is a simple Gaussian.
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We consider a simple geometry in which the optical fields propa-
gate along one axis — either co-propagating or couuter-propagating.
A molecule with a velocity ; along this axis (as seen in the lab
frame) will see a Doppler shifted optical field of frequency w' = w -
E-;, where E is the wavevector of this field. The nonlinear susr pti-
bility associated with this parcicular molecule must involve this saze
Doppler shifted frequenmcy. For example, the resonant denominators of
the doubly-resonant CARS susceptibility in Eq. (4) should be trans-

formed as

1 1
- > -
(ml - mng + lrng) (ml - kl-v - mng + 1rng)
1 3
R - - —k> - . ) (9)
(wl = wy T W + lrg'g) (ml - wy - (kl- 2)-v--uug,g + lrg'g

where the small frequency shifts in the nonresonant denominator can be
neglected.
The distribution function of velocities is given by the well
known Maxwellian distribution
2,2

g(v) = ('n!ivo)_1 it /vo) (10)
where v is the component of the velocity along the axis of uropagation
and v, is the characteristic temperature dependent velocity describing
the halfwidth at the e_l point of the velocity distribution. The ex~

plicit expressions in Eqs. (9) and (10) can now be used in Eq. (8) to

determine the effective nonlinear susceptibilit; In a Doppler broad-
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ened medium.
-
In the case of co-propagating beams we take kl and Iz along the

+ 2z direction so thac the Doppler shifts in Eq. (9) become

I1~; = ml(v/c) i mng(v/c)

@) - 6% = () - ) (v/e) Zu, (v/e) an

where the fact that wy and w) = @,

frequencies has been used. An alternative viewpoint is to assume

are very close to the transition

that, instead of the fields shifting frequency, the transition fre-
quency of the molecule has changed. Thus we ca~ write for co-propa-

gating beams

_ o
mng = mng(l + v/c)

C]
= w 1 +v/e 12
mglg g|g( /c) (12)
where m:g and mg,g refer to the central (v = 0} transition fregquencies
and effectively each energy level of the molecule is shifted by the
same fracticaal amount (1 + v/c).

For counter—propagating beams this alternmate point of view is

not valid, for in this case Eq. (9) becomes

> >
kl-v = ml(v/c)

() - %)V = (o + wy)(v/e) amn
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where KZ is assumed to be counter-propagating (IZ = - uzlc EE. In
this case the Doppler shift of the two-photon transition cannot be
written as wg.g(v/c) as before and the idea of a molecule with uni-
formly shifted levels is incorrect. However, this only slightly cou-
plicates the evaluatior of the averaged susceptibility of Eq. (B).

As we will see, there are some four-wave mixing processes in which the
Doppler broadening is eliminated.3 For the rest of this discussion,
we consider only the co-propagating beams case.

(3)

First consider the general double-resonance term of xg~~ so that
ouly two resonant denominators are present. The averaged value of

this term is of the form

] 8(v)
<an> = C_ fdv < — oy
AD D (mu - uij(v) * 1Fij)(wB mkz(v) + 1Fk£)

(14)

) = ”:j x

(1 +v/c)), w and wg are general combinations of the input frequen-

cies, and CD contains all factors independent of v. The plus and

where wij and W, , are general transition frequencies (mij

minus signs are to be chosen to conform to the particular term under

scrutiny. Defining,

<
ll
N
S~
<

o
w, - w * iT c
=, s f B kE T TR
% = %t it ( w0
ke v



we rewrite Eq. (l4) as

2

2 o ~3 -y
_ c 1 e
<XD>-cD Zoo)fd"(u-;)(u-—;) (15)
vowijwkl —t a 8

The integration of products of Lorentzians and Gaussians can only be

performed numerically and is related to the well known plasma disper-—
8

sion function. using the properties of this function described below

we can further reduce Eq. (15) to a more useful form.

Definitions of the plasma dispersion function are

!i o _tz

Z(z) == f de te_ 3 for Im(g) = ¢" > 0
L2

2(g) = 2ie ¢ fdt e for all ",

with the following properties:

* 2
2"y = 2@ + 2r%eC)
* *
z(-t) = ~[2(z )}
1
Z'(¢) = dz/dg = -2(1 + ¢Z), with Z(0) = in?
= .2 2
Z"(g) = d"z/dg” = -2(2 + g2") (16)

With these properties we can define a functiuon F(L) as



-y @ e-tz 2(z) for ¢" > 0
F(g) == f de -t—-—;- - y ‘CZ
- 2(cg) - 2ix’e fer t" <0 (17

In order to complete the transformation of Eq. (15), we realize

that

1 _ 1 1 _ 1
(v - Ca)(\' - CB) - (Cu - CB)(U - ;a v - ;B) (18)

so <x,> can be wrltten as the sum of two terms, each involving F([).
The exact form of this expression depends upon the relative signs of
the damping terms which are proportional to ;: and ¢). If both are

positive, we find

s - F(ca) - F(cﬁ)
x> = K ty ~ %

2(g ) - 2 (& ~>¢)
B [} B [+] B Lo
KDl RN ] Kpiz'tc )] (19)

_ 2 20 o0 - . .
where KD = CDc /(vowijwkl)' This expression 1s slowly varying as Cu >

CB and has a width approximately equal to the sum of the Doppler width
of the two transitions. Similar features occur when ;; ard CE are

both less than zero. Thus, in these rases, the nonlinear signal also
shows the inhomogeneous broadening.

If one considers the cases with C; and ;E being of opposite signs
the resonant susceptibility shows a sharp narrowing on resonance.

Consider explicitly C; > 0, Cg < 0. Eq.(15) becomes
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Z2(z ) - 2(z,) e g
<XD>-<D[ ‘Z-;B”""’c-;]
a 8 8

a

(6, >ty

_— I(D[Z' (;B) +

2
L -
2ix‘e L8 ] (20

;u_;8

In the limit as ;u->;8, the first term approaches the first derivative
of Z(CB) and is the usual Doppler broadened profile, while the second
term shows a sharp Lorentzian resonance with a width of ;; - ;'B' =

kl/wzl)' It the Doppler width is much broader than

the homogeneous widths, the resonant susceptibility contains a term

o
(c/vo) (rij/wij +T

which is essentially "Doppler-free'. We note that reversing the signs
of ;; and ;g amounts to an exchange of a and 8 in Eq. (20), thus this
case will also show that same characteristic narrowing. Examining the
doubly-resonant susceptibilities given in Eqs. (4) - (6), we find that
the normal resonant CARS provides a Doppler broadened spectrum, where-
as the wpper state resonance CARS and the particular form of CSRS both
will yield "Doppler-free" spectra.

It is straightforward to extend the above discussion to the trip-
ly-resonant case. Using the same procedure as in Eq. (18), the triple
product in the denominator may be written as a sum of three single-
resonance denominators, each of which 1s related to Z(g) usingEq. (17).

For the general triply-resonant case we find

F(z) F(CB)
“Xp> = K'r[(cm-cs)(;m— Tyt

F(z.) ]
i el

- =yt s ~1 D
(;B ;m)(;B cy) (;Y cm)(;Y "B)J

whe" ¢ KT is a constant (independent of v) and the {'s are defined as in

122



123

the text above Eq. (15). The interesting cases of "Doppler-free"
spectra are determined again by examining the combinations of positive
and negative damping constants. 1f all {maginary parts are positive,
such that F(;) = 2(g), and we approach resonance such that :u + :B +

(Y, then the combination of terms in Eq. (21) approaches Z“(cu)lz

which 1s again slowly varyimg like the imh gencous 11 hape. If

any one of (;, C;, ;; has a different sign from the other two, there
will be narrowing similar to that shown in Eq. (20). Examining the
triply-resonant susceptiblilty of Eq. (7) for the RIKES-type process,
it can be seen that the coherent term (involving only off-diagonal
damping) will show narrowing. The population—change terms involve

a zero-frequency resonance from the denominator (ml e +

“n'n’
irn.n,) = irn'n" This denominator can then be removed from the in-
tegral, leaving only two resonance denominators to be averaged, which
is the case described in Eqs. (19) and (20). Examination reveals that
one of these population terms slso shows narrowing, while the other
does not. Thus the total lineshape of this triply-resonant suscepti-
bility is the sum of a broad Doppler background and a combination of
narrower Lorentzian lineshapes.

The spectral narrowing described here can appear in any four-
wave mixing process which satisfies the criteria related to the rela-
tive signs of the damping factors. WNarrowing in the stimulated emis-—
sion (gain) process has been known for some time, and the spontaneous
analog, fluorescence line narrowing, 1s an established technique.9
The preceding theory points out the extensions of this narrowing ef-
fect to other wave mixing processes — even some second-order proc-

esses, for example quadrupole difference frequency generationlo, can
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show similar narrowing effects.

2. Inhomngeneous Broadening in Solids

We focus our attention on rare-earth iomns in solids.11 It is
well known that the local cryétal fields at the ionic sites act as weak
perturbations, slightly shifting levels and making allowed previously
forbidden transitions. At low temperatures these inner shell transi-
tions (e.g. 4f » 4f) can have extremely narrcw homogeneous linewidths
(widths of 15 kHz have been reportedlz). However, due to random mi-
croscopic strains, the local fields at structurally identical sites
take on a spread of values, which leads to a distribution in the ener-
gy levels of the ions. It is generally assumed that there is a Gaus-
sian distribution of random strains, leading to a Gaussian profile
for the inhomcgeneous broadening. In the simplest case we assume that
there i1s only one crystal field parameter which effects 1l levels
proportionately, i.e. all levels of each ion are shifted by the same
fractional amount. In this way, we treat the strain broadening in a
solid with the same formalism as Noppler broadening in a gas (as des-—
cribed above).

At best this is only an approximation since there are often many
crystal fileld parameters (especially if the lattice site has low sym—
metry), each with its own strength and spatial symmetry. Futhermore,
the coupling between an ion and a given crystal field will depend upon
.the symmetry of the particular ionic level being considered. The net
result is that the crystal field perturbation may cause an "“accidental
degeneracy” of ionic levels. By "accidental", it is meant that dif-

ferent ions may have the same transition frequency within the inhomo-



geneous profile even though these ions do mot interact with the exact
same crystal fields. Thus, there are several possible combinations of
the crystal fields which will result in the same transition frequency.
This is indicated schematically in Fig. 3. Although all of these ions
, to

1 g
level lg‘> need not be the same, since the different crystal fizlde

will absorb the photon w, = mng’ the transition frequency W
at the different sites may interact differently with the level |g'>.
Therefore, a two~photon transition from [g> to |g'> will show a reson-
ance width of AvD as w, is scanned through the resonance. This is to
be compared to the homogeneous width of Pg.s which would occur if only
a single parameter determined the energy levels. One can use the de-
viations of the measured width from the homogeneous width to probe the
extent of this "accidental degeneracy”. Even with this "accidental
degeneracy” width, 1if AvD is much less than the Doppler width, there

should still be considerable narrowing in the four-wave mixing spec-

tra.

C. Effects of One-Photon Absorption

When considering multi-resonant processes, the effects of one—
photon absorption become very important. To incorporate linear ab-
sorption into the theory of the nonlinear output signal, we define a
complex wavevector, k= :' + i:", to describe propagation in an ab-

sorbing media. Then, for example, the output field is of the form

T 1T
E(m) - E(m) e1k z e k"z
and

Bw| = Fw] "% . (22)
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Eq. (4) of Section II describing the growth of the signal amplitude
E(m) is generalized by including the imaginary parts of all wavevec-

-
tors in the expression for Ak

> = T T + hel - hel o] T T _ e

Ak (ka + kb kc k') + i(ka + kb + kc k") (23)

Again assuming plame wave inputs, we have the output amplitude E(w)

proportional to an effective interaction length, L, given by

1Akz
e
idk

-1

L= (24)

for propagation along the z-ax1s. When absorption is negligible and
phasematching is achieved, this expression reduces to £ = z. In gen-
eral however, Ak" ¥ 0, so £ < z. 1In the limit of very strong absorp-
tion (Ak"z >> 1), we find L = (Ak")_1 which implies that the signal
is produced only within about one effective absorption length.
Consider a typical experimental situation in which one frequency
(normally ml) remains fixed, while the other frequency (mz) is scan-
ned. Suppose there is linear zbsorption at w, Then as this frequen-
cy passes through resonance, XR will be enhanced while the effective
length £ will decrease. The enhancement increases the strength of the
output field amplitude while the smaller effective length decreases
this amplitude. The resulting lineshape will thgu be distorted by
the one-photon absorption and will require correction to determine
the resonant susceptibility lineshape. 1If sufficient information
about the linear absorption is known, we may compensate for L at each

point in the spectrum. As displayed in Eq. (22), linear absorption
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at the output frequency also appears in the field amplitude (Eq. (22))
and must be taken into account. Absorption at the output frequency
should then be avoided, since it both limits the phasematching factor
L and results in the exponential attenuation of the output field.

An alternative to the above procedure is found in the polariza-
tion-sensitive techniques described in the first part of this thesis.
In Section IID we described that a polarizer placed in the o°.tput
beam could be used to essentially separate the resconant and nonreson-
ant contributions to the output signal. Futhermore, it was described
that if the ratio of the transmitted and rejected signals was formed,
it could be used to normalize the signcl against laser intemsity fluc-
tuations. In the present case this same technique could be used to
remove the effects of linear absorption on the nonlinear signal. If
the resonance under examination is weak compared to the strength of
the nonresonant term, the rejected beam will be made up of the non-
resonant signal which will be nondispersive, except for the effects of
linear absorption. Forming the ratio of the transmitted resonant
signal and the rejected nonresonant signal, we normalize against the
absorption and determine the dispersion in the signal due only to the
resonant susceptibiliry.

In concluding this section, we have considered multiply-resonant
susceptibilities in inhomogeneously broadened systems. Explicit ex-
pressions for certain doubly- and triply-resonant susceptibilities
have been given using a diagrammatic technique, It has been shown
that specific four-wave mixing processes have spectral widths much
narrower than the inhomogeneous widths and the means to identify such

processes is described. The effects of linear absorption on the non-
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linear output signal have been comsidered, allowing the distorted out-
put to be corrected for the line{r effects. It has also been shown
that the use of polarization-semnsitive detection techniques can pro-
vide a nonlinear referemce signal to normalize out the effects of lin-
ear absorption. Thus, multi-resonant four-wave mixing has potential

to become a useful and informative form of nonlinear spectroscopy.
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Fig. 1
Fig. 2
Fig. 3

Figure Captions

Diagrams used in determining double resonance susceptibili-~

(w, = Zml -

1 3

n'g and wy = wng such that Wy = owy T

ot
o o

ties. (a) CARS with w = ®ig and w, - w, Tw
(uz); (b} CARS with w =W

Yo (upper state resonance, wy = Zml - mz); (c) CSRS with

= w _and wy =Wy = mg,g (l.u4 = 2w2

g ng - ml) .

Diagrams used in determining the triple resonance susceptibil-

ity for the RIKES process, wy =, - wy + wys with ml = W

1 8

and ay = mn'g'.
Schematic diagram showing the possibility of "accidental de-
generacy" in a medium in which several parameters contribute

to the inhomngeneous broadening, as in the case of the crys-

tal fields =2 a solid.
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V. MULTI-RESONANT FOUR-WAVE MIXING IN INHOMOGENEOUSLY BROADENED ME:I&

-~— EXPERIMENT

The theory of multi-resonant four-wave mixing described in the
previou-~ section 1néicates several interestiug features to be examined
experimentally. Most notable among these are the lineshapes of the
processes which should show the narrowing well helow the inhomogene-
ous width (assuming the homogeneous width is much smaller). Also it
should be possible to determine dipole matrix elements and Raman po-
larizabilities between various levels of the material system using
these nonlinear techniques. As mentioned in Section IV, ions in con-
densed matter can provide sharp electronic transitiencz that show in-
homogeneous strain broadening, and so are nearly ideal to demonstrate
the features of the multi-resonant susceptibilities. Furthermore, the
four-wave mixing techniques can be used to study the physical param-
eters of the ions, which to date have been studied mostly by absorp-
tion and fluorescence techniques.

In the first part of this section we describe the sample used in
this work, while the second part deals with the relevant linear opti-
cal. properties of the sample. The next segment discusses a triple
resonance RIKES-type measurement made to observe the predicted nar-
rowing and to further characterize the ionic system. This 1s followed
by a description of a double resonance CARS experiment performed on
the same electronic levels. The last part of this section discusses
an attempt to observe tne form of double resomance CARS involving an

upper state resonance.
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A. Sample — Pr+3:LaF3

Of primary importance in the choice of the sample for use in
these experiments is the location of the eléctronic energy levels. It
is most desirable to have the transitions from the ground state acces-
sible to ordinary dye lasers operating in the center of the visible
spectrum., It is also desirable to have electronic Raman levels only a
few thousand wavenumbers above the grour.d state to facilitate phase-
matching in the CARS exreriment. Finally, the spectroscopic and lincar
optical properties should be reasonably well known to allow estimation
ot the strengths of the nonlinear effects. Many of these requirements
are fulfilled by praseodymium-doped lanthanum trifluoride, Pr+3:LaF3.

The host crystal LaF3 has a space symmetry D6h with a bimolecular
basis.1 Optically, lanthanum trifluoride is transparent with no lin-
ear absorption until below 2000}\;2 however, it is birefringent with
n, = 1.597 and no = 1.603. The linear dispersion of the refractive
index is known from the work of Wirick,3 and wil' be used to deter-
mine the phasematching angle in the CARS work. The crystals of Lal’-‘3
can be easily grown of good optical quality, and are insoluble in wa~
ter (this is important since this work requires low temperatures).

The choice of praseodymium as the dopant was made for several

+3

reasons: (a) Pr ~ has electronic levels accessible to blue and red

dye lasera;2 (b) these levels have been partially characterized by

the relatively large amount of experimental work performed cn Pr+3:

3

LaF {c) Pr+ is very soluble in Lal’-‘3 and shows no clustering

4-7
3;
even at high concentrations; and (d) the crystals are readily avail-

able in a wide range of concentrations (up to 20%) and in specific op-
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tical orientations from Optovac, Inc.

Fig 1(a) indicates an approximate term scheme for the Pr+3 ions

ip the Lal-‘3 uust. There are two electrons in the 4f shell which re-

sult in a 3H4 ground state using Hund's rules.8 Since the site sym-

metry of the praseodymium ions is known to be relatively low (sz),[‘

the crystal field splits each state Into the 2J + 1 substates of each
manifold. Thus there are a total of 9 states in the ground (3H4) man-

ifold., The two nearest manifolds are the 3H5 and 3}16 with the lowest

lying states at 2179 cm_1 and 4222 cm -1 respectively. The important

exclted states are 3Po at 20925 cm_]' and lD2 at 16872 cm—l. Most of

the experimental work has involved the 3H4, 31{6, and 3Po states which
are designated [g>, |g'>, and |n™in Fig. 1(b).

As the temperature of the Pr+3:LaF is lowered, the thermally

3

broadened lines of the ioms narrou.4 At liquid helium temperatures,
however, the spectral lines show the inhomogeneous broadening due to
the microscopic random strains. It is reporl:ed5 that the inhomogene-

ous widths of the 31’ state are about 30 GHz for 5%Z Pr (by number) and

0
about 1.3 GHz for 0.2% Pr. On the other hand, photon echo experi-

9 .
ments,” used to determine the homogeneous linewidths of states con-

nected to the ground state, find a natural linewidth of 3 MHz for che

3P hd 31-1 transition. Furthermore, this homogeneous width is strongly

4] 4
temperature dependent, due to phonon relaxation processes as described
by Yen, et al,, and increases to about 1 GHz at 20°K. Thus we choose
to use a sample of 1% Pr at temperatures below 20°K, so that the homo-
geneous width will be about an order of magnitude less than the in-
homogeneous linewidth.

3

Since any transition between the levels of Pr+ ions are allowed



only through the perturbation mixing of the erystal field, all oscil-
lator strengths are quite small,7 typically £ < 10-6. Another char-
acteristic to be expected is the long lifetimes of these state56 —_
47 usec for the 3P0 level and 520 usec for the 1D2 level. Another

+
feature of the Pr 3:LaF system is a strong anisotropy in the transi-

3
tion probabilities — only E L c-axis transitions are allowed. A fi-

nal characteristic worth noting is the lasing action between the 3I-'0

and 3}{6 states which can occur when population inversion is achieved:.Lo
The preceding information provides an overview of the l’l:+3:1..ai‘3

sample used in these experiments. In order to calculate the various
resonant susceptibilities, more specific information is needed about
the matrix elements. We consider here the doubly-resonant CARS and

triply-resonant RIKES processes involving the dipole matrix elements
|<3Po|_1:|31-l4>| and |<3H6|L'l3po>| and the Raman polarizability |<3116|

Z{3Hb>| . The dipole matrix elements are found from linear absorption
and fluorescence measurements or, in this case, from measurements of

6,7

the stimulated emission., The only experimental work on electronic

Raman scattering in this sample was done by Hougen and Singhn (using

pure PrC!.S) with only qualitative measurements regarding the 3}14, 3H5,

and 3F2 levels of Pr. Observation of multi-resonant nonlinear pro-
cesses in this sample will provide additional information about the
values vf these quantities, (in addition to testing the theoretically

predicted lineshapes for these processes).

3 3
B. Linear Absorption.‘ H4 -+ I-'0

+
The initial experimental work performed on Pr 3:LaF was a simple

3

linear absorptiza measurement from which the matrix element, un'g =
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<3P0|u|3ﬂ4> and the inhomogeneous linewidth, Yn'g’ are determined.

This also provided the exact location of the resomant frequency.

The experimental apparatusl2 consisted of a narrow-band (FWHM =<
4 GHz) pulsed dye laser beam passing through the cooled sample and
monitored on a photodiode with a gated-electronic detection system,
see Pig, 2. 1In this case the flashlamp-pumped dre laser was operated
with Coumarin 480 laser dye in methanol to obtain lasing near the
4777A (20925 coh) absorption line of Pr™>, The maximum output of
1 kW in a 0.4 usec pulse was attenuated to less than 1 W and then sent
unfocussed into the sample (spot size = 2 mm diameter). The 1% Pr-
doped sample with the c-axis in the face was placed on the cold fin-
ger of an Alr Products, Inc. liquid helium cryostat. Sample tempera-—
tures of = 15°K were routinely obtained as monitored on a chromel/gold
-iron (.07%) thermocouple epoxied to the sample holder. The absorp-
tion was monitored using the dual-channel, gated electrometer/analog
divider described in Section III. A beamsplitter before the sample
provided a signal for the reference photodioue., The transmission was
normalized to unity with the laser tuned far off-resonance, then the
frequency was scanned stepwise through the absorption. Care was taken
to adjust the input polarization so as to maximize the absorption.

Figure 3 shows the absorption spectrum of the 3H“ - JPO transi-
tion for this 1% sample with E(wl) 1 ¢. The measured half-width at
half-maximum of this absorption is about 11 GHz which is due entirely
to inhomogeneous broadening. The maximum absorption coefficient for
this transition is 19 cm-1 at line center. For simple linear absorp-

tion, the peak absorption coefficient, Apax’ is related to the dipole

matrix element by



4nu Nlu_, |2
a -__1 _n'g () W
max n hc Bpax ‘1

where un'g was defined above, N is the density of Pr ions, n is the
index of refractiom at W and g(wl) is the normalized lineshape func-
tion. From Fig. 3 we see that the absorption spectrum does not fall
off as rapidly as the anticipated Gaussian profile, although the fit
near line center is good. Yen, et a1.4 have made similar observations
on the SPO - SHA fluorescence spectrum and it is believed that the de-
viations from a Gaussian profile are due to small macroscopic strains
within the sample.13

We take Bpax = (EnZ/v)kx;?é for a simple Gaussian lineshape and
use Eq. (1) to calculate the strength of the matrix element. With wll

L 22

2nc = 20925 cia ~, n = 1.60, and N(Pr) = 1% N(La) = (.01)(1.81 x 10

cm_3) = 1,81 x 1090 cm-a, we have
21
es

_ - 3, .3
|“n'g| = 2.2 x 10 u i, > 7y

which implies an oscillator strength of ~2 x 10-7.

In the previous discussions of multi-resonant nonlinear suscep—
tibilities it was assumed that only the ground state was populated.
However, when one of the input laser frequencies is tuned to a one-
photon resonance, there will be population redistribution resulting
in a reduction in the population difference, pgg = Poigte and a satur-
ation broadening of the absorption linewidth. These effects both re-
duce the nonlinear output and are minimized by keeping the input in-

tensity or energy below a certain saturation level defined below.
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To discuss saturation we conmsider a simple, nondegenerate two-
level system with an inhomogeneous --* "th Y (HWHM) . For simplicity
we assume the input intensity, I(wz), is uniformiy spread over the
laser bandwidth, F;, and that Yy >> Fl >> Yy (the homogeneous width).
The number density of absorbers within the bandwidth of the laser is
taken as No’ and the number density in the ground state is Ng and in
the upper state 1s Nu, such that No = Ng + Nu. The upper state densi-

ty then satisf19514

2)

where the first term on the right describes the normal decay of the
e.cited population with a lifetime of Tat? while the second term in-
creases the excited population through absorption. In Eq. (2) u(wz)
is the average absorption coefficient over the laser bandwidth. Note
that the bracketed term in this equation represents the probability
that one ground state ion will absorb a photon and thus be excited.
We discuss saturation of this transition in terms of the popula-
tion difference, N - Nu’ and choose to define "saturation" to occur

£
when N ~ N =%4%N , i.e. when the population difference equals one-

4 u
half of its initial value (all ions in the ground state). This will
be the case when we have N = 3/4 N and N = 1/4 N .
g o u <]
We consider two limiting cases: steady state (with the laser
pulse length, Ty much longer than the upper state lifetime, rn.) and
the transient regime (with Ty << Tn,). In the steady state case we

have no change in the upper state population, so dNu/dt = 0. Using

Eq. (2) we can then define a saturation intensity when Nu = 1/4 No.



We have IS = Nohmzl(zaTn')' in this case. In the physizal situation
studied here, we have the laser pulse length of 0.4 usec and the upper
state lifetime of 47 psec, so we are clearly in the transient regime.
In this case we discard the decaying population termand integrate the

cxpression for dNu/dt directly ts find

No a e
=< - a

e T _[Nhu]fldt [th]F 3
[} u, o & 0 o 2

where F is the cnergy fluence [J/cmZ] of the incoming beam. At satur-

ation we have the saturation energy fluence Fs as

FS = Nohml n(2)/ (2a) .

To evaluate this for the 3H4 - 3P° transition, we have o = 19 cm_l,
hwl = 4.2 x 10_19J, and No (the number density within the laser band-
width) is given approximately by the product of the total number den-
sity of iouns over the whole inhomogeneous profile and the ratio of

the laser bandwidth to the full inhomogeneous width, or No = N=x [4GHz/
22 GHz] = 0.18 N = 3.3 x 1019 cm_a. Thus we find Fs = 0.3 J/cm2 for
the energy fluence to saturate this transition with a laser of 4 GHz
bandwidth. This is only a crude estimate however, since we '‘ave not
considered any depletion of the incoming beam as it passes through the
sample. In our case the absorption is fairly strong (only 15% trans-
mission at the peak), so actually we should solve Eq. (2) coupled with

an equation describing the decrease of the laser intensity at a depth

% within the sample, e.g.
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N () - Nu(l)

dI
az X al(®)

(-]
which includes the effects of reduced absorption due to saturation.
Solving these coupled differential equations will normally require
numerical computation beyond what is necessary for this discussion.

We may assume that the saturation energy fluence is of the order of
1 J/r'm2 and use this number as a rough guide to avoid saturation ef-
fects.

In nonlinear processes (such as CARS) which scale either linearly
or quadratically with the input in.ensity, the restrictions placed on
the input energy fluence by saturation greatly limit the strength of
the nonlinear output. This can be overcome to some extent b; going
to yet shorter input pulses, while keeping the energy fluence near the
saturation limit. We shall return to this point in ocur discussion Ofi

double resonance CARS below.

C. Triply-Resonant RIKES

The first nonlinear process to be considered here is four-wave
mixing wirh Wy = Wy~ oWy + Wos involving the RIKES-type triply-reso~
nant susceptibility described in Section IVA. [We now identify the
state |g'> with the 3H6 level of Pr+3.] After integration over the
inhomogeneous distribution of resonant frequencies (as is approxi-

mately valid for strain broadenirgz in solids), the most strongly reso-—

nant tarms of Eq. (7), Section IV become
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[NIu ' ' IH ' -l 1
(o) e ™ ™ —
h (V /c)” g [rn Y + (” ' '/un'g)rn g']
l : : |
x + (5)
[[rgvg + (“’gvg/”n gl)rnlgl] rn'n']

where all input frequencies are assumed to be exactly on resomance.
Examining this expression for (xR) we see that on resomance it is a

negative imaginary number. From Section II we found that

dt(w,)/dz = 1sx(3)'a(m )2 8,

3)

which, with x = _il(xR)maxI’ becomes

a8 (0,)/dz = +8| ) 118G ) %8 (w,)

Since B8 1s a positive, real parameter, this expression describes the
exponential growth of the wy field, 1.e. gain. Also note that (XR)max
is made up of contributions from both coherent processes, involving
the off-diagonal damping parameters, Fg'g and rn’g" and a population
term, involv. ng the lifetime of the excited stace T = Fn,n,-l. Be-
low, we will compare the strengths of these two contributions.

The expression im Eq. (5) is written for the case of Doppler
broadening with the parameter (v°/c)mg,g describing the inhomogeneous
width of the transition from |g> to ]n'>. More precisely, when v = Vo

the frequency shift from line center is equal to the inhomogeneous

width d _fined with respect to the e—1 point of the profile. Using
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instead the inhomogeneous width Yn'g with respect to the half maximum
(HWHM) , we have

o o 3

wn.g(l volc) Uprg yn,g/(lnz .
We generalize Eq. (5) by rewriting (volc)mz.g as Yn'g/(lnz)% Further-
more, in the present case the laser linewidths (I‘z = 4 GHz) greatly
dominate the homogeneous linewidths, whici: can be neglected in com-
parison. Finally, as pointed out above, we are in the transient re-

ime (T, << T_,) so the laser pulse length must replace the upper
8 1) n g

state lifetime. Thus Eq. (5) can be rewritten,

2 2
N e, b5
~ n'g n'g 2(m2n2)?]q 1
Ot pax 1( = )[Yn'g e [ T

Let us now compare the coherent and population contributions, the
former is proportional to (FL)_I and the latter is proportional to Ty
For the flashlamp-—pumped dye laser system, we have FETL ~ 2n(4 GHz) x
(0.4 yusec) ~ 104 (which is to say that this system is very far from
the Fourier transform limit). Thus the coherent term will be negli-
gible compared to the population term.

The only unknown parameter in Eq. (6) is the dipole matrix ele—

ment |un,g,|,connecting the 3P0 and 3H states. Fortunately, the fact

6
that the crystal will lase on this transition allows us to make a
crude estimate of the susceptibility for this RIKES process.

We consider the simplest model of this lasing: all photons at oy

which are absorbed populate the 3P0 state, providing a number density



'/';l' of excited ions which can emit to the 3!16 level. The gain coef-
ficient per unit length, G, defined in analogy with the absorption co-
efficie.r of Eq. (1), can be estimated from the lasing threshold con-
dition. Assuming the feedback for lasing comes only from the 5.3% re-
flection at the LaF3 - air incerface of the 0.1 cm thick sample, this
threshold condition becomes

eGE = R_l = G =30 cm

1
where R is the reflectivity at the interface and 2 is the sample thick-
ness. To estimate the number density of ions which give rise to this
galn, we have measured the amount of energy absorbed from the pump
beam at wy - This is then a direct measure of the number density .A;\.
in the upper state. The energy absorbed per unit volume was the ener-
gy fluence at lasing threshold (0.7 J/cmz) times the fraction of the
beam which was absorbed (85%) divided by the sample length (0.1 cm).
This leads to about 6 J/cm3 energy den: [ty or about 1.4 x 1()]'9 photons/
cm3 absorbed, thus :/f;. = 1.4 x 10]'9 excited 1.ons/cm3 within the laser
bandwidth of 4 GHz.

Using Eq. (1) we can evaluate the gain coefficlent, instead of
the loss or absorption coefficient. With the above infsimation we
roughly estimate the matrix element ]<3ll, |u|3P0>| as

lun'gll =7 x 1-0_21 esu .

This should be considered as only an order of magnitude calculation,

due to the simplicity of the argument presented here, but can be used
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to estimate the strength of (xR)max' )
Recall that N = 1.8 x 10203 for the total number demsity of Pr

ions, hn'gl ~2 x 102 egu and pn,g,l =7 x 10721 esu for the dipole

matrix elements, Yn'g =11 GHz for the inhomogeneous width, and T, =

0.4 usec and T, = 4 GHz for the laser parameters. Evaluating the sus-

2
ceptibiliiy from Eq. (6), we find

| ~2x 10_8 esu .

Fxg)

max

This is to be compared to the typical singly-resonmant CARS suscepti-

3 t Raman mode of benzene.

bility of 3 x 10—1 esu as for the 992 cm
Since real population changes are occurring, XR is much larger in this
multi-resonant case. Instead of a RIKES-type susceptibility, it would
be more appropriate to call this a stimulated emission susceptibility,
since 1n this case it 1s actually a population change effect. In any
case, such a strong resonance should be easily observable.

The experimental technique to measure Xg directly was quite simi-
lar to the RIKES setup described in Section II (see Fig. 4 of that
section). In this case we used the fact that the stimulated emission
gain at frequency wy is anisotropic due to the polarization selection
rules of the Pr in the LaF3 host. The fiela at wy = wn’g was set per-
pendicular to the crystal optic axis (and so was strongly absorbed)
and the field at w,y = wn'g‘ was at approximately 45° to this axis. A
polarization analyzer was placed after the sample to null the probe
beam (wz) when the pump beam (wl) was not present. The probe field

experienced gain for the component along the pump field and no gain in

the other component. Ideally, light at the probe frequency will only



be detected through the analyzer when the pump field is present. In
reality the finite leakage of any polarizer (see discussion of polar-
ization-sensitive CARS) will lead to a background signal which can be
used to measure the relative strength of the gain signal. The ratio
of the signal due to the gain process and that due to the leakage is
given by

&= g%/80 (8

where ¥ is the exponent’al gain factor in the low signal limit and 92
is the extinction ratio of the polarization analyzer. Figure 5 in-

dicates a typical spectrum taken with w, exactly on resonance and w

1 2

scanned across the 3P0 -+ 3“6 transition frequency. Theoretically an
expression for the gain factor @ can be derived using the plane wave
approximation discussed in Section II, as in cyq. (27) of that section.

The result given there is

® = 28] O B |2

3

167
2 |(xR)

n ci

]

pax| TGp) £ (9
where I(ml) is the intensity at s £ is the effective length describ-
ed in Section IVC, n and A are the index of refraction and wavelength
for a mean frequency of the input frequencies. (An expression for ¥
derived for Gaussilan transverse profile beams is given in Ref. 16.)
The maximum observed exponential gain factor was % = 0.27 (for the
spectrum shown in Fig. 5) with an intensity I(ml) = 100 kwlcm2 (de-

rived from a power of only 20 W) and an effect length of 0.05 cm.
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From Eq. (9) we find

(XR)max % 4.8 x 1078 esu

with an estimated error of about *30X due to the errors in measuring

the intensity at w, and the only approximate plane wave beam profiles.

1

From this value of !(XR)n‘axl we can now use the expressionm in
Eq. (6) to determine the matrix element between the 3P0 and 3“6 states
— the result being

Wy o] 9.7 x107°" esu .
'ng 9.7 21

21 esu determined

which compares favorably with the value of 7 x 10~
from the lasing threshold measurements, even tlough that derivation
was somewhat crude.

Of interest also in this triple resonance case is the predicted
lineshape of the susceptibility — both as a function of wy and wy-
Let us first discuss the dispersion of the peak value of Xg as the

frequency w, 1s stepped across the absorption line. A series of scans

1
— similar to that presented in Fig. 5 — were made to determine the
lineshape of the RIKES susceptibility. After accounting for the chan-
ges in the linear absorption, the relative dispersion of (XR)max is
displayed in Fig. 6. The expected lineshape in this case can be found
from the theory of Section IV.

Noting that we have found the most strongly resonant term of the

unaveraged susceptibility to be (from Eq.(7), Jection IV)

_,Nlpn'glzlun'g'lzl ! l

N 3
nir, A TR

Xg I (10}
n' (wy - “nig
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we see this shows the form of a doubly-resonant susceptibility, with
the extra resonance being the zero-frequencv resonance previously des~
cribed. Averaging over the assumed Gaussian distribution function, we

find from Eq. (20) of Section IV,

2 2
L L 1 2(nea2) T1%02/v0'g |
= _i ng ng. (11)
XR B3 ’
L
nn

l+rl

o
[w, - (ul - mz) + i([‘n n'g

'Ynlg 2'g lg

where the assumed Gaussian distribution manifests itself in the factor
2 2 _ o

exp[—Awllnzlyn,g] with Aml = wy wn'g and in Yn‘g the inhomogeneous

broadened width (which is assumed characteristic of the inhomogeneous

widths of the transitions). From Eq. (11) we see that the magnitude

o
i i - =
of XR s maximized when wl w, mg'g , and then we have

2 2
Crdpax & exP[—AwllnzlYn.g]

which implies (xR)max has the same form as the linear absorption line-
shape (assumed to be Gaussian in this case).

In Fig. 6(a) we have fitted the experimental data to a Gaussian
profile and, like the linear absorption data, the fit is poor in the
wings. In Fig. 6(b) we show a fit of the same data to a Lorentzian
for comparison (Fig. 3(b) shows a similar fit for a(ml)). The approx-
imate halfwidth from this data is about 11-12 GHz, in good agreement
with the expectedwidth(yn.g).

Examining the expression for Xg given in Eq. (11), we also see
that as we scan wy for a fixed frequency wy, the expected lineshape
is a simple Lorentzian with a width deiermined by the sum of the homo-
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geneous widths. As described earlier, these widths are dominated by
the laser bandwidths, so the sum is replaced by Fl, the total laser
bandwidth (each homogeneous halfwidth being replaced by a laser half-
width). The scan in Fig. 5 with w, on line center shows a halfwidth
of approximately & to 5 GHz as expected; however, scans made with wy
detuned from line center show halfwidths of up to 8 GHz. This addi-
tional broadening is attributed to the "a:cidental degeneracy" effect
discussed in Section IVB. Similar measurements made with narrower
bandwidth lasers (I‘2 = 1 GHz) show that even for Aml = 0 there is an
additional width of 1 to 2 GHz, beyond that attributable to the lasers.
There is no clear explanation why the accidental width should become
larger in the wings of the absorption line.

In summary, the triply-resonant RIKES process does show the nar-
rowing below the inhomogeneous width as predicted by the theory of
Section IV. The nonlinear susceptibility in the case of Pr is domin-
ated by a population term and has a peak value of ~ 4.8 x 10—8 esu.
From this value we have estimated the dipole matrix element of the

3? -+ 3H transition to be 9.7 x 10_21 esu. To complete the descrip-

o] 6
tion of the observed spectra, we must include the presence of acciden-
tal degeneracy in the Pr+3:LaF3 system, which causes an additional

broadening of the resonances.

D. Doubly-Resonant CARS — Raman Resonance

In Section IV we presented the form of the doubly-resonant CARS
susceptibility and indicated that no narrowing below the inhomogene-
ous width is expected for a Raman-type resonance. However, the line-

shape of the CARS signal does change dramatically as the input fre-
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quency u; is varied from below the resonance to above resonance. The

'y

variations of the resonant CARS 1i for h 1y broadened

systems have been observed17 and fully explained.ls Let us briefly

review these results before discusging the inhomogeneously broadened
case.

For saimplicity, consider a Raman susceptibility which is weak
compared to the nonresonant background CARS susceptibility. As shown
in Section II, the CARS lineghape (i.e. the CARS signal versus mz) will
be carcied on the cross term of IXNR + xR|2, that is on the ZXNRRe[XR]
term. The dispersive part of the CARS signal is then directly propor-
tional to the real part of Xg* For doubly-resonant CARS we have from

Eq. (4) of Section IV,

-1 -1
Xr o« (ml_wn'g + irn'g) (ul - wy - wg,g + :I.I‘g,g)
< (w, - w +1ir )_lg
1 "n'g n'g
and,
Refxp] & £(u)) Re[ 2] + glu)) Im[2] 12)

where we have written ¥ for the usual Lorentzian lineshape associated
with the two-photon resonance of standard CARS, and we define f(ml)

-1 -1
and g(wl) to be Re[(wl - v + irn’g) ] and —Im[(ml - wn'g+irn'g) 1,

respectively. Iz the limit of o well below resonance with wo we

gl
have Jg(w )} << |£(wy)| and the spectrum of Re[x,] closely follows
“ “ xR

Re[ #1, as in Fig. 7(a). As w, + u there is increased mixing of

1 n'g

Re[ #] and Im[ %] until exactly on resonance we have
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Re[xR] = In[ 2]

as illustrated in Fig. 7(c). Hudson, et al.17 have demonstrated ac~-
tual CARS spectra which closely match those shown in Fig. 7.

In the case of an inhomogeneously broadened system we must first
average the susceptibility as in Section IVB, with the resulting line-
shape determined by the function Z(;), the plasma dispersion function
(which is only available in tabulated form). The general variation
of the CARS lineshape with w, is still roughly the same as in the
homogeneous case described above, except the homogeneous width is re-
placed by the inhomogeneous width (11 GHz) and the dispersion is some-
what more like a Gaussian. See Fig. 8(a) for the CARS linechape de-
rived from the plasma dispersion functioca when w, = mn'g and compare
with the pure Lorentzian lineshape for the homogeneously broadened
system exactly on resonance in Fig. 7(c).

To estimate the strength of the averaged doubly-resonant CARS

susceptibility, we evaluate XR at its peak (ml = mn'g and ml - wy =

w y ). The result is
g8

No o by M, '[21 2]
CRIE ] a3
R'max n2 lYIZI

where ag'g is the Raman polarizability defined in conjunction with
Eq. (4) of Section IV and Y1 1s taken as the typical inhomogeneous
width = 11 GHz. The other parameters in Eq. (13) have been defined
and evaluated carlier in this section; only the Raman polarizability
1s unknown.

We may crudely estimate the value of mg'g for the 3“6 to 3H4
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transition by assuming all matrix elements have a typical value of
-21 s 3 3 :

2 x 10 esu, like the Hg > P0 transition, so the factor "gmumg'

may be removed from the summation. The sum over the energy denomina-

tors can then be explicitly calculated from the known energy levels

of the Pr ions given by Karnall, et al.2 This sum has a value of

1.3 x 10_2 (cm_l)_l, indicating the effective energy difference of

about 77 cm_l. Therefore,
o, =3 x 10—2& esu
g8

in this case, which leads to a resonant susceptibility of

~ -16
(XR)max 3 x 10 esu .

Although this has been only an order of magnitude estimation, this
value is very small compared to the familiar singly-resonant CARS sus—

13

ceptibility, e.g. the value of 3 x 10”7 esu for benzene. Of course,
it must be kept in mind that this calculation is for a 1% doping level
of Pr. If we try to use a higher concentration of Pr, the strength

of (XR)max will actually decrease, as follows. The resonant suscepti-
bility in Eq. (13) is proportional to N/YIZ, and Y shows a depen-
dence upon concentration which is roughly linear (see Ref. 5). Thus
we find the strength of (XR)max decreases as 1/N, so we should actual-
1y go to lower concentrations. However, if we attempt to use a lower
concentration than 1%, the inhomogeneous width will quickly beccme

comparable to the laser bandwidth (4 GHz), in which case the suscepti-

bility will be limited by Fz instead of Yre Thus, for the present



laser system, the choice of a 1% Pr doping level is nearly optimal.

As a final comment on this estimated strength of (Xk)max for CARS,
we note that the doubly-resonant CARS susceptibility is about eight
orders of magnitude lower than the triply-resonant RIKES susceptibil-
ity. This large factor is due almost entirely to the extra resomance
in the triple resonance case, which leads to an enhancement factor of
Buty (compare Eqs. (6) and (13) with Aw being the effective frequency
denominator in the Raman polarizability). With Aw/2nc = 77 cm_l and

P

e = 0.4 ysec, we have Awtl = 107, with the extra order of magnitude
coming from the different matrix elements and resonance linewidths in-
volved in the two processes.

To complete the description of the expected CARS lineshape, it is
necessary to determine the strength of the nonresonant CARS suscepti-

bility which is due to the host crystal, Lar3 Making a direct com-

parison of the nonresonant CARS signals for LaF3 and carbon tetra-
chloride, we find XNR(LaF3) ~ 1/15 xNR(CC£4). Levenson and Bloember-
gen19 have assigned a value of 1.1 x 10_14 2suy to \NR in CCQA, so we
have

XNR(LaF3) = 7 x 10-16 esu

This rather small nonresonant susceptibility can be attributed to the
rather distant uv absorption bands in the LaF3, which begin about
2000A. Comparing this to the estimated resonant susceptibility, one
finds

XR(PT)/XNR(L3F3) 0.4

which would result in a CARS signal variation of about ZXR or 80%.

"X
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The experimental resonant CARS spectrum as shown in Fig. 8(b) and
shows a modulation depth of about 20-30%Z, corresponding to xR(Pr)IxNR
(LaFJ) A~ (0.1 - 0.15. From this measured value of the ratio of sus-
ceptibilities, we can establish the experimentally derived value of

the Raman polarizability. Using Eq. (13) we find
a , ~l. x 10~ esu

with an error of about +50% due to the poor signal to noise of the
resonant CARS spectrum. Considering the gross approximations used to
estimate the strength of ag'g’ the factor of three difference between
theory and experiment is somewhat fortuitous. Unfortunately the spec-
trum is quite noisy making it difficult to confirm many details of the
lineshape. Other data at different Aml frequency detunings also had
noise which obsured the lineshapes. We now consider the sources of
this noise and discuss an iwproved experimental apparatus to increase
the signal to noise ratio.

As set forth in Section IIE, the formal signal to noise analysis

gives the following result for conventional (amplitude-) CARS,

= + ' %/7'5
G/ X min = L€ l/Np] (14)
where we have included the shot noise termas discussed in Sectiom IIID
(e defined as the total mean square fluctuation due to either the la-
ser fluctuations or the electronic noisej x; defined as the number of
photoelectrons produced pe~ shot, Né = qu = quantum efficlency times

the number of photons incident on the detector; .4 is the total number



of shots over which the signal is averaged). We evaluate Eq. (14) for
the parameters relevant to the CARS system and laser system used in
this measurement, in order to indicate which parts of the system need
improvement before undertaking more accurate experiments.

The mean square fluctuation, €, given by the weighted sum of the
two input lasers' fluctuations (451 + 52), is rather large in this
case since the shot-to-shot variations of the laser intensities were
greater than 30% for the wy beam and about 10%Z for the w, beam. The
large fluctuations of the w, beam were attributed to the fact that the

1

laser could not be perated too far above threshold with the laser dye

Coumarin 480 used in the wavelength range around 4778%. We take €
4(.30% + (102 = 0.37.

To evaluate the shot nose tera in Eq. (l4) we need an estimate
of the total number of photons striking the detector, NP. Directly
terminating the PMT signal into 509, only a random series of spikes
corresponding to the CARS signal could be seen from which it was dif-
ficult to determine the average photovurrent. Rather than using pho-
ton counting equipment to determine NP, we chose to use the known
dependence of the CARS signal strength upon system parameters to ex-—
trapolate NP in this situation from a known set of parameters taken
with the CCih sample. The system parameters spoken of here include:
strength of the nonresonant susceptibility, the input intensities of
the lasers, and the effective interaction length within the sample.
The necessary information to determine Np(CCEA) and Np(LaF3) is given

below:
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For ¢Cf,: = 1.1 x 107" equ > For LaF,: x._ = 7 x 107 esu

4 XNr 3 Xyg
Pl =1 kW - Pl =1 kW
P2=lkw -+ 1’2-10kw
AL =8y =2 x 107 ca®s A =8y =2 x 107
L=1.0cm - L=01cm
Tl = 0.6 psec -+ rz = 0.4 psec
with the dependence of Np being
2 _ 2 2
Np @« XNR Il IZ £L T,

where we have 11’2 = Pl,ZIAl,Z'

In the case of CCL, we have measured a signal of 0.4V terminated

4
into 500 with a photomultiplier of quantum efficiency of 15% and gain
of 2 x 106, which leads to NP(CC24) = 1.0 x 105 photons/pulse.

Using the above information to evaluate the expected number of

photons in the LaF3 case, we have

-16__ 2 2
N (tafy) = N (CCEA)K 7><10_14es:) 10kW\ (0. 1cn\2 (0. 4usec
P P 1.1x10 “es 1kW, lcm/ \9.6psec,

=3 %1074 N (CCe,) ~ 30 photons

With the quantum efficiency of 15%, this corresponds to about 5 photo-
electrons, N;. to be used in Eq. (14). There is perhaps a factor of
two uncertainty in this value of N; due to the large amount of infor-~

mation used in its determination.
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With ¢ = 0.37 and (N!'))—1 = 0,20, we can evaluate the minimum de-
tectable ratio of resonant to nonresonant susceptibilities. Previous
experimental spectra were taken with 10 Hz laser repetition and 10 sec
time constant, so .#= 100. We find
3

(xR/xNR) = [0.37 + 0.20];’(100)

wmin

112

0.08

which would imply that the measured value of 0.1 - 0.15 would involve
a signal to noise of ™~ 1 - 2, in agreement with the spectrum of Fig. 8.
To improve the minimum detectable value of (XR/XNR)’ we should
certainly try to reduce the laser fluctuations (decrease €) by using
a more stable laser system; however, even if € + 0, the shot noise
contribution described above still limits detection tt (xR/xNR)min
0.04. To futher reduce the minimum detectable ratio, we must reduce
the shot noise by increasing the number of photons over which we aver-
age the signal — either by increasing the number of photons/pulse or
by increasing the number of pulses averaged. This is shown explicitly

in Eq. (14) which we rewrite here with ¢ = 0,

(xg/ xyg?

- ]
min = (quA) .

Thus, to improve the detection limit by a factor of 13, we can,
for example, either increase Np or .#by a factor of 100. Averaging
over 100 times more pulses is straight-forward but requires 100 times

longer to make one spectrum, and so may be undesirable. As poianted
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out in Section III, we caa utilize the nonlinear nature of the output
to fairly easily increase the number of signal photons. For example,
the hundred fold increase in NP requires an increase of a factor of
only (100)1/3 =~ 5 in each of the input lasers' intensities. A factor
which can be accomplished either by increasing the pulse energy, focus-
sing more tightly, or using a shorter input pulse length.

In the case of Pr+3:LaF3, the restriction on the energy fluence
due to saturation indlcates that the best choice is to go to a shorter
input laser pulse. If w2 assume that we are inputting the same pulse
energy into the same area (i.e. the same energy fluence) as in the
flashlamp-pumped dye laser case, then we require the pulse length to
be decreased by a factor of 10 (down to 40 nsec) to achieve the desir-
ed two orders of magnitude increase in NP. [Note: Np o« 12—2, not

+
The best choice for this Pr 3:La\F CARS experiment is to use a

3
Nd:YAG-pumped dye laser system which can give comparable pulse ener-
gies (and bandwidths) to the flashlamp dye system, but has a pulse
length of 4 ~ 5 nsec. This factor of 100 in pulse length will lead
to a 104 increase in Np and will make the shot noise contribution to the
noise very small. Typical fluctuations for such a dye laser system
are quoted as 8% (Ref. 20,, and lead to e = 4 € + €, = 3.2 x 10-2.
Thus, averaging over 100 prlses, we find

O Xog) i =2 % 1072

R" *NR”min

with this result dominated by laser fluctuations. With such a f!;er

system we expect a signal tc noise for the spectrum of Fig. 8 to be
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10 - 15 as evaluated from Eq. (52) of Section II. With this system
we should be able to not only make a more accurate determination of
XR/XNR in this double resonance experiment, but also to do the lime-
shape studies of interest in this case.

E. Doubly-Resonant CARS — Upner State Resonance

Recently it has been pointed out that there should be another
type of resonance in the four-wave mixing susceptibility —— one invol-
ving the splitting of two excited states.183 This has been discussed
theoretically in Section IVA in Lne context of an inhomogeneously

' narrowing

broadened system and was found to show the "Doppler-free'
below the inhomogeneous width. We consider here the determination of
the resonant susceptibility for this process in Pr+3:LaF3 using the
3PO state previously described and the lowest lying level of the ng
manifold (16872 cm_l). We then deéscribe a brief attempt to observe
this "upper state resonance” process and suggest modifications to im-
prove the experimental setup.

To estimate the peak strength of XR in this case we utilize the

formalism of Section IV to write an expression for the peak, averaged

susceptibility.

Nun, n “ca.n,nZ('NJLnZ)!f
=_nE&. s)

2
h YIrl

(XR)max

where one resonance denominator has been replaced by the typical in-

homogeneous linewidth YI’ while the second resonance denominator has

been replaced by the larger of either the homogeneous width or the
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laser linewidth (here the laser width is much broader). Also needed
to evaluate Eq. (15) are the dipole matrix elements Wprg = <3Polu|3ﬂh>r
and ugn = <3H4]u[1D2> and the Raman polarizability between the excit-
ed states a s, 3s de!ined with Eq. (5) of Section IV. We have already
determined un'g earlier, and can estimate ugn from the linear absorp-
tion data given by Erickson.21 The peak absorption coefficient of
2.6 cm-1 for the 16872 cm—1 line in a 1% doped sample indicates a val-
ue of IugnlE 0.9 x 107? esu. The Raman polarizability is again un—
known and can be estimated in the same manner as in the previous ses-
ment. We find, 3 =2 x 10'-28 esu. Evaluating Eq. (15) the peak
resonant susceptibility becomes

-~ . -17
(XR)max 1.2 = 10 esu

so that the ratio of resonant to nonresonant susceptibilities is ap-
proximately 0.2. This is on the same order as in the Raman resonance
case discussed in part D, but is again only an approximation due to
the uncertainty in the estimation of A To experimentally deter-
mine this ratio we must investipate the dispersion of the nonlinear
signal.

The simplest method of performing lineshape studies of the CARS

spectra is to fix w, near wn'g and to scan «., around wng' The expec-

2

1
ted lineshape for the resonant susceptibility is a Lorentzian invol-
ving the frequency offset of wy from wng ana a width determined by the
laser bandwidth (in the present case). With Xyr > Xp the spectra

will display the cross term proportional to Re[xR] which (for the up-

per state resonance process) involves the imaginary part of the Lorent-



zian.

The nonlinear signal lineshape will also depend upon the varia-
tion of the effective interaction length £ defined in Section IVC.
Considering the most strongly resonantly enhanced case — exactly
on resonance — the length £ will be determined by the strong absorp-
tion at w, and shows only a few percent variation due to the absorp-

1
tion at w,. Thus, in this case, the dispersion in the CARS signal

2
comes only from the spectral variation cof Re[xR].
The experimental arrangement used in this CARS measurement was
identical to that used in the previous section, except that shorter
pulsed Nd:YAG-pumped dye lasers were used for the input beams. As we

have seen above, the minimum detectable ratio of susceptibilities for

such a system (with 8% laser fluctuations) 1s expected to be (XRIXNR%in

~ 0,02. This leads to an anticipated §/N =~ 10 if the estimated value

of the ratio is 0.2 for the upper state resonance in Pr.

Xp/ Xyg
Regrettably, the first attempts at developing the Nd:YAG-pumped
dye lasers did not yield as stable of system as is commercially avail-

able. 1In fact, even after averaging over 100 pulses, the CARS output

signal still showed a fluctuation of 5%. Thus the value of (XRIXNR)min

for this system was *~ 0.05, which implies the expected signal to noise
ratio was reduced to about 4. A brief attempt to observe such an up-
per state resonancc signal did not reveal any resonance above the
noise; therefore, we conclude that XRIXNR < 0.05 for this particular
set of transitions.

Several improvements have been made in the experimental setup

since the time of this attempt. Dye laser fluctuations have been



reduced by a factor of three us.ng a wore carefully optimized desigm,
and a new computer-based data acquisition system has been developed
which ailows shot-to-shot data analysis. In addition, the larger
laser intensities may allow either the use of an independent refer-
ence cell to normalize the nonlinear signal or the use of the polari-
zation-sensitive techniques discussed in Sections II and III. With
these improvements, it should be possible to detect a minimum ratio of
XR/XNR of 0.02 and perhaps see the theoretically predicted upper state
resonance in CARS.

To summarize this section, we have presented experimental proof
that certain four-wave mixing processes can lead to a linewidth much
less than that due to inhomogeneous broadening. This was demonstrated
using the triply-resonant RIKES process in a study of Pr+3:LaF3. Us-
ing a combination of linear and nonlinear spectroscopic techniques, we
have evaluated the dipole matrix elements involved in this RIKES sus-
ceptibility. In particul~r, we found <3P0|u|3H4> = 2,2 x 10‘-Zl esu
and <3H6lu|3P0> 9.7 x 19_21 esu. From the strength of a doubly-re-
sonant CARS spectrum, involving the same levels, we have found the
Raman polarizability between the 3H6 and 3H4 states to be upproximate-
ly 1. x 10_28 esu. We have also included several suggestions alout
improvements which could be made (and some of which have already been

made) to make these measurements more precise.
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Figure Captions

Level diagrams for Pr+3:LaF3. {(a) Approximate energies of
various manifolds (150 at 46986 c:m-1 not shown); (b) levels
studied in this work.

Linear absorption measurement setup to study 3H4 -+ 3P0 tran-
sition. BS beamsplitter, NDF neutral density filter, PD photo
diode. Electric field polarized perpendicular to the c-axis
of sample.

Experimentally determined absorption lineshape. (a) Gaussian
fit to central part of the profile; (b) Lorentzian fit to same
data — both with peak height of 19 cm-l and HWHM of 11 GHz.
(See text for discussion of lineshape.)

RIKES setup used to study the 3PO + 3H6 transition. Pl and P2
polarizers, P3 linear analyzer (polarizer), L1 and L2 lenses,
S sample, D diaphragm, Wl quarter-wave plate, F color filter
(to block fluorescence from sample), PD photodiode.

RIKES spectrum with ¢, exactly on resonance. Plot of output

1
signal through crossed polarizer as wy is scanned.

Peak RIKES susceptibility as Wy 1s scanned across the one-
photon resonance. (a) Gaussian fit to data; {b) Lorentzian
fit to same data. (See text for discussion and compare to
Fig. 3.)

Resonant CARS lineshapes as w, is tuned through a one-photon

1

resonance (for homogeneously broadened system). (a) Awl H

w, - w“,g = -100 rn'g; (b) Awl =~-T

=+ rn'g' Vertical scale arbitrary; each plot with different

n'g’ (¢) dwy = 03 (d) dwy




Fig. 8
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baseline. ‘XR‘ << ‘XNRl assumed.

Doubly-resonant CARS spectra for Pr+3:LaF system, involving

3
4 3PO, and 3H6 levels. (a) Theorczcical curve derived

using the tabulated plasma dispersion function and assuming

the "H

xR/xNR = 0.15 with uy exactly on resonance; (b) experimental

curve also with ml exactly on resonance; (c¢) experimental
curve with uy about six inhomogeneous halfwidths below reson-
ance (the latter is included to indicate the noise level in

the otherwise nondispersive nonlinear signal).
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Figure 3

Lv$6-208 18X
CH

()-wo)
€ 2 1 0 2- €~
! | o 0]0
0©°
= -1S
- i (¢
-~ -1S1
uD)JZjuaion) ubnissnng

1 | { 1 1 0z

{,-Wo} juanyjan) uoydic. ~y



172

86$$-208 18X

13}3wo4}29|3

paib9
oL

Id

49507 dwng

[—— ——— TS

2

Figure 4

| s—Sh—

5

VA

4a3sD7] 2qoud




173

Figure 5
51—
41—
F
T 3
E
o
8
©
c
2
L7 2
| |~
oLl ! [ R S
16705 16704 16703 16702

w, {em™)

XBL BOT-5549



Figure 6

Lorentzign

1
Gaussiagn
1

0 < " ] = o

(siunquo) Kyqudassng SINTY Juouosay Kdiil

(b)

Awl(cm")

(@)

Aw, (em™)

XBL 8O7- 5550

174



175

-100

(a)
(b)
(c)

=
2

l 1l ‘ _

S~

Figure 7

< 0 o - o

(siun-quo) joubiS SHYD JuDUOsSay aA|DjaY

10

-5

-10

(w) - wp) —wg'g

’

a9

XBL 807-555I



CARS Signal (arb. units)

w, On Resononce

w; On Resonance

g 2and14

w, Off Resonance

-1 0 (
sz(cm")
(c)
XBL80O7—55852

L7AN





