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Abstract

A handful of prominent theories have been proposed to explain a
large quantity of experimental data on visual attention. We are
developing a connectionist network model of visual attention which
provides an alternative theory of attention based on computational
principles. In this paper, we describe aspects of the model relevant to
the dependence of visual search times on display size (number of
objects in the stimulus image). Duncan's stimulus similarity theory
provides the characterization of the experimental data which we use in
simulating and evaluating our model. The characteristics of the network
model that support the continuously varying dependence of search time
on display size are the constraint propagation search implemented by a
winner-take-all mechanism in the attention layer, and the lateral
inhibition network within each primitive feature map, which provides
the feature contrast needed to filter out background textures. We report
the results of simulations of the model, which agree with experimental
data on visual attention in human subjects.

Introduction

Visual attention refers to the phenomenon of perceiving relevant parts of a
visual stimulus, while ignoring irrelevant parts. Treisman's feature integration
theory [Treisman & Gelade 1980] provides one explanation of attentional phenomena
in terms of primitive feature maps and how they are combined in recognizing
complex patterns. Duncan's stimulus similarity theory [Duncan & Humphreys 1989] is
an alternative explanation which is based on two similarity measures applied to
relevant and irrelevant parts of the stimulus. We have proposed a network based
theory of these same phenomena [Sandon 1989,1990], which combines aspects of both
feature integration and stimulus similarity, while providing a framework for
achieving computational efficiency.

In this paper, we discuss a particular aspect of our theory, which is most
relevant to Duncan’'s similarity based theory. In particular, while Treisman's theory
involves discrete distinctions between parallel and serial visual search, Duncan's
theory involves a continuously varying dependence of search times on display size.
In our network model of attention, this dependence is explained in terms of feature
maps with mutually inhibiting activations and the time course of the winner-take-all
(WTA) mechanism responsible for selecting the attentional focus.

In the next section we review the details of the feature integration and
stimulus similarity theories, and mention related network models of attention. The
following sections describe our own network model and the results of some relevant
computer simulations.
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Background

Feature integration theory. Treisman and her colleagues [Treisman & Gelade
1980; Treisman & Schmidt 1982] have collected data on human visual performance for
a variety of tasks where attention is implicated. In particular, her data suggest that
in a visual search task, when the target to be detected differs from non-target
distractors along a single primitive feature dimension, the target can be detected in
an amount of time that does not depend on the number of distractors. Thus, it appears
that the search for the target proceeds in parallel, with all objects, target and non-
target alike being processed simultaneously. This is referred to as feature search. On
the other hand, when the target is distinguished from the distractors by a
combination of values in two feature dimensions, the amount of time required to
detect the target increases linearly with the number of distractors in the input. Thus,
it appears that the search for the target proceeds serially, with all objects being
processed in sequence. This is referred to as conjunction search.

Stimulus similarity theory. Duncan provides an alternative theory to explain the
reaction time dependencies of visual search [Duncan 1985; Duncan & Humphreys
1989]. Setting aside the parallel versus serial distinction, Duncan claims that the
search times depend only on two measures: the similarity between the target and the
nontarget distractors (T-N similarity), and the similarity among the nontargets (N-N
similarity). Higher T-N similarity increases the search time for the target, while
lower N-N similarity has an even more pronounced effect in increasing the search
time. This is referred to as the stimulus similarity theory. Duncan also emphasizes the
importance of object size in obtaining the reported attentional effects. In particular,
the search time dependence on number of objects is itself dependent on the ratio of
object size to retinal eccentricity of the object within the image.

Previous connectionist models. Prior to this work, a handful of network models
have been proposed to explain individual pieces of the attentional data. Hinton and
Lang [1985] used a network similar to Hinton's [1981] mapping network to simulate
illusory conjunctions. Using a winner-take-all (WTA) array of processing elements
to represent the attentional focus, they found that illusory conjunctions could be
made to occur if a random input pattern was presented prior to settling of the WTA
process in the attention array. Mozer [1988] used a similar network structure to
simulate a probabilistic attentional mechanism having variable focus size in his
MORSEL system. Sandon & Uhr [1988] used a network similar to Hinton's mapping
network, but implemented the representation of location hierarchically, as a means
of more efficiently representing and learning translation invariant object
recognition. This hierarchical representation of location leads naturally to the idea
of representing the attentional focus in a hierarchy.

The network model

We have designed a network model of visual attention based on constraints
drawn from three fields: computational principles developed in the machine vision
literature, knowledge of the neurophysiology of vision, and behavioral data. In this
section, we summarize the overall model. Sandon [1990] discusses the considerations
motivating the network design, and presents the results of other simulation
experiments.

The underlying structure of the network is based on the original network used
by Hinton [1981] to model translation (as well as rotation) invariant object
recognition. The idea is to represent both shape features and spatial location of

575



objects in separate arrays, and (0o combine these two sources of information
multiplicatively (using so-called conjunctive connections) in recognizing objects.
This design provides a computational structure that allows for the representation of
multiple competing hypotheses about the location and identity of objects, and
produces an interpretation of the image which is most consistent with the dual set of
constraints (location features and shape (features).

In previous work [Sandon & Uhr 1988], we augmented a pyramid structured
shape network with a location subnetwork to efficiently perform translation-
invariant object recognition. We used a two layered hicrarchical representation for
the location subnetwork, which reduced the required connectivity, allowing us to
train the network (o recognize objects in given positions and then generalize to
novel positions. The model proposed here uses a hierarchical representation of
spatial location as the basis for an attentional mechanism. This structure
automatically provides translation-invariant recognition of objects, since its
underlying structure is that of the translation-invariant network. To this basic
structure, we add a capability for multiple scale analysis, by providing separate
pathways for processing the image at different levels of resolution.

For the purpose of recognizing relatively simple geometric shapes, as are
generally used as stimuli for psychological and neurophysiological studies, a shape
feature hierarchy such as that used by Uhr [1978] or Sabbah [1985] is appropriate.
Since the evidence for various shape feature detectors in the human visual system is
still a matter of debate [Treisman & Gelade 1980; Sagi 1988; McLeod, et. al. 1988; Duncan
& Humphreys 1989], this model makes no a priori commitment to a particular set of
features. Instead, we develop our feature set incrementally as we simulate more of
the bechavioral data.

We must also specify the set of features used to activate the attention layers.
There are two aspects (0 be considered in addressing this problem. First, what are the
attentional features themselves, and second, how do these features interact to
produce the attentional activation? Regarding the features themselves, we again
choose those that produce simulation results in agreement with the behavioral data.
At the lowest layer of attention, oriented edges and lines are used. At the higher
layer, perceptual grouping features, such as parallel and collinear lines, symmetry,
and adjacent line terminations are appropriate [Lowe 1987; Witkin & Tenenbaum
1983]. To combine features for attentional input, we implement an interaction among
like features prior to their introduction to the attention array. In particular, a
central-excitatory, peripheral-inhibitory interaction is applied to each of the
feature maps used as input to the attention array. This contrast enhancement of
features produces input to the attention array only when a given feature occurs in
the image in relative isolation from other features of the same type.

The attentional focus is determined by a WTA competition within the attention
array. The ecffect of the attentional activity is to gate the features from a particular
region of the image up to higher layers of the network, where object recognition
occurs. As previously noted, the features comprising the input to this recognition
process are location invariant. Similarly, these features are made scale invariant, by
transforming each possible scale to a normalized size. The individual data paths
representing the different processing scales are combined prior to recognition
processing using a policy of global precedence [Hughes et. al. 1990]. This policy
assures that, in the absence of other information, the lowest resolution data path that
exhibits significant attentional activity is gated to the higher processing levels.
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Figure la summarizes the attentional model described in this section. The
leftmost data path is for fine scale processing and includes two levels of attention.
Data paths are bidirectional, providing a pathway for attentional priming, and other
task-directed responses. The middle data path is similar, but starts with a lower
resolution intensity image, and requires only one attention layer to select features
for processing by the recognition processor. The rightmost data path involves the
coarsest resolution intensity image, whose features are passed directly to the
recognition processor. These three data paths provide processing at three scales. The
choice of which scale to process is made by the scale arbitrator, which implements
the global precedence policy.
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attended
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scale arbitrator feature
Lfeatures | Lfeatures —I L features I WTA
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\
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features
attention —
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intensity attention module Y
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Figure 1

Simulation results

We have simulated a number of the expcriments described by Duncan and
Humphreys [1989] using a subnetwork of the model just described. The simulated
network uses a 64 x 64 pixel intensity array to represent the input stimulus. We use
only a single layer attention mechanism, but at two different scales. The primitive
feature maps implemented in the simulation are four orientations of lines, and four
orientations of 'L' corners. Each primitive feature map has an associated contrast
feature map, which is computed by applying an on-center, off-surround lateral
inhibition operator to the feature map. The activations of all contrast features are
summed to provide the bottom-up initial activation of the attention arrays. To
simulate the task-directed component of attentional activation, we weight the
contributions of feature arrays associated with the known target object more than
the remaining feature arrays when summing them. A WTA operation is applied to the
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initial attentional activation, based on the following inhibition rule [Koch & Ullman
1985]:
dyi/dt = yi (xi-Z x5y )
yi (0) =(1/N)+m ; mn is zero mean noise

In this rule, the xj arc the attention layer activations, while the y; are the
activations of a sct of auxiliary nodes. The rule constrains the y; always to sum to 1.
We have used a termination criterion that requires one of the y; to exceed a value of
0.6, which is sufficient to guarantee that the corresponding region will win the
competition. We report the number of WTA itcrations required to rcach criterion, as
an indicator of the response time of the network. We do not include the recognition
subnetwork in the simulation.

Duncan describes four extreme cases with respect to his similarity measures:

Case T-N N-N dependence on
similarity similarity display size
A low high low
B high high intermediate
C low low low
D high low high

We have simulated the experiments reported in [Duncan & Humphreys 1989]
for each of the above four cases, using display sizes of 4 and 6. In addition, we have
repcated these experiments for display sizes of 15 and 20. The displays in Figure 2
show the stimulus pattern(i) and initial attention activation(ii) for the following
experiments: (a) Case A, Size 15; (b) Case B, Size 6; (c) Case C, Size 4; (d) Case D, Size 20.
In the table below, we report the number of iterations of the WTA rule applied to the
attention layer, required for one of the auxiliary nodes to exceed the value 0.6. The
first value corresponds to the high resolution attention array, the second value to the
low resolution array. We take the response time to be the lower of the two values.

Display Size
ase | 4 6 15 20
A 22 15 27 - 15 12 15 12 - 13
B 22 - 17 27 - 18 24- 99+ 25- 89
C
D

22 - 13 27 - 13 13 15 13 - 13
22 -*17 27 -*19 36 - 99+ *15- 99+

Discussion

The simulation results for this subnetwork are in agreement with the
experimental data reported by Duncan and Humphreys. For Case A, our model
achieves a search time independent of display size due to the strong response in the
'L' corner feature map corresponding to the target, which is directly reflected in the
attentional activation, and the inhibition among the nontargets in the other feature
maps, due to their high similarity. Case C gives similar results, though the inhibitory
interactions among nontargets is weaker, due to their distribution among multiple
feature maps. These two cases are not distinguished in Treisman's theory, both
corresponding to the feature scarch condition.

For Case B, we get a moderate dependence of search time on display size. This is
due to the somewhat weaker activation of the attention array corresponding to the
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target that results from the inhibitory interaction of the target and nontargets in the
feature maps. Finally, for Case D, the difference in attentional activity corresponding
to target and nontargets is low, as a result of weaker inhibitory interactions among
nontargets due to their low similarity, and of strong interactions between target and
nontargets due to high similarity. This lack of contrast in some cases leads the WTA
procedure to choose a nontarget as the selected focus of attention (as indicated by an
asterisk in the table). This behavior would, in a more complete simulation, lead to a
truly serial search for the target, mediated by multiple WTA settlings with inhibitory
tagging [Klein 1988] between settlings. Again, Treisman's theory does not distinguish
these cases, but presumes a mechanism like the multiple settlings as the source of the
serial search times.

The connectionist network described above is intended to provide an
alternative model of attentional behavior to that characterized by Treisman or by
Duncan. We now consider the relations among the three theories. Treisman's theory
appears to be a special case of Duncan's, since her feature-conjunction search
dichotomy is subsumed by Duncan's T-N similarity measure, while the N-N similarity
measure allows additional data to be modelled. On the other hand, despite Duncan's
insistence that visual search times depend not on which features in target and
nontarget objects are primitive, but only on the similarity among these objects, our
model suggests that this ‘similarity’ measure is highly dependent on the identity of
the primitive features. Since the interactions among features occur within the
primitive feature maps, it is in the primitive feature dimensions that similarity is
determined.

Treisman identifies two different search complexities, parallel and serial,
which correspond to search times that are independent of display size and linearly
dependent on display size, respectively. Duncan rejects these distinctions, preferring
to describe a varying dependence of search time on display size. In our model, we
observe three different search modes. When the target produces a strong activation
in the attention layer, while distractors produce weak or no activation, the WTA
procedure converges to an isolated activation corrcsponding to the target in a time
that is wvirtually independent of the number of distractors. This corresponds to
parallel search. When the target and nontargets produce approximately equal
attentional activations, the WTA procedure converges much more slowly. More
importantly, the region selected is as likely to correspond to any image object as any
other, so multiple WTA settlings may be required to locate the target. This
corresponds to serial search. When the target produces an attentional activation that
is only moderately stronger than that produced by distractors, the dependence of
search time on display size is determined by the WTA procedure. The resulting
constraint propagation, or relaxation, search is parallel, in that it considers all object
locations simultaneously, but is dependent on both the number and magnitude of the
non-maximal activations, yielding a display size dependency that is different than
either of the other two cases.

Finally, we mention some additional experiments reported by Duncan &
Humphreys. In addition to the similarity measures, another critical determinant of
search times is the size of the objects in the display. For a given eccentricity, larger
objects reduce the display size dependency. In our model, this result is predicted by
the reduced interaction of objects within the feature maps, due to the limited extent
of the inhibitory connections. In another experiment which used 'L' corners of
different orientations for targets and nontargets, a large dependence of search time
on display size was found when the nontargets were CW and CCW 90° rotations of the
target. The explanation given by Duncan is that the target is similar to the
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nontargets, being the same object except for a rotation. Our current simulations could
not produce this result, since there is no representation of rotation, nor of similarity
across rotation. Our model would have to be elaborated to include rotation, as in
Hinton's [1981] original model, in order to simulate this behavior.
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