Lawrence Berkeley National Laboratory #### **Recent Work** #### **Title** Oxidative Intercalation of Graphite by Fl uoroanionic Species Evidence for Thermodynamic Species #### **Permalink** https://escholarship.org/uc/item/2pk6h2h9 #### **Journal** Electron Transfer in Biology and the Solid State: Inorganic Compounds with Unusual PropertiesAdvances in Chemistry Series, 226 #### **Authors** Bartlett, N. Okino, F. Mallouk, T.E. et al. #### **Publication Date** 1990 ## Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA # Materials & Chemical Sciences Division To be published as a chapter in Electron Transfer in Biology and the Solid State, M.K. Johnson, et al., Ed., Advanced Chemistry Series, No. 226, February 1990 **Evidence That the Barrier to Oxidative Intercalation** of Graphite by Fluoroanionic Species Is Thermodynamic N. Bartlett, F. Okino, T.E. Mallouk, R. Hagiwara, M. Lerner, G.L. Rosenthal, and K. Kourtakis February 1990 Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098. Ifor D weeks Copy Bldg. 50 Librar #### DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. Evidence That the Barrier to Oxidative Intercalation of Graphite by Fluoroanionic Species Is Thermodynamic N. Bartlett, F. Okino, T.E. Mallouk, R. Hagiwara, M. Lerner, G.L. Rosenthal, and K. Kourtakis Department of Chemistry University of California and Materials and Chemical Sciences Division Lawrence Berkeley Laboratory University of California Berkeley, CA 94720 February 1990 This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Science Division of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098. ## EVIDENCE THAT THE BARRIER TO OXIDATIVE INTERCALATION OF GRAPHITE BY FLUOROANIONIC SPECIES IS THERMODYNAMIC Neil Bartlett, Fujio Okino, Thomas E. Mallouk, Rika Hagiwara, Michael Lerner, Guy L. Rosenthal, and Kostantinos Kourtakis Department of Chemistry, University of California, Berkeley and Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 Abstract Whether or not oxidative intercalation of graphite by fluoroanions can occur may be estimated from the electron affinity, E, (- ΔH_{298} in kcal mole 1) of the oxidizing half reaction. For first-stage salts with MF₆ guests, E must exceed exceed 120. The values of E (e + 3/2 MF₅ \rightarrow MF₆ + 1/2 MF₃) for AsF₅ and PF₅ (125 and 87 respectively) account for the spontaneous intercalation of graphite by AsF₅ and the failure of PF₅ to do so. Spontanious intercalation by PF₅ + F₂ spontaneously occurs because E (e + PF₅ + 1/2 F₂ \rightarrow PF₆) = 165. The thermodynamic nature of the barrier to intercalation is demonstrated by the reduction of C_xPF₆ salts by PF₃: C_xPF₆ + 1/2PF₃ \rightarrow xC + 3/2 PF₅. Chlorine with certain fluoroacids can also bring about intercalation of fluoroanions. Polarizable neutral molecules, by improving the lattice energetics of graphite salts, may also be spontaneously intercalated: e.g. C₁₄AsF₆ +1/2 AsF₅ \rightarrow C₁₄AsF₆.1/2 AsF₅. When high positive charge at carbon occurs, F is transferred from the fluoroanion to the carbon and novel graphite fluorides (e.g. C₁₃F) are formed. #### Introduction Most of the reactants which bring about intercalation of graphite are either strong oxidants or reductants e.g. respectively nitric acid or alkali metal^{1,2,3}. The oxidation or the reduction of the graphite that accompanies the intercalation was clearly shown by Ubbelohde and his coworkers^{4,5,6} to be accompanied by an increase in the in-plane resistivity of the graphite, which in fully intercalated material was commonly an order of magnitude greater than in the pristine graphite from which the intercalation compounds had been obtained. The band structures for graphite of Coulson and his coworkers⁷ nicely account for the conductivity in terms of increase in the number of electron carriers in the conduction band of the reduced graphite or an increased number of electron holes in the valence band of oxidized graphite. The preparation of C₆F₆* salts⁸ and the derivation from them of polycyclic cation salts^{9,10}, suggested that very high positive charges might be sustainable in graphite by AsF₆ and other stable perfluoroanions and that excellent electrical conductors of high-oxidation-state carbon could thereby be obtained. This led to synthesis of graphite fluoroarsenates via interaction of graphite with O₂*AsF₆ and to the discovery¹¹ that the guests in the product of the interaction of graphite with AsF₅ were in accord with the latter acting as an electron-oxidizer according to the equation: $$e^{2} + 3/2 \text{ AsF}_{5} \rightarrow \text{AsF}_{6}^{2} + 1/2 \text{ AsF}_{3}^{2}$$ The graphite/AsF₅ intercalation compound had been prepared first by Selig and Agranat and their coworkers¹² and had aroused much interest because of Vogel's finding¹³ that the in-plane specific conductivity of some of the graphite/AsF₅ materials exceeded that of copper. Although the (graphite) * AsF₆* salts appeared to involve higher electron withdrawal from the graphite, higher conductivities than those of the graphite/AsF₅ were not observed.¹⁴ Indeed when the (graphite) *AsF₆* salts were prepared from the interaction of graphite with AsF₆/F₂ gaseous mixtures,¹⁵ the product salts were often less conductive than their partially oxidized relative, graphite/AsF₅. It appeared that the poor electrical conductivity must be associated with bonding of fluorine to carbon, throughout the graphite structure, the fluorine migration throughout the galleries being facilitated by the intercalated species. Direct evidence¹⁴ for a decrease in conductivity was obtained in the case of graphite intercalation by IrF₆ when the first stage was reached. This and the finding from Mössbauer spectroscopy¹⁸ that the first-stage C_xIrF₆ salt contained some Ir(V) in lower than O_h site symmetry were consistent with transfer of F from the anion to the carbon. Aside from this matter of the transfer of fluorine to the highly oxidized carbon, it did appear to Bartlett and McQuillan¹⁷ that the intercalation of graphite by oxidizing fluorospecies was thermodynamically determined. Although Born-Haber cycles have long been applied to intercalation compounds of graphite (e.g. see G. R. Hennig review¹) acceptance of a salt formulation for graphite compounds formed with guests capable of yielding fuororoanions (e.g. AsF_s) was not generally accepted at that time, Bartlett and McQuillan noted that, at least for MF_e salts, where the nearly isodimensional nature of MF_e would result in similar lattice energetics for a given level of charge, the free energy of formation would depend most, with change in M, upon the electron affinity of the oxidizing half reaction. They estimated a threshold electron affinity of approximately 125 kcal mole¹ but they did not establish the thermodynamic nature of that threshold. In this paper further evidence for the importance of the electron affinity of the oxidizing half reaction, in the intercalation of graphite by fluorospecies, is provided. Moreover, the simple thermodynamic model accounts for the oxidative intercalation of graphite by fluoroanions is confirmed by reversal of the intercalation in reactions of known enthalpy change. Threshold values of E for the onset of intercalation and for first-stage intercalation by MF₈ have also been assessed. In addition, it is seen that certain salts e.g. C28 AsF6 provide for the access of fluorine throughout the galleries of the graphite and its extensive fluorination. This has resulted in the separation of a C_xF phase which has proved to be fluorinated \underline{sp}^2 carbon. That phase, which is an insulator, can have a fluorine content as high as $C_{1.3}F$. #### Discussion The hexafluorides of the third transition series elements(M^1) have interatomic distances which change only slightly with atomic number¹⁸ and their effective packing volumes¹⁹ are similar. It is therefore a good approximation for our present purposes to assume that the work done in separating the graphite-atom sheets (\underline{W}) will be the same for all in making a salt of given composition $C_xM^1F_e$. In addition the lattice energies (\underline{U}) for all M^1 would be alike. Since for a given level of charging (C_x^*) the work function (\underline{I}) would be the same we can therefore expect the enthalpy change for the reaction: $$\Delta H_{298}^{\circ}(xC(graphite) + M^{1}F_{6} \rightarrow C_{x}^{+}M^{1}F_{6})$$ to change in step with the electron affinity, E, of M^1F_8 , in accord with the cycle illustrated in Figure 1. George and Beauchamp²⁰ have measured E(WF₈) = 81 kcal mole⁻¹ and Nikitin et al⁻²¹ have evaluated E(PtF₈) to be 184 kcal mole⁻¹. Since the observed chemistry²² requires a smooth increase in E with atomic number for these hexafluorides, the E(MF₈) for the other fluorides are obtained by interpolation. They provide an excellent basis for assessment of the threshold for intercalation to form $C_x^*M^1F_6$. Magnetic data⁻¹⁴ for the M=Os and Ir salts $C_xM^1F_6$ have established the quinquevalence of the metals. Moreover since WF₈ will not by itself bring about intercalation whereas both OsF₈ and IrF₈ form first stage salts, and ReF₈ a higher stage salt²³, it was evident that the E(M¹F₈) threshold for intercalation of graphite by MF₆ had to be between 81 and 106 kcal mole (the E(WF₈) and E(ReF₈) values). Also the threshold E(MF₈) value for first-stage $C_x^*M^1F_6$ formation had to be between E(ReF₈) and E(OsF₈) i.e. between 106 and 131 kcal mole⁻¹. Since all MF_6^- ions have M-F distances²⁴ between 1.7 and 1.9 Å it is probably not a gross approximation to extend the assumptions of the constancy of \underline{W} and \underline{U} , used for the third transition series $M^1F_6^-$ to all MF_6^- . This approximation appears to be valid as the following examples and the data given in Figure 2 illustrate. Although PF₅ (in contrast to AsF₅) does not itself bring about intercalation of graphites, in admixture with fluorine first-stage salts are easily formed^{25,28} at approximately 20°C. This is because²⁷ $$E(PF_5 + 1/2 F_2 + e^- \rightarrow PF_6) = 163 \text{ kcal mole}^-1$$ which is slightly greater than $E(IrF_6)$. Since the electron affinity of the analogous AsF_5/F_2 reaction is even greater²⁸, the easy formation¹¹ of first-stage C_x + AsF_6 salts is accounted for. But the C_x + PF_6 salts also provide for the demonstration of the thermodynamic basis of the electron affinity threshold. Treatment of second and higher stage C_x⁺PF₈ salts with PF₃ at approximately 20°C, reduces the salts with elimination^{27,29} of PF₅ according to the equation: $$1/2 \text{ PF}_3 + \text{PF}_6 \rightarrow 3/2 \text{ PF}_5 + \text{e}^{-1}$$ for which the enthalpy change²⁷ of 87 kcal mole⁻¹ represents the electron affinity for the reverse reaction. This is not much greater than $E(WF_6)$, and since WF_6 by itself is not intercalated by graphite these electron affinities are inadequate to meet the requirements for graphite intercalation by MF_6 . On the other hand, the spontaneous intercalation of graphite by AsF_5 (ref. 12) is evidently a consequence of the high electron affinity of the oxidizing half reaction since²⁷ $E(e^{-1} + 3/2 \ AsF_5 \rightarrow AsF_6 + 1/2 \ AsF_3)$ $\geq 123 \ kcal \ mole^{-1}$. It is gratifying that the vacuum stable $C_x AsF_6$ product obtained by removing AsF_5 and AsF_3 from the graphite/ AsF_5 material,³⁰ is a mixture of first and second stage $C_x AsF_6$ salts. Even repeated treatment of graphite with AsF_5 does not yield a pure first stage salt and treatment of first stage $C_x AsF_6$ (made via $AsF_5 + F_2$) with a half molar quantity of AsF_3 leads to a mixture of second and first-stage $C_x AsF_6$. Here is clear evidence that that the E for the AsF₅ electron-oxidation half reaction is close to that for the first-stage C_xAsF₆ thermodynamic threshold. It now appears that this simple model for $C_x^+MF_6$ salts also fits non octahedral MF_y, so long as the effective height of MF_y in the graphite galleries is close to that of MF₆. Recent examples³¹ from these laboratories include the intercalation of GeF₅ from GeF₄/Cl₂ mixture, the electron affinity for the appropriate reaction being; E (2 GeF₄ + 1/2 Cl₂ + e⁻ \rightarrow GeF₅⁻ + GeF₃Cl) = 118 kcal mole⁻¹ and PF₆⁻ from PF₅/Cl₂/HF mixture for which E (PF₅ + 1/2 Cl₂ + HF + e $^{\cdot}$ \rightarrow PF₆ $^{\cdot}$ + HCl) = 117 kcal mole $^{\cdot 1}$ In conformity with these electron affinities the intercalation is spontaneous but first stage salts are not produced. In the example of GeF₅ intercalation just described we have departed from the case of MF₆ guest species. Since GeF₅ has one F ligand less it must have an effective volume, based on Zachariasen's criterion³², of approximately 17 Å³ less than MF₆. For closely packed guest species this would be important. First let us examine the consequences of volume on lattice enthalpy. Figure 3 illustrates a remarkably simple correlation between lattice enthalpies and the formula unit volume for A⁺X⁻ salts recognized by Mallouk et al²⁸ as being within the usual errors of rather sophisticated evaluations from known structures and partial charge distributions. The empirical relationship $$U(A^+X^-)$$ (in kcal mole⁻¹) = 556.3[V(in A^3)]^{-1/3} + 26.3 should be limited in application to light-atom hard-ligand cases since the equation does not contain explicitly a closed-shell repulsion term. The advantage of the relationship is that it immediately provides for an assessment of the lattice energy of an A⁺X⁻ salt if the close-packing volume is known. It is apparent that if the cation is large, e.g. [(n-butyl)₄N]⁺, changing the anion from PF₆⁻ to BF₄⁻ changes the lattice enthalpy less than in the case of K⁺ salts. Indeed for KPF₆ and KBF₄ salts the difference in lattice enthalpy is approximately 10 kcal to the advantage of KBF₄. But the fluoride ion affinities²⁸ ($-\Delta H^{o}_{298}$, MF_y + F⁻¹ \rightarrow F_{y+1}; in kcal mole⁻¹) are: BF₃, 92; PF₅, 101). Therefore $$\Delta H^{\circ}_{298}$$ (KPF₆ + BF₃ \rightarrow KBF₄ + PF₅) \approx -1 kcal mole⁻¹ Although the entropy change is slightly unfavorable it is not sufficient to render ΔG°_{298} positive.³³ On the other hand in the case of the [(n-butyl)₄N]⁺ salts the lattice energy favors the BF₄ much less than in the K⁺ case. The entropy change is nearly as in the K⁺ salt situation. The consequences are dramatic to the chemistry. KPF₈ is quantitatively converted³⁴ to KBF₄ by BF₃ at 20°C, whereas the mixed butyl ammonium salts are in equilibrium with BF₃ and PF₅ at ordinary pressures. Since graphite has a much smaller effective radius than $[(n-butyl)_4N]^+$, at least normal to the sheet $(r_{eff}\approx 1.7 \text{ Å})$, the impact of volume of the anion upon the lattice energy is important. Thus the graphite hexafluorophosphate salt, like KPF₆, and unlike $[(n-butyl)_4N]^+$ PF₆, is quantitatively converted³⁴ by BF₃ to the fluoroborate $$C_xPF_6 + (y+1)BF_3 \rightarrow C_xBF_4 \circ yBF_3 + PF_5$$ But as the equation demonstrates, more BF₃ is taken up than PF₅ liberated. This is an oddity of the graphite salt situation. Here, in contrast to the K⁺ and butyl ammonium salts, the anions are exposed to one another in the galleries between the carbon sheets. Evidently the additional BF₃ uptake provides for increased screening of anion from anion. Indeed y can be as great as 3 with ordinary pressures (approximately 1 atmos.) of BF₃ and a second stage C_xPF₆ salt can yield a first stage salt C_xBF₄•3BF₃. A more dramatic instance of the effect of 'dielectric spacers' in graphite salts is provided³⁰ by the first stage fluoroarsenate of composition C₁₄AsF₆. This material is prepared by the following routes $$C_6F_6^{+}AsF_8$$ + C_6F_6 or +14C (graphite) $\rightarrow C_{14}^{+}AsF_6$ + $O_2^{+}AsF_6$ + O_2 or 1/2 F_2 + AsF_5 and is identical to the first-stage component of the vacuum-stable product of the interaction of graphite and AsF₅ gas. The AsF₆ are nestled in ordered domains within the graphite galleries as shown in Figure 4. This is an accidental consequence of the F - F nearest neighbor distance in AsF₆ being similar to the distance between the centers of contiguous hexagons in the graphite sheet structure. As may be seen from Figure 4 closer packing of the nestled AsF₆ is not possible and this arrangement is in harmony with the observed composition of this phase, C₁₄AsF₆. When the solid is exposed to a sustained pressure of AsF₅ (approximately 1 atmosphere at approximately 20° C) the X-ray diffraction pattern changes dramatically and the composition changes in accord with the equation: $$C_{14}^{+}AsF_{8} + 1/2 AsF_{5} \rightarrow C_{14}^{+}AsF_{6}.1/2 AsF_{5}$$ The X-ray data show that this uptake of AsF₅ by the C₁₄AsF₆ expands the carbon-sheet separation from 7.6 Å in the nestled salt to 8.1 Å in the C₁₄AsF₆ • 1/2 AsF₅. Evidently the dielectric screening effect [or bonding of the AsF₅ to yield a μ-fluoro-bridged species such as (F₅As-F-AsF₅)] provides sufficient favorable energy to more than compensate for the diminished attraction energy, which must accompany the expansion, and the unfavorable entropy change, associated with the uptake of gaseous AsF₅. The observed diffraction pattern of the C₁₄*AsF₆ is satisfactorily accounted for³⁰ with the structure illustrated in Figure 4. This requires that adjacent carbon-atom sheets are in staggered relationship to each other, As atoms, of course, always residing mid-way between eclipsed carbon atoms of these adjacent staggered sheets. With the uptake of AsF₅ (to composition C₁₄AsF₆.1/2 AsF₅) the carbon atom-sheets move into registry with one another (as well as farther apart). The observed diffracted X-ray intensities require that the As atoms be placed midway between the enclosing carbon sheets. In the <u>ab</u> plane all of the guest atoms are fully disordered in this phase. In C₁₄AsF₆.1/2 AsF₅ the guests are therefore like a two dimensional liquid. Removing the AsF₅ restores the nestled, relatively ordered, C₁₄AsF₆ phase. Much the same sort of structural change as observed for C₁₄AsF₈ to C₁₄AsF₈.1/2 AsF₅ occurs when AsF₃ is added to the nestled salt but on removal of volatiles, AsF₅ is observed as a consequence of the reduction of the carbon already alluded to: $$1/2 \text{ AsF}_3 + \text{AsF}_6 \rightarrow 3/2 \text{ AsF}_5 + \text{e}^{-1}$$ and the resulting solid is a mixture of first and second stage C_xAsF₆ nestled-AsF₆ salts. Perhaps the most unexpected aspect of graphite fluorosalt chemistry was the finding that salts such as C_xAsF₆ rapidly consume additional gaseous fluorine^{15,30} at approximately 20°C, this uptake being accompanied by a marked loss of electrical conductivity. Okino found³⁰ that this material of composition C₁₄AsF₆.~2F was less conductive than the graphite from which it was made. Since the carbon sheets in C₁₄AsF₆, which itself shows a specific conductivity comparable with that of aluminum metal, bear a charge C₁₄*, they are unlikely to be attacked by elemental fluorine which is an electrophile. The attack to generate C-F bonds most probably involves transfer of F to a positive carbon atom. The fluorination of C14AsF6 and other CxAsF6 salts may therefore occur via a species AsF,*. This like most seven-coordinate species ** (e.g. IF, and ReF,) would undergo intramolecular and intermolecular fluorine-ligand exchange. The latter via transient fluorine-bridged species to AsF, i.e. [F,As-F-AsF,]3, could provide for the observed facile distribution of fluorine throughout the graphite galleries. Such mechanisms could also in part provide a plausible basis for understanding the formation of a fluorinated graphite of composition C_{1.3}F which is formed³⁷ as a black fisrt stage solid concurrently with first-stage fluorinated graphite salt C14AsF8.xF, when second or third stage $C_x AsF_8$ salts are fluorinated at ~20°C in the presence of anhydrous hydrogen fluoride(AHF). However the separation of the $C_x F$ phase in the presence of AHF, must also involve fluoride ion transport as $(HF)_n F$ species. The $C_{1.3}F$ is a more highly fluorinated relative of the \underline{sp}^2 carbon fluorides first described by Rudorff and Rudorff. It possesses remarkable kinetic stability and its resistance to oxidation by perchloric acid at $160^{\circ}C$ provides for its separation from $C_{14}AsF_{6}.xF$, which the acid destructively oxidizes at that temperature. Since the X-ray diffraction data for $C_{1.3}F$ show the hexagonal carbon-atom array to be only slightly expanded relative to graphite itself, with a graphite-cell $\underline{a}_{\circ} = 2.46$ Å, most of the fluorine ligands in this material must have neighbors at 2.46 Å. This is remarkably short. In harmony with the use of so many of the π system electrons in binding F ligands (each C to which F is bound must be an insulating point in the network) $C_{1.3}F$ is an insulator. Its specific conductivity, $\sigma \approx 10^{-7}$ ohm of the τ 1, is attributable to F transport in the gallery. #### Conclusions Evidently the \underline{sp}^2 carbon-network is remarkably stable to electron oxidation to high charge levels (at least C_{14}). Good conductors are thereby generated. For high positive charge development however it is essential to have anions of very low fluorobasicity otherwise F transfers to the carbon. The \underline{sp}^2 bonding of graphite persists even when 70% of the π bonding electrons are consumed in bonding F ligands, as in the insulator $C_{13}F$. #### <u>Acknowledgments</u> This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Science Division of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098. #### References - 1. Hennig, G.R. Prog. in Inorg. Chem., 1959, 1, 125. - 2. Rudorff, W. Adv. in Inorg. Chem. and Radiochem. 1959, 1, 224. - 3. Herold, A, Materials Sci. Eng., 1977, 31, 1; in Physics and Chemistry of Materials with Layered Structures, vol.6 Intercalated Layered Materials, Levy, F.A, Ed; Reidel Publ. Dordrecht, Netherlands, 1979, pp323-421. - 4. Bottomley, M.J.; Parry, G.S.; Ubbelohde, A.R. Proc. Roy. Soc., 1964, A279, 291. - 5. McDonnell, F.R.M.; Pink, R.C.; Ubbelohde, A.R. J. Chem. Soc., 1951, 191. - 6. Ubbelohde, A.R. Nature, 1971, 232, 43. - Coulson, C.A.; Taylor, R. <u>Proc. Phys. Soc.</u>, 1952, **65**, 815. Coulson, C.A.; Duncanson, W.E. <u>Proc. Phys. Soc.</u>, 1952, **65**, 825. - 8. Richardson, T.J.; Bartlett, N. J. Chem. Soc., Chem. Commun., 1974, 427. - 9. Richardson, T.J.; Tanzella, F.L.; Bartlett, N. J. Am. Chem. Soc., 108, 4937. - Richardson, T.J.; Tanzella, F.L; Bartlett, N. in <u>Polynuclear Aromatic Compounds</u>, Ebert, L.B. Ed; Advances in Chemistry Series No. 217; American Chemical Society, Washington, DC, 1988; p.169. - 11. Bartlett, N.; Biagioni, R.N.; McQuillan, B.W.; Robertson, A.S.; Thompson, A.C. J. - Chem. Soc., Chem. Commun., 1978, 200. - 12. Chun-Hsu, L.; Selig, H.;Rabinovitz, M.; Agranat, I.; Sarig, S. Inorg. Nucl. Chem. Letters, 1975, 11, 601. - 13. Falardeau, E.R.; Foley, G.M.T.; Zeller, C.; Vogel, F.L., J. Chem. Soc., Chem. Commun., 1977, 389. - 14. Bartlett, N.; M^cCarron, E.M.; M^cQuillan, B.W.; Thompson, T.E. <u>Synthetic Metals</u>, 1979/80, 1, 221. - 15. Thompson, T.E.; M^cCarron, E.M.; Bartlett, N. Synthetic Metals, 1981, 3, 255. - 16. Kaindl, G.; Mallouk, T.E.; Bartlett, N.; unpublished. - 17. Bartlett, N.; M^cQuillan, B.W. in <u>Intercalation Chemistry</u>, Whittingham, S.; Jacobson, A., Eds.; Academic, New York, 1982, pp 19-53. - 18. Kimura, M.; Schomaker, V; Smith, D.W.; Weinstock, B. J. Chem. Phys., 1968, 48, 4001. - 19. Siegel, S.; Northrop, D.A. Inorg. Chem., 1966, 5, 2187. - 20. George, P.M.; Beauchamp, J.L. Chem. Phys., 1979, 36, 345. - 21. Nikitin, M.I.; Sidorov, L.N.; Korobov, M.V. <u>Int. J. Mass Spec. Ion. Phys.</u>, 1981, 37, 13. - 22. Bartlett, N. Angewandte Chemie, Int. Ed., 1968, 7, 433. - 23. Selig, H.; Vaknin, D.; Davidov, D.; Yeshurun, Y. Synthetic Metals, 1985, 12, 479. - 24. <u>Interatomic Distances and Supplement</u>, Special Publications Nos 11 and 13, The Chemical Society, London, 1958 and 1965. - 25. Ebert, C.B.; Selig, H. Mater. Sci. Eng., 1977, 31, 177 and Synthetic Metals, 1981, 3, 53. - 26. McCarron, E.M.; Grannec, Y.J.; Bartlett, N. J. Chem. Soc., Chem. Commun., 1980, 890. - 27. Rosenthal, G.L.; Mallouk, T.E.; Bartlett, N. Synth. Met., 1984, 9, 433. - 28. Mallouk, T.E.; Rosenthal, G.L.; Muller, G.; Brusasco, R.; Bartlett, N. Inorg. Chem., 1984, 23, 3167. - 29. Rosenthal, G.L. Ph.D. Thesis, Univ. of California, Berkeley, 1984. - 30. Okino, F. Ph.D. Thesis, Univ. of California, Berkeley, 1983, and Okino, F.; Bartlett, N. to be submitted to Chemistry of Materials. - 31. Hagiwara, R.; Lerner, M.; Bartlett, to be published. - 32. Zachariasen, W.H. J. Amer. Chem. Soc., 1948, 70, 2147. - 33. For fluorides S°₂₉₈ is proportional to formula unit volume with S°₂₉₈(e.v.) = - 0.42(V_{EII}) (see Mallouk, T.E. Ph.D. Thesis, Univ. of California, Berkeley, 1984). - 34. Kourtakis, K. Ph.D. Thesis, Univ. of California, Berkeley, 1987. - 35. Dean, P.A.W.; Gillespie, R.J.; Hulme, R. J. Chem. Soc., Chem. Commun., 1969, 990. - 36. Bartlett, N.; Beaton, S.; Reeves, L.W.; Wells, E.J. Canad. J. Chem., 1964, 42, 2531. - 37. Hagiwara, R.; Lerner, M.; Bartlett, N. J. Chem. Soc., Chem. Commun., 1989, 573. - 38. Rudorff, W.; Rudorff, G. Chem. Ber., 1947, 80, 413. The Role of Lattice Energetics... #### **Figures** - Figure 1. A thermodynamic cycle for oxidative intercalation of graphite. - Figure 2. Intercalation of graphite by perfluoroanions as a function of the electron affinity of the oxidizing half reaction. - Correlation of lattice energies for A*B* salts with formula unit volume. Open circles represent lattice enthalpies calculated as described in ref. 28. The circles are lattice energies from A. F. Kapustinskii (Zh. Fiz. Khim. 1934, 5, 59). - Figure 4. The idealized nestled structural model for a single layer of AsF₆⁻ guests in C₁₄AsF₆. The unit cell is outlined. Figure 1. A thermodynamic cycle for oxidative intercalation of graphite. Figure 2. Intercalation of graphite by perfluoroanions as a function of the electron affinity of the oxidizing half reaction. Figure 3. Correlation of lattice energies for A⁺B⁻ salts with formula unit volume. Open circles represent lattice enthalpies calculated as described in ref. 28. The circles are lattice energies from A. F. Kapustinskii (Zh. Fiz. Khim. Khim. 1934, 5, 59). Figure 3 Figure 4. The idealized nestled structural model for a single layer of AsF_6 guests in $C_{14}AsF_6$. The unit cell is outlined. LAWRENCE BERKELEY LABORATORY TECHNICAL INFORMATION DEPARTMENT 1 CYCLOTRON ROAD BERKELEY, CALIFORNIA 94720