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A Bayesian Model of Memory for Text
Mark Andrews (mark.andrews@ntu.ac.uk)

Department of Psychology, Nottingham Trent University
Nottingham, NG1 4FQ, UK

Abstract

The study of memory for texts has had an long tradition of re-
search in psychology. According to most general accounts of
text memory, the recognition or recall of items in a text is based
on querying a memory representation that is built up on the ba-
sis of background knowledge. The objective of this paper is to
describe and thoroughly test a Bayesian model of this general
account. In particular, we develop a model that describes how
we use our background knowledge to form memories as a pro-
cess of Bayesian inference of the statistical patterns that are
inherent in a text, followed by posterior predictive inference of
the words that are typical of those inferred patterns. This pro-
vides us with precise predictions about what words will be re-
membered, whether veridically or erroneously, from any given
text. We then test these predictions using data from a memory
experiment using a relatively large sample of randomly chosen
texts from a representative corpus of British English.
Keywords: Bayesian models; Memory; Reconstructive mem-
ory; Text memory;

Introduction
The seminal study on memory for text1 is usually attributed
to Bartlett (1932). In this now classic work, Bartlett argued
that a person’s memory for what they read is based on a re-
construction of the information in the text that is strongly
dependent on their background knowledge and experiences.
From this seminal work, but especially since the widespread
adoption of schema based accounts of text memory begin-
ning in the 1970’s (e.g., Mandler & Johnson, 1977; Schank
& Abelson, 1977; Bower, Black, & Turner, 1979), there has
been something close to a consensus on the broad or general
characteristics of human text memory. According to this gen-
eral account — which we can summarize by the following
schematic:

Representation

Knowledge

TextMemory

— the recognition or recall of items in a text is based on
querying a representation of the text that is built up on the
basis of background knowledge and experience.

Although some variant of this general account is widely
held, it is essentially an informal and untestable theory. Cer-
tainly, there has been ample evidence showing that we use
our background knowledge to make inferences and associa-
tions concerning text content and that these inferences then
influence our memory (e.g. Bransford, Barclay, & Franks,

1In this paper, we use the term text to refer generally to any co-
herent or self-contained piece of spoken or written language.

1972; Graesser, Singer, & Trabasso, 1994; Zwaan & Rad-
vansky, 1998; Rawson & Kintsch, 2002, to name but a few).
However, in most studies, even fundamental concepts such as
memory schemas are not formally defined (see, e.g. Ghosh
& Gilboa, 2014), and ostensibly formal models of knowl-
edge influences on text representation, such as the well known
work of Kintsch (1988), often require hand-coding of back-
ground knowledge and text structures and can only be applied
to small and contrived examples. Consequently, there is no
formal or computational account of how background knowl-
edge is used to infer a representation of text content and how
memories are then derived from this representation that is suf-
ficiently precise to lead to testable empirical predictions.

In this paper, following general principles followed by
Hemmer and Steyvers (2009a, 2009b, 2009c) in their studies
on memory for visual objects and natural scenes, we describe
a probabilistic model that uses Bayesian inference to infer a
representation of a text’s content on the basis of background
knowledge and then uses posterior predictive inference to
represent the memories of that text. This provides us with
precise predictions about what words will be remembered,
whether veridically or erroneously, from any given text. We
then test these predictions using data from a memory experi-
ment using a relatively large sample of randomly chosen texts
from a representative corpus of British English.

Probabilistic Model
We begin with the assumption that our background knowl-
edge that is relevant for our memory of text is primarily
knowledge of the statistical patterns across spoken and writ-
ten language. Given any probabilistic language model that
specifies these statistical patterns, as we explain below, we
may then use Bayes’s rule to infer which patterns are inher-
ent in any given text. From this, we may then predict, via
posterior predictive inference, which words are and are not
typical or compatible with the inferred statistical representa-
tion of the text. This effectively serves as the memory of the
content of the text. As such, this provides a computational
description of the previous schematic, i.e.,

Bayes’s rule
posterior prediction

Representation
(statistical patterns inherent in Text)

Knowledge
(statistical patterns in language)

TextMemory

In practical terms, we have many options for our choice of
probabilistic language model. However, probabilistic topic
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models (see, e.g. Griffiths, Steyvers, & Tenenbaum, 2007;
Steyvers & Griffiths, 2007; Blei, 2012) have proved highly
effective in capturing the statistical patterns that character-
ize the coarse-grained “discourse topics” across spoken and
written language. Here, we use a type of probabilistic topic
model known as a hierarchical Dirichlet process mixture
model (HDPMM) (Teh, Jordan, Beal, & Blei, 2006).

A HDPMM is a probabilistic generative model of bag-of-
words2 language data. It treats a corpus of language data as a
set of J texts w1,w2 . . .w j . . .wJ , where text j, i.e., w j, is a set
of n j words from a finite vocabulary, represented simply by
the V integers {1,2 . . .V}. From this, we have each w j defined
as w j = w j1,w j2 . . .w ji . . .w jn j , with each w ji ∈ {1 . . .V}. As
a generative model of this corpus, the HDPMM treats each
observed word w ji as a sample from one of an underlying set
of component distributions, φ1,φ2 . . .φk . . ., where each φk is
a probability distribution over {1 . . .V}. Each φk effectively
identifies a “discourse topic”. For example, here is a sample
of 6 topics from an inferred model, where we show the 7 most
probable words in each topic:

theatre music league prison rate pub
stage band cup years cent guinness
arts rock season sentence inflation beer
play song team jail recession drink

dance record game home recovery bar
opera pop match prisoner economy drinking
cast dance division serving cut alcohol

The identity of the particular topic distribution from which
w ji is drawn is determined by the value of a discrete latent
variable x ji ∈ {1,2 . . .k . . .} that corresponds to w ji. The prob-
ability distribution over the possible values of each x ji is given
by a categorical distribution π j, i.e., π j = π j1,π j2 . . .π jk . . .,
where 0≤ π jk ≤ 1 and ∑

∞
k=1 π jk = 1, that is specific to text j.

Each π j is assumed to be drawn from a Dirichlet process prior
whose base distribution, m, is a categorical distribution over
the positive integers and whose scalar concentration parame-
ter is a. The m base distribution is assumed to be drawn from
a stick breaking distribution with a parameter γ. As such, the
generative model of the corpus is as follows:

w ji|x ji,φ∼ dcat(φx ji), x ji|π j ∼ dcat(π j), i ∈ 1 . . .n j

π j|a,m∼ ddp(a,m), j ∈ 1 . . .J
m|γ∼ dstick(γ),

where dcat is a categorical probability distribution, ddp is
a Dirichlet process, and dstick is a stick breaking distribu-
tion. The prior on the component distributions φ1 . . .φk . . .
was a Dirichlet distribution with concentration parameter b
and length V location parameter ψ.

Having inferred a HDPMM on the basis of a corpus of lan-
guage data D , given any new text, w j′ , we can use Bayes’s
rule to infer the posterior probability over π j′ , which is the
probability distribution over the discourse topics in w j′ :

P(π j′ |w j′ ,D) ∝ P(w j′ |π j′ ,D)P(π j′ |D).

2According to a bag-of-words model, a language corpus is a set
of texts, where each text is an unordered set, or bag, of words.

We may then use the posterior predictive distribution to infer
the words that are typical of the topics inherent in w j′ . The
predicted probability of word w j′i′ given text w j′ is given by

P(w j′i′ |w j′ ,D) =
∫

P(w j′i′ |π j′ ,D)P(π j′ |w j′ ,D)dπ j′

Corpus As our language corpus, we used the British Na-
tional Corpus (BNC) (BNC Consortium, 2007). From the en-
tire BNC, we extracted all sections that were tagged as para-
graphs. This gave us a corpus with a total word count of
87,564,696 words. From this, we created a set of 184,271
texts, each between 250 and 500 words long. These were cre-
ated by using either single paragraphs in this count range, or
concatenating consecutive paragraphs until they were within
this range. The total word count of this set of texts was
78,723,408 words. We then restricted the word types by ex-
cluding words that occurred less than 5 times in total, and any
words on either of two lists of stopwords, and any words that
were not listed in a dictionary of ≈ 60K English words. This
lead to a final vocabulary of 49,328 word types. For more
information, see Footnote3.

Inference We used a Gibbs sampler to infer the posterior
distribution over the values of latent variables, i.e., {x ji : j ∈
1 . . .J, i∈ 1 . . .n j}, as well as the hyper-parameters m, a, b, ψ,
and γ. For more information, see Footnote4

Prediction From the entire set of paragraphs in the BNC, we
randomly sampled 50 paragraphs whose length was 150±10
words, where at least 90% of the words are in the aforemen-
tioned dictionary of English words, and where at least 75% of
the words were in a set of words for which word association
norms exists (see the following section for more details on
the word association norms we used). For more information,
see Footnote5.

For each of the 50 sampled texts, we then used poste-
rior predictive inference, as described above, to obtain the
probability distribution over words that are typical or com-
patible with the topic based representation of each text. As
explained above, this distribution effectively provides the in-
ferred model’s memory of the content of the text. A Gibbs
sampler was used to infer each text’s posterior distribution
over π, which is the probability distribution over discourse
topics in that text. Two example texts and their posterior pre-
dictive inferences are shown in Figure 1. For more informa-
tion, see Footnote6.

3Full details about how the corpus was created, in-
cluding all the code used to create it, is available at
https://github.com/lawsofthought/tantalum

4Full details about the Gibbs sampler for the HDPMM,
including the code implementing it, can be found at
https://lawsofthought.github.io/gustavproject.

5Full details about how we sampled the texts, including the code
implementing the sampling and the sampled texts themselves, can
be found at https://github.com/lawsofthought/berkelium.

6Full details about how we sampled from the posterior predictive
distribution, including the code implementing the sampling, can be
found at https://github.com/lawsofthought/gallium.
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Improve your mood and counteract stress: Ask anyone who ex-
ercises regularly and they will tell you that they always feel
exhilarated at the end of a session even if they had begun by
feeling that they were not in the mood for exercise and had al-
most forced themselves to continue. Physical fitness also pro-
vides considerable protection against stress and the illnesses it
can cause. So, however busy your life, perhaps you could try
and fit some regular exercise into your day. Let it be some-
thing which is in complete contrast to the way you normally
spend your time. One word of warning though: if you are some-
one whose daily life involves a strong competitive element, you
would do well to avoid too much in the way of competitive
sport (squash, tennis and so on) as your form of exercise as
these will only tend to maintain an already high level of stress.

2222222222

relaxation feel mind exercise people

exercising stretching walking stamina build energy

routine walk swimming fit training weight

aerobics health yoga anxiety programme rest session

fitness increase life running week jogging rate level

aerobic tension exercises regular stress start

begin muscles gym minutes mood heart strength

body muscle physical day time

Developmental norms are an attempt to provide an indica-
tion of the ages at which one might expect ordinary children
to show evidence of certain skills or abilities. Since chil-
dren vary with respect to the ages at which they demonstrate
any particular behaviour, norms represent an average obtained
from an examination of the developmental changes occurring
in a large number of children. Data from a large sample will
show the earliest age at which a child would be expected to
gain control of a particular aspect of language, and the age
by which 90 per cent or 95 per cent of non-handicapped chil-
dren might be expected to show evidence of the same abil-
ity. If children who have already been diagnosed as suffer-
ing from some specific handicapping condition are included,
the data will show the expected age delay before this group
matches the performance of the normally developing children.

2222222222

data time carried play individual children items

scores cent found measured information average school samples

sample extent adults family reliability set population behaviour

test parent ability testing aged assessment

adult score low childhood increase level result provide scale

performance tested parents measure

results mother age compared child home validity

tests
Figure 1: An example of two of the texts used in the memory experiment, and samples from the HDPMM’s posterior prediction
for each one. The predicted words are scaled as a function of their predicted probability, and we show the 50 most highly
predicted words (excluding stopwords and words not in the vocabulary) for each text. Words in italics are predicted words that
were not in the text itself. These, in effect, are the model’s false memories.

Comparison models
The focus of our analysis is whether the probability of rec-
ognizing or recalling any given word having read a partic-
ular text is predicted by our HDPMM’s posterior predictive
distribution over words for that text. To properly evaluate
the model’s predictions, it is necessary to compare them to
those of other plausible models. Here, we will compare the
Bayesian model to predictions made by two associative mod-
els. Both of these models predict that the words that are
remembered from a text are those that are most associated,
on average, with the text’s content. Associative models are
strong models to compare to the Bayesian model because as-
sociative strength has been repeatedly shown to a strong pre-
dictor of memory for words in word lists (e.g., Roediger, Wat-
son, McDermott, & Gallo, 2001; Gallo, 2006).

The statistical co-occurrence probability of two words, wk
and wl , which we will denote PC(wk,wl), is defined as the em-
pirical probability of observing word wk and wl in the same
text7 in the language. Here, we calculate PC(wk,wl) using

7Here, as above, we use the term text to denote any coherent and

the same BNC corpus as was used above, i.e. with the same
184,271 texts each between 250 and 500 words. From this,
we can calculate

PC(wk|wl) =
PC(wk,wl)

PC(wl)
,

which is the conditional probability of observing wk in any
text given that wl has been observed. From this, if text j =
w j1,w j2 . . .w jn j , the predicted association probability of word
wk according to text j is

PC(wk|text j) =
1
n j

n j

∑
i=1

PC(wk|w ji).

We can interpret this value intuitively as the average associa-
tion between wk and text j, with association defined in terms
of statistical co-occurrences in the language.

An alternative means to calculate the average association
between wk and text j is using word association norms, rather

self-contained piece of language.
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than statistical co-occurrences. If Akl is the frequency that
word wk is stated as associated with word wl , then the condi-
tional probability of word wk given wl is

PA(wk|wl) =
Akl

∑
V
i=1 Ail

,

where V is the total number of words in our vocabulary of
response words. Now, given text j = w j1,w j2 . . .w jn j , we can
calculate

PA(wk|text j) =
1
n j

n j

∑
i=1

PA(wk|w ji),

which we can interpret as the average association between wk
and text j, with association now defined in terms of word asso-
ciation norms rather than statistical co-occurrences. Though
a large set of English word association norms are available
from the widely used Nelson norms (Nelson, McEvoy, &
Schreiber, 2004), we used an even larger set that is a pre-
release of the English small world of words association norms
(De Deyne & Storms, 2017). This provided word associates,
produced by 101,119 participants, to 10,050 word types. For
more information, see Footnote8.

Experiment
Our aim in this experiment is to measure participants’ mem-
ory of the 50 sampled texts described in the previous section.
Participants read these texts at their normal reading speed and
then their memory for what they have read is tested using both
recall and recognition tasks. We will then compare the pat-
tern of results from our participants with the predictions of
the models.

Methods
Participants 216 people (113 female, 103 male) partici-
pated in the experiment. The ages ranged from 17 to 78 years,
with a median of 34 years. Participants were recruited from
the student and general populations, with the only restriction
being that they be native English speakers.

Design Pre-experiment sample size determination calcu-
lations showed that, given the reasonable assumptions of
both inter-text and inter-subject variability in memory per-
formance, a relatively large number of texts and participants
was necessary. In particular, we showed that there is a high
probability of detecting effects, even when these effects are
relatively weak, if we have at least 50 texts and at least 150
subjects are used. Importantly, these results hold even when
each subject sees only a small subset of total number of texts,
and this subset can be as low as 3 texts per each participant.
We therefore used all 50 texts described above, and initially
aimed for approximately 200 participants, with each partici-
pant being tested with a randomly sample of 3 texts.

8Full details about how these two associative models were cre-
ated, including the code implementing them, can be found at
https://github.com/lawsofthought/gallium.

Materials The texts used as stimuli for this experiment
were the above mentioned 50 texts.

For the recognition tasks, test word lists with 20 words
each were created. Of the 20 words in each list, 10 were
present in the to-be-memorized text, while the remaining 10
were not present in it. For each text, the list was created as fol-
lows. Key words were extracted from each text and also from
the surrounding paragraphs to that text in the BNC. This was
done by calculating the tfidf (term frequency, inverse docu-
ment frequency) value for each word, and then applying a
threshold to exclude the less informative words. 10 words
were then randomly selected from the key words of each text.
A further 10 words were randomly sampled from the key
words of the surrounding paragraphs excluding any words the
in the main text itself. This set of 10 words were therefore not
present in the text to be memorized, but given that they were
selected from surrounding paragraphs, they were likely to be
meaningfully related to it. As such, they would serve a useful
items on the recognition memory test as they could not easily
be dismissed without a proper search of memory. For more
information, see Footnote9.

Text

Tetris

Recognition test

Recall test

45s - 90s

60s

5s

2s

5s ...

Figure 2: The task diagram of one block in the experiment:
Participants read a randomly assigned text, perform a filler
task, and then have their memory tested using either a recog-
nition or recall test, with the test type being randomly chosen.
This process is repeated three times for each participant.

Procedure Each experiment session proceeded as follows
(see also Figure 2):

• After initial information and instructions, which informed
participants that they would be engaging in memory tasks,
one of the sample texts appeared on screen. Participants
were instructed to read this text at their normal reading.
The text stayed on screen for a maximum of 90 seconds,

9Full details about the recognition test word lists were cre-
ated, including the code implementing this, can be found at
https://github.com/lawsofthought/berkelium.
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but after 45 seconds, participants were able to move on the
next screen if they so wished.

• On the following screen participants were asked to play the
computer game Tetris for exactly 60 seconds.

• At the completion of the game, participants proceeded to
the memory task. For each participant and for each text,
the memory test was randomly chosen to be either a recog-
nition or a recall task.

– For the recognition test, the 20 test items were presented
on screen, one word at a time, with an inter-stimulus-
interval of 2 seconds. They remained on screen for 5
seconds or until the subject indicated with a button press
whether the word shown was present or absent from the
text. No feedback was given after each response.

– If the participant was assigned to the recall test, a screen
of a list of small empty text boxes was presented where
and they were asked to type as many words as they could
remember, one word into each text box. Initially, 10
empty texts boxes were presented, and more boxes could
be added with a button press.

• Upon completion of the memory test, participants were
given the option of pausing or proceeding to the next test.
Each participant performed three tests in total, with the
three texts to which they were assigned being always ran-
domly sampled from the set of 50 texts.

The experiments were presented using the Wilhelm10 web-
browser based experiment presentation software that was
hosted at https://www.cognitionexperiments.org. This soft-
ware allowed the experiment to be done any web-browser
based device, e.g., phones, tablets, laptops and desktops.

Results
For more information about the results, see Footnote11.

Descriptives In the recognition memory tests trials, the
overall accuracy rate was 76%. Overall, the false positive
rate, i.e. where participants responded “present” to words
that were not present in the text they read, was 27%. The
false negative rate, i.e. where participants responded “absent”
to words that actually were present in the text, was 22%. For
the recall tests, the median number of recalled words per each
test was 7, with between 2 and 15 words recalled in 95% of
tests. The overall accuracy of recall was 70%, and thus there
was an overall false recall rate of 30%.

Model evaluation For the recognition memory data, we
model how well each model predicts the behavioural results
using a random effects logistic regression model. In other
words, for each of the models being evaluated, we fit the

10This is open-source software and is available at
https://github.com/lawsofthought/wilhelmproject

11All raw data, and code for all analyses, can be found at
https://github.com/lawsofthought/gallium.

recognition memory data using the same random effects lo-
gistic regression but using a different predictor variable in
each case. The logistic regression model is

log
(

pi

1− pi

)
= α+αsi +αti +(βsi +βti +β)φi +bxi,

where i indexes the experiment trial, pi is the probability of
the participant responding “present” to the word presented on
trial i, si is the identity of the participant on trial i, ti is the
identity of the text on trial i, φi is the log of the model’s pre-
dicted probability of the word on trial i, xi indicates if the
word on trial i was present in text ti. The random effects re-
gression coefficients are αsi , αti , βsi , βti , which are modelled
as drawn from zero-mean Normal distributions.

Having fit the logistic regression model using the predic-
tions of the HDPMM topic model, the co-occurrence based
model, the association norm based model, and a null model
(where φi is set to 0 for all i), we calculate model fit statis-
tics such as BIC, AIC, and Deviance. They are shown in the
following table:

HDPMM Co-occur Assoc Null

BIC 5775.68 5824.33 6083.58 6212.77
AIC 5715.97 5764.62 6023.87 6186.23

Deviance 5697.97 5746.62 6005.87 6178.23

We will concentrate on the BIC results as the loge of the
Bayes Factor comparing any model M0 to model M1 can be
approximated by half the difference of the BIC of models M1
and M0. Thus, the loge of the Bayes factor comparing the
HDPMM predictions to those of the co-occurrence based asso-
ciation model is 24.32. By any standard, this is overwhelming
evidence in favour of the predictions of the HDPMM relative
to those of the co-occurrence model. For example, Kass and
Raftery (1995) argue that a log Bayes factor on a log10 scale
that is greater than 2.0 is already decisive evidence in favour
of the better model. In our case, our loge result of 24.32 is
10.42 on a log10 scale. As the BIC of the association norm
model is even greater than that of the co-occurrence model,
there is overwhelming evidence in favour of the HDPMM rel-
ative to the comparison models.

For the recall memory task results, each set of recalled
words by a participant on any given test j, which we will de-
note by ω j = ω j1,ω j2 . . .ω jn, can be reasonably viewed as
draws from a subjective probability distribution that is the
participant’s memory representation of the contents of the
text. We can calculate the likelihood of this data according
to the probability distribution defined by any of our models,
denoted generically by ψ, as follows:

P(ω j|ψ) =
n

∏
i=1

V

∏
v=1

ψ
I(ri=v)
v =

V

∏
v=1

ψ
r jv
v

where I(·) is an indicator variable that takes the value of 1 if
its argument is true, and r jv is the number of times that word
wv occurs in ω j, which in this case will be either r jv = 1 if
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word wv was recalled and r jv = 0 otherwise. The loge of the
likelihood of all the recall memory task data is

loge

L

∏
j=1

P(ω j|ψ) = loge

L

∏
j

V

∏
v=1

ψ
r jv
v =

L

∑
j

V

∑
v=1

r jv loge ψv.

These results are presented in the following table:

HDPMM Co-occur Assoc

logLik -14109.02 -15100.94 -16039.98
Deviance 28218.03 30201.88 32079.96

Given that the deviance is equal to the BIC plus a constant
term, the difference of the deviances is identical to the differ-
ence of the corresponding BIC’s. Approximating the loge of
the Bayes factor by half this difference, we therefore calculate
a log10 Bayes factor for the evidence for the HDPMM predic-
tions relative to those of the nearest model, the co-occurrence
based association model, as 430.79. On the basis of the in-
terpretation described above, this is again overwhelming evi-
dence in favour of the HDPMM.

Discussion
In this paper, we have proposed — and then tested using a
high powered behavioural experiment — a Bayesian account
of how we form memories for spoken and written language.
This account models how we use our background knowledge
to form memories as a process of Bayesian inference of the
statistical patterns that are inherent in each text, followed by
posterior predictive inference of the words that are typical
of those inferred patterns. We have implemented this model
specifically as a HDPMM and applied it to an approximately
80m word corpus of texts taken from the BNC. This allowed
us to make predictions of the probability of remembering any
given word in each text from a sample of texts taken from the
BNC. We tested these predictions in a behavioural experiment
with 216 participants. The results of the analysis from both
the recognition and recall data provided overwhelming evi-
dence in favour of the Bayesian model relative to non-trivial
alternative models.
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