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Abstract

When middle school students learn science content with
graphs, the graphing and science knowledge may be mutually
reinforcing: understanding the science content may help stu-
dents interpret a related graph, and information from a graph
may illustrate a scientific concept. We examine this relation-
ship between graphing and science by studying how students
learn from interactive computer models with accompanying
data graphs. The computer models provide an animated simu-
lation that illustrates an unobservable phenomenon, while the
data graph tracks one or more quantities over time. This or-
dering study, on middle school students learning about photo-
synthesis, indicates that engaging with novel graph concepts
helped students interpret their data as they experimented with
the computer model. The study also provided some support
for the opposite direction: experimenting with the model first
helped students make sense of the graphs.
Keywords: Graphing; Photosynthesis; Knowledge Integration

Learning From Graphs in Science
Graphs are important in science and improving students’ in-
tegration of graph and science concepts is often neglected, es-
pecially at the middle school level (Lai et al., 2016). Graphs
can help students test hypotheses to make sense of new sci-
ence concepts (e.g., Vitale, Madhok, & Linn, 2016). When
linked to an animated simulation, time-series graphs can
record and summarize information that points to key rela-
tionships. Identifying the main points of a computer simula-
tion is not trivial for students: animations can be deceptively
clear, giving a false sense of understanding (Chiu, Chen, &
Linn, 2013), and students may focus on discrete events in-
stead of looking for an underlying pattern (Vitale et al., 2016).
While animations provide visualizations of mechanisms and
processes, graphs provide visualizations of relationships be-
tween variables. Thus, graphs may help students focus on the
underlying quantitative relationships in the animations.

While graphs have the potential to be extremely useful for
learning science content, middle school students often have
difficulty interpreting them (Lai et al., 2016). Graphs are gen-
erally taught in math classes, and students may not sponta-
neously transfer their knowledge to science contexts (Grant,
2013). Prior work notes common student problems in graph
interpretation, many stemming from misunderstanding what
the graph axes represent (e.g., Clement, 1985). This type of
confusion may result from shallow reasoning based on super-
ficial similarity (e.g., Janvier, 1981) or the ease of extracting

irrelevant data from the graph (e.g., Clement, 1985; McDer-
mott, Rosenquist, Popp, & van Zee, 1983). Therefore, while
graphs can be powerful tools, novices need support to work
with them. Misinterpretations of graphs could lead students
to misunderstand the science being conveyed. On the other
hand, if students have a firm grasp of the science content, that
knowledge may help them interpret the graph by constraining
potential interpretations to ones that are consistent with their
science knowledge (Ainsworth, 2006). It is therefore plau-
sible that graph and science knowledge could be mutually
reinforcing. To examine if this reinforcement is uni- or bi-
directional, we assigned students to see graph-focused steps
either before or after an animated computer model of plant
growth. Graph First students learned more science from the
simulation, with some advantage for Model First students in
interpreting a specific graph feature.

Photosynthesis in the WISE Platform
The ordering experiment on graphing was implemented via
a seventh-grade unit on photosynthesis, which was designed
with the Knowledge Integration (KI) framework (Linn, Lee,
Tinker, Husic, & Chiu, 2006), using the Web-Based Inquiry
Science Environment (WISE: http://www.wise.berkeley.edu).
The unit focuses on processes of energy transformation and
aligns with the Next Generation Science Standards (NGSS
Lead States, 2013). In photosynthesis, glucose is created and
stores energy. The energy is released during cellular respira-
tion. A key difference between photosynthesis (making glu-
cose) and cellular respiration (using glucose) is that plants
can only make glucose when there is light, but they must use
glucose all the time to perform basic cellular functions. This
concept is targeted in the plant growth activities (Figure 1).

The plant growth activities begin with predicting when the
plant will make and use glucose (multiple-choice text selec-
tion). Next, students interact with the animation from the
plant growth model, which shows the plant’s glucose stores
growing when the light is on and shrinking when the light is
off. Students then draw a graph to show their predictions for
the cumulative glucose that will be made, used, and stored
with the light on for a few weeks and then off, and also select
which graph shapes match their predictions (multiple choice:
all lines increase with light. In the dark, one is horizontal,
one decreases, one increases at the same rate, and one in-
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Figure 1: Sequence of activities in Studies 1 and 2.

creases more sharply). Finally, students see the experimen-
tal steps: interacting with the full plant growth model (with
the graph) and graph interpretation. The two experimental
steps, described below, are ordered randomly. Test questions
assessed how students connect ideas. As shown in Figure 3a,
one prompt presented a graph of glucose stored and asked stu-
dents to explain how turning the light off affected the shape of
the graph (Glucose Stored). Another prompt gave an incor-
rect prediction: that glucose stored would not change when
the light was off (Marcia’s Prediction). Students explained
if the prediction was correct and matched it to a graph (Fig-
ure 3b). These questions were intended to measure how well
students can connect a graph’s shape to its meaning.

Exploring the Plant Growth Model
The plant growth model allows students to turn a light on
or off, while the accompanying time-series graph shows the
cumulative amounts of glucose made, used, and stored (Fig-
ure 2c). In this model, glucose is made at a constant rate
when the light is on, and glucose is used at a constant rate all
the time. Students were again asked when the plant makes
and uses glucose. The cumulative graph shows these rela-
tionships directly: the running total for glucose made only
increases while the light is on, but the running total for glu-
cose used increases until the plant dies.

Students were also asked to run a specific trial with the
model: leave the light on for 4 weeks in a row, and then turn
it off. This trial shows that plants draw on stored glucose to
survive in the dark. To structure students’ thinking about this
trial, students were asked when the plant died, and what best
explained why the plant died (Figure 2c). Correctly answer-
ing both questions requires reading the graph.

Ordering Study: Graph First vs. Model First
The graph that accompanies the photosynthesis model is
complex: it is cumulative rather than instantaneous and it
presents three quantities changing over time. Science knowl-
edge may help students avoid the error of reading the graph
as instantaneous (e.g., the line for glucose made is not zero
in the dark). While science knowledge could help students
interpret the graph, the graph may also help students learn
science by illustrating a relationship between quantities of
glucose made, used, and stored that explains how plants sur-
vive periods of darkness. The KI framework proposes that
eliciting students’ ideas is crucial for learning because ideas

cannot be leveraged or inspected if they are not first brought
to the student’s attention. We designed a graph interpretation
step to elicit students’ ideas about graphs and to prompt them
to connect their ideas about a graph’s shape to its meaning.
Questions asked if an interpretation of a given graph was cor-
rect (e.g., the plant is making glucose when the glucose made
line is flat). The graph interpretation step was more extensive
in Study 1, and is described in more detail for each study.

To examine the effects of graph and science knowledge on
each other, we sequenced the graph interpretation step either
directly before or after the computer model. Two seventh
grade teachers at Bay Area public schools used this WISE
unit to teach photosynthesis, and their students were ran-
domly assigned to either the Graph First or Model First se-
quence. Students did pre- and post-tests individually, and did
the unit individually or in teacher-assigned pairs.1

Study 1: Extensive Elicitation of Graph Ideas

We ran the first iteration of the study in six 7th grade classes,
all taught by Mrs. R.2 Students completed a pretest, but it is
not included in the analyses because it was not matched to the
post-test. Since the pre-test and the unit took longer than Mrs.
R. expected, she requested a revised and shortened post-test.

Materials. The post-test3 included the questions Glucose
Stored and Marcia’s Prediction (Figure 3). Students could
access the plant growth model on both the pre- and post-test.
The experimental step to elicit students’ graph ideas asked
students to interpret four cumulative graphs, all showing glu-
cose made, used, and stored when the light was shining (three
also showed darkness). Two graphs were consistent with the
model and two were incorrect. For each graph, students were
given one or two interpretations and asked if those interpre-
tations were correct. In total, the elicitation step included
five true/false items (one shown in Figure 2a) and three open-
ended prompts for students to explain their reasoning.

1A separate, unrelated study comparing forms of scaffolding for
essays was run concurrently in the same unit. The target essays did
not involve the computer model or graphs, and condition assignment
was independent for the two studies. Our results do not show condi-
tion effects of the unrelated study.

2The full unit is available at http://wise.berkeley.edu/ preview-
project.html?projectId=18309

3The post-test is available at http://wise.berkeley.edu/ preview-
project.html?projectId=18463
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Figure 2: Screenshots. (a) A true/false graph interpretation item in Study 1. (b) The graph interpretation item in Study 2. (c)
The plant growth model, with an animation on the left and graphed the output on the right. Correct answers in bold.

Method and Participants. The pretest was administered
over 1-2 class days before students began the unit. Students
then worked on the unit for seven class days. Most students
worked in teacher-assigned pairs, and they were randomly as-
signed to the Graph First or Model First conditions (within-
class). Most students completed the model-related steps over
two class periods. The posttest was administered two school
days after the unit, and took one class period.

177 students across Mrs. R’s six classes worked on the
WISE unit, with 24 to 35 students per class. Five students
worked individually, with the rest in pairs. The 89 groups
(176 students; 43 Graph First and 46 Model First) who did
the experimental activities are included in the analyses of em-
bedded items. Of those, 173 did the posttest and are included
in the post-test analyses.

Results: Embedded Assessments. 96% of groups correctly
selected that the plant would make glucose only when the
light was on (Graph First: 98%, Model First: 93%). 71%
of groups correctly selected that the plant would use glucose
all the time (Graph First: 72%, Model First: 70%). Students
selected which of four shapes (or none) best matched their
ideas for glucose made, used, and stored (all lines increase
when the light is on. When the light is off, one increases at
the same rate, one increases more sharply, one decreases, and
one is horizontal.). Most students selected the correct shapes
for glucose made and stored, but only 43% did so for glucose
used. The most common incorrect shape was flat after the
light was turned off (22%). Of students who predicted, in
text, that plants would use glucose all the time, only 55%
selected the correct graph. Thus either students hold multiple
conflicting ideas about when plants use glucose or are unable
to connect their science ideas to the graph shape.

Students were engaged with the model; 93% of groups ran
at least one trial where the plant died. However, students’
choice to run the suggested trial (light on for four weeks,
then off) differed by condition: 88.4% of Graph First groups
vs. 71.7% of Model First groups. 70% of Graph First groups
and 45% of Model First groups chose the correct explana-

tion for why the plant died. A logistic regression on answer
correctness (with factors for conditions in this study and the
unrelated study) confirmed that there was a main effect of
condition on whether they responded correctly (t(86) = 2.27,
p = .023). A logistic regression on whether students ran the
suggested trial found a marginally significant effect of condi-
tion (t(86)= 1.92, p= .055). To determine if running the trial
mediated the effect of condition, we re-ran the previous logis-
tic regression on students’ answers with running the trial as
an additional factor. Running the trial was the only significant
factor (t(85) = 3.20, p= .0014; 67.6% correct if trial was run
vs. 16.7% correct without this trial), indicating that running
the trial mediated the effect of condition. Thus, structuring
exploration with a specific trial is more effective for learning
than non-structured exploration, even when both uncover the
key information (i.e. the plant dying).

To determine if lack of engagement in general led stu-
dents to ignore the directions, we coded all five open-response
items within the activity (but before the experimental steps)
as on-task (answering the question, correctly or not) or off-
task (blank, I don’t know, or nonsense answers). 20 responses
were coded by two authors with 100% agreement; remaining
responses were coded by one of the authors. Both conditions
showed high engagement, with means of 98% on-task re-
sponses (means were 4.91/5 for Graph First, 4.89/5 for Model
First, t(87) = .16, p = .87). We repeated the logistic regres-
sion on students’ answers with all covariates above and en-
gagement as an additional covariate (t(84) = 0.68, p = .50)
and found that only running the suggested trial was signifi-
cant (t(84) = 3.39, p = .0007). Repeating the logistic regres-
sion on whether students ran the suggested trial with factors
for conditions and engagement also showed the same effect:
ordering condition was marginally significant (t(85) = 1.90,
p = .058), and engagement was not (t(85) = 0.54, p = .58).

Performance on the graph items did not show differences
across conditions, suggesting that interacting with the model
first did improve graph interpretation in general. Two ques-
tions focused on interpretation of a flat line in a cumulative
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2: Vague, incorrect, or not focused on stored glucose. (1) When the light was turned off less glucose was used. (2) no because, if you
leave the light off it will die

3: Partially correct or simple. (1) The total glucose stored was steadily going up then when the light turned off it went down. (2)
Marcia’s prediction is not correct. Even though the plant will not make glucose or use anymore, the amount of glucose stored would go
down and so will the glucose made.

4S: Plants survive in the dark by using stored glucose. (1) when the light turned off the plant did not make glucose but only used the
glucose that the plant stored. (2) No, a plant to use glucose needs glucose. And plant don’t get the needed sunlight when the light is off so
has to eat into the glucose stored.

4G: Explanation of graph shapes. (1) Turning the light off in addition to causing the glucose stored to go down, it would also cause
the glucose made to stop increasing and just stay the same. Turning the light off would not, however, effect the total glucose used, which
would keep going up. (2) Marcia’s prediction is incorrect because the glucose stored line in the graph goes down and doesn’t stay level.

5: Relating the graph’s shape to the plant’s use of stored glucose. (1) It affected the shape of the graph because the plant cannot make
glucose, so the plant has to use the stored glucose. This makes the stored glucose go down in quantity. (2) No, because if the plant doesn’t
make any at night and still uses it where is it coming from. It must be the storage and that must make it go down.

Table 1: Rubric for scoring (1) Glucose Stored and (2) Marcia’s Prediction (0 is blank, 1 is off-topic or “don’t know”).

graph. Groups in the Graph First condition had lower av-
erage scores on these items than groups in the Model First
condition (average score 55% vs. 80%; ANOVA with factors
for conditions in both studies found a main effect of order-
ing condition: F(1,88) = 13.23, p < .001). Both conditions
scored near chance for the other items, 46%-63%.

Results: Post-Test. The test items Glucose Stored and Mar-
cia’s Prediction each have one question with an objectively
correct answer (when is the light turned off and which graph
matches Marcia’s prediction) and one open-response that en-
courages connections between graph and science ideas. The
objective questions were scored as correct or not. For the
open-ended questions, we developed KI rubrics that required
linking the graph shape to processes of plant growth to get
the highest score (a 5). Full explanations of either the graph
or the science concepts were scored a 4, and were coded for
graph or science ideas (see Table 1). Two of the authors coded
an initial set of responses for each question, reconciling dif-
ferences and revising the rubric. The same two authors coded
a second test set for each question (39 answers for Glucose
Stored, with 85% agreement and Cohen’s kappa of .79; 31
answers for Marcia’s Prediction, with 90% agreement and
Cohen’s kappa of .85). For both questions, the second test
sets included responses from both studies.

For Glucose Stored, most students correctly identified that
the light was turned off in week 6 (Graph First: 88%, Model
First: 90%). Mean scores for their explanations of how turn-
ing the light off affected the shape of the graph were 2.9 over-
all (2.94 for Graph First and 2.85 for Model First). All stu-
dents scored a 2 or higher, indicating engagement with the
task (0s are blank and 1s are off task). 24% of the Graph First
and 21% of the Model First condition scored a 4 or 5.

For Marcia’s Prediction, students were below ceiling but
above chance for selecting the graph that matched her incor-
rect prediction (Graph First: 62% correct; Model First: 57%
correct). Mean scores for their explanations of why the pre-
diction was correct or not were 3.4 overall (3.5 for Graph
First and 3.2 for Model First). 98% of students gave on-task
answers. 60% of the Graph First and 50% of the Model First

condition scored a 4 or 5. A MANOVA on the two explana-
tion items with conditions in both studies as factors showed
no significant difference by condition for either study (order-
ing condition: F(2,168) = 1.2, p = .3).

Study 2: Targeted Elicitation of Graph Ideas
Materials. Since Mrs. R’s students took longer than we an-
ticipated to complete the experiment, we shortened the mate-
rials before repeating the study with Mr. W’s classes. The
first questions on the pre- and post-test were the same as
on the post-test in Study 1, with additional questions after-
ward. In the unit, on steps that all students saw in the same
order, we removed open-response explanation prompts or re-
placed them with multiple-choice questions. Since Mrs. R’s
students were confused about the flat segment of the glucose
made line, we added a cumulative graph activity. Students
were given a table of glucose made each week and filled in
a column with the running total. This running total was then
shown as a graph, and students were asked to interpret the
flat segment. In Study 1, students drew prediction graphs and
then characterized the shapes afterward. In Study 2, we re-
versed this sequence to help students plan their predictions.
We also shortened the steps in the ordering experiment. In-
stead of eliciting ideas about several graphs, we asked stu-
dents to interpret the flat segment of the glucose made graph
with a multiple choice question and an open-response expla-
nation (see Figure 2b). In the modeling activity we removed
all open-ended prompts, and replaced them with one prompt
that asked students if their initial predictions on when the
plant would make and use glucose had been correct. We re-
tained all multiple choice questions.

Method and Participants. As in Study 1, the pre- and post-
test were done individually, each on a single class day, with
the pretest two days before students started the unit and the
posttest right after. Students did the unit in groups of 1-2 over
five class days, with a one-week gap between the first three
days and the final two days. As in Study 1, most students took
1-2 class days for the experimental steps.

79 students across Mr. W’s 7th grade classes used the
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Is Marcia's prediction correct? Explain why or why not. Students had access to model at pre- and post-test

This plant started growing with the light on, and then the light 
was turned off. What week was the light turned off? How did 
turning the light off affect the shape of the graph? Write about 
glucose used and glucose made in your answer.

(a) (b) Marcia made this prediction: (1) When the light is off: the amount of glucose stored will 
not change, the plant will not make more glucose, and the plant will still use glucose. 
(2) When the light is on, the plant will make, use, and store glucose.
Which graph shows Marcia's prediction?

Figure 3: (a) Glucose Stored requires graph interpretation and science knowledge of when a plant makes and uses glucose. (b)
Marcia’s Prediction requires finding a graph shape to show an idea, and critiquing that idea with science knowledge.

WISE unit, with 23-29 students per class. As in Study 1,
groups were assigned randomly to conditions (within-class).
24 groups did not reach the experimental steps and are not
included in the analysis. The 10 Graph First groups and 18
Model First groups are included in the analysis below (43 stu-
dents total. 11 did the unit individually, the rest in pairs). Of
those students, 39 did both the pre- and post-test and are in-
cluded in those analyses (13 Graph First and 26 Model First).

Results: Embedded Assessments. 79% of groups correctly
predicted when the plant would make glucose (Graph First:
90%, Model First: 72%) and 29% correctly predicted when
the plant would use glucose (Graph First: 30%, Model First:
27%). Students were not above chance (11−25%) in select-
ing which graph shapes matched glucose made, used, and
stored. In the most common shape for total glucose made
(35%), the line decreased in the dark, a nonsensical answer
for cumulative glucose made. Students with the correct text
predictions were somewhat more likely to select the correct
graphs, but still performed poorly (14% correct for glucose
made and 25% for stored). These predictions suggest that stu-
dents struggled both with the science content and the graphs.

Only 75% of groups interacted with the model. To mea-
sured engagement, we coded for on-task responses on earlier
step. On the two earlier steps, overall 75% of responses were
on-task (means were 1.6/2 for Graph First, 1.4/2 for model
first, t(26) = .56, p = .57). Despite lower engagement, we
ran the same analyses as in Study 1. Graph First groups ran
the suggested trial more frequently than Model First (50%
vs. 27.8%), but were not more correct in explaining why the
plant died (10% vs. 11%). These trends were not signifi-
cant for condition (all analyses here are logistic regressions
with factors for conditions in both studies; ordering condi-
tion t(25) = 1.17, p = .24 for suggested trial and t(25) = 0.0,
p = 1.0 for answering correctly). Of the 10 groups who ran
the trial, 3 answered correctly, compared with none of the 18
groups who did not run the trial, but this trend was not sig-
nificant (t(24) = .0003, p = .99). We repeated the logistic
regression on running the trial with engagement as an ad-
ditional covariate, which was not significant (t(23) = 0.96,
p = .33). The replication of trends but not reliable effects
may be due to small sample sizes, lack of engagement, or
lack of prior knowledge, leading to very low performance on
many items. Performance on the graph interpretation item

was above chance but below ceiling; 54% of groups correctly
said that the plant was not making glucose when the line was
flat. There was no significant difference by condition.

Results: Pre- and Post-tests. On Glucose Stored, identifica-
tion of when the light was turned off rose from pre- to posttest
(from 4/13 to 9/13 for Graph First, and from 12/26 to 16/26
for Model First; McNemar test from pre- to posttest, p= .02).
A logistic regression on posttest scores with pretest score and
study conditions as covariates was not significant for order-
ing condition. Mean explanation scores also rose from pre-
to post-test (Graph First: 1.2 to 2.3, Model First: 1.4 to 1.9).
For selecting which graph matched Marcia’s Prediction, stu-
dents were below chance at pretest (2/13 correct for Graph
First, 5/26 for Model First) and just above chance at post-test
(Graph First: 4/13 correct, Model First: 7/26). Explanation
scores rose from pre- to post-test for the Graph First group
(.6 to 1.6) but not for Model First (.8 to .7). 82% of responses
at pre-test were blank or off task, with the remaining students
answering with incorrect or overly simple ideas. At post-test,
1 Model First and 3 Graph First students had a complex idea
about the graph or the science.

A full factorial repeated measures ANOVA with test time,
question, and conditions in both studies indicates improve-
ment from pre- to posttest on the explanation items, with
significant factors for test time (F(1,36) = 10.3, p = .003),
question (F(1,36) = 36.7, p < .001), and a time by ordering
condition interaction (F(1,36) = 4.8, p = .035). While esti-
mated marginal means for Graph First were lower than Model
First at pretest (.9 vs. 1.1) and higher at posttest (1.9 vs. 1.3),
ordering condition was not significant in a MANCOVA on
the two post-test explanation scores (with pretest scores as
covariates and condition in the unrelated study as a factor).

Discussion
This study provided support for graph understanding help-
ing students to interpret a science model and some support
for science understanding helping students interpret specific
graph features. While students had difficulty interpreting cu-
mulative graphs, eliciting students’ ideas about those graphs
helped them make sense of glucose production, use, and stor-
age in the photosynthesis model.

Graph First students were more likely to figure out that the
plant dies when it runs out of stored glucose. Interestingly,
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this effect was strongly mediated by whether students ran the
suggested trial leading to plant death (significant in Study 1,
with the same pattern in Study 2). The finding that elicitation
of graph ideas, without feedback, improved learning from the
model is consistent with other research on knowledge inte-
gration (Linn et al., 2006). The cumulative graph in the
model was more familiar to Graph First students since they
had just been examining cumulative graphs. To run the sug-
gested trial, students needed to read the graph to turn the light
off at the right week, and Graph First students may have ex-
tracted this information better than Model First students. Fur-
thermore, students in both conditions were equally engaged
on prior steps and engagement was not predictive of follow-
ing the directions to run the suggested trial. We note that con-
dition differences were significant in Mrs. R’s classes, and
the pattern was similar in Mr. W’s classes.

In both studies, performance was not mediated by running
any trial where the plant died, only the suggested trial, which
was followed by questions to structure students’ thinking.
This result is consistent with prior work showing that without
structure, students may uncover the necessary information but
miss key patterns (Reiser, 2004; Vitale et al., 2016).

Study 1 provides some evidence that exploring the model
helped students interpret flat lines in cumulative graphs, as
Model First groups performed better than Graph First groups
on those questions. Science knowledge may have helped
constrain students’ interpretations of those graphs. How-
ever, there were no condition differences when considering
all of the graph interpretation questions together; exploring
the model may help only with particular graph features.

This research only varied the order of activities. All stu-
dents were prompted to think about cumulative graphs be-
fore the experimental steps (Figure 1). The treatment elicited
students’ ideas about relevant graphs by suggesting interpre-
tations that connected graph shapes to their meanings. This
treatment may have prepared students to distinguish among
alternative interpretations while exploring the model.

Further, this study captures difficulties that students have
with cumulative graphs in science. In the graph prediction
step, many students chose graph shapes that did not match
their text predictions, and in the graph interpretation step,
many students agreed with interpretations that did not follow
from the given graph. Of the 71% of Mrs. R’s groups who
said that plants use glucose all the time, only 55% of them se-
lected a graph shape that matched this prediction. The most
common incorrect answer suggested that students were inter-
preting the graph as instantaneous instead of cumulative. Mr.
W’s students also seemed to demonstrate this error: the most
common graph selected for glucose made decreased when
the light was off. This would have been a more reasonable
choice if the graphs were instantaneous instead of cumula-
tive, as it would have been the only shape consistent with the
plant making less glucose in the dark. While these exam-
ples show difficulties going from meaning to graph, students
also had difficulty with the reverse in the graph interpretation

steps. Students in Study 1 were near chance for those steps,
and almost half of the groups in Study 2 did not recognize
that no glucose is made when that line is flat. Graph miscon-
ceptions documented in prior work have focused on instan-
taneous graphs. Our results show that the type of misinter-
pretations noted in prior work also affect cumulative graphs
(specifically, interpreting the graph as if the axes were differ-
ent, i.e., instantaneous vs. cumulative). Though students ex-
hibited difficulties, Study 2 shows pre- to post-test improve-
ment on graph interpretation and on explanations.

Conclusion. When learning science from computer models
with complex graph output, students may benefit from inter-
preting graphs before interacting with the model. This study
demonstrates the power of eliciting student ideas, a compo-
nent of the knowledge integration framework that is intended
to prepare students to distinguish among alternatives in the
experiment (Linn et al., 2006). While graphs are currently
under-utilized in middle school science, this study shows how
graphs can be leveraged to help students connect graph and
science ideas.

Acknolwedgements. This material is based upon work sup-
ported by the National Science Foundation under Grant No.
DRL-1418423 and INT-1451604.
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