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Reorganization of corticospinal output during motor learning

Andrew J. Peters1,2, Jun Lee1, Nathan G. Hedrick1, Keelin O’Neil1, and Takaki Komiyama1,*

1Neurobiology Section, Center for Neural Circuits and Behavior, and Department of 
Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA

Abstract

Motor learning is accompanied by widespread changes within the motor cortex, but it is unknown 

whether these changes are ultimately funneled through a stable corticospinal output channel or if 

the corticospinal output itself is plastic. We investigated the consistency of the relationship 

between corticospinal neuron activity and movement through in vivo two-photon calcium imaging 

in mice learning a lever-press task. Corticospinal neurons exhibited heterogeneous correlations 

with movement, with the majority of movement-modulated neurons decreasing activity during 

movement. Individual cells changed their activity across days which led to novel associations 

between corticospinal activity and movement. Unlike previous observations in layer 2/3, activity 

accompanying learned movements did not become more consistent with learning, and instead the 

activity of dissimilar movements became more decorrelated. These results indicate that the 

relationship between corticospinal activity and movement is dynamic, and the types of activity and 

plasticity are different from and possibly complementary to layer 2/3.

INTRODUCTION

The ability of the motor cortex to drive movement is presumed to be mediated by a direct 

projection from a subset of motor cortex neurons to motor circuits within the spinal cord1,2. 

These corticospinal neurons are located within layer 5B of the motor cortex, but are spatially 

intermingled with non-corticospinal neurons3. The activity of neurons within the motor 

cortex has been closely linked to movement both specifically in corticospinal neurons4 and 

in the general motor cortex population5,6, suggesting its role in guiding ongoing behavior. In 

particular, the motor cortex has been implicated in motor skill learning7. Behaviorally, this 

function is evidenced by the requirement of an intact motor cortex to learn new movements8 

and a deficit in dexterous and skilled movements following acute motor cortex inactivation9, 

motor cortical lesions10, and corticospinal tract transection11. Moreover, motor skill learning 
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induces plasticity of the motor cortex at multiple levels, including stimulation-evoked 

movement maps12, activity of neurons during learned behavior13, and dendritic spine growth 

and turnover14,15. The organization of the motor cortex according to complex movements 

further supports the notion that it develops circuits that facilitate learned movements16.

Learning-related plasticity has been demonstrated within many components of motor cortex. 

Connection strength in the motor cortex changes with motor learning, including inputs from 

the thalamus17 and intracortical connections18. Learning-dependent dendritic spine growth 

has also been observed in both superficial19 and deep14 layer motor cortex neurons, 

including in corticospinal neurons20. These forms of plasticity also depend on and interact 

with plasticity in local inhibitory interneurons21 and downstream structures like the 

striatum22. Given this distributed reorganization within the motor cortex, a fundamental 

question arises as to whether circuits within the cortex operate through a functionally stable 

output to the spinal cord, or whether the behavioral correlation of corticospinal activity itself 

changes with motor learning. These two possibilities represent separate schemas of motor 

cortex plasticity: intracortical circuits could assemble around a consistent output channel, or 

the output channel itself could be malleable.

Different lines of evidence lend credence to both possibilities. Individual layer 5 neurons 

within the motor cortex can be associated with specific aspects of movement, and changes in 

neuronal activity during learning can directly reflect changes in corresponding movements, 

suggesting a consistent mapping between activity and movement23. Corticospinal cells, a 

subset of layer 5 neurons, have also been suggested to more consistently relate to movement 

than other neuronal populations in the motor cortex based on a small number of recorded 

neurons24. On the other hand, the relationship between movement and layer 5 cells is 

dynamic during motor learning25, and artificial feedback can alter muscle activity associated 

with corticospinal activity26. Directly addressing this issue therefore requires specifically 

monitoring the activity of large ensembles of corticospinal populations and accompanying 

movements across learning. We approached this using targeted in vivo two-photon calcium 

imaging in a lever-press task previously used to examine plasticity within layer 2/3 of the 

motor cortex19. By utilizing Cre-dependent expression of calcium indicators and imaging 

the apical dendrites of layer 5B corticospinal neurons, we were able to track the activity of 

corticospinal neurons every day for two weeks while animals learned and performed the 

task. We found that a subset of neurons was selectively active during movement, but 

surprisingly a larger number of neurons were selectively active during quiescence. The 

behavioral correlation of each neuron was plastic, where cells could switch between silent, 

indiscriminately active, movement-active, and quiescence-active across days. These changes 

resulted in a dynamic relationship between corticospinal activity and movement kinematics, 

such that given movements early and late in learning were accompanied by different activity 

patterns. Moreover, the corticospinal activity patterns accompanying dissimilar movements 

diverged, but unlike what was seen in layer 2/3, there was no stabilization in activity patterns 

exhibited during the learned movement. These results indicate that functional plasticity 

within the motor cortex during learning extends to the corticospinal output.

Peters et al. Page 2

Nat Neurosci. Author manuscript; available in PMC 2018 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

Two-photon calcium imaging of corticospinal neurons during motor learning

We utilized the Cre/FLEX system to selectively express the calcium indicator GCaMP6f27 in 

corticospinal cells in the motor cortex. This was achieved by dual injections of two adeno-

associated viruses (AAV); an AAV encoding Cre recombinase (AAV2/9-CaMKII-Cre, which 

can be taken up by axonal terminals and infect neurons projecting to the injected area) into 

the C7/C8 segments of the spinal cord28 and an AAV encoding Cre-dependent GCaMP6f 

(AAV2/1-Syn-FLEX-GCaMP6f) into the right caudal forelimb area of the motor cortex (Fig. 

1a). The caudal cervical segments of the spinal cord were targeted because they contain 

motor neurons innervating muscles for forelimb control29, and corticospinal cells projecting 

to these segments exhibit structural plasticity during the learning of a forelimb motor task20. 

Fluorescent cells in layer 5B of the motor cortex were observed two weeks after the 

injections, and these cells projected via the pyramidal tract to the spinal cord (Fig. 1b). 

Fluorescently-labelled axons were observed in the intermediate and ventral lamina of the 

cervical spinal cord, consistent with targeting motor circuitry within the spinal cord30. 

Axons within the corticospinal tract typically did not extend beyond the thoracic spinal cord 

(3 out of 4 mice), suggesting that labelled cells were specific to forelimb control (Fig. 1c). 

Many axon collaterals were observed in regions outside of the spinal cord, consistent with 

reports of these cells projecting to multiple areas31,32 (Fig. 1d).

GCaMP6f-expressing dendrites were visible in vivo under a two-photon microscope, but 

somata were too deep to allow for consistent longitudinal imaging. Therefore, we imaged 

the apical trunks of dendrites passing through layer 2/3. The locations of these apical 

dendrites were stable across days and the same dendrites could be reliably identified each 

day (Fig. 2a). As dendrites of corticospinal neurons at various depths could be imaged in a 

single imaging plane, this approach had an added advantage of capturing larger ensembles of 

corticospinal neurons compared to imaging at their somata. GCaMP6f fluorescence within 

these dendrites was observed as bright discrete points in a very low-noise background, 

allowing for automated region of interest (ROI) creation (Fig. 2b).

In two mice with serendipitously bright and sparsely labelled corticospinal populations, we 

were able to track some dendrites to their respective somata. In these cases, we were able to 

image certain somata and their apical dendrites semi-simultaneously by using a piezo-

electric motor to rapidly move the objective lens vertically (~3.75 volumes/second, 8 planes/

volume). With this approach, we found a high degree of overlap between calcium events in 

both somata and apical dendritic trunks (484 observed calcium events shared between 

dendrites and soma, 34 events unique to the soma, and 14 events unique to the dendrites, 

across 36 neurons. Fig. 2c and Supplementary Fig. 1). We suggest from this that the vast 

majority of our observed calcium events in apical dendritic trunks are the result of back-

propagating action potentials, which are known to induce calcium influx through voltage-

gated calcium channels33,34. Therefore, we posit that our apical dendrite signals can serve as 

a proxy for somatic spiking. This semi-simultaneous imaging of identified soma-dendrite 

pairs also confirmed that calcium events in sibling branches belonging to the same soma 

were highly correlated, in agreement with previous reports35 (Fig. 2c and Supplementary 
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Fig. 1). Using data from verified sibling and non-sibling branches, we were able to set a 

cutoff value for similarity, which was then applied to mice with densely labelled 

corticospinal populations to categorize dendrites as likely originating from the same or 

different somata (Fig. 2d). We combined fluorescence traces from presumed sibling 

branches by weighted averaging (194 ± 68 ‘unique’ corticospinal neurons per mouse from 

258 ± 87 imaged dendrites, mean ± s.d.). Calcium events were then detected within baseline-

normalized traces through a thresholding process (Methods, Supplementary Fig. 2).

We performed apical dendrite imaging while mice were trained in a cued lever-press task 

previously used to examine functional and structural plasticity in layer 2/3 of the motor 

cortex (n = 8 mice)19,21. Mice were trained in the task in approximately one half hour 

session each day for two weeks. During training, mice were head-fixed under a two-photon 

microscope and rested their right paw on a stationary block and their left paw on a lever 

attached to a force transducer (Fig. 3a). Imaging was conducted throughout each training 

session in the right motor cortex. The displacement of the lever was continuously recorded, 

allowing for a measurement of movement kinematics. The task structure consisted of a 

variable inter-trial interval followed by an auditory cue, during which a press of the lever 

past the threshold produced a brief tone and a water reward. Mice learned this task over the 

course of two weeks and developed an increasingly stereotyped movement to achieve 

reward, yet maintained some variability which we take advantage of in later analyses (Fig. 

3b, c, Supplementary Fig. 3). In two circumstances where we were able to image dendrites 

and somata semi-simultaneously across days, we confirmed that activity was reliably shared 

between compartments throughout learning (Supplementary Fig. 4). Below we describe the 

activity of corticospinal neurons during the learning of this task, and in several cases we 

compared corticospinal activity with layer 2/3 activity which was re-analyzed from our 

previous data (Methods).

Corticospinal neuron activity is heterogeneously correlated with movement

As a first step to examining the relationship between corticospinal neuron activity and 

movements, we characterized the activity patterns of individual neurons around movements 

(Methods). Cells could be active selectively during movement, selectively during 

quiescence, or active indiscriminately with regards to movement (Fig. 4a), although 

unexpectedly there were many more cells selectively active during quiescence than 

movement (Fig. 4b, top). This manifested as a decrease of global population-averaged 

activity during movement (Fig. 4b, bottom), which was in striking contrast to layer 2/3 

which displayed a large increase in population activity during movement (Supplementary 

Fig. 5a).

We further investigated the heterogeneous response types by classifying cells as either 

movement-active, quiescence-active, indiscriminately active, or silent (Methods). In 

accordance with the decrease in population activity around movement, there were roughly 

twice as many quiescence-active cells than movement-active cells (Fig. 4c, top). Averaging 

activity within classes established very different response profiles across movement- and 

quiescence-active cells (Fig. 4c, bottom). In particular, quiescence-active cells showed 

higher levels of activity during quiescence than movement-active cells. This excludes the 
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possibility that quiescence-active cells and movement-active cells have the same level of 

spontaneous activity and are suppressed and activated by movement respectively. 

Furthermore, the quiescence-active population exhibited an increase in activity immediately 

after movement offset, suggesting a possible post-inhibitory rebound or a function in 

stopping movement. There were much fewer quiescence-active cells in layer 2/3, although 

the average activity of each class was similar to corticospinal neurons (Supplementary Fig. 

5b). Consequently, more corticospinal than layer 2/3 cells were active during quiescence, 

however the fraction of active cells during movement was comparable in both populations 

(Supplementary Fig. 5c).

Corticospinal activity is dynamic across learning

When examining corticospinal populations across time, we found that cells often switched 

movement-related classification. Individual neurons could move between being active and 

silent across days, or even switch between movement- and quiescence-active (Fig. 5a). On a 

daily basis, roughly 50% of cells were active, and there were twice as many quiescence-

active and indiscriminately active cells as movement-active cells (Fig. 5b). Interestingly, the 

fraction of quiescence-active cells increased after the first two days, coinciding with a large 

increase in movement stereotypy (Fig. 3b). This was the converse of what was observed in 

layer 2/3, where movement-active cells increased early in learning without a significant 

change in the fraction of quiescence-active cells (Supplementary Fig. 5d). The classification 

of individual corticospinal cells was dynamic across days but became more stable for both 

the movement- and quiescence-active populations later in learning (Fig. 5c).

Given the unexpectedly high prevalence of quiescence-active cells and their early increase 

during learning, we sought to determine whether these cells were related specifically to the 

task. We carried out a set of experiments in a separate cohort of mice which underwent the 

same preparations and conditions as mice learning the task, except that water rewards were 

not dependent on lever presses and were instead given automatically after variable delays 

following the cue presentation (n = 8 mice). These ‘no-task’ mice still moved the lever just 

as often as mice engaged in the lever-press task (Supplementary Fig. 6a), even though this 

was not out of task necessity. These mice also exhibited heterogeneous activity relative to 

movement; however, the fraction of quiescence-active cells was halved while the fraction of 

movement-active cells was approximately the same compared to mice engaged in the task 

(Supplementary Fig. 7b).

The dynamism of activity within single cells prompted us to investigate the activity of 

movement-modulated neurons across learning. Although neurons could alter their activity 

over days, over half of the cells maintained their classification between first and second 

weeks (Fig. 6a, ‘majority classification’). Of the cells that switched classifications across 

weeks, the transition to newly movement-active was less common than transitions away 

from movement-active, transitions to newly quiescence-active, and transitions away from 

quiescence-active (Fig. 6a, ‘majority classification’). In order to determine overarching 

changes in activity, we quantified the average activity across all cells during all movement or 

quiescence epochs within each day. This showed a stable level of activity during both 

quiescence and movement in the first week and a slightly decreasing level of activity during 
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both states in the second week of training (Fig. 6a, ‘average activity’). This decrease in 

activity in the second week appeared to be more exaggerated for periods around movement 

onset (Fig. 6a, ‘movement-aligned activity’). The average activity during quiescence did 

not change in the first few days despite the increase in fraction of quiescence-active cells; 

this is reminiscent of previous results in which more layer 2/3 neurons became movement-

active early in learning, but the average activity during movement was stable as it was 

balanced by each cell being active less often19.

When we analyzed groups of cells separately depending on how they transitioned between 

classes, we found a number of noteworthy dynamic features. First, the activity of stably 

movement-active cells during movement increased in the first week and decreased in the 

second week, and the activity increase was roughly uniformly distributed while activity 

decrease was biased toward movement onset (Fig. 6b, top left, average activity and 
movement-aligned activity). Stably quiescence-active cells, on the other hand, maintained 

consistent levels of activity during the first week and declined in activity during both 

quiescence and movement in the second week (Fig. 6b, top right, average activity and 
movement-aligned activity). These changes in stably classified neurons indicate that even 

consistently modulated cells shape their activity throughout learning.

When we considered cells that switched classification, an interesting asymmetry emerged 

where cells that transitioned away from being movement-active became quiescence- or 

indiscriminately active, while cells that transitioned away from being quiescence-active 

largely became silent (Fig. 6b, middle left and bottom left). Likewise, cells that became 

newly movement-active were previously silent, while cells that became newly quiescence-

active were previously movement- or indiscriminately active (Fig. 6b, middle right and 
bottom right). This presents the possibility that active cells can be repurposed by 

transitioning away from movement-active or towards quiescence-active, but the transition 

towards movement-active or away from quiescence-active involves turning activity on and 

off entirely.

Learning induces decorrelation in activity accompanying dissimilar movements

A fundamental question is whether these activity changes are due to changes in movements, 

or whether the relationship between neuronal activity and movement is itself altered. We 

investigated this by comparing activity patterns that accompanied individual movements 

across learning. Because mice maintained variability of movements throughout training even 

with an overall increase in stereotypy (Fig. 3c), pairs of movements could be identified 

across all days which were similar or dissimilar to each other. For example, a movement on 

the first day could be similar to some and dissimilar to other movements on the last day. This 

allowed us to determine the association between activity and movement within and across 

days.

We found that, both within the early and within the late stages of training, the similarity of 

activity patterns was related to the similarity of the movements that they accompanied. This 

was the case in both corticospinal and layer 2/3 neurons (Fig. 7a, black and gray lines). 

Importantly, we previously found that in layer 2/3, this activity-movement relationship was 

absent when comparing movements across stages of training, indicating that novel 
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associations between activity and movement developed with learning (Fig. 7a, right, blue 
line)19. Surprisingly, this same shift in the activity-movement relationship was also observed 

in corticospinal cells despite their more direct connectivity to movement-generating circuitry 

(Fig. 7a, left, blue line). Notably, this effect was also observed in the ‘no-task’ animals 

(Supplementary Fig. 6c, blue line), indicating that this process may be a constant and 

general feature of the motor cortex. The activity-movement relationship appeared to drift 

evenly over time in both layer 2/3 and corticospinal cells (Supplementary Fig. 7).

Even though the activity-movement relationship changed in both layer 2/3 and corticospinal 

neurons, the nature of changes was distinct. Specifically, in layer 2/3, similar movements 

became associated with increasingly similar activity with training, resulting in a more 

consistent activity-movement relationship after learning (Fig. 7a, right, black vs. gray 
lines). In contrast, corticospinal activity did not become more consistent for similar 

movements, but instead dissimilar movements became associated with more distinct activity 

patterns (Fig. 7a, left, black vs. gray lines). This change was not observed in the mice that 

were not engaged in the task, implicating that it is specific to learning (Supplementary Fig. 

6c, black vs. gray lines). This suggests that layer 2/3 modifies the degeneracy between 

activity and movement with learning, while corticospinal cells modify the separability of 

activity for different movements with learning.

The respective changes could be specific to the learned movement, or otherwise may be 

relevant for all movements after learning. We considered these alternatives by defining a 

“learned” movement for each animal as the average movement across the last four days of 

learning. Each individual movement could then be characterized by its correlation to the 

learned movement, and because of the behavioral variability, learned-like and learned-unlike 

movements were identified throughout learning. In layer 2/3, it was indeed the case that 

activity became more consistent only for learned-like movements in the late stage of 

training, suggesting specialized changes for the learned movement (Fig. 7b, right, gray 
line). In corticospinal cells however, the activity for learned-like movements was not any 

more distinct than for learned-unlike movements, suggesting that activity for the learned 

movement was not especially unique (Fig. 7b, left, gray line).

All of these effects were not due to variability in the length of sessions (Supplementary Fig. 

8a), number of movements (Supplementary Fig. 8b), and relative activity levels of cells 

(Supplementary Fig. 8c), suggesting that the results are not dominated by within-day 

changes like fatigue or by especially active cells. Together, these results suggest that the 

relationship between activity and movement drifts across time in both layer 2/3 and 

corticospinal neurons in complementary ways: layer 2/3 develops a robust activity pattern 

specifically for the learned movement, while corticospinal activity maintains variability but 

increases separability for different movements (Fig. 7c).

DISCUSSION

The motor cortex is thought to play a fundamental role in motor learning and is capable of 

extensive plasticity. It has been unclear however whether activity within the motor cortex 

operates through a stable output to the spinal cord, or whether the corticospinal output of the 
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motor cortex is itself plastic. We addressed this issue by developing a methodology to 

longitudinally image the activity of corticospinal neuron populations across learning. We 

found that certain corticospinal neurons were active selectively during movement while a 

larger fraction of corticospinal neurons were selectively active during quiescence. Moreover, 

the activity of corticospinal neurons was dynamic across days, where different cells were 

active during movement or quiescence. These changes ultimately lead to novel associations 

between corticospinal activity and movement. Interestingly, the changing relationship 

between activity and movement in corticospinal neurons was seen in both task and no-task 

animals, while task learning specifically induced a decorrelation of activity across dissimilar 

movements. We note, however, that our no-task mice are not completely free of learning, as 

they are put in a novel environment under head fixation with a lever. Therefore, it is possible 

that these animals still exhibit certain learning-related changes.

Heterogeneity of corticospinal activity

The observation that corticospinal neurons can be either active selectively during movement 

or quiescence corroborates previous findings dating back to the earliest recordings of motor 

cortex activity36. Moreover, it has been suggested that quiescence-active neurons are found 

exclusively in intermediate and deep layers of the motor cortex5, reinforcing our observed 

differences between previously recorded layer 2/3 activity19 and layer 5B corticospinal cells. 

We report here a larger fraction of quiescence-active neurons than typically reported in the 

motor cortex5,25, such that the population-average activity of corticospinal neurons 

decreases during movement. While the reason for this apparent discrepancy is unclear, one 

possibility is that this balance is specific to corticospinal neurons and not the general deep 

layer population, or that the movement in our task was particularly effective in eliciting 

activity during quiescence. As we demonstrated in the ‘no-task’ mice, not all movements 

elicit the same balance of activity.

The diversity of corticospinal activity may not be unexpected given the heterogeneity of the 

cellular properties within the corticospinal neuron population37,38. The functions of different 

response types and their relationship to heterogeneity in cellular properties, however, are 

unknown. It is possible that movement- and quiescence-active corticospinal cells have 

unique descending connections or other intrinsic differences, and are effectively segregated 

into unique subtypes. Towards this end, it has been observed that axonal conduction 

velocity36 and response to neuromodulators39 can differ between corticospinal cells with 

different response types. On the other hand, movement- and quiescence-active cells might 

not be independent cellular subtypes but may instead have flexible roles in circuit dynamics. 

This notion is supported by the observations that corticospinal cells can switch between 

movement- and quiescence-active responses for different types of movements within a day40 

and across days (this study). The function of activity during quiescence has yet to be 

deduced, however it may be involved in specifically halting movement as suggested by work 

on the vibrissa motor cortex41, or otherwise it may be an inherent aspect of generating 

activity with particular dynamics6,42.
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Motor cortex output is flexibly associated with movement

A main finding from the current work is that corticospinal activity changes with time to 

create a novel relationship between activity and movement. We previously found this same 

phenomenon in layer 2/319, and extending this result to corticospinal neurons indicates that 

the motor cortex does not utilize a consistent functional output. We note that this flexibility 

does not necessitate a corresponding change in how downstream motor circuitry is 

influenced by motor cortical input. It is possible, for example, that the relationship between 

corticospinal and spinal cord activity is stable but degenerate, where one subset of possible 

activity patterns for a given movement is observed before learning and another subset after 

learning. Indeed, it has been documented that motor cortex can reversibly switch between 

multiple activity states43, and activity of a given muscle can be accompanied by different 

patterns of motor cortex activity based on the context of movement both generally in the 

motor cortex44 and specifically in corticospinal neurons45,46. It should also be noted that not 

all motor cortex activity generates movement, and indeed population activity can evolve 

within ‘movement-null’ space without overt effects on movement42.

A drift across a space of functionally degenerate activity is supported by recent work in 

zebra finches, where a stereotyped song was accompanied by a changing pattern of premotor 

activity across days, while inhibitory interneuron activity and the local field potential 

retained consistent patterns47. It was suggested by the authors that drifts in population 

activity may actively develop degeneracy, contributing to a more robust circuit that can 

tolerate input noise and output variability, which nevertheless relates to stable motor output. 

Our results are consistent with this finding, suggesting that activity drifts may be a common 

principle across species. Such degeneracy could be beneficial because it requires less 

reliance on any given collection of neurons, making the system more robust to noise and 

insult. Alternatively, it might be important to allow for a movement to be associated with 

multiple inputs. For example, a given forelimb movement may be triggered by many 

different sensory inputs, in many different contexts, and towards many different aims. It may 

be maladaptive to have only one required “target” pattern of output activity that must be 

generated in each of these cases; instead, degeneracy may allow for each of these contexts to 

utilize one of many possible activity patterns to produce the same movement. It will 

therefore be an important issue in the future to differentiate degeneracy that is stable over 

time from remapping between motor cortex activity and movement.

Another possible functional benefit of activity drifts relates to the fundamentally dynamic 

nature of motor systems. The demands of motor systems constantly change based on many 

factors, including muscle fatigue, muscle strengthening, injury, and external forces as subtle 

as a long sleeve shirt or heavy shoes. Accordingly, the motor control system may always 

maintain variability of representations so that it can adapt to unpredictable changes.

The relationship between movement similarity and activity similarity became stronger for 

both layer 2/3 and corticospinal neurons, but in opposite ways. In layer 2/3, this occurred 

through increasingly consistent activity patterns especially for the learned movement, while 

corticospinal cells acquired more distinct activity patterns for dissimilar movements in 

general. This suggests possible complementary roles for layer 2/3 and corticospinal cells, 

with layer 2/3 establishing learned patterns of activity which feed into a corticospinal system 
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that retains degeneracy while separating spaces of activity for different movements. These 

components together could make up a circuit which establishes consistent interpretations of 

important inputs, uses that to operate a flexible output command, and ensures that the range 

of output commands are sufficiently differentiable by downstream targets. It will be of 

interest to determine how these changes are then carried downstream, especially given that 

descending corticospinal connectivity is known to be malleable48–50.

These results together suggest a picture of a constantly evolving relationship between motor 

cortex activity and movement which is shaped by both time and learning.

METHODS

Animals

All procedures were in accordance with protocols approved by the UCSD Institutional 

Animal Care and Use Committee and guidelines of the National Institutes of Health. All 

mice were male and acquired from Charles River Laboratory (C57Bl/6 wild type). All 

surgeries and experiments were carried out in adult mice (6 weeks or older). All animals 

were group housed before surgery and singly housed afterwards in disposable plastic cages 

with standard bedding, nestlets, and a running wheel and kept in a room on a reversed light 

cycle (12 hour). All experiments were performed at approximately the same time each day 

during the dark period.

Surgery

Surgeries consisted of two consecutive parts, the first being a spinal cord injection and the 

second being cortical injection and cranial window preparation. Mice were anesthetized with 

isoflurane and fixed on a bite bar with a nose clamp over a heating pad. The back was 

shaved from below the shoulder blades to the top of the neck and cleaned with iodine and 

alcohol. A midline incision was made in the skin from below the shoulder blades to the 

middle of the neck. Fat tissue was removed as necessary to expose the trapezius muscles. 

The trapezius muscles were then cut along the midline at the shoulder blades to expose the 

spine. The spinous process on the T2 vertebra was identified and separated from attached 

musculature. The spine was then fixed using custom metal wedges held by a stereotaxic 

frame. This was accomplished by lifting the spine from the T2 spinous process while placing 

the wedges under the trapezius muscles to support the spine from underneath. Fat tissue over 

the spine was then removed and muscles directly overlying the spine were cut. A 

laminectomy was performed in the range of the C7 to C5 vertebrae, exposing the C6 to C8 

segments of the spinal cord. A viral solution of AAV2/9-CaMKII-Cre (University of 

Pennsylvania Vector Core Facility) was injected into two sites on the left side of the spinal 

cord, each injection being 200 nl and placed 400 μm from the midline, 700 μm from the 

surface, and separated by 600 μm rostrocaudally. After injecting, the wedges fixing the spine 

were removed, the trapezius was sutured with 5–0 vicryl sutures, and the skin was sutured 

with 5–0 silk sutures. Immediately after the spinal cord injections, cortical injections and 

cranial windows were then prepared as previously described19. Skin overlying the skull was 

removed, the skull was scraped clean, and a custom headplate was glued to the skull and 

fixed with dental cement. A craniotomy was then performed over the right caudal forelimb 
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area of the motor cortex as stereotaxically defined51. A viral solution of 1:4 diluted AAV2/1-

Syn-FLEX-GCaMP6f (University of Pennsylvania Vector Core Facility) was injected into 

the cortex in five sites in a plus shape, each injection being 40 nl and placed 700 μm from 

the surface, separated by 500 μm, and centered at 1500 μm lateral and 300 μm anterior from 

bregma. A glass window consisting of a base and concentrically attached smaller plug was 

held against the skull and brain respectively, the gap between plug and skull was filled with 

1.5% agarose, and the base was fixed in place with dental cement. Baytril (10 mg/kg) and 

buprenorphine (0.1 mg/kg) was injected subcutaneously at the end of surgery. Animals did 

not display motor detriments following surgery, and were often observed running on their 

wheels within one day of surgery.

Behavior

Animals were trained in a lever-press task as previously described19. Mice were water 

restricted at 1–2 ml per day beginning three days after surgery for two weeks prior to 

training. Mice were then trained in the lever-press task during two-photon imaging for one 

session per day lasting approximately one half hour. Mice rested their body and hindlimbs in 

a tube, and placed their right forelimb on a stable block and their left forelimb on a movable 

lever. The lever consisted of a handle glued to a piezoelectric flexible force transducer 

(LCL-113G, Omega Engineering). Voltage from the force transducer, which was linearly 

proportional to the lever displacement, was continuously monitored using a data acquisition 

device (LabJack) and software (LabVIEW, National Instruments). Presses of the lever were 

defined as displacement through two thresholds within a short time (~1.5mm to ~3mm 

below resting position within 200 ms). Task structure consisted of a variable inter-trial 

interval followed by a cue period during which lever presses triggered water reward. Cue 

periods and rewards were paired with separate tones, and a failure to press the lever within 

the cue period resulted in a short burst of white noise. The cue period was reduced during 

the first two sessions from 30 s to 10 s, and the inter-trial interval was increased during the 

first three sessions from 2–4 s, to 5–7 s, to 8–12 s to encourage discrete movements.

Mice in the no-task condition underwent the same preparations, training, and task structure 

as defined above, except that water rewards were not contingent on lever press and instead 

were delivered on every trial after 0.5–2 seconds of the cue tone.

Immunofluorescence

Mice were anesthetized and transcardially perfused with ice-cold 0.1 M PBS (pH 7.4), 

followed by a perfusion with ice-cold 4% paraformaldehyde (PFA) solution. Isolated brains 

and spinal cord were postfixed overnight at 4°C in 4% PFA and cryoprotected in 30% 

sucrose solution for at least 24 h at 4°C.

Microtome-cut (Thermo Scientific Microm HM 430) 60 μm free-floating brain (coronal) and 

brainstem (sagittal) sections were collected in PBS and stored at 4°C. Cryostat-cut (Leica 

CM 1900) 20 μm spinal cord sections were collected on microscopy slides (Fisherbrand 

Superfrost Plus) and stored at −80°C.

Antibodies were diluted in staining buffer consisting of 0.1% (wt/vol) bovine serum albumin 

(BSA, OmniPur) and 0.3% (vol/vol) TritonX-100 (Alfa Aesar) in PBS. Primary antibodies 
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were incubated overnight at 4°C followed by a 3 times wash step in PBS. Secondary 

antibodies were incubated for 1h at RT followed by a 3 times wash step in PBS. Tissue was 

mounted using CC/Mount (Sigma). Primary antibodies used were guinea pig anti NeuN 

(1:1000, Synaptic Systems, No. 266004) and chicken anti GFP (1:400, Aves, No. 1020). 

Secondary antibodies used were goat anti guinea pig Alexa 594 (1:1000, Invitrogen, 

A11076) and goat anti chicken Alexa 488 (1:1000, Invitrogen, A11039).

Images of brain and spinal cord sections were taken with Zeiss Imager M2 with the 

Apotome.2 attachment controlled with the AxioVision 4.8 software. Adjacent images were 

stitched with Microsoft Image Composite Editor Version 1.4.4.0 and color levels were post-

processed using Adobe Photoshop CS6.

Two-photon imaging

Two-photon imaging was conducted through a 16x, 0.8 NA objective (Nikon) mounted to a 

commercial two-photon microscope (B-scope, Thorlabs) and using a 925 nm laser 

(Ti:Sapphire laser, Newport). Images were acquired with Scanimage 4.1 (Vidrio 

Technologies) at a rate of ~28 Hz, covering ~340 μm × 340 μm with 512×512 square pixels. 

Frame triggers, lever voltage, and the start times of trials were recorded with Ephus (Vidrio 

Technologies), allowing for alignment between behavior and imaging. Drifts in the imaging 

field during imaging were manually monitored and corrected. Images were motion corrected 

offline by maximizing 2D cross correlation between raw images and an average reference 

image. For semi-simultaneous dendrite and soma imaging, a z-stack was first collected 

consisting of 51 slices spanning 400 μm to identify dendrite branches and corresponding 

somata, with each slice being an average of 100 motion corrected frames. Multiple z-planes 

were then imaged simultaneously using a piezo mounted to the objective (Physik 

Instruments). Eight z-planes separated by 50 μm were used to allow sufficient time for the 

piezo to travel the full range of 400 μm.

Automated region of interest generation

Hundreds of dendrites were imaged within each field which could be sparsely active, 

motivating the use of automated region of interest generation (Fig. 2b). This was done by 

first registering maximum projections from all sessions together through affine alignment to 

account for slight differences in fields across days. All subsequent steps were performed on 

movies smoothed by 50-frame moving averages. Each frame was registered according to the 

affine transformation matrices calculated during session alignment, ensuring that each pixel 

across the experiment represented the same location in the brain. Any pixels along the edges 

that were not imaged within and across all sessions were not used any further. Active 

portions of the field were then defined on a frame-by-frame basis across the entire 

experiment by subtracting the average image within each session from all frames of that 

session, and thresholding the average-subtracted frames by one standard deviation of all 

average-subtracted pixel values. Dendrites were often closely neighboring and point spread 

resulted in overlapping thresholded regions across dendrites, so that time-invariant 

thresholding was not informative. Instead, we took advantage of the temporal diversity of 

activity across dendrites to define co-varying thresholded pixels. Our approach was similar 

in intent to methods using independent components analysis (ICA), however we found ICA 
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to be insensitive and not easily and accurately segmentable, while our method detailed below 

was highly sensitive and able to segment the images cleanly as verified by visual inspection.

We began by finding the centroids of all discrete active spots within each frame and 

summing all active centroids across the entire experiment. Active spots corresponding to a 

single dendrite could expand and retract depending on the fluorescence amplitude due to 

point spread, but because the point spread function is symmetrical the centroid remained 

relatively constant. Because of this, even very closely neighboring dendrites had separate 

clusters of active centroids. Clusters of active centroids were then reduced to a single local 

maximum, representing the centers of all objects which were ever active during the 

experiment. The shapes of dendrites corresponding to those centroids were then determined 

by finding all frames when a centroid was active, and a border was drawn over connected 

pixels that were over threshold on at least half of all centroid-active frames. These borders 

defined regions of interest (ROI) which were then refined. Any ROIs which occupied less 

than 10 pixels were dilated by 1 pixel. ROIs which overlapped by greater than 50% were 

usually the same dendrite detected twice or two dendrites which had both common and 

unique ROIs. The larger of the two ROIs, which was therefore either redundant or combined 

dendrites, was excluded. Pixels which were contained in two or more ROIs, in addition to a 

buffer of 1 pixel around these overlap zones, were removed to reduce contamination 

between ROIs. ROIs were then dilated by 1 pixel and resulting overlap was removed, 

ensuring a buffer zone between immediately neighboring ROIs. Any remaining ROIs 

occupying less than 5 pixels or not encircling an originally defined active centroid were 

deleted. Finally, ROIs were affine aligned to each session through the inverse of the 

transformation matrices used to align sessions. Any ROIs not fully within the imaging field 

in every session were deleted.

ROIs were visually inspected by aligning the maximum projections for each day and 

manually discarding ROIs that were not stably visible through all days or were from 

laterally-oriented processes.

Fluorescence analysis

Traces for each ROI were created by averaging enclosed pixels and subtracting background 

fluorescence. Background subtraction was critical for extracting the activity of single 

dendrites, as the signal from neighboring dendrites could invade an ROI. Within each raw 

imaging frame, background signal was estimated by interpolating fluorescence values across 

each ROI from the surrounding fluorescence (inpaint_nans MATLAB function, J. D’Errico, 

MATLAB File Exchange). Two traces were then produced for each ROI, one averaging the 

raw ROI pixels and one averaging the background-estimated ROI pixels. The changes in 

fluorescence (∆F as defined below) of the background trace was then subtracted from the 

raw trace, producing a final background-subtracted trace. This process errs on the side of 

over-estimating background signal because the point spread function decreases superlinearly 

from the source but interpolation was linear, and because some signal originating from 

within the ROI was included. The amplitudes of calcium events are therefore somewhat 

reduced, but contaminating signals are effectively eliminated.
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The background-subtracted fluorescence trace for each ROI was then normalized to units of 

∆F/F0, where F0 represents a continuously-defined baseline. Baseline estimation was 

performed as previously described19. Briefly, a recursive process identified and removed 

portions of the trace which were active. The resulting “inactive” trace was then loess 

smoothed and interpolated across active periods, producing a time-varying baseline. The 

normalized trace was calculated by subtracting the baseline trace from the raw trace and 

dividing the difference by the baseline trace.

Apical dendrites often have multiple branches within the superficial layers, which led us to 

combine the traces of ROIs with very similar activity which likely originated from the same 

cell. Activity similarity between ROIs was calculated by the dot product of baseline-

normalized traces loess smoothed with a 3.4 second window within each session and L2 

normalized across all sessions. Based on the semi-simultaneous imaging of somata and their 

dendrites (Supplemental Figure S1), any ROI groups with a normalized dot product over 0.8 

were considered putative sibling branches. Final traces for each neuron were derived by 

weighted averaging of all sibling branch traces according to their across-session L2 norm to 

take advantage of the highest signal to noise ratios. Each “cell” in further analysis can 

therefore correspond either to a single ROI or combined sibling branch ROIs.

Baseline-normalized fluorescence traces within ROIs were subject to calcium event 

detection in order to remove signals within the trace caused by calcium indicator dynamics 

instead of neuronal activity (Supplementary Fig. 2). Two thresholds were defined, one being 

3 times the noise to find active portions and the other being 1 times the noise to define 

baseline. Noise was estimated as the standard deviation of negative fluorescence values 

mirrored about zero to simulate the noise distribution. Active portions of the trace were 

identified by a 1-second loess smoothed trace crossing the active threshold and extended 

backwards to begin when the baseline threshold was last crossed by the unsmoothed trace. 

Periods of the smoothed trace with negative slopes during active portions were set to inactive 

to eliminate fluorescence changes not associated with action potentials. All remaining active 

portions were considered calcium events and set to the difference between the maximum and 

minimum values within each event, with all other points set to zero.

Layer 2/3 data

All analyses involving layer 2/3 were performed on previously published data19, with 

fluorescence thresholding updated to utilize the method described above and classification 

updated to utilize the method described below.

Movement analysis

Voltage from the piezoelectric lever was continuously recorded at 10 kHz during each 

session and parsed into movement and quiescence epochs as previously described19. Briefly, 

movement was first identified by velocity threshold. Movement epochs were then refined by 

combining nearby epochs, eliminating small epochs, and refining the start and end times of 

movement epochs according to when the lever position respectively left or entered a baseline 

defined by adjacent quiescent epochs. Visual inspection confirmed accurate demarcation of 

behavior.
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In order to utilize the fullest extent of data, movements used for analyses were not restricted 

to only those movements which led to a reward. In this case, movements which were made 

during the inter-trial interval or unsuccessful movements during the response period were 

also analyzed. For analyses involving extraction of individual movements and accompanying 

activity, only movements longer than 2 seconds and with at least 1 second of preceding 

quiescence were used, and only the first 2 seconds of those movements and accompanying 

activity were analyzed.

Movement-related classification

Cells were classified as movement-active or quiescence-active on each day. The fraction of 

movement frames which contained activity in each ROI was first calculated. This value was 

compared to a shuffled distribution, where movement and quiescence epochs were kept 

intact but shuffled relative to each other 10,000 times. Activity during shuffled movement 

epochs was compared to activity during actual movement epochs. Actual values that were 

above the 97.5 percentile of the shuffled distribution were classified as movement-active 

while actual values that were below the 2.5 percentile of the shuffled distribution were 

classified as quiescence-active.

Among the cells that did not classify as movement-active or quiescence-active, those which 

had both an average ΔF/F and number of fluorescence events above the 5th percentile for 

those of classified cells were considered indiscriminately active. A minimum of 5 

fluorescence events was imposed to define any cell as active, and cells not fitting these 

criteria were classified as silent.

Stability of classification (Fig. 5c) was defined by z-score in order to control for differing 

total number of classified cells on each day. This was done by creating a chance distribution 

of overlap by shuffling classification across all cells 1000 times, and calculating the z-scored 

overlap as (real overlap – shuffled overlap mean)/shuffled overlap standard deviation.

Pairwise activity correlation analysis

For analyses comparing population activity accompanying movement, (Fig. 7a, b, 

Supplementary Fig. 6c, Supplementary Fig. 7, Supplementary Fig. 8) the first 2 seconds of 

movement and activity were extracted for all movements which lasted longer than 2 seconds 

and had at least 1 second of preceding quiescence regardless of whether they were rewarded 

movements or not. Pairwise activity correlation was calculated by concatenating the 

temporal activity of all cells during the corresponding movement and finding the Pearson’s 

correlation coefficient between pairs of these population activity vectors. The correlation 

between corresponding pairs of movements was calculated as the Pearson’s correlation 

coefficient of lever trajectories.

For analyses relating to the type of movement performed (Fig. 7b), the “learned” movement 

was defined as the average lever trajectory across all movements from days 11–14. Each 

movement was then correlated to the learned movement, and pairs of movements were 

segregated by having a positive or negative maximum correlation with the learned 

movements.
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Statistics

Statistical tests were chosen to avoid assumptions about data distributions, therefore data 

was not tested for normality. All corticospinal data uses n = 8 animals for all days, layer 2/3 

data has n = 7 for days 1–11, 6 for days 12–13, and 5 for day 14. No statistical methods were 

used to pre-determine sample sizes but our sample sizes are similar to those reported in 

previous publications19. No randomization was used, mice used for layer 2/3 cells were from 

a previous experiment, mice used for corticospinal cells learning the task were prepared first 

in this experiment, and mice used for corticospinal cells not learning the task were prepared 

second in this experiment. No blinding was used because no blinding was possible with our 

experimental structure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Corticospinal neuron labeling
(a) Schematic of injections to selectively express GCaMP6f in corticospinal neurons.

(b) GCaMP6f-expressing cells are located in deep layers of the motor cortex and send axons 

through the pyramidal tract to the spinal cord. Left: ventral view of the brain. Center: dorsal 

view of the brain. Right: coronal brain slice including the motor cortex.

(c) GCaMP6f-expressing corticospinal axons terminate in the intermediate lamina of the 

cervical spinal cord and do not extend to the thoracic or lumbar sections. Left: cervical 

spinal cord slice stained for NeuN (red) and GCaMP6f (green). Right: zooms of spinal cord 
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slices in cervical (left), thoracic (middle), and lumbar (right) segments, illustrating the 

corticospinal tract (top row) and the intermediate spinal lamina (bottom row), corresponding 

to insets 1 and 2 on left.

(d) Corticospinal neurons send collaterals to areas outside of the spinal cord. Left pictures 

are zoom of insets shown in pictures on right.
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Figure 2. Imaging apical dendrites of corticospinal neurons
(a) Left: coronal section of the motor cortex, illustrating deep corticospinal cells and 

prominent apical dendrites. Middle: schematic of imaging plane. Right: example in vivo 

two-photon images of corticospinal dendrites across days, top left blue outlined images are 

zooms of the central regions outlined in blue. The same corticospinal dendrites could readily 

be identified each day.

(b) Schematic of automated region-of-interest generation. Left: images are aligned across 

days (green unfilled circles represent imaged position, green filled circles represent aligned 
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position). Center left: active regions are detected by thresholding across all images from all 

days (white circles), and the centroids of those regions are stored (red dots). Center right: the 

shapes of active regions are defined as contiguous pixels which are above threshold on at 

least 50% of the frames in which the predetermined centroid is above threshold. Right: 

regions-of-interest are created as the borders of active shapes.

(c) Left: example semi-simultaneous recordings from a corticospinal neuron soma and its 

four apical dendrite branches. Images are side-projection (left), dendrite plane (top right), 

and soma plane (bottom right), traces are min-max normalized fluorescence from dendrites 

(colors correspond to regions of interest) and soma (black). Right: Histogram of L2 

normalized fluorescence trace dot product among pairs of dendrites from different neurons 

(black, non-sibling branches) or the same neuron (blue, sibling branches) maximum 

normalized within each group. Red dotted line represents cutoff for defining sibling 

branches in dense imaging.

(d) Example fluorescence traces from dendrite imaging. Indicated blue traces are putative 

sibling dendrites above the similarity threshold.
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Figure 3. Lever press task
(a) Schematic of task.

(b) Rewarded movement stereotypy increases across days. Top: median correlations between 

rewarded movements of all pairs of days. Bottom left: rewarded movement correlation 

within days corresponding to the diagonal of the top plot indicated by the black arrow, 

movements within days become increasingly stereotyped across time (Pearson’s correlation, 

r = 0.40, p < 0.001). Bottom right: rewarded movement correlation across adjacent days 

corresponding to the diagonal of the top plot indicated by the gray arrow, movements across 
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days become increasingly stereotyped across time (Pearson’s correlation, r = 0.39, p < 

0.001). Error bars are s.e.m. across animals.

(c) Mice perform one movement (“learned movement”) more often after learning but retain 

variability. Top: histogram of the correlation between all movements and the learned 

movement (defined as the average movement across days 11–14) in the early and late stages 

of learning. Mice produce more movements that look like the learned movement late in 

learning (two-sample Kolmogorov-Smirnov test, p < 0.001). Creating a template movement 

from days 1–4 did not result in a shifted distribution across learning (two-sample 

Kolmogorov-Smirnov test, p = 0.06), indicating that the shift in distribution is not an artifact 

of creating a template from the later days. Error bars are s.e.m. across animals. Middle: 

learned movement from an example animal. Bottom: example movements binned by 

correlation percentile to the learned movement. Gray, single movements, black, average of 

all movements within bin.
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Figure 4. Corticospinal neurons are heterogeneously related to movement
(a) Example activity from a single mouse. Top, population average of all neurons (black), 

movement-active neurons (green) and quiescence-active neurons (red). Middle, single cells 

that are movement-active (green), quiescence-active (red) and indiscriminately active 

(yellow). Bottom, lever movements. Blue highlighted regions represent portions of the lever 

trace which were detected as movement.

(b) Activity of all cells aligned to movement onset and offset (dashed lines). Top: activity of 

all recorded cells in all animals min-max normalized for the average within each day then 
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averaged across days (1553 cells), sorted by the coefficient of the first principal component 

of average activity across cells. Bottom: average activity across all cells, then averaged 

across animals. Error bars are s.e.m. across animals.

(c) Average activity of active classes of cells aligned to movement onset and offset (dashed 

lines). Top: activity of all recorded cells that fell into each category on at least one day, min-

max normalized within day and then averaged across days with that classification, sorted by 

the coefficient of the first principal component of average activity across all cells (413 

movement-active cells, 760 quiescence-active cells, 1026 indiscriminately active cells). Note 

that if a cell was classified differently across days, then it will appear under multiple classes 

and averaged across the days with that classification. Bottom: average activity across all 

cells of a given classification averaged across days with that classification, then averaged 

across animals. Error bars are s.e.m. across animals.
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Figure 5. Relationship between corticospinal activity and movement is dynamic
(a) Example classified neurons. Top: maximum projection images from each day, blue 

circles indicate ROIs. Bottom: average fluorescence traces aligned to movement onset (left 

vertical black lines) and movement offset (right vertical black lines), green, movement-

active; red, quiescence-active; yellow, indiscriminately active; black, silent classification.

(b) Fraction of classified cells across time, error bars are s.e.m. The fraction of quiescence 

cells increases after the first two days (paired Wilcoxon signed-rank test between the mean 

of days 1–2 and the mean of days 3–4 after z-scoring all values within animals, p = 0.008).
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(c) Mean fraction of neurons with same classification across days, expressed as a z-score 

relative to shuffling classifications within each day to control for number of classified 

neurons ((observed value – mean of shuffled values)/(standard deviation of shuffled values)). 

Both populations are more stable in the second week compared to the first (Wilcoxon 

signed-rank test, movement-active: p = 0.008, quiescence-active: p = 0.04).
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Figure 6. Changes in activity across time
(a) Left (majority classification): fraction of all recorded cells divided by their majority 

classification within weeks (that is, the largest number of days with a given classification. 

For example, if a cell is classified as movement-active in 3 days and quiescence-active in 2 

days of a week, then the cell’s majority classification of the week is movement-active). 

Center (average activity): average ΔF/F values across all cells during all movement and 

quiescence epochs. Activity during both movement and quiescence is stable in the first week 

while activity in both states decreases in the second week (Pearson’s correlation coefficient 
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of values z-scored within animal, movement week 1 r = 0.02, p = 0.9; movement week 2 r = 

−0.51, p < 0.001; quiescence week 1 r = −0.23, p = 0.1; quiescence week 2 r = −0.26, p = 

0.0497). Right (movement-aligned activity): average movement-aligned activity across all 

cells and across groups of days denoted by colored lines. Error bars are s.e.m. across 

animals.

(b) Plots as in (a) for different groups of cells according to their classification by week. Cell 

populations are indicated by pie charts and correspond to cells stably movement-active (top 

left), stably quiescence-active (top right), switching out of movement-active (center left), 

switching to movement-active (center right), switching out of quiescence-active (bottom 

left), and switching to quiescence-active (bottom right). Activity during movement for stably 

movement-active cells increased in the first week and decreased in the second week, and 

activity during quiescence for stably quiescence-active cells did not change in the first week 

and decreased in the second week (Pearson’s correlation coefficient of values z-scored 

within animal, stably movement-active cells during movement week 1 r = 0.53, p < 0.001; 

stably movement-active cells during movement week 2 r = −0.48, p < 0.001; stably 

quiescence-active cells during quiescence week 1 r = 0.14, p = 0.3; stably quiescence-active 

cells during quiescence week 2 r = −0.53, p < 0.001). Error bars are s.e.m. across animals.
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Figure 7. Cell-type-specific differences in the relationship between movement and activity
(a) Pairwise correlation in population activity as a function of correlation of accompanying 

movements. Left; corticospinal, right; layer 2/3. The interaction between movement 

correlation and activity correlation becomes stronger over time for both corticospinal and 

layer 2/3 cells (paired Wilcoxon sign-rank test of the fitted slope for black vs. gray lines, 

corticospinal p = 0.008, layer 2/3 p = 0.02). In corticospinal cells, this derived from less 

correlated activity for negatively correlated movements (paired Wilcoxon signed-rank test 

for negatively correlated movement bins for black vs. gray lines, p = 0.009). In layer 2/3 
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cells, activity became more correlated for similar movements (paired Wilcoxon signed-rank 

test for positively correlated movement bins for black vs. gray lines, p < 0.001). The activity 

patterns after learning were novel compared to those before learning (paired Wilcoxon sign-

rank test of the fitted slope for gray vs. blue lines, corticospinal p = 0.008, layer 2/3 p = 

0.02). Error bars are s.e.m. across animals.

(b) Pairwise correlation in population activity for movements separated by type of 

movements. Left: pairwise correlation of corticospinal population activity on pairs of trials 

with dissimilar movements (from data within the purple box in Fig. 7a, left). Correlation in 

activity does not depend on the type of movement made (paired Wilcoxon signed-rank test, 

black line p = 0.9, gray line p = 0.4, blue line p = 0.5). Right: pairwise correlation in layer 

2/3 population activity on pairs of trials with similar movements (from data within the 

orange box in Fig. 7a, right). Correlation in activity is higher specifically for learned 

movements late in learning (paired Wilcoxon signed-rank test, black line p = 0.5, gray line p 

= 0.02, blue line p = 1). Error bars are s.e.m. across animals.

(c) Schematic of population-specific changes in relationship between activity and 

movement. Boxes represent spaces of potential activity patterns, circles represent activity 

patterns which are associated with given movements within each day, and days progress 

from black to gray. Utilized activity drifts across time in both populations. In layer 2/3 this is 

accompanied by a more consistent activity pattern specifically for the learned movement 

(smaller circle). Conversely, in corticospinal neurons, different movements associate with 

more separable activity patterns (separation of gray circles).
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