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Strengths and limitations of this study

►► To impact surgical practice by better and earlier 
identifying patients at greatest risk for cardiore-
spiratory instability and by providing point-of-care 
data-driven explanations and process-specific 
resuscitation using real-time data input and point-
of-care management, potentially decreasing pre-
ventable surgical morbidity and mortality.

►► Our deliverables will create a sensitive and specif-
ic means to predict which patients may or may not 
ever develop cardiorespiratory instability, which has 
important implications for patient safety, surveil-
lance, triage and care.

►► The modelling methods we propose to develop 
should drastically shift intraoperative paradigms and 
treatment protocols and they will be applicable to 
existing monitoring modalities.

►► Our machine learning analytics have potential to 
identify new monitoring parameters to improve pre-
diction of instability and, in our exploratory specific 
aim, to reverse engineer our understanding of dis-
ease aetiology during the surgery.

►► Although we will focus on high-risk surgery patients, 
we will collect data on the whole surgical population 
such that we will also develop a novel database on 
low-risk patients but the main limitation of this study 
is that it is a retrospective study.

Abstract
Introduction  About 42 million surgeries are performed 
annually in the USA. While the postoperative mortality is 
less than 2%, 12% of all patients in the high-risk surgery 
group account for 80% of postoperative deaths. New 
onset of haemodynamic instability is common in surgical 
patients and its delayed treatment leads to increased 
morbidity and mortality. The goal of this proposal is to 
develop, validate and test real-time intraoperative risk 
prediction tools based on clinical data and high-fidelity 
physiological waveforms to predict haemodynamic 
instability during surgery.
Methods and analysis  We will initiate our work using 
an existing annotated intraoperative database from 
the University of California Irvine, including clinical and 
high-fidelity waveform data. These data will be used for 
the training and development of the machine learning 
model (Carnegie Mellon University) that will then be 
tested on prospectively collected database (University 
of California Los Angeles). Simultaneously, we will use 
existing knowledge of haemodynamic instability patterns 
derived from our intensive care unit cohorts, medical 
information mart for intensive care II data, University of 
California Irvine data and animal studies to create smart 
alarms and graphical user interface for a clinical decision 
support. Using machine learning, we will extract a core 
dataset, which characterises the signatures of normal 
intraoperative variability, various haemodynamic instability 
aetiologies and variable responses to resuscitation. We 
will then employ clinician-driven iterative design to create 
a clinical decision support user interface, and evaluate its 
effect in simulated high-risk surgeries.
Ethics and dissemination  We will publish the results 
in a peer-reviewed publication and will present this work 
at professional conferences for the anaesthesiology and 
computer science communities. Patient-level data will 
be made available within 6 months after publication of 
the primary manuscript. The study has been approved by 
University of California, Los Angeles Institutional review 
board. (IRB #19–0 00 354).

Introduction
About 42 million surgeries are performed 
annually in the USA.1 2 While the estimated 
postoperative mortality is less than 2%, 12% 
of all patients in the high-risk surgery group 
account for 80% of postoperative deaths.3 4 To 
assist in guiding clinical decisions and prior-
itisation of care, several perioperative clin-
ical risk scores have been proposed.5–7 The 
goal of these scores is to help planning 
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clinical management and allocating resources to avoid 
postoperative complication and death. Recently, US 
hospitals have adopted electronic health report (EHR) 
documentation of patient care. Still, interoperability of 
these EHR systems remains an open issue, leading to 
challenges in data integration. As a result, the potential 
that hospital data offer in terms of understanding and 
improving care has not been realised. While physiolog-
ical prediction tools have been developed in the critical 
care setting,8–11 the goal of this proposal is to develop, 
validate and test real-time intraoperative risk prediction 
tools based on EHR data and high-fidelity physiological 
waveforms to predict cardiorespiratory instability (CRI) 
in the perioperative/surgical setting. New onset of CRI is 
common in patients undergoing surgery. Delayed treat-
ment of CRI leads to increased morbidity, mortality and 
use of resources in surgical patients. Even short periods 
of intraoperative hypotension (mean arterial pressure 
<65 mm Hg) have been linked to postoperative complica-
tions such as myocardial infarction and kidney failure12 13 
and mortality.14 Although anaesthesiologists can rescue 
patients with CRI—decreasing the incidence of cardiac 
arrests and inpatient mortality15–17—a more proactive 
approach would be to enable anaesthesiologists and 
nurse anaesthetists to recognise impending CRI before 
it happens.

Specific aim 1 (SA1). Development of the machine 
learning (ML) test set (University of California, Irvine 
(UCI)) and retrospective validation (UC Los Angles 
(UCLA)) in high-risk surgery patients to identify subse-
quent CRI. Using ML analytics, we will extract a core 
dataset which best characterises the signatures of normal 
intraoperative variability, various intraoperative CRI aeti-
ologies and variable responses to intraoperative resuscita-
tion using (1) existing high-granularity physiological and 
clinical record data to define the structure of the data-
base; (2) high-granularity intraoperative data from high-
risk surgery patients for prospective input and further 
model development. Since our approaches use agnostic 
prioritisation of physiological signals, we will explore 
which processes underlie specific signatures. This reverse-
engineering approach will give insight into cardiorespira-
tory homoeostasis and intraoperative CRI.

SA2. Prospective validation of a clinical decision support 
system (CDS) tool. We will employ clinician-driven iter-
ative design to create a novel CDS user interface, and 
evaluate its effect in simulated intraoperative high-risk 
surgeries.

Methods and analysis
Study design
We propose to initiate our work using an already existing 
annotated intraoperative database (UCI) including EHR 
and high-fidelity waveform data. These data will be used 
for the initial training and development of the ML model 
that will then be tested on prospectively collected UCLA 
database (SA1). Simultaneously, we will use existing 

knowledge of CRI patterns derived from our step down 
and intensive care unit (SDU/ICU) cohorts, medical 
information mart for intensive care II data, UCI data and 
animal studies (University of Pittsburgh) to create smart 
alarms and graphical user interface (GUI) for CDS (SA2).

Patient population and data acquisition
The UCI dataset is based on the Bernoulli data collec-
tion system (Cardiopulmonary, New Haven, Connecticut, 
USA), and as of February 2019 it includes high-fidelity 
physiological waveforms and EHR18 data on more than 
35 000 patients. All waveform and clinical data from 
surgical patients at UCI have been collected for research 
purposes since November 2015. The total UCI data 
collection as of February 2019 consists of >1 20 000 moni-
toring hours of waveform and clinical data or >4000 GBs 
of data. All waveform data is collected off of surgical 
patient monitors with the Bernoulli software and equip-
ment, and de-identified and synced retrospectively with 
clinical data (figure  1). The sampling rates for EKG, 
plethysmographic and arterial waveforms are 300, 100 
and 120 Hz. Clinical data are extracted from intraoper-
ative EHR (Surgical Information Systems (Alpharetta, 
Georgia, USA) and Epic (Verona, Wisconsin, USA)) and 
synced with waveform data. These data are then linked 
to monitoring and clinical annotations, where adverse 
events are documented. At UCLA, we have established 
a perioperative data warehouse including all the EHR 
data and we plan to instal an intraoperative data collec-
tion system similar to Bernoulli for waveform collection. 
The EHR data at UCLA have already been analysed as 
proof of concepts.18 19 The Bernoulli and similar soft-
ware (Bedmaster) provides a mission-critical applica-
tion layer designed for multiparameter data abstraction, 
fusion, remediation, time synchronisation and real-time 
processing. Bernoulli provides an extensive distribution 
layer designed for export to third-party applications and 
EHR providers via HL7 or custom protocols. To create any 
predictive analytics, one must have a dataset free of signif-
icant artefacts. Alert artefacts greatly reduce accuracy of 
predictive models, which may misinform therapy and 
undermine response. Having experts manually annotate 
large amounts of data to identify all artefacts is imprac-
tical. We developed an active ML approach to identify real 
vital sign alerts from artefact. We found that increasing 
the amount of adjudicated training data improves accu-
racy of alert identification, but just 30% of labelled events 
are sufficient to confidently identify 77%±11% of all the 
remaining artifacts. We have also developed automated 
algorithms to automatically extract accurate clinical 
information from the EHR. In one project, we trained an 
algorithm to automatically extract duration of postoper-
ative mechanical ventilation from the EHR after cardiac 
surgery. By incorporating three different data sources 
into our algorithm and by using preprogrammed clinical 
judgement to overcome common errors with data entry, 
our results proved to be more comprehensive, more 
accurate and required a fraction of the computation 
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Figure 1  Process, workflow and architecture of the already existing UCI database. ART, arterial waveform; ASA, American 
Society of Anesthesiologists; BP, blood pressure; CPT, current procedural terminology; EHR, electronic health report; EMR, 
electronic medical record; HR, heart rate; LOS, length of stay; PA, pulmonary artery; UCI, University of California, Irvine.

time compared with manual review. We will use these 
approaches to reduce the need for human expert anno-
tation of monitoring events and to make our proposed 
scale data review realistic and manageable.

Development thrusts
Identification of potentially informative biosignatures. 
In support of SA1, we plan to maximise the chances for 
ML-developed feature extraction methods (time-window-
gated statistics such as averages, variances, entropies 
and trends of univariate time series, cross-correlations 
between pairs of series or spectral decompositions, 
followed by compression with, eg, principal compo-
nent analysis (PCA)) with massive-scale comprehensive 
searches for change points in signal to add information 
useful in detecting and characterising CRI as a dichoto-
mous variable. The definition of CRI is defined both by 
exceedances of vital sign parameters (heart rate (HR), 
RR, blood pressure (BP), SpO2) beyond thresholds, EHR-
defined resuscitative actions such as bolus of fluids, infu-
sion of vasopressors and inotropes. Initially, we will strive 

for 15 min advanced warning for volume loss, 15 min 
for haemodynamically unstable arrhythmia, 10 min for 
postabdominal insufflation haemodynamic instability 
and 5 min for postanaesthesia induction hypotension, 
prior to overt clinical signs and symptoms of CRI.

Some of these approaches have been used in the ICU 
setting to predict sepsis but have never been used in 
the perioperative/surgical setting.8–11 We have success-
fully applied such methods to problems involving large 
amounts of multivariate time series data.20 Next, an ML 
algorithm uses a sample of annotated training data to iden-
tify empirically a subset of those change points that bring 
predictive value to models of CRI (supervised learning). 
In addition, we will take our quest for precursors of CRI 
outside of the usual single-signal or joint multisignal 
modelling, by learning structures of multivariate correla-
tions between pairs of signals, and tracking them over 
time. A novel use of Canonical correlation analysis (CCA) 
will be the first approach to try in this context, and we 
will extend it to adopt temporal regularisation constraints 
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to enable smooth transitions between consecutive time 
frames. Our novel approach will let us discover pairs of 
combinations of features, extracted independently from 
two versus time series that highly correlate with each other. 
CCA identifies pairs of such ‘principal components’ that 
could be learnt from the same null space data as shown 
in the context of the PCA-based approach. If certain pairs 
of components are found to correlate consistently during 
stability but lose correlation at or before the onset of a 
CRI (or vice versa), they boost detectability of our target 
events. We will perform extensive searches for such CCA 
components and add them to the pool of factors worth 
tracking. We will use regularisation and feature ablation 
to maintain parsimony of the resulting models, and to 
identify features of data that have key contributory effects 
on performance. We expect to identify such features, 
which would not be visible to alternatives (either using 
many independent single-stream models or a single (fully 
combined) joint model for null-space PCA-like modelling 
of baseline variance, or via bivariate cross-correlations of 
pairs of time series).

Learning predictive models of instability
We will use predictive ML models trained on the UCI 
annotated data to empirically identify the parsimonious 
set of predictors of the targeted pathologies, selected from 
features extracted as described above. In one instance 
of our preliminary work, primary observables (eg, EKG 
signals, BP, central venous and pulmonary arterial pres-
sure, and pulse oximetry waveforms) are processed to 
generate beat-to-beat HR, as well as the various diastolic 
and systolic pressure and oximetry signals. This feature 
become input for random forest regression model that 
learns to predict the time since start of bleed (equiva-
lent to the amount of blood lost given fixed bleed rate 
in the referred experiment), and in the process iden-
tifies a subset of all features that jointly yields optimal 
performance. We also create 1 and 5 min moving aver-
ages of these derived variables, as well as often reported 
measures of HR variability along several domains (time 
and frequency domains, non-linear measures).21 The 
time windows determining the features from the raw elec-
trical signal and output classes will vary according to aims. 
In SA1, we will enrich the development set to include a 
significant proportion of time windows from patients in 
CRI, thus, the model will predict either one of the CRI 
states, or absence of CRI. In SA1, models predictive of 
fluid resuscitation will include patients in CRI and the 
output (fluid responsiveness) is binary. We will use the 
activity monitoring operating characteristic analysis as 
described above to validate models’ sensitivity and spec-
ificity. To take our CDS beyond capability to detect intra-
operative bleeding at a single specific rate, we will collect 
human data, retrospectively annotated by OR and ICU 
physicians for CRI events and apply Bayesian aggrega-
tion (BA) method.22 It accumulates evidence from subse-
quent measurements and tracks multiple hypotheses as 
their posterior probability distribution evolves while new 

evidence becomes available. BA will be our foundational 
approach to characterisation of detected and predicted 
events of interest whenever low signal to noise ratios in 
the available data would yield more direct regressive 
models impractical. In particular, it will detect functional 
hypovolaemia, and estimate the rate of intravascular fluid 
loss.

Explanatory analysis
For our exploratory aim, we will perform explanatory 
analysis of the learnt predictive model asking what physi-
ological control qualities of the primary predictors of the 
models best explain their predictive power. In this way, 
we will explore foundations of autoregulation, adaptation 
and failure in the context of CRI. In ML experiments, 
we will favour the types of models that avail explain-
ability of generated results. We had success applying 
random forest classifiers and regressors in applications 
that require high level of user interaction and extensive 
explanations of predictions made.23 We have also tried 
our RIPR algorithm24 to support interactive adjudication 
of alerts as either true episodes of instability or artifacts.25 
It relies on point estimators for conditional entropy and 
recovers a desirably small set of projections of data which 
accurately classify test alerts while remaining intuitive 
to humans. New alerts can be adjudicated using one of 
the projections from the retrieved set. We will extend 
this approach to systematically include semisupervised 
and active learning concepts to support semiautomated 
annotation of large-scale data sets given limited avail-
ability of qualified human experts. We have also shown 
combined predictive and explanatory utility of learning 
temporal association rules from asynchronous sequences 
of discrete events and continuous signals with TITARL 
algorithm. We have shown that it can be used to iden-
tify which of the potentially large number of patterns 
detected in data coincide or precede particular events of 
interest, and present the results in a readable and inter-
pretable form of manageably simple logical statements. 
We will extend this approach so that the most predictive 
combinations of patterns and states that can asynchro-
nously appear in multivariate clinical data, irrespective of 
the temporal resolution of their observation (waveforms, 
beat to beat, breath to breath, disparate clinical records 
and demographic data) or missingness of data (frequent 
in haemodynamic monitoring of human patients), will 
be revealed, validated by expert clinicians, and used to 
support predictive models.

Creation of a prototype CDS system bedside GUI showing real-
time probability of impending instability, lead time to event 
and determining factors (SA2)
Primary model development and initial simulation testing 
will be done using the initial UCI and UCLA databases, 
and then validated at UCLA simulator centre. Then the 
UCLA and University of Pittsburgh datasets will serve as 
an external validation set for our predictive models in 
an iterative fashion (we will conduct external validation 
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in years 3–5 of our project and will use area under the 
curve, sensitivity, specificity, positive predictive value and 
negative predictive value as well as precision recall to eval-
uate the performance of the model). First to predict CRI, 
then to diagnose specific aetiologies, and then to guide 
resuscitation based on our explanatory analyses and 
CDS development. Thus, our primary goal is to create 
a robust and generalisable approach that will readily 
expand across other healthcare information systems. We 
will finalise the ML analysis of the prospectively acquired 
high-risk surgery patient cohort dataset in year 5. We 
anticipate creating final prototype GUI incorporating 
both measures of present instability and our predictive 
model with descriptions as to the potential processes that 
will be causing instability. We will use clinician-driven iter-
ative design to refine the GUI.

SimStage 1
We will enlist 12 experts (6 nurse anaesthetists and 6 
physician anaesthesiologists) to provide feedback. The 
high-fidelity simulator will be set to simulate the OR and 
using the prototype GUIs we have and will develop. The 
feedback sessions will be conducted in two groups of six 
clinicians to maximise variety in the input while benefiting 
from group dynamics. We will seek feedback regarding 
GUI (1) completeness or redundancy of content, (2) ease 
of interpretation and (3) ergonomics. This feedback eval-
uation will be iterative, with a new generation of the GUI, 
which takes into consideration input from each group, to 
be rolled out sequentially. We anticipate 3–5 GUI itera-
tions before subsequent larger group testing.

SimStage 2
We will move to larger scale clinician-driven iterative 
design through evaluation of simulated clinical GUI 
use. In this stage, the HFHS will be set as an operating 
room and based on 10 scenarios. The patient’s monitors 
will live stream the data collected in C.1 for 10 selected 
patient cases; clinicians will also have access to the other 
deidentified case data such as medical history, laboratory 
and diagnostic test results, current medications. Of the 
10 simulated cases, eight will show evidence of instability 
across a 2-hour interval. Two for volume loss, two for 
haemodynamically unstable arrhythmia, two for postab-
dominal insufflation haemodynamic instability, two for 
postanaesthesia induction hypotension, while two will 
remain stable with half the patients monitored according 
to current standard practice, while half will use the addi-
tional GUI. Each scenario will be run by one anaesthesi-
ologist and subsequently by one nurse anaesthetist. The 
clinicians will document patient assessment and care 
directives. We will then evaluate each scenario for effec-
tiveness based on accuracy of diagnosis, time to correct 
diagnosis, accuracy of intervention choices (based on 
predefined scenarios and proposed correct interventions 
based on expert development) and time to interven-
tion. These scenarios will be repeated four times, using 
different clinicians (ie, total of 40 clinicians, half MD and 

half nurses). All clinicians will be debriefed to gain their 
feedback as in SimStage 1.

SimStage 3
Then we conduct a midterm analysis of effectiveness 
results that we will share with our original team of experts 
from SimStage 1, and make iterative design adjustments 
to the GUI, the alerting system or the action algorithms 
based on SimStage 2. We will then proceed to SimStage 3, 
another simulated trial with the same simulated settings, 
scenarios and equipment, but 40 different volunteers (so 
as to avoid Hawthorne effect). We will collect the same 
information, and evaluate if the effectiveness indicators 
from SimStage 2 are improved on in SimStage 3. The final 
refined design represents the deliverable CDS prototype 
for this project, and to estimate effect sizes for a future 
clinical trial.

Patients and public involvement
The choice of the outcome was guided by the recent large 
studies showing the relationship between intraoperative 
haemodynamic instability and postoperative outcome. 
Patients were not involved in the design of the study and 
will not be involved in the recruitment of study partici-
pants. The results of this study will be disseminated via 
publication in the medical journals.

Discussion
​Implications and future directions
If one could accurately predict who, when and why 
patients develop CRI during surgery, then effective pre-
emptive treatments could be given to improve postop-
erative outcome and more effectively use healthcare 
resources. But signs of shock often occur late once organ 
injury is already present. The goal of this proposal is to 
develop, validate and test real-time intraoperative risk 
prediction tools based on EHR data and high-fidelity phys-
iological waveforms to predict CRI and make the data-
bases of intraoperative data and waveforms used for these 
developments freely accessible. This is extremely relevant 
because although 5.7 million Americans are admitted to 
an ICU in 1 year, more than 42 million undergo surgery 
annually. Previous and ongoing studies conducted in 
the ICU and in the step-down unit have built the archi-
tecture to collect real-time high-fidelity physiological 
waveform data streams and integrate them with patient 
demographics from the EHR to build large data sets, and 
derive actionable fused parameters based on ML analytics 
as well as display information in real time at the bedside 
to drive CDS in the critical care setting. The goal of this 
proposal is to apply these ML approaches to the complex 
and time compressed environment of high-risk surgery 
where greater patient and disease variability exist and 
shorter period of time is available to deliver truly person-
alised medicine approaches.

​Strengths and limitations
We will leverage our previous work and NIH/R01-funded 
projects in the SDU/ICU using similar methodologies 
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to characterise CRI during surgery (R01-GM117622 and 
R01-NR013912). Our innovations are: (1) To impact 
surgical practice by better and earlier identifying patients 
at greatest risk for CRI and by providing point-of-care data-
driven explanations and process-specific resuscitation 
using real-time data input and point-of-care management, 
potentially decreasing preventable surgical morbidity and 
mortality; (2) Being able to adjust for placement, level 
of monitoring needed, and pre-emptive therapies and 
response to therapy enabling personalised medicine. It 
will create a sensitive and specific means to predict which 
patients may or may not ever develop CRI, which has 
important implications for patient safety, surveillance, 
triage and care: needed frequency of monitoring, case 
load mixture, workload, staff allocation, patient triage 
to monitored or non-monitored units, higher cost versus 
lower cost bed allocation, prevention of adverse events; 
(3) Few innovations have been introduced to improve 
technological patient surveillance and management 
in decades. The modelling methods we propose to 
develop should drastically shift intraoperative paradigms 
and treatment protocols and they will be applicable to 
existing monitoring modalities; (4) Our ML analytics also 
have potential to identify new monitoring parameters to 
improve prediction of instability and, in our exploratory 
SA, to reverse engineer our understanding of disease 
aetiology during surgery and (5) More than 42 million 
Americans undergo surgery each year and even though 
the perioperative complication rate is low, the absolute 
numbers are large. Although we will focus on high-risk 
surgery patients, we will collect data on the whole surgical 
population such that we will also develop a novel database 
on low-risk patients. They are an opportunity cohort to 
explore shared risk to compare with the high-risk patients.

Potential limitations
First, this proposal starts as a retrospective analysis of UCI 
data of patients with or without CRI. Limiting our variables 
to those available to us in retrospective analyses may limit 
the ultimate prediction compared with including more 
variables that we may find useful beyond this first pass. 
However, in our prospective UCLA and University of Pitts-
burgh Medical Center (UPMC) data collection interval, if 
specific parameters appear useful, we will prospectively 
use them in a non-protocol fashion in patients because 
we are those patients’ providers. Second, the modelling 
of variables may not allow for discrimination of CRI 
caused by specific diagnoses, rather than by pathophys-
iological processes. Still this would be an improvement 
over existing bedside monitoring analysis. Since we treat 
these surgical patients and CRI is a relatively uncommon 
event we will annotate patients’ records weekly as to 
CRI and specific aetiologies for retrospective analysis. 
Third, our medical centres are installing under our lead-
ership high-density data collection systems (Bernoulli 
or Bedmaster) in all ORs. We have not used these data 
formatting/data synthesis platform before in the OR at 
UCLA and UPMC, but the system has been used at UCI 

and we have the expertise for its installation in SDU and 
ICU at UCLA and UPMC. We have planned for 6 months 
to reformat the data collection and secured query system 
as needed at UCLA and UPMC and budgeted for data 
collection and secured processing personnel for this 
support throughout the duration of the study. Based on 
the funding cycle criteria, our system could be installed 
at UCLA (07/2018) before this project becomes active. 
Fourth, we planned for Honest Broker recording efforts 
for EHR review similar to ontology analysis already being 
done for another funded protocol (R01 NR013912). 
Accordingly, we have planned for a 6-month lead-in to 
insure she/he is cognizant of the UCLA and UPMC EHR 
idiosyncrasies. Finally, the CDS and GUI development will 
be inherently limited. We plan on only relying on board 
certified anaesthesiologists and certified nurse anaesthe-
tists from UCLA for the iterative development of the CDS 
and GUI and this may limit the external validity of this 
system. Whether trainees could use this system appropri-
ately would still have to be studied.

​Ethics and dissemination
Once the investigation has been completed, we intend to 
publish the results in a peer-reviewed publication. We also 
intend to present the results of this work at professional 
conferences for both the anaesthesiology and computer 
science communities. In accordance with the recent 
proposal from the International Committee of Medical 
Journal Editors, patient-level data will be made available 
within 6 months after publication of the primary manu-
script. Data will be provided to researchers who submit 
a methodologically sound research proposal including 
a protocol and statistical analysis plan. No patient iden-
tifying fields (including dates) will be included in the 
shared dataset. Age will be provided in years, unless the 
patient is older than 89 years. In this case, age will be 
reported as ‘>89 years’. Any dates will be presented as 
‘number of days since index surgery’.
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