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A FINITE ELEMENT METHOD FOR THE SOLUTION
OF A POTENTIAL THEORY INTEGRAL EQUATION

Mark J. Friedman
Lawrence Berkeley Laboratory
‘ One Cyclotron Road
Berkeley, California 94720

Communicated by J.C. Nedelec

ABSTRACT

This paper discusses a finite element approximation for an
integral equation of the second kind deduced from a.potential theory
boundary valvue problem in two variables. The equation ig shown to admit
a unique solution, to be variational and coercive in the Hilbert space
bf fuhctions o £ H%(F),frng = 0, The Galerkin mgthodbwith finite
elements as trial funct%ons-is shown to lead to an optimal rate of

convergence.




1 - INTRODUCTION.,
i (5], [10], the integral eguation method has been used to solve
the boundary valve problem

bu =0 in 9,

R

bu =0 in §',

(1.1) (1-0)u” -(1+\u’ = 290on T, 3| <1,
au+.~ du_ . .T . '
3n - Onm © o
[vu] = of]x]|72) as x 2,
where x = (x1,X2), ¢ 1is a bounded domain with a suffiéiently smooth

boundary curve T in 'the plaﬁe ‘Rz , Q' =R \T, Q=0 VUT. We denote

by uy  the limit of & when x “épproacﬁes' T froé the interioi'

and by u+ the correspondinélexte}ior limit. we also adopt the convention
that the norm;lldirection of T 1is tqwards fhe'interior'of Q .’We denote

by H.IISF,'H.llS'Q 'tbe norms in H3(T), HS(Q) for all real s (see [4)

for the definition of these spaces). Let us aléo set ;S{Q) = HS(Q) ﬂHo’%(F);
HE(T) =.{o € H(T), <O,1% s 1)uis (1) = 0}', o (r) = T N HT),
where the notation cl»%o<a<1) stands for the space of Héldei continuously
differentiable functions on r.

The particular ceses of the problem (1.1) are the extefior Dirichlet
problem (X =1) and the interiof one (A=-1). For le'< 1 , the préblems
of computation of electrostatic field and maénetostatic one in piecewise
homogeneous media lead to this problem [10). Let us remark téat these problems
admit other formulation {10) ; in [8]}, the advantages ofyformulation (1.1)
for the magnetcstatic problems are coﬁsidered.

The solution 1s given in the form [51, t]b], [8], of a double-laver
potential

s
ull,.
I

S

. . = ,‘_I_ 1 E.S - ~y 1_ ...__'_‘.T_. Y I oy € 9] !
(1.2) (Vo) (x) () L o(&,[( ) Log (Z) Yo] dy, VxR0l

t . -




Ey using _ i

(1.3) (Us) (%)

= (¥)0 + Ko ,
where ‘
(1.4) (Ko) (x) =,(19[ O(F).(~§-9 Log[(ld-;i] ay Vx €T '
: i > ang r’ Yol - § o ‘.

the problem (1.1) is reduced to the Fredholm integral eguation of the second

%ind in terms of the unknown dipole density O on T

(1.5) A0 = 0 -~ AKg = g -
L . .
Note that the constant - Yo is added in (1.2) to exclude the eigenvalue

A =~-1 from the spectrum of the operator KX [5]. n (51, [10]), (1.5) has
been solved numerically in C(T) by a finite difference approximation.

This paper discusses & finite element approximatioh of (1.5)

suggested in [8). In Section 2, we study (1.5). First, by applying the a prio:

estimates of potential theory, we prove that (1.5) is an iéomorpbism in

H®(T) for'!all real s . Note that a similar result has been pro?ed in [73.

Then, we introduce an operator Oby(2.2), and by using the imbedding théofems

[4) and an interpolation theorem [1]}, we show that the inner product (Qd,c)&
2

is equivalent to the Hilbert space inner product in H;(T). After finishing

the paper, the author waS informed that this result has been obtained in‘[7}

froh another point of view. Then, we show that A is a self-adjoint bperator

with respect to this inner product, and we give the variational formulatioﬁ

of (1.5) in Hi(r). InISection 3, we apply the Galerkin method with finite

isfying the inverse essumption (3.2) and the ceonvergance

t
w
s
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tial has been used to solue some bownigry value prodlemg n 4 HOUNSES QOTITR.

(3]

A Galerkin method far (1.5) (with lll =1) has been considered in [7]. we
refer o [3] for other refercnces on the solution of Fredholm intecgrsl
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2 - VARIATIONAL PRINCIPLE FOR THE PROBLEM IN Hy(T).

THEORENM 2.1 : In HS(T), s>0 , ¥ is comact and its spectrun is within the
interval (-AA), D<Ah<1. (1.5) has a unique solution in: H3(T) for all

real s, and the following estimate holds :

(2.1) cy Iplg<laplly <cz2 hpls .

Proof : The operator K 1is compact in® ¢(T) and.in HS(T), s=0 [3, p.458} .
qu u € H(T), xp € c(T) . It follows that the spectrum of K in H%(T),
s=0, is a subset of its spéctrum in ¢(T). By -[5] the maximum absolute value
of eigenvalues of KX i; ¢(T) satisfies A <.1. Since [A]"* = 1, (1.5)

has a uniqaess;lution, Y g € H¥(T), s=0 ; and therefore, (2.1) is valid

for s=Z0 . For ;'<O ’ py'using,a classical duality aréument and taking

into accougt that (211) holds also when. A i; replaced by its adjoint A%,

we have

lapllg= sup l(O,Au)bl = sup 'l(A*é,u)g] < sup Na*ol_gliulls Scz i
loll_est Noll_ st loll_gst

Similarly, one can show the left-hand ineguality in (2.1) :

lullg= sup l(O,u)ol = sup l(A—lc,A*u)l <sup llA'1GIL§A*pll5<cf)Hx’s‘-,.:
oll_g<1 © llol_gsr : foll_g=<1 .

Let us define an operator Q :

(2.2) oo =L, u=v0,VO0E cé'“(r).

sy 1,0 S T rvemae 2 =y I . By
LEwvE 2.1 @ On Co’(T), Q0 =5 Lingay, SEImeiIrie, Ghi saiisiies

- . s oa1,0
(2.3) cliol? < (po,0)0 , ¥ 0 €ce (T
. S , ,
Proef : @ 1s lincer. By using (1.3) =nd Integracing by paris, It isooask o

P S 3 Y o~ [ i~ g L4 A [ S [ 2K - ’ eres P ouy
reoe that Q@ 1s rummetric. Setting LG = u , Uy =V, W have




- _ . - - - - Nyt
(2.4) (03,41)0 "J’g‘u‘UdY'—"Z ! '?—Li(v —V+) day = 2 ! (?"u"" -y vt) ¢y
o v 9n on on
T r T
= 271 J Vu Vv dx = (0,0W)o .
. JdR? '
From (2.4), we have
(2.5) (09,0)0 = 27! J (Vu)? dx .
Q

The norm in H'(Q) can be defined by [6)

(Vu)? ax +(J uTay)?.

(2.6) lull o =I
T

Q

i
[
~
0
]
ISTE
-

From the trace theorem [4] and Theorem 2.1, we have for |A|
(2.7) lulh, @2 cllu Iy >y lialy .

For ¢ € Cé’a(]‘), u =0 # Ko € Cé’a(I‘), and therefore (2.6) is writtep as
(2.8) hulh,Q = f (Vu)? ax , ¥V o € ¢y’ HT).

Y

Now, (2.3) follows from (2.5), (2.7), (2.8).

Let HQ(I‘) be the Hilbert space .obtained by the completion of
cd/®(T) with the norm llollz) = (03,0)0 . By [6, p. 79), Q can be extended

2 .
to a self-adjoint operator 1in HQ(T). Let 0° be its positive square root.

LEMA 2.2 @ The inner product

]
2 = 2 -1 2 )
(2.29) loll 2 = ool 2 J (Yu)® éx, u=1Uuvo , V0o€&ZH(T)
0o R2
1
- 47 - 2
1 souivelent to the norm tn He(l).
v 1 . ’ - 1. N
Proof : By Theorem 2.1, for 0 & He(T), u =0 + KO € bo(T). Freom the
imbadding thoorams for 2 harmonic Funciion [4, Section 7 2), it fellows the
3 ~
PR au [P, . . . -~ .
u € =270 ns 00 = 4— £ 3¢(Y). Eincco all che mappings O - ou = 0T 3@
on
T ot - ITRpT o o s PP PSR TR JUU I  TR |
sCnoTnuous shon Neo s oo VoL Usine Lhe obwviouws InelUIlItL wwo Jae e
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and the definition of #4%(T'),; an interpolation theorem {1, p. 254) gives
1 1
ho?alls < ¢ Wolly, ¥ o € Ho(T). From (2.3), it follows [6, p. 68) that
1
c) llOll%< lp*clly, , Vo€ HQ(T). The statement of the lemma thus follows.
1
THEOREM 2.2 : A is self-adjoint in HE(T) with respect to the irner

product (2.9) and the following estimate holds

N

(2.10) (1-|x] Ay lu Hé <a(uw) < (1+|A] A) Iy Hé , YU € rUT) ;

1
there exists a unique element o € HI(T) such that

) 1
(2.11) a(o,y) = (g,wQ Y U € H(T), g € HF(T),
where
(2.12) a(o,u) = mo,u)g .

Proof : Let us verify that K 1is self-adjoint with respect to the irner
' b
product (.,.)Q . From Theorem 2.1, K is bounded in H{(T). It is therefore

sufficient to verify that it is symmetric for smooth 0,"¥ . By setting

u = U0 , v=UW and using (1.3) and (2.4), we have

(2.13) (Ky,0) ==2—1(V—-+v+,§£ =271 J Vv Vu dx - J Vv Vu dx] = (p,KO) _ .
Q 0N g Q ' Q

From Theorem 2.1, K is also compact. It follows HK"Q =N . Now (2.10)
follews easily from (1.5), (2.12). The second statement of the theorem
can be deduced from the First cne.

P p AR - . U T e -
COROLLARY 2.1 : For g € Ho(T) , 'the proZicm (1.1) ras a unique soiuiion

u(x) = (Ug)(x), x € R\ T ;|vule %) xx%(0r).

Proof : Existence foilcws from Theorem 2.2. Let u be the difference botwao:n
two solucicns of (1.1). Then
- r - 2 R .o { - 2 .. o
(1-24) J (Vi T o dx o (IeN) | (vu)s dxo o= 0
e -

b
“k
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3 ~ THE RATE OF CONVERGENCE IN THE FINITE ELEMENT METHOD,

Let H, © HY(T), m>0, integer, 0 <h<1, be a reguler finite

elecment space satisfying the following conditions

- Convercence property : ¥ u € H%(I'), 3 'fj' € H such that for k <"s, with
h h

L R

-m~1<k<m, ~-mS<s<m+i1, we have

] o~ < s-k
(3.1) Iy Wy I X c h lluhlls.

<m , we have

- Inverse assumption : V ¥y € H for k<s, with |x|, |s|

k-5
. Sc h il Yy Ilk

Remark : The particular choice of finite elements satisfying (3.1), (3.2)

is considered in [3].

The approximate solution Gh of (2.11) is obtained from

We acopt the notation u = UO , u, = Uch , where O 1is the solution of (2.11)

and Ob the solution of (3.3).

k<s<m+l. Then the error in the

-~

S s )
THEORE 3.1 : Let g € Ho(T), |x| <m,
finite element method satisfies
s . s-k b e L 5~X "

(3.4) “G_Uhh}: < cy h HOI:S < ch Hg..5 .
ProcI

] ' e e S A
(1) F<k<m The proof is similar to that of [3, Theorem 4],

2 he enuivilence of norms . “Q ardg H.,

from (2.1), (2.10), the ez
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(ii) ~m <k ‘5% . By using ditecre's trick [9, pp. 166-1671,

we have

- < - -
(3.5) (f,O oh)Q c ‘Sh ll% lo oh ll% , Vv Gh € Hh ’

b
where f € Hg(l'), and

' !
(3.6) amu,6) = (£,8),, V8¢ Ho(T).
From (3.6), (3.1) for }:'=—;— , end from Theorems 2.1, 2.2, for 6}7 =Uh , we hav
(3.7)  llu-¢8 I <¢ NPy | l<e<mr .
h 'z t’ 2
Substituting (3.7) and (3.4) for _k-—-é— in (3.5),
(£,0(0 —Gh))o < ch llfllt ||<J||$ .
By duality in the definition of negative norms,
: s+t-1 |
(3.8) ho(o -0 )ll . = sup [(£,00-0,)) | <ecnh holl
h "t - h 0 s
el <1
R
From the imbedding theorems for a harmonic function [4, section 7.3), we
=, 9 -t v 03-t _
have for Q(O-—Oh) —(-é-;) (u -ub) € Ho (T), u -uy € H (), and therefore
- = - | ' 1-t
u —-uh,E Hg t(T) ; then, by Theorem 2.1, for lll:l, s=1-t, O —-Oh € H (T).
Since all the mappings Q(O —Uh) - u —u; -+ g - Oh are continuous, we have
o - < - 1 -
(3.9) o 0h”1—~t\\‘ c lforo oh).l e -
Then, (3.4¢) follows from (3.8) and (3.2).
TEIORDM 2.8 ¢ For 1 <s<mil, trz potentials converge uniformily in QO and

[P

S
(3.10) furx) ~uh(x)l < o h lglleg ;
in 0 and <n Q' we heve the Ffolicuing osilinzie
. o L SEm o
3.0 ix) —u (x ] L (=) B hell, o
(3.1 ) ty, (x) e(:v:,:)) s r

-

' . ~" 1
- e -_— . e Pt o A w
(e(x,73)7 ) = {cist(xe,0))77 + NN+ L, tdist(x,T))
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Proof s From the maximum principle,

max ,u —uhl = max Iu —uh‘ = max lu- —uhl
By using the following ineguality
- ~1 2
lors)] <e (n? loly +n* Holy),.V o € HY(T),

Theorem 2.1 for |A| =1, s=0,1, and Theorem 3.1 for k=0,1, we obtain (3.10).
The case x € §l' is considered in the same way (see also [3, Theorem 8]}).
(3.11) follows from the following ineguality

lutx) —u ()] € e No-0, 1L Il (=) (Log (2= =)

' h h ' —m 3n€ r’ Yo' m

and Theorem 3.1 for k =m (see also [7, p. 110]).

This way of faking the problem seems to lead to rather complex
coefficients Fo compute. Here numerical studies are reguired. In a next
paper we will consider the approximation of the boundary due to [7] and
deal with this problem. It seems useful to give a simple remark here.

In numerical computations, when the inﬁegral operators are replaced by
matrices by using some guadrature rules, if we need to compute AB a
{A,B beig matrices and a & vector), we coﬁpute A(B E) and not (AB) a.

It would .e interesting to compare our method for the solution of (1.5)

]

and the method used in [7) and [11].

tn
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