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Tracking the emergence of memories: A category-learning
paradigm to explore schema-driven recognition

Felipe De Brigard1,2,3
& Timothy F. Brady4 & Luka Ruzic2,5 & Daniel L. Schacter6,7

# Psychonomic Society, Inc. 2016

Abstract Previous research has shown that prior knowledge
structures or schemas affect recognition memory. However,
since the acquisition of schemas occurs over prolonged pe-
riods of time, few paradigms allow the direct manipulation of
schema acquisition to study their effect on memory perfor-
mance. Recently, a number of parallelisms in recognition
memory between studies involving schemas and studies in-
volving category learning have been identified. The current
paper capitalizes on these findings and offers a novel experi-
mental paradigm that allows manipulation of category learn-
ing between individuals to study the effects of schema acqui-
sition on recognition. First, participants learn to categorize
computer-generated items whose category-inclusion criteria
differ between participants. Next, participants study items that
belong to either the learned category, the non-learned

category, both, or neither. Finally, participants receive a rec-
ognition test that includes old and new items, either from the
learned, the non-learned, or neither category. Using variations
on this paradigm, four experiments were conducted. The re-
sults from the first three studies suggest that learning a cate-
gory increases hit rates for old category-consistent items and
false alarm rates for new category-consistent lures. Absent the
category learning, no such effects are evident, even when par-
ticipants are exposed to the same learning trials as those who
learned the categories. The results from the fourth experiment
suggest that, at least for false alarm rates, the effects of cate-
gory learning are not solely attributable to frequency of occur-
rence of category-consistent items during learning.
Implications for recognition memory as well as advantages
of the proposed paradigm are discussed.

Keywords Schema . Categorization . Recognition .

Memory . False alarms

Introduction

Since Bartlett’s pioneering work, it has been known that epi-
sodic memory is influenced by previously acquired knowl-
edge. Bartlett’s influential insight was that memory involves
Ban active organization of past reactions^ (Bartlett, 1932, p.
201), so that every new experience is encoded and retrieved
not only as an individual event, but also as related to a knowl-
edge structure of previously encoded similar events. Bartlett
called this knowledge structure a schema, but this general idea
later reemerged in the literature under different names, such as
script (Schank & Abelson, 1977), frame (Minsky, 1975), and
gist (Brainerd & Reyna, 1990). So enduring is the notion of
schema that it is still widely discussed in memory research, as
evidenced by recent studies in cognitive neuroscience
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exploring its neural underpinnings (e.g., van Kesteren, Ruiter,
Fernández, & Henson, 2012).

Traditionally, studies on the effects of schemas on memory
have produced two kinds of results (Lampinen, Copeland, &
Neuschatz, 2001). First, schematic knowledge increases rec-
ognition of schema-inconsistent information relative to
schema-consistent information (Bower, Black, & Turner,
1979; Rojahn & Pettigrew, 1992). Second, it increases false
alarms to schema-consistent lures relative to schema-
inconsistent lures (Brewer & Treyens, 1981; Lampinen
et al., 2001). In addition, recent results show that schemas also
influence short-term memory (Hollingworth & Henderson,
2003; Oliva, 2005), suggesting they can affect retention as
early as in working memory (Brady, Konkle, & Alvarez,
2009) and as late as in long-term memory retrieval (Hemmer
& Steyvers, 2009; Steyvers & Hemmer, 2012).

Unfortunately, because the acquisition of schemas is
thought to occur over prolonged periods of time, it is not easy
to track the process of acquisition beginning with learning the
background knowledge to the study material and memory test
in the controlled environment of the laboratory. Thus, attempts
to directly assess how memory performance is affected by
differences in acquired knowledge typically involve compar-
ing within-subject performance for different pre-acquired
schemas (Graesser & Nakamura, 1982; Roediger &
McDermott, 1995; Taylor & Crocker, 1981) or between-
subject performance for individuals with different schematic
expertise (e.g., Arkes & Freedman, 1984; Castel, McCabe,
Roediger, & Heitman, 2007; Chase & Simon, 1973; de
Groot, 1966). Therefore, these experimental paradigms do
not allow the direct manipulation of schema acquisition to
study their effect on memory performance.

Recently, however, researchers have started to remark on a
number of similarities between extant results from memory
studies on schema-driven recognition and studies on category
learning that include a recognition memory component
(Sakamoto & Love, 2004; Sakamoto, 2012). In one such
study, for instance, Palmeri and Nosofsky (1995) asked par-
ticipants to learn to classify 16 geometric stimuli according to
a simple rule. Although most stimuli fit the rule, the learning
list included exceptions. A subsequent recognition memory
test showed that subjects recognized category-inconsistent
items at a higher rate than category-consistent ones. This rec-
ognition advantage for rule-inconsistent relative to rule-
consistent exemplars parallels the aforementioned recognition
advantage for schema-inconsistent versus schema-consistent
items. But the parallels do not end here. In a meta-analysis on
schema-dependent recognition memory, Rojahn and
Pettigrew (1992) report that the recognition advantage for
schema-inconsistent information increases as the proportion
of schema-inconsistent to schema-consistent items becomes
smaller. To investigate whether this effect was evident in stud-
ies involving category learning, Sakamoto and Love (2004)

manipulated the strength of the category rule by varying the
frequency of the category-consistent items during learning.
They demonstrated that when the rule was stronger (e.g., in-
cludedmore rule-consistent items during learning), exception-
al items were remembered at a higher rate than when the rule
was weaker.

These results have led a number of researchers to postulate
strong connections between the cognitive processes underly-
ing schematic and categorical learning (e.g., Love, 2013;
Davis, Xue, Love, Preston, & Poldrack, 2014; Sakamoto &
Love, 2004; Sakamoto, 2012). Sakamoto (2012) has recently
argued that these results on recognition memory and category
learning challenge existing models of category learning—
such as exemplar and prototype-based models—and also lend
credence to cluster-based models (e.g., SUSTAIN; Love,
Medin, & Gureckis, 2004) that take category learning as tan-
tamount to schema acquisition. Specifically, following the no-
tion that a schema is a knowledge structure that provides a set
of expectations based on past experiences, Sakamoto (2012)
argues that category learning should be understood as the
process of building Bschema-like representations in which
rule-following items are encoded as a set of expectations,
and rule-violating items are stored separately^ (p. 2961).
Unfortunately, as Sakamoto also remarks, very little work
has been done linking category learning and schema acquisi-
tion in memory research, despite asking similar questions and
finding parallel results (but see Clapper, 2008). The relatively
few and recent attempts to bridge these two disciplines have
come from the category learning side, and oftentimes mea-
sures that are of interest to memory researchers (e.g., separate
analyses on hits and false alarms) have not been directly ad-
dressed by the experimental paradigms employed.

The current paper seeks to contribute to the integration of
these two disciplines from the perspective of memory research
by offering a novel experimental paradigm that can help to
extend the use of category-learning manipulations to study the
effect of structured knowledge acquisition on hit and false
alarm rates during recognition memory tests. The paradigm
allows researchers to manipulate different features of category
learning and encoding between individuals to study the effects
of schema acquisition on hit and false-alarm rates during sub-
sequent memory performance.

The paradigm consists of three stages. In the first stage
(Learning), participants learn to categorize computer-
generated items—in this case, flowers—either as belonging
or as not belonging to a category. The current variation em-
ploys a rule-based strategy, but other strategies can be
employed as well (Ashby & O’Brien, 2005). In addition, al-
though the structure of the paradigm allows the inclusion of
exceptions to explore schema inconsistent effects, the current
variation reported here does not include category-exceptions
in the learning stage—i.e., every item that belongs to the cat-
egory follows the rule—since our interest is to explore
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schema-consistent effects on recognition memory. Here, the
feature that determines category membership—i.e., the rule—
which is counterbalanced across participants, occurs in half of
the trials. The flowers that include this feature belong to the
learned category. Another feature, also counterbalanced
across participants, occurs as frequently as the learned catego-
ry feature and coincides with flowers from the learned catego-
ry half of the time. Flowers that include this second feature
belong to what we refer to as the non-learned category. As
such, the main difference between the learned and the non-
learned category rests on the precise feedback participants
receive, which in this case aims exclusively to help them cat-
egorize flowers from the learned category. Thus, despite the
non-learned category sharing the same statistical features as
the learned category, participants did not engage in any ex-
plicit task to learn it, or even acknowledge its presence.
Finally, the remaining flowers (one-quarter) belong to neither
category.

In the next stage (Study), participants study flowers that
belong to either the learned category, the non-learned catego-
ry, both, or neither. In the final stage (Test), participants re-
ceive a recognition test that includes old flowers as well as
new flowers (lures) from the learned category, the non-learned
category, or neither category. Of note, none of the flowers seen
during the study and test stages overlapped with the flowers
seen during the learning stage. We employed four variations
of the paradigm. Experiment 1 implements the paradigm as
explained above. In Experiment 2, the learning stage is elim-
inated to test whether the effects on recognition memory ob-
served in Experiment 1 were attributable to or independent of
prior category learning. Experiment 3 also tests whether the
differential effects on recognition memory were attributable to
category learning, by increasing the difficulty of the category
learning task so that some participants learned the category
and other participants did not. This manipulation allows sub-
sequent memory performance to be compared with otherwise
identical conditions between those who learned and did not
learn the category. Finally, in Experiment 4 we test the hy-
pothesis, derived from category-learning models, that the ef-
fects on recognition memory found in the first three experi-
ments may be attributable to the relative frequency of presen-
tation of the category-consistent items relative to category
inconsistent-items.

Consistent with previous studies on recognition memory
for schema-consistent items (Brainerd and Reyna, 2005;
Lampinen et al., 2001), we expected that participants who
learned to sort flowers into a particular category will have
higher hit rates for old items of the learned category relative
to old items of the non-learned category, despite the fact that
items of the non-learned category were presented with the
same frequency as items of the learned category during learn-
ing. Likewise, we expected to see higher false alarm rates for
lures of the learned category relative to lures of the non-

learned category. In turn, we expected lower hit and false
alarm rates for flowers that did not belong to either the learned
or the non-learned categories. Additionally, we expected that
in the absence of learning these effects would not be evident.
Finally, we conjectured that even after equating for frequency
of presentation during encoding, the effect of schema acquisi-
tion would still be evident in a recognition task.

Experiment 1

Methods

Participants One hundred individuals were recruited and run
using Amazon Mechanical Turk (https://www.mturk.com).
All participants were from the USA, gave informed consent,
and received approximately US$0.60 for participating.

Stimuli For this study, 1,024 different flowers were generated
in MATLAB. Flowers varied across five possible dimensions,
with each dimension taking up one of four possible values, as
follows: (a) number of petals: 2, 4, 6, or 8; (b) color of petals:
red, blue, green, or yellow; (c) shape of center: circle, triangle,
square, or star; (d) color of the center: orange, pink, bright
green, or turquoise; and (e) number of sepals: 0, 1, 2, or 3.
Flowers appeared in the center of the screen against a white
background (Fig. 1).

Procedure The experiment consisted of three stages:
learning, study, and test (Fig. 1). For the learning stage, par-
ticipants were told they will see a flower on the screen, and
that they will be asked whether or not such a flower belonged
to the species avlonia. Participants were told that avlonias
differed from other flowers in one simple way (e.g., only
avlonias had four petals, or pink sepals, or a heart in the cen-
ter), and that their task was to find out what that simple way
was. Participants were informed of the five dimensions across
which all the flowers varied and shown two example flowers
to highlight these dimensions. They were then told they would
see a total of 60 flowers, one at a time. Whenever a flower
appeared on the screen, the question BIs this an avlonia?^ was
also displayed, and participants were asked to answer BYes^
or BNo.^ Each trial was self-paced, and the flower and ques-
tion were displayed through the trial. The word BCorrect^ or
BIncorrect^ was presented as feedback immediately following
the participant’s response. Participants were told that at the
beginning they would have to guess, but that eventually they
would figure out what makes a flower an avlonia.

There were four kinds of trials during the learning phase.
One-quarter of the trials showed flowers that included the
learned category feature—i.e., the feature that made flowers
avlonias (e.g., yellow center). One-quarter of the trials
displayed flowers with a different feature, which determined
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the category inclusion for a non-learned category (e.g., six
petals). One-quarter of the trials showed flowers with both
features (e.g., yellow center and six petals), so they belonged
to both the learned and the non-learned category. Finally, one-
quarter of the trials displayed flowers that belonged to neither
category. Therefore, in effect, 50 % of the trials should pro-
duce BYes^ responses, but of those only half were unique to
either the learned category or the non-learned category. The
features that determined both category memberships were
counterbalanced across participants, and the remaining fea-
tures were randomly selected. (Table 1 displays the abstract
category structure of the learning phase. Figure 2 displays a
frequency distribution matrix of the average pairwise co-
occurrence of each dimension’s values across trials during
the learning phase.)

After the learning phase, participants saw a screen with
the instructions for the second phase: study. This screen

was displayed for a minimum of 90 s. On this instructions
screen, participants were told that in the next part of the
experiment they would see 20 flowers one at a time, and
that their task was to remember them as best as they
could. They were told that they would receive an extra
bonus for remembering them all. They were also told that
some of the flowers they would have to remember may or
may not be avlonias. During this study phase, participants
saw five flowers from the learned category, five from the
non-learned category, five from both categories, and five
from neither, in random order. Each flower was displayed
for 5 s, followed by a 1-s blank and then the next flower.
Flowers were counterbalanced across participants, and
none of these 20 study flowers were presented during
the learning phase.

Finally, after the study phase, participants saw a screen
with the instructions for the final phase: test. This screen

a

b

c

Fig. 1 Experimental paradigm. a Learning phase: 60 MATLAB
generated flowers varying across five dimensions, each one taking up
four possible values (number of petals [2, 4, 6, 8], color of petals [red,
blue, green, yellow], shape of center [circle, triangle, square, star], color
of center [yellow, pink, turquoise, bright green], number of sepals [0, 1, 2,
3]). For each flower, participants responded BYes^ or BNo^ to the
criterion-inclusion question (BIs this an avlonia?^), and received imme-
diate feedback. Trials were self-paced. The learning phase lasted at most
7 min. b Study phase: after a 2-min display of the instructions for this
stage, 20 study flowers, not included in the learning phase, were presented
randomly for 5 s each. Five such flowers from the Learned category (in
this example, the category-inclusion feature is Byellow center^), five were

flowers from a Not Learned category (in this example, the category in-
clusion feature is Bsix petals^), five were flowers from Both categories,
and five were flowers from Neither category. The study phase lasted
about 1.5 min. c Test phase: after a 2-min display of the instructions for
this last stage, 50 test flowers were presented randomly for a recognition
test. Twenty such flowers were old (i.e., presented at test), and 30 were
new. Ten of the new flowers were not previously presented lures from the
Learned category (Learned-Lures), ten were not previously presented
lures from the Not Learned category (Not Learned-Lures), and ten were
not previously presented lures from Neither category (Neither-Lures).
The test phase was self-paced and lasted at most 3.5 min

Mem Cogn



was displayed for a minimum of 90 s. Participants were
told that in this final stage 50 flowers would be shown,
one at a time, and they would be asked to answer, for each
flower, whether or not it was in the study list. Of the 50
test flowers, 20 were old, ten were new flowers from the
learned category (Learned-lures), ten were new flowers
from the non-learned category (Not learned-lures), and
ten were new flowers from neither category (Neither-
lures). None of these 50 flowers were presented during
the learning phase. Flowers were displayed one by one
in random order, and each trial was self-paced.

Results

Performance data during the learning phase are depicted
on Fig. 3a, and recognition data during the test phase are
depicted in Fig. 3b (Hits) and c (FA). Hit and FA rates
were analyzed separately. An ANOVA comparing hit rates
for old items from all four categories (Learned, Not
Learned, Both, Neither) revealed a main effect of
Category, F (3, 97) = 5.359, p = .002, η2 = .14. Paired
direct contrasts showed that the hit rate for items from the

Table 1 Abstract category structure used in the learning stage of
Experiment 1. Each row represents a unique stimulus (flower) from one
of four possible groups of 15 stimuli each. Each number represents one of
four possible values for each dimension. Here, the first value of the first
dimension (1,1) corresponds to the category inclusion value for Learned-
Flowers, while the first value of the second dimension (2,1) corresponds
to the category-inclusion value for Not Learned-Flowers. All Both-
Flowers include both values (1,1) and (2,1), whereas none of the
Neither-Flowers does. Which value corresponded to the inclusion criteria
for both Learned and No Learned was counterbalanced between subjects,
and every value was used the same amount of times across subjects. The
other values were chosen randomly

Category Stimulus Dimension value

1 2 3 4 5

Learned L1 1 2 1 1 1

L2 1 2 1 1 1

L3 1 2 1 1 2

L4 1 2 1 2 2

L5 1 2 2 2 3

L6 1 3 2 2 3

L7 1 3 2 3 4

L8 1 3 2 3 4

L9 1 3 3 3 1

L10 1 3 3 4 1

L11 1 4 3 4 2

L12 1 4 3 4 2

L13 1 4 4 1 3

L14 1 4 4 2 3

L15 1 4 4 3 4

Not Learned NL1 2 1 1 1 1

NL2 2 1 1 1 1

NL3 2 1 1 1 2

NL4 2 1 1 2 2

NL5 2 1 2 2 3

NL6 3 1 2 2 3

NL7 3 1 2 3 4

NL8 3 1 2 3 4

NL9 3 1 3 3 1

NL10 3 1 3 4 1

NL11 4 1 3 4 2

NL12 4 1 3 4 2

NL13 4 1 4 1 3

NL14 4 1 4 2 3

NL15 4 1 4 3 4

Both B1 1 1 1 1 1

B2 1 1 1 1 1

B3 1 1 1 1 2

B4 1 1 1 2 2

B5 1 1 2 2 3

B6 1 1 2 2 3

B7 1 1 2 3 4

B8 1 1 2 3 4

Table 1 (continued)

Category Stimulus Dimension value

1 2 3 4 5

B9 1 1 2 3 1

B10 1 1 3 4 1

B11 1 1 3 4 2

B12 1 1 3 4 2

B13 1 1 3 1 3

B14 1 1 4 2 3

B15 1 1 4 3 4

Neither N1 2 2 1 1 1

N2 2 2 1 1 1

N3 2 2 1 1 2

N4 2 2 2 2 2

N5 2 3 2 2 3

N6 3 3 2 2 3

N7 3 3 3 3 4

N8 3 3 3 3 4

N9 3 4 3 3 1

N10 3 4 3 4 1

N11 4 4 4 4 2

N12 4 4 4 4 2

N13 4 2 4 1 3

N14 4 3 4 2 3

N15 4 4 1 3 4
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Learned category (M = .71, SD = .17) was significantly
higher than for items from the Not Learned category (M =
.67, SD = .20), t(99) = 2.58, p = .011, d = .22, as well as
for items from Neither category (M = .61, SD = .21), t(99)
= 3.88, p < .001, d = .52. Likewise, the hit rate for items
from the Both categories was significantly higher (M =
.70, SD = .25) than for items from the Not Learned, t(99)
= 2.02, p = .046, d = .13, as well as the Neither category,
t(99) = 3.10, p = .002, d =.39. Interestingly, the hit rate
for items from the Not Learned category was higher than
for Neither, t(99) = 2.59, p = .011, d =.29. There was no
difference in the hit rate for items from the Learned and
the Both Categories, p = .699.

An ANOVA comparing FA rates for Lures of the
Learned, Not Learned, and Neither categories revealed a
main effect of Lure, F(2, 98) = 17.45, p < .001, η2 = .26.
Paired direct contrasts revealed that FA rates for lures
from the Learned category (M = .54, SD = .21) where
higher than for lures of the Not Learned (M = .44, SD =
.22), t(100) = 4.20, p < .001, d = .47, as well as the
Neither categories (M = .40, SD = .19), t(100) = 5.75, p
< .001, d = .70. The difference between the FA rates for
lures from the Not Learned and the Neither categories,

although close, did not reach significance, t(100) = 1.89,
p = .061, d = .20.1

To assess differences in discriminability in recognition
memory for items from the Learned, Not Learned, and
Neither categories, two further analysis were conducted.
First, we calculated differences in Hit minus FA rates for items
from all three conditions (Learned: M[Hit-FA] = .17, SD = .29;
Not Learned M[Hit-FA] = .23, SD = .30; Neither: M[Hit-FA] =
.21, SD = .30), and performed an ANOVA across the three
measures. No effects were found (p > .05). Second, sensitivity
and bias measures were estimated in a signal detection theory
(SDT) framework by calculating measures of d’ and C for all
three conditions (Learned: d’ = .56, C = -0.37; Not Learned: d’
= .72, C = -0.18; Neither: d’ = .65, C = -0.01). A one-way
ANOVA comparing measures of d’ revealed no effects of
sensitivity (p > .05). However, a second one-way ANOVA
comparing measures of C revealed a main effect of condition,
F (2, 98) = 19.12, p < .001, η2 = .28. Follow-up paired t-tests
indicated higher bias in recognition responses for items from
the Learned relative to the Not Learned, t(99) = 4.12, p < .001,
d = .41, and the Neither category, t(99) = 6.07, p < .001, d =
.82, as well as for the Not Learned relative to Neither category,
t(99) = 3.19, p = .002, d = .37.

Discussion

The results of Experiment 1 suggest that participants who
learned to categorize flowers according to a certain criterion
had higher hit rates for category-consistent items as well as
higher FA rates for category-consistent lures even if, during
study, they saw an equal number of flowers that belonged to
another, non-learned category. These results show how acquir-
ing categorical knowledge can reliably increase the probabil-
ity of both correctly and falsely recognizing items that instan-
tiate the learned category in a subsequent memory test.
Moreover, the current paradigm demonstrates that such

1 After conducting this study, we noticed a minor bug in the code during
the learning phase that made the flowers from the Not Learned and the
Both categories appear between 14 and 16 times, rather than a fixed 15
times each, as with the flowers from the Learned and the Neither catego-
ries. Although the difference is negligible, we conducted a replication of
this study (N = 100) in which each flower trial was presented exactly 15
times. The effect of Lure replicated, F(2, 98) = 24.47, p < .001, n = .33,
and the directed contrasts were virtually identical, with FA rates for lures
of the Learned category (M = 54, SD = 21) being higher than for Not
Learned (M = .47, SD = 21), t(100) = 2.91, p = .004, and for Neither (M =
39, SD = 21), t(100) = 7.03, p < .001. The difference between FA rates for
lures of the Not Learned and the Neither categories did reach significance
in the replication, t(100) = 3.72, p < .001. On the other hand, the Hit rates
effect did not replicate, F(3, 97) = 1.84, p = .14, although the hit rate for
items from Neither category was still numerically lower (M = .60, SD =
.21) than for Learned (M = .65, SD = .20), Not Learned (M = .64, SD =
.21), and Both (M = 66, SD = .28). This suggests that perhaps the effect
on FA alarms is more robust than the effect on Hit rates (see results in
Fig. 8, Supplementary Materials).

Fig. 2 Frequency distribution matrix depicting average pairwise co-
ocurrence of flower’s features during the learning phase in Experiment
1. The groups of columns correspond to the five dimensions across which
flowers varied, and the columns within them correspond to the particular
values along those dimensions. Colors indicate the frequency of presen-
tation of that value for that dimension across trials. As such, the first
dimension (thick column) corresponds to the learned rule dimension,
and the leftmost value (the first thin column within the dimension) corre-
sponds to the learned rule value. In this illustration, the category inclusion
value for the learned category corresponds to two petals. The second
dimension corresponds to the not learned rule dimension, and the leftmost
value to the not learned rule. In this illustration, the value for the not
learned category corresponds to red petals
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learning can occur quickly and in conditions under which low-
level perceptual features have been controlled for. In addition,
the differences in measures of bias found in Experiment 1
suggest that learning a category increases the participant’s
susceptibility toward answering Bold^ for items of the learned
category relative to items from the non-learned or from neither
category.

However, although the counterbalanced design in
Experiment 1 allowed us to find differences in Hit and FA
rates for items from the Learned and the Not Learned catego-
ries, it may still be possible that the effects found for items
from Neither category were at least partly due to features of
the study and testing materials. Likewise, the fact that we find
essentially no bias for items of the Neither category relative to
both the Not Learned and the Learned categories, suggests
that at least some of the effects on discriminability may be
due to features of the study and testing phases rather than
learning alone. Thus, to assure that the effects in hit and FA
rates were only attributable to learning differences rather than
study or testing differences, we conducted a second experi-
ment that did not include a learning stage. We hypothesized
that if the differences in hit rates for items of the Learned
versus Not Learned and Neither categories, as well as the
between-group differences in the Learned versus the Not
Learned and Neither categories in FA rates observed in
Experiment 1 were due to differences in learning alone, then
these effects would disappear in Experiment 2.

Experiment 2

Methods

Participants One hundred individuals were recruited and run
with Amazon Mechanical Turk (https://www.mturk.com). All

participants were from the USA, gave informed consent, and
received approximately US$0.60 for participating.

Stimuli and procedure Stimuli and procedure were identical
to Experiment 1 except Experiment 2 did not include the
learning phase, only the study and test phases.

Results

Recognition data during the test phase are depicted in Fig. 4a
(Hits) and b (FA). An ANOVAwas employed to compare hit
rates for old items from all four categories (Learned, Not
Learned, Both, Neither). No effect was found, p = .095. An
ANOVA comparing FA rates for Lures of the Learned, Not
Learned and Neither categories revealed a main effect of Lure,
F(2, 98) = 7.89, p = .001, η2 = .14. Paired direct contrasts
revealed no difference between FA rates for lures of the
Learned (M = .48, SD = .22) and the Not Learned categories
(M = .48, SD = .22), t(100) = .13, p = .90. However, FA rates
for lures of the Learned and Not Learned categories were
higher than for lures of Neither category (M = .40, SD =
.21), smallest t(100) = 3.44, p = .001, d = .37.

As in Experiment 1, discriminability in recognition mem-
ory was assessed, first by calculating differences in Hit minus
FA rates for items from all three conditions (Learned: M[Hit-FA]

= .21, SD = .31; Not Learned M[Hit-FA] = .20, SD = .30;
Neither: M[Hit-FA] = .23, SD = .29), and performing an
ANOVA across the three measures. No effects were found
(p > .05). Second, measures of d’ and C were also calculated
(Learned: d’ = .64, C = -.26; Not Learned: d’ = .61, C = -.24;
Neither: d’ = .72, C = -.02), and two one-way ANOVAs com-
paring them across conditions were conducted. While no ef-
fects for d’ were revealed (p > .05), for C there was a main
effect of condition, F (2, 98) = 7.73, p = .001, η2 = .14. Follow-
up paired t-tests indicated lower bias in recognition responses

a b c

Fig. 3 Learning and recognition performance from Experiment 1. a
Categorization performance during the learning phase. b Hit rates
during the test phase. H-Learned corresponds to the hit rates for items
from the Learned category; H-Not Learned corresponds to the hit rates for
items from the Not Learned category; H-Both corresponds to the hit rates
for items of Both categories; andH-Neither corresponds to the hit rates for

items from Neither category. Error bars indicate SEM. c False alarm rates
during the test phase. FA-Learned corresponds to the false alarm rates for
lures of the Learned category; FA-Not Learned corresponds to the false
alarm rate for lures of the Not Learned category; and FA-Neither corre-
sponds to the false alarm rate for lures of Neither category
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for items from Neither category relative to both Not Learned,
t(99) = 3.34, p = .001, d = .42, and Learned, t(99) = 3.89, p <
.001, d = .46. However, no difference in Cwas found for items
of the Learned versus Not Learned categories (p > .05).

Discussion

To explore whether the effects in FA rates from Experiment 1
were attributable to learning differences alone, rather than
study or testing differences, Experiment 2 did not include a
learning stage. As expected, there were no differences in FA
for either list. However, FA rates for lures of both the Learned
and Not Learned categories were higher than for lures of
Neither category, suggesting that the higher frequency of
some flowers’ features during the study phase may still have
an effect on FA during recognition even in the absence of
explicit category learning. Similarly, the fact that we still find
some bias for items from the Learned and the Not Learned
lists relative to items from Neither category suggests that at
least some of the participants’ tendencies to respond Bold^ to
items during the test phase may be due to features of the study
and testing phases rather than learning alone. This observation
may also explain why the hit rates of the learned categories in
Experiment 1 were also higher than the hit rates for items of
neither category—a pattern of results that was also replicated
in Experiment 2, and in the replication of Experiment 1 (see
footnote 1), albeit in neither case reaching statistical signifi-
cance. We explore this issue in Experiment 4. But before that,
we report the results from Experiment 3, in which we further
test whether the effects found in Experiment 1 were indeed
attributable to learning differences. To that end, Experiment 3
involves a more complex category learning phase, where
flowers varied across seven rather than five dimensions.
This increased level of difficulty resulted in only about half
of the participants successfully learning the category, thus
allowing us to compare recognition performance between

participants that completed all the learning trials and success-
fully learned the category versus participants that completed
all the learning trials but failed to learn the category.

Experiment 3

Methods

Participants Two hundred individuals were recruited and run
with Amazon Mechanical Turk (https://www.mturk.com). All
participants were from the USA, gave informed consent, and
received approximately US$0.60 for participating.

Stimuli The stimuli were very similar to those used in
Experiment 1 (Fig. 1), except that, for Experiment 3, 2,187
different flowers were generated inMATLAB. Flowers varied
across seven possible dimensions, with each dimension taking
up one of three possible values, as follows: (a) number of
petals: 4, 6, or 8; (b) color of petals: red, blue, or green; (c)
shape of petals: pointy, round, or concave; (d) shape of center:
circle, triangle, or square; (e) shape of hole in the center: star,
blob, or heart; (f) color of the center: yellow, pink, or tur-
quoise; and (g) number of sepals: 0, 1, or 2. Flowers appeared
in the center of the screen against a white background.

Procedure The procedure was the same as Experiment 1 ex-
cept for the following differences: (a) The learning phase in-
volved 100 as opposed to 60 trials. (b2) These 100 trials were
divided as follows: 25 displayed flowers from the Learned
category, 25 displayed flowers from the Not Learned category,
25 displayed flowers from Both categories, and 25 displayed
flowers from Neither category. Therefore, as in Experiment 1,
50 % of the trials were hits, but of those only half were unique
to either the Learned or the Not Learned category. (c) We
considered participants to have successfully learned if they

a b

Fig. 4 Recognition performance from Experiment 2. a Hit rates during
the test phase. H-Learned corresponds to the hit rates for items from the
Learned category; H-Not Learned corresponds to the hit rates for items
from the Not Learned category; H-Both corresponds to the hit rates for
items of Both categories; and H-Neither corresponds to the hit rates for

items fromNeither category. Error bars indicate SEM. b False alarm rates
during the test phase. FA-Learned corresponds to the false alarm rates for
lures of the Learned category; FA-Not Learned corresponds to the false
alarm rate for lures of the Not Learned category; and FA-Neither corre-
sponds to the false alarm rate for lures of Neither category
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classified at least 85 % of flowers correctly from trials 70 to
100. The rest of the procedure was identical to Experiment 1.

Results

Participants’ performance in the learning task is depicted in
Fig. 5a, and recognition data are depicted in Fig. 5b (Hits) and
c (FA). Only 56.5% of participants reached a successful learn-
ing criterion during the learning stage. Thus, recognition data
were split between participants who successfully learned the
category [Learning: n = 113] and those who did not [No
Learning: n = 87]. To analyze Hit rates, a 2 (Group:
Learning, No Learning) × 4 (Category: Learned, Not
Learned, Both, Neither) ANOVA was conducted, revealing
an effect of Category, F (3, 196) = 3.59, p = .015, η2 = .05,
with no interaction, p = .85. Paired direct contrasts indicated
that, regardless of group, hit rates for the Neither category
were significantly lower than for Learned, t(199) = 2.73, p =
.007, Not Learned, t(199) = 2.00, p = .047, and Both, t(199) =
2.94, p = .004. The Hit rate for the Not Learned category was
also lower than for Both, t(199) = 2.66, p = .009, but there was
no difference between Learned and Not Learned, p = .325, or
between Learned and Both, p = .158.

To analyze FA rates, a 2 (Group: Learning, No
Learning) × 3 (Lure: FA-Learned, FA-Not Learned, FA-
Neither) ANOVA revealed a main effect of Lure, F(2,
198) = 10.98, p < .001, η2 = .05, modified by a Lure ×
Group interaction, F(2, 198) = 3.39, p = .035, η2 = .02.
Direct contrasts revealed that only for participants in the
Learning group, FA for lures of the Learned category (M
= .58, SD = .21) were significantly higher than for lures of
both Not Learned (M = .50, SD = .22), t(224) = 3.0, p =
.003, r = .19, and Neither (M = .47, SD = .18), t(224) =
4.52, p < .0001, r = .27, categories. There were no sig-
nificant differences in FA rates for participants in the No
Learning group (all p > .05).

To assess differences in discriminability in recognition
memory, two further analyses were conducted. First, dif-
ferences in Hit minus FA rates for items from all three
conditions were calculated for both groups (Learning
group: Learned: M[Hit-FA] = .09, SD = .21; Not Learned
M[Hit-FA] = .16, SD = .24; Neither: M[Hit-FA] = .15, SD =
.27; No Learning group: Learned: M[Hit-FA] = .15, SD =
.23; Not Learned M[Hit-FA] = .15, SD = .21; Neither: M[Hit-

FA] = .15, SD = .24), and then a 2 (Group: Learning, No
Learning) × 3 (Condition: Learned, Not Learned, Neither)
mixed-design ANOVA was performed. No effects were
found (p > .05). Second, measures of d’ and C were cal-
culated for both groups (Learning group: Learned: d’ =
.25, C = -.39; Not Learned: d’ = .49, C = -.26; Neither: d’
= .46, C = -.13; No Learning group: Learned: d’ = .45, C
= -.38; Not Learned: d’ = .43, C = -.34; Neither: d’ = .58,
C = -.28), and two 2 (Group) × 3 (Condition) mixed-
design ANOVAs comparing each measure across condi-
tions were conducted. While no effects for d’ were re-
vealed (p > .05), for C there was a main effect of
Condition, F (2, 197) = 7.65, p = .001, η2 = .07, with
no interaction. Follow-up paired t-tests indicated higher
bias in recognition responses for items from the Learned
relative to Not Learned, t(199) = 2.17, p = .03, d = .16,
and Neither category, t(199) = 4.06, p < .001, d = .46. No
other effects were revealed.

Discussion

The difficulty of the learning task naturally divided partici-
pants into two groups: participants who succeeded in the cat-
egorization task (Learning) and participants who did not (No
Learning). Participants who succeeded in the categorization
task, and successfully discriminated items during the learning
phase on the basis of the correct category inclusion-feature,
showed a higher FA rate to lures of the learned category

a b c

Fig. 5 Learning and recognition performance from Experiment 3. a
Categorization performance during the learning phase for participants
that successfully learned the category (darker line) versus those
participants that did not (lighter line). b Hit rates during the test phase.
The darker bars correspond to the hit rates of participants who
successfully learned the category whereas the lighter bars correspond to

the hit rates of participants that did not learn the categories. c False alarm
rates during the test phase. The darker bars correspond to the false alarm
rates of the participants who studied items from category list A, while the
lighter bars correspond to the recognition performance of the participants
who studied items from category list B
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relative to all other lures. This effect was not apparent for
participants who did not succeed at the categorization task.
These results replicate those of Experiment 1, and corroborate
those of Experiment 2, insofar as the effects for FA rates were
only evident if the learning phase was successful. The pattern
of FA rates for participants who saw all the learning trials but
failed to learned the category mirror the pattern of FA rates in
Experiment 2, where there was no learning phase. Taken to-
gether, these results indicate that learning a category increases
the chance of falsely recognizing a lure as old if it is an in-
stance of the previously acquired knowledge structure.

For the hit rates, however, the results were somewhat
different, as there was no interaction between group and
category. However, the analysis did reveal that hit rates
were lower for items of the Neither category, regardless of
group. Likewise, the analysis conducted on measures of
discriminability revealed higher bias to answering Bold^
in items from the Learned relative to Neither category in
both groups, and a small but significant effect of bias for
items of the Learned relative to the Not Learned category,
likely driven by the group that successfully learned the
category. These results agree with the pattern of results
that was evident for hit rates in Experiment 1, where hit
rates for items from the Neither category were also lower
than from any of the other three categories. The effect
does not appear, however, when there is no learning
phase, as in Experiment 2. Interestingly, a similar pattern
of results occurs for FA rates in Experiments 1 and 3 (but
not 2): FA rates for Neither-lures are lower than for the
lures from the Learned and the Not Learned categories.

What might account for this pattern of results? Part of the
explanation may be that, by the time the participant faces the
test phase after the learning and study phases, theywould have
seen the value that determines category inclusion more fre-
quently than any other value. As such, if some features of the
flowers are oversampled during the learning phase, then it
may be possible that the lower rates of hits and FA for items
from the Neither category are simply due to oversampling
rather than category learning per se. Thus, in Experiment 4,
we modified the current paradigm so that the frequency of
values for each dimension is kept constant during learning
and encoding to assess whether the same hit rate and false
alarm rate effects are found after equating frequency.

Experiment 4

Methods

ParticipantsOne hundred and five individuals were recruited
and run with Amazon Mechanical Turk (https://www.mturk.
com). All participants were from the USA, gave informed

consent, and received approximately US$1.80 for
participating.

Stimuli MATLAB generated flowers from the previous ex-
periments were employed. Flowers varied across five possible
dimensions with each dimension taking up one of three pos-
sible values, as follows: (a) number of petals: 4, 6, or 8; (b)
color of petals: yellow, blue, or green; (c) shape of center:
circle, triangle, or square; (d) color of the center: purple, or-
ange, or turquoise; and (e) number of sepals: 1, 2, or 3.
Flowers appeared in the center of the screen against a white
background.

Procedure The procedure was similar to the previous exper-
iments except for the following differences. The learning
phase involved 54 trials. Each participant was assigned a
learning rule consisting of one possible value (e.g., yellow)
from one of the five possible dimensions (e.g., petals). This
assignment was counterbalanced across participants. Flowers
that belonged to the Learned category appeared on one-third
of the trials—i.e., 18 trials. The other two-thirds of the trials
included flowers displaying the other two values of the same
dimension as the category-inclusion value. Half of these trials
(18 trials) featured the second value (e.g., blue petals) while
the other half (18 trials) featured the third value (e.g., green
petals). Thus, the three values of the category relevant dimen-
sion were equally sampled during the learning stage. A value
from a different dimension (e.g., one sepal) was assigned as
the Not Learned category. This assignment was also
counterbalanced across participants. The value that deter-
mined the Not Learned category was also displayed in 18
trials, half of which co-occurred with the value that deter-
mined the Learned category, so there was a total of nine
flowers belonging to Both categories. The other two values
of the dimension that determined the Not Learned category
were displayed in equal frequencies of 18 trials each. As such,
the three values of the category inclusion dimensions of the
Learned and Not Learned categories were presented with
equal frequency, 18 times each, nine of which co-occurred.
Thus, contrary to Experiments 1 and 3, where the category
inclusion value from both the Learned and the Not Learned
categories occurred more frequently that the other values from
the same dimensions, in Experiment 4 the frequency of the
three possible values from the two dimensions that determined
Learned and Not Learned flowers occurred with equal fre-
quency. The other values of the remaining three dimensions
were chosen pseudo-randomly, so that each of them co-
occurred with each of the three values of the first two dimen-
sions six times, resulting in identical frequencies for all of
them. Participants were considered to have successfully
learned the category if they classified correctly at least 80 %
of the last 20 trials. (Table 2 displays the abstract category
structure of the learning phase. Figure 6a displays a frequency
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distribution matrix of the average pairwise co-occurrence of
each dimension’s values across trials during the learning
phase.)

To further control for the frequency of presentations
of the critical values for flowers of the Learned and Not
Learned categories during the study phase, the encoding
session included 24 rather than 20 items, so each value
of each relevant category was featured eight times. In
total, the study phase included four Learned-Flowers,
four Not Learned-Flowers, four Both-Flowers, and eight
Neither-Flowers. (Figure 6b displays a frequency distri-
bution matrix of the average pairwise co-occurrence of
each dimension’s values across trials during the study
phase.) Finally, the retrieval phase was identical to the
previous ones.

Results

Participants’ performance in the learning task is depicted in
Fig. 7a, and recognition data are depicted in Fig. 7b (Hits) and
c (FA). An ANOVAwas employed to compare hit rates for old
items from all four categories (Learned, Not Learned, Both,
Neither). No effect was found, p = .779. An ANOVA compar-
ing FA rates for Lures from the Learned, Not Learned and
Neither categories revealed a main effect of Lure, F (2, 103)
= 5.45, p =.006, η2 = .10. Paired contrasts revealed that FA
rates for lures from the Learned category (M = .59, SD = .23)
were higher than for lures of the Not Learned (M = .52, SD =
.23), t(104) = 2.93, p = .004, d = .30, as well as the Neither
categories (M = .53, SD = .22), t(104) = 2.68, p = .009, d = 27.

Table 2 Abstract category structure used in the learning stage of
Experiment 4. Each row represents a unique stimulus (Flower). Each
number represents one of three possible values for each of the five
dimensions. Here, the first value of the first dimension (1,1)
corresponds to the category inclusion value for the Learned category.
The first value of the second dimension (2,1) corresponds to the
category-inclusion value for the Not Learned category. Half of the cate-
gory inclusion features for Not Learned-Flowers co-occurred with half of
the Learned-Flowers to generate Both-Flowers. The values of the remain-
ing three dimensions were selected pseudo-randomly, so that they co-
varied with equal frequencies with the values of each of the first two
dimensions

Category Stimulus Dimension value

1 2 3 4 5

Learned B1 1 1 1 1 3

B2 1 1 1 2 1

B3 1 1 1 2 2

B4 1 1 1 3 3

B5 1 1 2 3 1

B6 1 1 2 3 2

B7 1 1 3 1 1

B8 1 1 3 2 1

B9 1 1 3 2 3

L1 1 2 1 1 3

L2 1 2 2 1 2

L3 1 2 2 2 1

L4 1 2 3 3 1

L5 1 2 3 3 3

L6 1 3 1 1 3

L7 1 3 2 1 2

L8 1 3 2 2 2

L9 1 3 3 3 2

Not Learned NL1 2 1 1 1 3

NL2 2 1 2 2 2

NL3 2 1 3 1 3

NL4 2 1 3 3 1

NL5 3 1 2 1 3

NL6 3 1 2 3 1

NL7 3 1 2 3 3

NL8 3 1 3 1 2

NL9 3 1 3 2 2

N1 2 2 1 1 1

N2 2 2 1 3 1

N3 2 2 1 3 2

N4 2 2 2 1 1

N5 2 2 2 3 3

N6 2 2 3 1 2

N7 2 2 3 2 3

N8 2 3 1 2 2

N9 2 3 1 3 2

N10 2 3 2 1 2

N11 2 3 2 2 1

Table 2 (continued)

Category Stimulus Dimension value

1 2 3 4 5

N12 2 3 2 2 3

N13 2 3 3 2 1

N14 2 3 3 3 3

N15 3 2 1 1 3

N16 3 2 1 2 3

N17 3 2 1 3 1

N18 3 2 1 3 3

N19 3 2 2 2 2

N20 3 2 3 1 2

N21 3 2 3 2 3

N22 3 3 1 2 1

N23 3 3 1 3 2

N24 3 3 2 1 1

N25 3 3 2 1 2

N26 3 3 3 2 1

N27 3 3 3 3 1
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However, there was no difference in FA rates for lures from
the Not Learned and the Neither categories, p = .75.

As in Experiments 1 and 2, discriminability in recognition
memory was assessed, first, by calculating differences in Hit
minus FA rates for items from all three conditions (Learned:
M[Hit-FA] = .03, SD = .34; Not Learned M[Hit-FA] = .11, SD =
.32; Neither: M[Hit-FA] = .09, SD = .39), and performing an
ANOVA across the three measures. No effects were found (p
> .05). Second, measures of d’ and C were calculated
(Learned: d’ = .14, C = -.37; Not Learned: d’ = .40, C =
-.25; Neither: d’ = .38, C = -.28), and ANOVAs comparing
them across conditions revealed no effects of sensitivity or
bias (both p > .05).

Discussion

Given the structure of the category learning phases in
Experiments 1 and 3, the values of the category relevant di-
mension were more frequently presented than the non-
category relevant values along the same dimension. As a re-
sult, oversampling the value of a dimension during learning
may have had the effect of increasing both true and false
recognition rates. This may explain why both hit rates and
FA rates for items from the Neither category were lower than
for items of any other category in Experiments 1 and 3.
Moreover, the oversampled features during encoding in the
absence of a learning stage may have affected the FA rate of

a b

Fig. 6 Frequency distribution matrix depicting average pairwise co-
ocurrence of flower’s features during the learning phase (a) and the study
phase (b) in Experiment 4. The groups of columns correspond to the five
dimensions across which flowers varied, and the columns within them
correspond to the particular values along those dimensions. Colors

indicate the frequency of presentation of that value for that dimension
across trials. As in Fig. 2, the first dimension corresponds to the learned
rule dimension, and the leftmost value corresponds to the learned rule
value. * Which feature and value defined each category was
counterbalanced across participants

a b c

Fig. 7 Learning and recognition performance from Experiment 4. a
Categorization performance during the learning phase. b Hit rates
during the test phase. H-Learned corresponds to the hit rates for items
from the Learned category; H-Not Learned corresponds to the hit rates for
items from the Not Learned category; H-Both corresponds to the hit rates
for items of Both categories; andH-Neither corresponds to the hit rates for

items from Neither category. Error bars indicate SEM. c False alarm rates
during the test phase. FA-Learned corresponds to the false alarm rates for
lures of the Learned category; FA-Not Learned corresponds to the false
alarm rate for lures of the Not Learned category; and FA-Neither corre-
sponds to the false alarm rate for lures of Neither category
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lures from the Neither category, whose features were relative-
ly under-sampled, in Experiment 2. The results from
Experiment 4, however, suggest that the category-learning
effects found in Experiments 1 and 3 may not be merely due
to oversampling, as the increased false alarm rate for lures of
the learned category remained despite controlling for frequen-
cy of occurrence during learning and encoding. After equating
the oversampling of category-relevant items during learning
and encoding, the difference between hit rates across condi-
tions, as well as the difference between FA rates for lures of
the non-learned and the neither categories, is no longer
present.

General discussion

The current paper reports the results of four experiments
employing variations on a new category-learning paradigm
that permits the manipulation of different features of the learn-
ing, encoding, and retrieval stages in order to study the effects
of acquiring a novel knowledge structure or schema on recog-
nition memory. The results from Experiment 1 indicate that
learning to categorize items as belonging to a particular cate-
gory reliably increases the hit rates for category-consistent
Bold^ items as well as the false alarm rates for category-
consistent Bnew^ lures. To complement this observation, the
results of the discriminability analysis also suggest that partic-
ipants were biased toward answering Bold^ to items of the
learned category more so than to items from the not learned
and neither categories. Importantly, these results are indepen-
dent of the particular perceptual feature used as criterion for
category inclusion. The results from Experiment 2 further in-
dicated that, although the lower hit and false alarm rates for
items from Neither category might have been due to the fea-
tures of the items in the study phase, the differences in hit and
false alarm rates for items from the Learned versus non
Learned categories found in Experiment 1 were actually de-
pendent upon category learning alone. Indeed, the fact that
participants were equally biased toward answering Bold^ to
items from the lists of the Learned and the Not Learned cate-
gories relative to items from Neither category further suggests
that oversampling features during the study phase is enough to
affect recognition at test.

However, the observation that the differences in hit and FA
rates for items from the Learned relative to Not Learned cat-
egory is due to learning, is further strengthened by the results
from Experiment 3, which did include a learning stage but a
more complex one, so that only about half of the participants
learned the category rule. The effects of category learning
found in Experiment 1 were only evident in participants that
successfully learned the complex category learning, but were
absent in those participants that failed to learn the task, despite
the fact that participants from both groups were exposed to the

same items during the learning phase. This pattern suggests
that the mere exposure to a series of items is not sufficient to
generate the hit and false alarm increases during recognition,
because it is necessary to experience such items as forming a
coherent knowledge structure or schema.

These results parallel previous findings on recognition
memory from the schematic knowledge literature. Smith,
Ward, Tindell, Sinfonis and Wilkenfeld (2000), for instance,
reported higher rates of false recognition to category-
consistent lures during a memory test whose study phase in-
cluded words that were semantically associated by typicality.
More recently, Castel et al. (2007) showed that individuals
with expertise in football were more likely to falsely recognize
football-consistent lures relative to non-experts, but also to
correctly identify football-consistent names from a study list.
However, all previously documented cases of increases in hit
and false alarm rates to schema-consistent as opposed to
schema-inconsistent items during a memory recognition test
have included subjects whose schematic knowledge was al-
ready learned, making it difficult to track the development
from schematic knowledge acquisition to encoding and sub-
sequent recognition. The paradigm employed in the current
study allows investigation of all three stages, verifying the
effect of structured knowledge acquisition on subsequent
memory performance. Moreover, given the parallelisms in
the results obtained in the first three experiments, and those
reported in the schematic knowledge tradition, we believe that
this paradigm, as well as possible variations thereof, could
contribute to further integrating these two lines of research.

Indeed, Experiment 4 aimed to do precisely that. A consis-
tent result in Experiments 1, 2, and 3 is that items that did not
belong to either the learned or the non-learned categories had
lower hit and false alarm rates than items that either belonged
to the learned or to the non-learned category. A possible ex-
planation for this result stems from the fact that, by the time
the participant faces the test phase, the flowers’ features that
determine category membership either to the learned or the
non-learned category have been seen more frequently than
any other value. If one assumes that the probability of endors-
ing a category-consistent item as old during a recognition task
is proportional to the probability function determined by the
frequency of prior occurrences of category-consistent stimuli,
then it should be expected that by equating the frequency of
occurrence of items from the learned, non-learned and neither
categories, the difference in hit and false alarm rates should go
away (De Brigard, 2012).

The modified version of the paradigm employed in
Experiment 4 tested this hypothesis, and found that although
the differences between hit rates across conditions as well as
false alarm rates between lures of the non-learned category
and the neither category were eliminated, the main effect of
category learning on false alarm rates for category-consistent
lures remained. This finding suggests that the effect of
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category learning on false alarms is not only due to
oversampling, and that acquiring a knowledge structure can
influence false alarm rates to lures that fall within the scope of
the acquired schema even when frequency of exposure has
been controlled for during learning and encoding. What could
account for these results? One possibility is that attentional
mechanisms may highlight the relevant value and/or dimen-
sion during learning and encoding, which in turn may increase
the evidentiary weight given to those items relative to other
items that have been presented with equal frequency (e.g.,
Love et al., 2004). Further research is needed to evaluate the
precise mechanisms responsible for this effect above and be-
yond frequency sampling. Variations of the current paradigm
may be well-suited for such a purpose.

Another advantage of the current paradigm is that it affords
the possibility of testing the effect of different category learn-
ing strategies on subsequent recognition tests. Previous re-
search has shown that there are critical differences in the
way people learn perceptual categories (Ashby & Maddox,
2005; Richler & Palmeri, 2014). However, the influence of
different category-learning strategies on memory recognition
is an issue that remains understudied (but see Clapper, 2008;
Sakamoto & Love, 2010). The paradigm employed in the
current study offers the possibility of varying the category
learning strategy employed in the learning phase. In the
version of the paradigm employed here, we used a A/Not-
A rule based task, but it could easily be modified to fit
other rule-based tasks (e.g. A/B), as well as tasks that
include more or less complex rules (Ashby & Maddox,
2005; Feldman, 2000), which could be either continuous
or categorical (Hemmer and Steyvers, 2009; Huttenlocher,
Hedges, & Duncan, 1991; Huttenlocher, Hedges, &
Vevea, 2000; Steyvers and Hemmer, 2012). The learning
phase could also be modified to include other kinds of
category-learning strategies—some of which are more fa-
miliar to the schematic-knowledge literature in memory—
such as prototype-distortion (Koutstaal, Verfaellie, &
Schacter, 2001; Posner & Keele, 1968; Shin &
Nosofsky, 1992; Cabeza, Bruce, Kato, & Oda, 1999;
Schacter, Verfaellie, & Koutstaal, 2002; Slotnick &
Schacter, 2004; Smith & Minda, 2002), supervised versus
unsupervised learning (Clapper, 2008; Clapper & Bower,
1991, 1994), information-integration (Ashby, Alfonso-
Reese, Turken, & Waldron, 1998; Smith & Minda,
1998) and wea the r-p red ic t ion tasks (E ldr idge ,
Masterman, & Knowlton, 2002; Reber & Squire, 1999).

Further advantages of the paradigm employed here is that it
allows us to modify the test phase to explore, for instance,
recognition differences for whole items versus items’ features
as a function of category learning. Unlike the experiments
reported here, earlier studies on schematic influences on rec-
ognition test participant’s memory for individual features,
parts or statements of a general schema (e.g., Bower, et al.,

1979). Here, however, participants were asked not to recog-
nize a particular feature of an item—e.g., red petal—but rather
a particular item as a whole. Future studies could easily ex-
plore these potential differences by incorporating changes in
the testing phase. Similarly, future studies could also include
lures fromBoth categories to more fully explore differences in
sensitivity and bias with a signal detection modeling
approach.2

Additionally, we believe that by allowing the category-
learning strategies to vary while tightly controlling for the
subsequent study and recognition stages, the current paradigm
can potentially contribute to a more recent debate regarding
the involvement of multiple memory systems in category
learning (Ashby & O'Brien, 2005). Early views on category
learning assumed that the acquisition of new categorical
knowledge was mediated by a single memory system, and that
regardless of the category-learning strategy the same kind of
category representation was generated at the end. Recent be-
havioral, neuropsychological, and neuroimaging evidence,
however, suggest that different category learning strategies
are subserved by different memory systems. It has been
shown, for instance, that individuals with amnesia due to tem-
poral lobe damage are impaired in learning categories using an
explicit rule-based strategy, but perform normally in weather
prediction tasks (Gluck, Oliver, & Myers, 1996; Knowlton,
Squire, & Gluck, 1994). In contrast, individuals with striatal
damage due to Parkinson’s or Huntington’s disease show pro-
found learning deficits in weather prediction tasks, but per-
form on par with healthy controls in explicit-rule based tasks
(Knowlton, Squire, Paulsen, Swerdlow, et al., 1996). These
findings suggest that while the mechanisms involved in de-
clarative memory systems are essential for category learning
via explicit rule-based strategies, they may not be critical for
category learning via probabilistic strategies, such as in the
weather prediction task, which tap instead into memory sys-
tems associated with procedural memory. The paradigm used
in the current study, as well as the variations in the learning
stage it affords, could potentially contribute to understanding
differences in category-learning for hit and false alarm rates as
a function of the different memory systems involved.
Finally—and relatedly—we believe that the results reported
in the present manuscript, as well as the variations afforded by
the current paradigm, may contribute to understanding wheth-
er the processes of acquiring a schema and of learning a cat-
egory may actually reflect the same cognitive mechanisms
(e.g., Davis et al., 2014).
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