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Abstract 

In the process of calibrating distributed hydrological models, accounting for input uncertainty is 

important, yet challenging. In this study, we develop a Bayesian model to estimate parameters associated 

with a geomorphology-based hydrological model (GBHM). The GBHM model uses geomorphic 

characteristics to simplify model structure and physically based methods to represent hydrological 

processes. We divide the observed discharge into low- and high-flow data, and use the first order 

autoregressive model to describe their temporal dependence. We consider relative errors in rainfall as 

spatially distributed variables and estimate them jointly with the GBHM parameters. The joint posterior 

probability distribution is explored using Markov chain Monte Carlo methods, which include 

Metropolis-Hastings, delay rejection adaptive Metropolis, and Gibbs sampling methods. We evaluate the 

Bayesian model using both synthetic and field datasets. The synthetic case study demonstrates that the 

developed method generally is effective in calibrating GBHM parameters and in estimating their 

associated uncertainty. The calibration ignoring input errors has lower accuracy and lower reliability 

compared to the calibration that includes estimation of the input errors, especially under model structure 

uncertainty. The field case study shows that calibration of GBHM parameters under complex field 

conditions remains a challenge. Although jointly estimating input errors and GBHM parameters 

improves the continuous ranked probability score and the consistency of the predictive distribution with 

the observed data, the improvement is incremental. To better calibrate parameters in a distributed model, 

such as GBHM here, we need to develop a more complex model and incorporate much more information. 
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1. Introduction 

The field of flood forecasting faces many challenges, including uncertainties in precipitation 

observations and predictions, in hydrological model parameters and structures, and in discharge 

observations [Beven, 2006; Gupta et al., 2005; Liu and Gupta, 2007]. Most studies on uncertainty 

analysis have been focused on calibration of lumped conceptual rainfall-runoff models. Stochastic 

approaches, especially Bayesian models, have become the most commonly used methods for uncertainty 

analysis of hydrological models. For example, Kuczera and Parent [1998] used a Bayesian model and 

the Metropolis algorithm to assess parameter uncertainty in conceptual catchment models. Bates and 

Campbell [2001] developed a Bayesian approach to parameter estimation and inference in conceptual 

rainfall-runoff models, and used Markov chain Monte Carlo (MCMC) methods to explore the joint 

posterior distribution. 

Recent studies have been focused on estimating input uncertainties and model structure uncertainties 

and their influence on model parameter calibration. Most of these studies rely on hierarchical Bayesian 

models to handle uncertainty in the forcing term (e.g., rainfall) by using latent variables, such as 

multipliers. Kavetski et al. [2003, 2006] developed a Bayesian total error analysis methodology (BATEA) 

to allow a modeler to incorporate, test, and refine the existing understanding of all sources of data 

uncertainty directly and transparently. Ajami et al. [2007] developed an integrated Bayesian uncertainty 

estimator (IBUNE) with inclusion of a Bayesian model averaging (BMA) scheme to account for input, 

parameter, and model structure uncertainties. Vrugt et al. [2008] developed a hierarchical Bayesian 

model and a novel MCMC sampler, a so-called differential evolution adaptive Metropolis (DREAM), to 

analyze input uncertainty. Renard et al. [2010, 2011] demonstrated the importance of prior information 
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for estimating the input and model structure errors and for decomposing predictive uncertainty. While all 

those methods use hierarchical Bayesian models, they differ in the handling of latent variables [Ajami et 

al, 2009; Renard et al, 2009] and in the computational methods used to sample from the posterior. 

Although uncertainty analysis of distributed models is also important, few such investigations have 

been performed. Compared with lumped conceptual hydrological models, distributed models are 

expected to have lower model structure uncertainties because of the spatially distributed description of 

landscape conditions and the physically based representation of hydrological processes. However, 

distributed models introduce a large number of parameters that typically are difficult or impossible to 

observe directly and are difficult to estimate by calibration due to poor identifiability. Although 

physically based distributed hydrological models have become increasingly popular over the past two 

decades [Singh and Woolhiser, 2002], the uncertainty associated with those models has not received 

much attention. Current studies on calibration of distributed models mainly focus on utilizing multiple 

observations [Immerzeel and Droogers, 2008; Khu et al., 2008] or multiple objective functions [Marce 

et al., 2008; Shrestha and Rode, 2008]. 

In this study, we develop a hierarchical Bayesian model, following a similar approach to that given by 

Kavetski et al. [2003, 2006] and Vrugt et al. [2008], to calibrate a physically based distributed model for 

event-based mountain flood prediction. Within Gaussian likelihood functions, the discharge is split into 

two categories (i.e., low-flow and high-flow) [Schaefli et al., 2007]. We use the first order autoregressive 

model to simulate temporal correlation in the residuals [Sorooshian and Dracup, 1980; Thyer et al., 

2002]. To achieve good sampling efficiency, we combine different MCMC sampling strategies, similar 

to those used by Chen et al. [2007]. We apply the developed Bayesian model first to synthetic datasets 
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for investigating the influence of input uncertainty on hydrological model calibration, and then to field 

datasets collected from a small catchment in the Yangtze River basin in China. 

The remainder of this paper is organized as follows. Section 2 describes the distributed hydrological 

model and study area. Section 3 describes the parameterization and development of the Bayesian model 

based on the distributed hydrological model. Section 4 describes the MCMC sampling strategies for 

exploring the posterior distribution. The synthetic and field studies are given in Sections 5 and 6, 

respectively; discussion of the results and conclusions are provided in Sections 7 and 8, respectively. 

2. Distributed Hydrological Model and Study Area 

2.1. Geomorphology-Based Hydrological Model 

In this study, we use a geomorphology-based hydrological model (GBHM) [Cong et al., 2009; Yang, 

1998; Yang et al., 2004], which utilizes geomorphologic characteristics to simplify the model structure 

and physically based methods to represent hydrological processes. The GBHM differs from other 

physically based models, such as the Systeme Hydrologique Europeen [Abbott et al., 1986], mainly in 

the discretization scheme and parameterization. The GBHM takes advantage of geomorphologic 

similarity to maintain hydrological similarity. The grid size in GBHM is therefore larger than that in the 

digital elevation model (DEM), leading to a significant reduction in spatial-structure complexity. 

The GBHM uses the hillslope-stream formation to represent catchment topography. A catchment is 

divided into many sub-catchments, and the different sub-catchments are organized based on the 

Pfafstetter system [Yang and Musiake, 2003]. The grids within a sub-catchment are classified into flow 

intervals, taking into account the distances of the grids from the outlet. Each flow interval contributes to 

a segment of a main stream that is the simplification of a stream network. Flow routing in the stream 
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network is conducted using the kinematic wave method [Chow et al., 1988]. Hillslopes within each grid 

are expected to be topographically similar; the topographical characteristics of the hillslopes are 

calculated using fine DEM [Yang et al., 2002]. Figure 1 is a schematic diagram of the GBHM, where the 

hillslope is represented by a group of inclined parallel planes with slope β and length l. Based on the 

hypothesis of a linear slope, we introduce a slope-shape factor fss to account for the concave-convex 

effects on runoff generation and overland flow hydrographs. The factor fss is defined as fss = ls/l, where ls 

is the saturated outflow length (see Figure 2). 

In the GBHM, water flow under the soil surface is simulated separately by a quasi-two-dimensional 

subsurface module along the vertical and parallel directions of the slope. The topsoil is divided into 

multiple layers according to their depths. Distribution of soil water content and hydraulic characteristics 

along the hillslope is assumed uniform. Vertical distribution of the saturated hydraulic conductivity in 

the soil is set to decrease exponentially with increasing depth [Robinson and Sivapalan, 1996]. The 

vertical flow module is described using the Richards equation and solved by an implicit numerical 

scheme. Subsurface flow along the hillslope occurs when soil water content surpasses the field capacity. 

Groundwater aquifers are discretized (corresponding to the grids) and treated as individual storage 

compartments. The exchange between groundwater and river water is expected to be a steady flow and 

is estimated by Darcy’s law. GBHM parameters include vegetation, land surface, soil water, and river 

parameters [Cong et al., 2009]. A detailed description of each parameter for calibration is provided in 

Section 3.1. 

2.2. Study Area and Available Data 

The Chuzhou catchment, which spans approximately 289 km2 and is located in the Yangtze River 
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Basin of Southern China, is selected as the study area. Annual precipitation is approximately 1550 mm, 

with about 70% of the annual rainfall occurring from April to September. Floods occur frequently during 

the rainy season. The grid size of the GBHM in the present study is 1 km. DEM data were collected 

from the global topography database (http://www2.jpl.nasa.gov/srtm/) with a three arc-sec spatial 

resolution (approximately 90 m). Elevation in the Chuzhou catchment varies from 379 to 2090 m, with 

the majority of the catchment covered by forest. The soil is red loam with an estimated soil depth of 0.6 

m. Since the catchment is relatively homogenous in soil type and land use, the GBHM parameters are 

treated uniformly in the Bayesian model. The developed method can be augmented to account for other 

conditions. 

We used hourly averaged data collected from 32 large flood events occurring between 1980 and 2002 

for the study, among which 16 flood events were used for calibration and another 16 flood events were 

used for validation. As shown in Figure 3, seven rainfall gauges and one discharge gauge can be found 

within the catchment. The rainfall input is interpolated using the angular distance-weighted (ADW) 

method [New et al., 2000]. Daily pan evaporation data were obtained from a meteorological station 

located in Suichuan County, approximately 60 km away from the center of the catchment. A 

sub-catchment of Chuzhou was selected for the synthetic study. Three rainfall gauges and one synthetic 

discharge gauge were located in the synthetic basin. Data for two synthetic rainfall gauges were derived 

from nearby available gauges. Generation of synthetic discharge data is described in Section 5.1. Since 

the durations of those flood events in the study area do not overlap, we simulate each flood individually. 

3. Bayesian Model 

3.1. Model Structure and Parameterization 
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We develop a Bayesian model to calibrate parameters in the GBHM. They include the following: 

(1) the ratio of basin mean potential evaporation to gauged pan evaporation (kep); (2) the saturated 

hydraulic conductivity in the top soil layer (Kt), the bottom soil layer (Kb), and the unconfined aquifer 

(Kg); (3) the slope shape factor (fss); (4) the maximum surface storage (dsurf); (5) the specific yield (Sy); 

and (6) the roughness on the hillslope surface (ns) and on the river channel (nc). For simplicity, let vector 

θ = (kep, Kt, Kb, Kg, fss, dsurf, Sy, ns, nc)
T, where T is the transpose operator. 

The simulated discharge of the GBHM model is represented by 

 *( , ) ( , , ), 1,...,sim inp
t t t tq h g t n  x θ x φ θ  (1) 

where sim
tq  denotes the simulated discharge at the time step t; h( inp

tx , θ) represents the mapping of the 

GBHM model with parameter θ, and input inp
tx , which will be described further by the measurement of 

input xt and *
tφ  for estimation of the input errors; g(xt, 

*
tφ , θ) represents the mapping of the GBHM 

model with rainfall observation, estimated input errors, and model parameters. In the present study, we 

consider one discharge station only, although the model can be modified to accommodate more gauges 

under more complex conditions. Model inputs are specified as rainfall in the study, and errors *
tφ  are 

specified as relative rainfall errors, i.e., *
, , ,/ (1 )inp

t j t j t j x x , where j is an index of rainfall gauges. 

Generally, *
,t j  depends on gauge locations, equipment properties, and many other unknown factors. 

We use event-based methods, similar to those used by Kavetski et al. [2006] and Vrugt et al. [2008], to 

develop the Bayesian inference equations. We assume that the errors in precipitation are independent 

across storms and constant within storms. Let *
, ,k j t j  , kt T , where k is an index of the storm series 

and Tk is the set of time steps during the kth storm. We also assume that ,k j  at each gauge follows a 

truncated normal distribution [Huard and Mailhot, 2008] on the interval (-1, +∞), having a mean of μφ 
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and an inverse variance of τφ (see Appendix A) for different storms.  

Following the method of Schaefli et al. [2007], we divide the discharge data into low-flow data Y and 

high-flow data Z. Such division is reasonable for the current study because the low-flow data are mainly 

dependent on groundwater storage, whereas the high-flow data are mainly determined by rainfall 

intensity and flow routing. Empirically, the separation of flow data makes parameter estimation more 

stable. We adopt a daily time step for the low flow periods since the associated variations in discharge 

are typically very small. For the high flow periods we use an hourly time step. Since the residuals 

between observed and simulated discharge are often temporally correlated, we employ the first order 

autoregressive model (AR(1)) used by Bates and Campbell [2001] and Sorooshian and Dracup [1980] 

to analyze the model residuals. Thus, the relationship between the observed and simulated discharge is 

given by 

 , , 1 ,
sim sim

t t y t t y y t y ty y y w          (2) 

where yt is the observed data, sim
ty  is the model simulation, εy,t is the model residual, ρy is the 

correlation coefficient of the AR(1) model, and wy,t is the Gaussian noise with zero mean and unknown 

variance. Let τy denote the inverse variance of εy,t, and the inverse variance of wy,t is given by 

2/ (1 )w
y y y     [Naidu, 1996]. The likelihood of parameters associated with the given data could be 

derived in terms of τy. Similarly, the correlation coefficient and inverse variance for the high-flow 

discharge are denoted as ρz and τz, respectively. Consequently, we can write the Bayesian model for 

given inputs X and flow data (Y, Z) as follows: 
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f f f

f f f f f

 

   

     

   

   

   

 
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



θ φ X Y Z

Y θ φ X Z θ φ X

φ

θ

 (3) 

where f() denotes the probability distribution function (pdf) and “ ” means “is proportional to.” The 

left side of Equation 3 is the joint posterior pdf of all variables for estimation given measurements at the 

discharge station. The first two terms on the right side of the equation represent the likelihood functions 

of low- and high-flow data. The third term on the right side represents the hierarchical prior model of 

input error φ characterized by two hyper-parameters. The other terms are the prior distribution functions 

of the remaining parameters. Each prior function of those parameters is assumed independent of the 

others. Note that a normalizing constant was omitted in Equation 3, which does not affect the analyses in 

the present study because we use an MCMC sampling method. 

3.2. Likelihood Function 

We assume that the individual flood events are independent of each other. Consequently, the 

likelihood function of the entire dataset is the product of the likelihood functions of individual flood 

events. This assumption is justified in the present study because the duration of a flood event is no more 

than two days, but the 32 flood events are selected over 18 years, and the time gaps between the flood 

events within a year are 10–100 days. Under the assumptions listed in Section 3.1, the likelihood 

functions are multivariate normal with an AR(1) correlation structure. For the low-flow data of the kth 

flood Yk, the likelihood function is 
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1

12
1

( | , , , ) exp ( ) ( )
2

sim T sim
k k y y k k k k k k kf            

 
Y θ φ X Y Y Y Y   (4) 

where Σk denotes the covariance matrix of the residuals for the kth flood event. The likelihood function 

is further written as (see Appendix B) 

 
11
22

1
( | , , , ) exp

2

n

k k y y k k y y kf R S        
 

Y θ φ X   (5) 

where Rk denotes the correlation coefficient matrix of the model residuals, Σk = Rk/τy, and 

1( ) ( )sim T sim
k k k k k kS R  Y Y Y Y . 

3.3. Prior Models 

We assume that each element in vector θ is independent of others, since they represent different 

physical characteristics of the catchment. The prior function of θ can be written as the product of each 

individual prior distribution. All elements (or the logarithmic transforms) of θ are uniformly distributed 

over the given prior ranges (see Table 1) based on their physical properties and our calibration 

experience. We use the base 10 logarithmic transformations because elements Kt, Kb, Kg, fss, Sy, ns, and 

nc vary by several orders of magnitude. 

The prior distribution of relative rainfall errors is assumed to be given by a truncated normal 

distribution (see Appendix A). Each component in φ is assumed to be independent of others. The prior 

distribution function of φ.,j (i.e., the component of φ at the jth gauge) can be obtained as 

 

1

2
, ,

,

1
exp if 1;

( | , ) 2

               0 otherwise

k
k

nn
j k j

j

S n
f   

 

   
  






         



  (6) 

where nk is the number of storms, 1/21 erf (( 1)( / 2) )      , 2
, ,1

( ) /kn

j k j kk
S n  


  , and erf() 

is the error function. 
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We assume that the prior distribution of the mean relative rainfall error, μφ, has a uniform distribution 

on (-0.05, 0.05), that is, a maximum of 5% systematic relative errors. As pointed out by Renard et al. 

[2010, 2011], the prior range of τφ (i.e., the precision of prior information about input errors) is critical 

for the inference of input errors. In the present study, we start from an informative prior in which the 

standard deviations of the truncated normal distributions of the input errors are between 5% and 15%. 

The upper bound (i.e., 15%) is the same as the one used by Salamon and Feyen [2010]. To investigate 

the effects of the upper limit on calibration, we also use other values as the upper bounds, including 10%, 

20%, and 30%, for both synthetic and field case studies. Since the range between 5% and 15% in the 

standard deviation is equivalent to the range between 44.4 and 400 in the inverse variances, we use 

uniform distribution on (44.4, 400) as the prior distribution for τφ. 

The prior distribution functions of the autocorrelation coefficients ρy and ρz are also set as the uniform 

distributions on (0, 1). Non-informative prior distributions are employed for inverse variances τy and τz 

as used by Chen et al. [2008], which are represented by gamma distributions Γ(α0, λ0) with shape 

parameter α0 and inverse scale parameter λ0 of 1e-3. 

4. MCMC Sampling Method 

We use MCMC methods to sample from the joint posterior distribution. In Section 4.1, we derive the 

conditional distributions for unknown variables. We describe the specific MCMC sampling methods in 

Section 4.2. The convergence diagnostics used for the present study are given in Section 4.3.  

4.1. Conditional Distributions 

We derive the conditional distribution of each parameter from Equation 3 given all the others. The 

conditional pdf of the GBHM parameters is given as 
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The conditional pdfs of the other variables are similarly obtained.  

The conditional pdfs of τy and τz are gamma distributions, because gamma distribution is a conjugate 

prior of the Gaussian likelihoods. Thus, the conditional distribution of τy is given by 
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Y θ φ X

  (8) 

4.2. Sampling Strategies 

MCMC methods provide a more powerful approach than conventional Monte Carlo methods in 

drawing samples from high-dimensional joint distribution functions [Chen et al., 2008]. Previous studies 

have used various MCMC sampling methods, including Metropolis-Hastings (MH) methods [Hastings, 

1970; Metropolis et al., 1953], delayed rejection adaptive Metropolis (DRAM) algorithms [Haario et al., 

2006], and the Gibbs sampler [Geman and Geman, 1984].  

We adopt a mixed sampling strategy by applying MH, Gibbs, and DRAM methods for different 

parameters considering their characteristics. Specifically, we use the DRAM algorithm for θ, the Gibbs 

sampler for τy and τz, and the MH method for other variables (φ, μφ, τφ, ρy, and ρz). The main steps are 

outlined as follows: 

(1) Initialize each variable as θ(0), φ(0), μφ
(0), τφ

(0), ρy
(0) , τy

(0) , ρz
(0), and τz

(0), and then set i = 1. 

(2) Update φ, μφ, τφ, ρy, and ρz using MH methods, and refer to them as φ(i), μφ
(i), τφ

(i), ρy
(i), and ρz

(i). 
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(3) Update θ using the DRAM algorithm, and refer to them as θ(i). 

(4) Update τy and τz using the Gibbs sampler, and denote them as τy
(i) and τz

(i). Let i = i+1. 

(5) Repeat Steps 2 to 4 until the maximum number of allowable iterations is reached.  

4.2.1. Metropolis-Hastings Sampling Method 

We use the MH sampling method for φ, μφ, τφ, ρy, and ρz. The MH sampling method, one of the most 

widely used MCMC sampling methods in hydrological studies [Bates and Campbell, 2001; Kuczera and 

Parent, 1998; Marshall et al., 2004; Schaefli et al., 2007], entails four steps. To sample μφ, a candidate 

value μφ
* is first generated from a proposed normal distribution N(μφ

(i-1), σμ
2), where σμ is the standard 

deviation. The probability for accepting the candidate value is then calculated based on its conditional 

distribution as 

 
*

1 ( 1)

( | )
min 1,

( | )i

f
v

f





 

      
  (9) 

Subsequently, a random value v is generated uniformly from an interval (0, 1). If v < v1, we set μφ
(i) = μφ

*; 

otherwise, μφ
(i) = μφ

(i-1). In MH sampling, the parameter σμ is important for convergence. If σμ is too large, 

the rejection rate of the proposed candidates will be too high, whereas if σμ is too small, the chain moves 

slowly and the tail regions of the joint posterior may not be sampled sufficiently [Bates and Campbell, 

2001]. Hence, the MH method is suitable for sampling the variables that are relatively less sensitive to 

the value of σμ, and the DRAM algorithm is suitable for sampling those variables that are very sensitive 

to the value of σμ. 

4.2.2. DRAM Algorithm 

We use the DRAM algorithm for θ. The DRAM algorithm is developed based on a global adaptive 
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sampling strategy, Adaptive Metropolis (AM) [Haario et al., 2001], and a local adaptive sampling 

strategy, Delayed Rejection (DR) [Green and Mira, 2001]. The AM algorithm initially calculates the 

correlation matrix of the variables from previously obtained samples and then provides a correlated 

proposal for Metropolis sampling methods. The AM algorithm appears to be efficient when the posterior 

correlation of variables is large, a common situation for hydrological parameters in calibration. The DR 

algorithm is also a variant of the MH algorithm. In the DR algorithm, when a proposed candidate is 

unwanted, it is not immediately rejected. The algorithm generates another candidate based on the first 

candidate at a second stage [Green and Mira, 2001]. In the present study, the two-stage DR is used 

considering the cost of additional computations. When combined, DR and AM complement each other. 

The adaptation of the AM algorithm will fail when the variance of the proposal is too large; the DR 

algorithm provides a remedy to this problem by reducing the variance at the second stage [Haario et al., 

2006]. Although the DRAM algorithm is a non-Markovian sampler, the ergodicity of the method has 

been proven by Haario et al. [2006] under weak conditions. To avoid the potential errors in the 

estimated posterior distributions caused by adaptive processes, we combine MH sampling methods with 

DRAM algorithm for a hybrid sampling strategy. 

4.2.3. Gibbs Sampler 

We use the Gibbs Sampler for τy and τz. Gibbs sampling methods [Gelfand and Smith, 1990; Geman 

and Geman, 1984] draw samples in succession from the conditional distributions of each parameter 

given the current values of all other parameters. The main advantage of Gibbs sampling is that all the 

samples are accepted, thereby avoiding wasting computing time on rejected samples. However, Gibbs 

sampling requires sampling directly from the conditional distribution, a requirement often difficult to 
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fulfill. In the present study, because the analytical form of the conditional distribution of τy and τz is the 

gamma distribution as given in Equation 8, τy
(i) and τz

(i) can be sampled directly. 

4.3. Diagnostic of Convergence 

Following the methods described in Section 4.2, many samples of parameters, that is, (θ(i), φ(i), μφ
(i), 

τφ
(i), ρy

(i) , τy
(i) , ρz

(i), τz
(i), i=1, 2, ..., Im), can be obtained. These samples are the approximations of the 

samples drawn from the target joint functions defined in Equation 3 after a long burn-in process [Gilks et 

al., 1996]. The posterior marginal distributions of the parameters can be estimated by empirical 

distributions based on the drawn samples. A potential scale reduction factor (PSRF) developed by 

Gelman and Rubin [1992] is used to find the burn-in number and monitor the convergence of the chains. 

We run three to five MCMC chains from randomly generated initial values and accept them if the PSRF 

of each parameter is smaller than 1.2. 

5. Synthetic Case Study 

To evaluate the effectiveness of the developed Bayesian model, we generated synthetic datasets for 

calibration. We will first show how input uncertainty affects estimation of the GBHM parameters and 

then examine identifiability of the input uncertainty when model structure uncertainty is large. 

5.1. Calibration Results of GBHM Parameters and Input Errors 

As shown in Figure 3, we chose a sub-region of the Chuzhou catchment with three rainfall gauges and 

one synthetic discharge station for the study. We use four flood events that were generated by the 

GBHM following Equations 1 and 2 to calibrate the GBHM parameters. For each flood event, we first 

calculated flow rates as a function of time at the discharge station using the true GBHM parameters and 

the rainfall data at the three gauges, and then added AR(1) noise to the synthetic data. The AR(1) noise 
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was generated and added separately to the low- and high-flow data with the corresponding 

autocorrelation coefficients and inverse variances that are given in Table 2. We added synthetic input 

errors (φ) by drawing samples from the truncated normal distribution with the mean of μφ = 0 and the 

inverse variance of τφ = 100 (i.e., standard deviation of 10%). 

Table 2 lists the true model parameters, prior ranges, and the estimated statistics of posterior marginal 

distributions for all the unknown parameters except the input errors (φ). Generally, the estimated 

medians and modes of the unknown parameters are close to their corresponding true values, and the 

95% highest posterior density domains (HPDs) cover the true values. For the hyper-parameters of input 

errors (i.e., μφ and τφ), the HPDs are very close to their corresponding prior ranges. This means that the 

given datasets provide very limited information for updating those parameters. Additionally, the AR(1) 

model parameters related to the high-flow data (i.e., ρz and τz) are better resolved than those related to 

the low-flow data (i.e., ρy and τy). This is because we have used more information (hourly data) for the 

high flow than that for the low flow (daily data). 

Figure 4 compares the estimated input errors with the corresponding true values. Overall, the 

estimated posterior medians of φ are close to the true values. However, uncertainty associated with the 

estimates is still high after calibration because the posterior distributions are widespread with most of 

the HPDs extending over 20% around the value of zero. 

5.2. Effects of Input Uncertainty on Calibration 

To illustrate the influence of input uncertainty on estimation of the GBHM parameters, we conducted 

comparative case studies with and without estimating φ in the Bayesian model. We generated synthetic 

data sets with two levels of input errors (i.e., 10% and 15%). However, we estimate the GBHM 
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parameters under two different situations, one ignoring the input errors and the other jointly estimating 

the input errors. 

Table 3 summarizes the results of the comparative studies. We use the average of the absolute errors 

of the calibrated medians relative to their corresponding prior ranges as a measure of accuracy, and the 

average of the relative standard errors as a measure of uncertainty. We use the percentage of the true 

values covered by the estimated HPDs as a measure of reliability. It is evident that the calibration 

ignoring input errors has lower accuracy and lower reliability for the input errors of 10% and 15%. The 

negative effects on model calibration of ignoring input uncertainty increase with increasing of the input 

errors. Such results are consistent with the findings of many previous studies [e.g., Kavetski et al., 2006; 

Vrugt et al., 2008; Thyer et al. 2009] that found neglecting input uncertainty in calibrating hydrological 

models would cause biases and underestimate parameter uncertainty. 

Figure 5 compares the estimated probability densities of each GBHM parameter with (black curves) 

and without (red curves) considering input errors for the case study having 15% input errors added. The 

black triangles are the true values, and all the priors are assumed to be uniform on the ranges shown in 

the figures. From the figure, we can see that although the influence varies depending on the parameters, 

ignoring input uncertainty clearly leads to worse estimates. As shown in Figure 5, the calibration of 

hydraulic conductivity in an unconfined aquifer (Kg) is biased for both situations. This is because the 

parameter is mainly determined by the low-flow data, which are very limited in the synthetic study 

considering the short daily time steps and high autocorrelation. 

5.3. Effects of Model Structure Uncertainty 

To investigate the robustness of the Bayesian calibration method under model structure uncertainty, 
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we conducted a synthetic study in which model structure errors were generated from the GBHM 

parameters with storm-dependent random biases. In accordance with the hypothesis proposed by 

Kuczera et al. [2006], the structural errors in the GBHM can be characterized by storm-dependent 

random variations of a subset of the model parameters. In this study, we let six GBHM parameters (i.e., 

kep, Kg, fss, dsurf, Sy, and ns) vary through different storms. They were randomly sampled from the 

uniform distributions whose ranges were obtained by shrinking their original prior ranges around the 

mean by 40%. We calibrated the remaining three GBHM parameters (i.e., Kt, Kb, and nc). 

Table 4 is a summary of calibration results under various conditions. They include the cases where 

input errors are ignored by setting φ=0 (see Row 2) and setting φ to their true values (see Row 3), and 

the cases jointly estimating the three GBHM parameters and the input errors with the lower prior bounds 

of the inverse variance from 1/(30%)2 to 1/(10%)2 (see Rows 4-7). The results show that in the presence 

of model structure errors, the joint estimation of GBHM parameters and input errors provides better 

calibration of the three GBHM parameters than estimating GBHM parameters alone. This is true even if 

we set the input errors to their true values in the latter case. The reason is that in the joint estimation, we 

fit the model to both the storm-dependent input errors and the unknown model structure errors. 

Although the use of latent variables (i.e., φ) for describing input uncertainty has a beneficial effect on 

estimation of GBHM parameters under model structure errors, it makes estimation of input errors 

difficult. This is consistent with the finding of Renard et al. [2010]. To distinguish between the input 

errors and the model structure errors, we need to use other methods or other types of information to 

obtain good priors on the input errors. For example, Renard et al. [2011] demonstrated that geostatistical 

analysis of distributed rain gauge data can provide useful information for the priors. For this study, since 
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we do not have good information about rainfall, we assume that the standard deviation of the input 

errors is less than 15%. This is an assumed prior restriction introduced from generally heuristic 

considerations, in an attempt to prevent the input error latent variables from over-fitting the structural 

errors. 

6. Field Case Study 

We applied the Bayesian model to the field dataset collected from the Chuzhou catchment in the 

Yangtze River basin. We used a group of 16 flood events for calibration and another group of 16 flood 

events for validation. 

6.1. Selection of the Warm-up Period 

To avoid possible influence of the initial state on the GBHM simulations, we need to initiate the 

GBHM a number of days before the data period. The length of the warm-up period may have significant 

effects on the model calibration due to uncertainty in the initial state [Huard and Mailhot, 2008]. Since 

the Bayesian calibration of a physically based distributed model is time-consuming and the computing 

time is proportional to the number of flood events, we perform a sensitivity study by using the first two 

flood events in the training group to select the warm-up length. 

Figure 6 compares the estimated posterior probability densities of the calibrated parameters using 7, 

20, 30, and 40 days for the warm-up period. The results show that kep, Kt, Kg, dsurf, and Sy are more 

sensitive to the length of the warm-up period than other parameters. This is reasonable because those 

parameters are directly related to the runoff generation, which is sensitive to the initial conditions. From 

the figure, we can see that the results of using the warm-up lengths of 20, 30, and 40 days are close to 

each other. Because the simulation time increases with increasing of the warm-up length, we select 30 
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days as the length of the warm-up period in the subsequent studies. 

6.2. Calibration Results of GBHM Parameters 

Table 5 lists the calibration results of the GBHM parameters. The statistics of hydraulic conductivity 

in the top soil (Kt) and bottom soil (Kb) are close to the upper bounds of their prior ranges. The estimated 

infiltration capability at the soil surface (Kt) is much higher than the database value of the corresponding 

soil texture (i.e., 32.7 mm/h). Since the catchment is covered by forests, we consider the estimated high 

surface infiltration capability to be related to the humus layer that is not represented in the GBHM 

model. The calibrated slope shape factor (fss) is low, corresponding to the low concave-convex effect of 

the hillslope on the hydrograph. The HPD of roughness in the river channel is estimated to be (0.019, 

0.027), which is slightly lower than the observed value at the Chuzhou gauging station (between 0.04 

and 0.07). The calibrated results are not expected to be exactly equal to the on-site observations because 

the calibration may include model structure uncertainty. 

To demonstrate the influence of input uncertainty on the calibration, we conducted another calibration 

by ignoring input errors. The posterior pdfs of the GBHM parameters estimated through the comparative 

study are illustrated in Figure 7. The results are similar to those obtained from the synthetic study (see 

Figure 5). Without including input uncertainty, the estimates of some parameters are different from those 

obtained with inclusion of input uncertainty. 

6.3. Calibration Results of Input Errors 

The calibration results for the hyper-parameters of the input errors are listed in Table 6. The posterior 

mode and median of the mean relative rainfall errors (μφ) are about -0.041, and the HPD of μφ is (-0.050, 

-0.014). These suggest that the observed rainfall frequently underestimates the "true" rainfall. The 
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estimated inverse variance in rainfall errors, τφ, is very close to the low limit of its prior range (i.e, 44.4). 

This means that prior information on the variation of input errors is important for model calibrations as 

reported by Renard et al. [2010, 2011]. 

We compared the inferred distributions of individual latent variables for different gauges during a 

flood that occurred on September 22, 1981 (see Figure 8) to analyze cross-correlation of the estimated 

input errors at different rainfall gauges. The absolute values of correlation coefficients between the 

estimated input errors were mostly smaller than 0.25, but the correlation coefficient between the 

estimated input errors at the gauges P240 and P260 was -0.395. This is reasonable, because the flow 

lengths from the two gauges to the catchment outlet are very close, and the same amount of rainfall 

occurring at either gauge would produce a similar amount of discharge at the catchment outlet. Similar 

correlation was found between the estimated input errors at gauges P180 and P200 during another storm. 

The cross correlations between the input errors of other gauges were generally weak. 

Figure 9 illustrates the original and estimated spatial distributions of precipitation in the Chuzhou 

catchment for one time step during the flood on September 22, 1981; the latter are calculated based on 

three posterior samples of the input errors. The figure shows that the estimated precipitation in most 

areas is close among different samples, whereas those around gauges P240 and P260 apparently vary. 

Similar to Figure 8, a negative correlation is found between the estimated precipitations in the two 

regions. Although not frequently appearing, the negative correlation may be caused by the poor 

identifiability of the spatial input. Given that there is much rainfall observed at gauge P260, the 

estimated sample 2 may imply that the heavy rainfall could possibly occur at gauge P240 instead of 

gauge P260 given what is known about outlet discharge. The result demonstrates that some model 
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structure errors may be over-fitted by the estimated input errors, and therefore, more spatial information 

and better priors are needed to resolve the ambiguity. 

6.4. Calibration and Validation Results of Discharge 

To evaluate the calibrated discharge with associated uncertainty, we plotted the estimated median 

discharge of the GBHM model together with the predictive uncertainty bands. Figure 10 shows the 

estimated median discharge of the 16 floods and their corresponding measurements during the 

calibration period. The Nash-Sutcliffe coefficient [Nash and Sutcliffe, 1970] of the simulation is 0.97 in 

Figure 10(a). The model residuals in Figure 10(b) evidently exhibit heteroscedasticity, which has often 

been reported in other studies [Schaefli et al., 2007], thus justifying the separation of discharge between 

low- and high-flow data. The normal probability of the high flow residuals is plotted in Figure 10(c). 

Here, the residuals approximately follow the normal distribution, although there are apparent deviations 

for those with large absolute values.  

Figures 10(d)(e) show the autocorrelation functions (ACF) and partial autocorrelation functions 

(PACF) of high-flow residuals, respectively. We can see that the first-order autoregressive coefficient is 

mostly significant for the high-flow period. The partial autocorrelation functions of lags two and three 

are also notable, yet are smaller than 0.25. As shown in Table 6, the estimated autocorrelation coefficient 

for low flow data in a daily time step is about 0.76, while that for hourly high flow data in an hourly 

time step is about 0.65. These results confirm that the autocorrelation for the low-flow period is more 

significant than for the high-flow period, and that the two kinds of data should be treated separately in 

calibration. 

Figure 11 illustrates the 95% credible predictive intervals of discharge obtained through the 
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comparative studies that estimate input errors (case (a)) or fix input errors to zeros (case (b)). The 

narrower uncertainty bands are the propagation of the uncertainties on the GBHM parameters and on 

model inputs. The wider uncertainty bands are the estimated total uncertainty bands with inclusion of 

residual uncertainty for the narrow bands. The efficiency of predictive uncertainty (EPU) and the 

continuous ranked probability score (CRPS) [Gneiting et al., 2004] are introduced to evaluate the 

predictive uncertainty, with the EPU coefficient defined as the percentage of the observed discharge 

values bracketed by the 95% predictive uncertainty limits—the most desirable value of EPU is 95%. The 

CRPS score is defined as [Gneiting et al., 2004] 
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where Ft(q) denotes the cumulative probability function (CDF) of the predicted discharge at time step t, 

H(q-qt) denotes the Heaviside function of observed discharge qt. H takes the value 0 when q < qt; the 

value is 1 otherwise. The CRPS score takes the same unit as discharge and is more desirable when it is 

smaller. Each of the values for EPU and CRPS given in the figures of the present study is for the 

high-flow period, since our focus is flood forecasting. In both cases (a) and (b) in Figure 11, the 

observed discharge is well bracketed by the total uncertainty bounds. Nevertheless, the predictive 

discharge distribution when fixing input errors to zero is worse (i.e., having relatively wider predictive 

uncertainty bounds and larger CRPS scores) than that when estimating input errors. 

We follow three main steps to perform the validation: (1) pick one set of GBHM parameters from the 

MCMC samples obtained in the calibration period; (2) pick one set of input errors (φ) from the MCMC 

samples of one randomly selected flood event (out of 16) in the calibration period; and (3) run the 
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forward model (i.e., GBHM) using the parameters and input errors chosen from steps (1) and (2). 

Because the input errors are fitted in calibration and used in validation, the input uncertainty in the 

validation period is typically larger than that in the calibration period. 

Figure 12 shows the evaluation of predicted median discharge for the 16 flood events in the validation 

period. The calibrated model provides good predictions of the observed data, with a Nash-Sutcliffe 

coefficient of 0.90. The normality of the high-flow residuals in the validation period is worse than that in 

the calibration period. Figures 12 (d)(e) show the ACF and PACF of high-flow residuals in the validation 

stage. Compared to the calibration stage, the autoregressive coefficients of lags 1–7 in the high-flow 

period are important, as are the partial autocorrelation coefficients of lags 2-3. A possible explanation for 

the result is that the input errors in the calibration period are estimated while those in the validation 

period remain unknown and are sampled from the same input error distribution as used in the calibration 

period. The input errors and the potential model structure errors may lead to highly correlated residuals 

in prediction—this is an issue that we will address in future studies. 

Figure 13 compares the estimated uncertainty with and without estimating input errors in the 

calibration and validation periods. In the case that includes estimated input errors, the uncertainty bands 

caused by input uncertainty are very wide and dominate the prediction uncertainty. EPU values of 100% 

for the selected flood events are larger than their most favorable value, 95%, which implies that the 

predictive distributions of discharge overestimated the uncertainty. One possible reason is that the input 

errors picked up for the validation period incorporated the inter-storm variance of input errors in the 

calibration period. Another possible reason is that the estimated input errors over-fit some model 

structure errors in the calibration period; consequently, the wide uncertainty bands may not be accurate. 
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Nonetheless, the wide uncertainty bands induced by large input uncertainty are more efficient in 

bracketing observed discharge than are the uncertainty bands estimated with zero input errors. 

Meanwhile, the CRPS scores in Figure 13 also suggest that most predictive CDFs estimated jointly with 

input uncertainty are better than those estimated without considering input uncertainty. In addition, the 

input and model structure uncertainties for flood forecasting are quite significant, although we have not 

explicitly accounted for the latter in the present study. 

6.5. Evaluation of Predictive Uncertainty 

The predictive quantile-quantile plot (PQQ) for critically evaluating predictive uncertainty was 

introduced by Thyer et al. [2009] and has been frequently adopted since then [Renard et al., 2010; 

Schoups and Vrugt, 2010] to test the consistency of predictive distribution with observed data. The 

cumulated probability of observed discharge in the predictive CDF is called the observed p-value. The 

observed p-value theoretically has the uniform distribution on (0, 1) if the observed data are consistent 

with samples from the predictive PDF. 

Figure 14 shows the influences of input uncertainty on predictive uncertainty in the calibration and 

validation periods using the PQQ methodology. Here we show only the results that are related to the 

high-flow data, since the focus of this study is flood forecasting. For the calibration period, the PQQ 

curves of most flood events are near the diagonal line when the hydrological parameters and input errors 

are jointly estimated (see Figure 14(a)). The large symbols that represent peak flow distribute evenly in 

the PQQ curves. This result suggests that the predictive distribution is consistent with observed data. 

When input errors are ignored, the PQQ curves in calibration are more dispersive (see Figure 14(b)). 

This means the estimated predictive distributions are more frequently overestimating or underestimating 
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the predictive uncertainty when ignoring input errors than considering input errors. 

Figure 14(c)(d) show that the consistency of the predictive distributions with observed data is worse 

in validation than in calibration, which is consistent with the detailed predictive uncertainty bounds 

shown in Figures 11 and 13. The uncertainty of observed data with relative small magnitude (i.e., having 

small size) tends to be overestimated more often, since many of them have p-values within (0.2, 0.8). 

This is similar to the finding of Thyer et al. [2009]. Observed data with relative large magnitude tend to 

have p-values near 0 or 1, and off the 1:1 line, which means that the uncertainty of flood peaks is still 

underestimated or overestimated in spite of the wide predictive uncertainty limits shown in Figure 13. 

Comparatively, underestimation of flood peaks is more frequent than overestimation, because the large 

symbols have more p-values near 1 than near 0, especially when input errors are not considered. Figure 

14(d) shows that neglecting input errors results in a low EPU coefficient, high CPRS score, and frequent 

underestimation of flood peaks. 

The results presented in the previous subsections are based on the upper bounds of 15% for the 

standard deviation of input errors. We also carried out analysis for the field study using the upper 

bounds of 10%, 20%, and 30% for the standard deviation of input errors. We found that most parameters 

are not very sensitive to the prior upper bounds of input errors, except for the evaporation parameter (kep) 

and the slope shape factor (fss). However, the effects on estimation of input errors are large, and this is 

consistent with the findings by Renard et al. [2010, 2011]. 

7. Discussion 

7.1. Likelihood Function 

The construction of a suitable likelihood function is crucial for Bayesian analysis because the 
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likelihood function determines how unknown parameters are linked to data. In this study, the separation 

between low- and high-flow data and employment of autoregressive models are two key assumptions for 

the derivation of likelihood functions. 

The present method of classifying discharge data is a variation of the finite mixture model presented 

by Schaefli et al. [2007]. The advantage of classifying discharge data is that we can adopt different 

statistical models to different datasets, such as different time steps and different transformations. We use 

an hourly time-step for the high-flow period and daily time-step for the low-flow period. Moreover, 

classifying the hydrological parameters in accordance with different classifications of datasets is 

possible because some parameters are related to low-flow data and some are primarily related to 

high-flow data. We could classify such parameters in the future when we find a data transformation 

method to reduce the error propagation between the low-flow and the high-flow periods. The 

classification method is limited by the need to maintain independence among different classifications. 

Thus, it should be conducted based on a physical rationale. To avoid confusion, we abandon some 

discharge datasets with a high-flow period mixed with a low-flow period in the current study. 

The results of both synthetic and field case studies show consistency of the AR(1) model with model 

residuals (see Figure 10). Nevertheless, validation results from the field case study reveal that 

autocorrelation functions of higher lags are also important in prediction (see Figure 12). In addition to 

adopting autoregressive models based on time series analysis, there is potentially an alternative way of 

treating a flood event in its entirety and constructing likelihood functions based on the internal structure 

of residual series. 

Spatially distributed data can be adopted for calibration and diagnosis of distributed hydrological 
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models [Marce et al., 2008]. Under the Bayesian framework, further research is expected to combine 

different likelihood functions from varied information to calibrate spatially distributed parameters. More 

general likelihood functions other than normal distributions are also expected to improve the inferences 

of the parameters [Schoups and Vrugt, 2010]. 

7.2. Influence of Input Uncertainty 

The input uncertainty of the GBHM model is represented by spatially distributed relative rainfall 

errors in the developed Bayesian model. Results from the synthetic case study show that the integrated 

estimation of input errors leads to a more reasonable calibration of the GBHM parameters, including the 

posterior medians and the uncertainty bands. The field case study also reveals apparent differences 

between the posterior distributions of certain GBHM parameters with and without considering input 

uncertainty. These differences emphasize the significance of considering input uncertainty in calibration, 

as reported by the BATEA and DREAM approaches [Kavetski et al., 2006; Vrugt et al., 2008]. The most 

evident influence of input uncertainty is in the validation period of the field case study, where the 

consideration of input uncertainty expands the predictive uncertainty bands to bracket a number of 

observed discharge values (see Figure 13) and improve the performance of predictive distributions (see 

Figure 14), especially for flood peak periods. However, it is still challenging to fully cope with the 

effects of input uncertainty, because of the compound effects of model structure uncertainty and the poor 

identifiability of spatial input errors. 

In the prior model, the input errors of the GBHM model at different gauges are specified as 

independent. The spatial correlation of the input errors for different computation grids is propagated by 

the interpolation of the estimated precipitation at the gauges. The calibration result of the field case 
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study reveals that the estimated input errors are sometimes negatively correlated when the flow distances 

are close (see Figures 8 and 9), which displays the limitation of the current Bayesian inference of using 

only outlet discharge for estimating spatially distributed variables. Spatially distributed information is 

important for better inference because of this limitation. Meanwhile, both the synthetic and the field case 

studies demonstrate that the estimated input errors are restricted by the specified prior ranges of their 

hyper-parameters. The estimated input uncertainty would be larger if we release the restrictions. 

Therefore, prior knowledge of rainfall observation and distribution is crucial for more accurate 

estimation of input errors. Studies on quantitative estimation of spatially distributed precipitation [Clark 

and Slater, 2006; Renard et al., 2011] can help improve existing knowledge of rainfall uncertainty. 

7.3. Influence of Model Structure Uncertainty 

Model structure uncertainty is not represented explicitly in the current study, although we have shown 

the interaction between the input and the model structure errors in the synthetic study (see Table 4). The 

estimated input errors may fit the model structure errors because they are both storm-dependent, which 

is termed as compensatory behavior by Kavetski et al. [2006]. Therefore, the prior ranges of the 

hyper-parameters of input errors are specified to prevent the trend of over-fitting. The difficulty of 

identifying input and model structure errors together has been discussed extensively by Renard et al. 

[2010], based on the BATEA framework [Kuczera et al., 2006]. We would emphasize that the estimation 

of model structure uncertainty is another challenging topic that deserves further investigation. 

In the present study, the effect of the model structure errors on model residuals is characterized by the 

AR(1) model, because model structure errors are usually autoregressive due to internal storage processes 

[Bates and Campbell, 2001; Yang et al., 2007]. The input errors also lead to autocorrelation in model 
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residuals. Therefore, the estimated autocorrelation of model residuals is a combined effect of both model 

structure uncertainty and input uncertainty. 

Nevertheless, we believe that model limitations are partially caused by the residual influence of model 

structure uncertainty. For example, some estimated physical parameters are evidently different from 

their database or point observation values, the estimated inverse variance of rainfall errors is close to the 

low limit of its prior range, and the predictive distributions of the peak period discharge in the validation 

period tend to underestimate the predictive uncertainty, even if the input uncertainty is considered. 

Further studies are certainly needed to improve our understanding of the physical parameters of 

catchments, the inversion of input errors, and the performance of the predictive distributions. 

7.4. Sensitivity of Calibration Results to Prior Information 

Acknowledging that the accuracy of prior distributions is crucial for calibration results, we have 

conducted sensitivity analyses for both the synthetic and field case studies. Sensitivity is low for the 

synthetic study and high for the field case study. For the field case study, the influence is relative lower 

for the calibration results of GBHM parameters, but higher for the inferred input errors and for the 

predictive uncertainty. This confirms the findings of Renard et al. [2010] that the inference of input 

errors is ill-posed when the prior information is not sufficiently accurate. An alternative way to 

determine prior information is needed for both the inference of input errors and for the decomposition of 

predictive uncertainty. 

8. Conclusions 

We have developed a Bayesian model to aid in predicting mountain floods and have investigated 

calibration of hydrological parameters with consideration of input errors in a distributed hydrological 
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model. The synthetic case study shows that the developed method can be used to calibrate GBHM 

parameters and to estimate the associated uncertainty. The calibration ignoring input errors has lower 

accuracy and lower reliability compared to the calibration that includes estimation of the input errors, 

especially under model structure uncertainty. 

However, calibration of GBHM parameters under complex field conditions remains a challenge. 

Although jointly estimating input errors and GBHM parameters improves the continuous ranked 

probability score and the consistency of the predictive distribution with the observed data, the 

improvement is incremental. To better calibrate parameters in a distributed model, such as GBHM here, 

we need to develop a more complex model and incorporate much more information. 
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Appendix A. Probability Density Function of Truncated Normal Distribution 

When variable x is distributed normally within an interval (a, b), the probability density function can 

be written in the following form [Huard and Mailhot, 2008]: 
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where μ is the mean, σ is the standard deviation, �() is the pdf of standard normal distribution, and Φ() 

is its cumulative distribution function. Here, we assume that φk,j for different storms at the same gauge 

follows a truncated normal distribution within (-1, +∞), with mean μφ and inverse variance τφ. Thus, the 

pdf of φk,j is given as 
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where erf() is the error function (http://en.wikipedia.org/wiki/Error_function). 

Appendix B. Derivation of Likelihood Functions Based on the AR(1) Model 

The original form of the likelihood function is given in Equation 4. Assuming the residuals following 

the AR(1) model [Naidu, 1996], the terms in the covariance matrix, Σk, are  
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Therefore, Σk = Rk/τy, and 
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where Rk denotes the correlation coefficient matrix of the model residuals. The likelihood function is 

thus written as 
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where 
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Using the Cholesky decomposition of matrix Rk, we can have 

 1 T
k k kR U U    (B5) 

where Uk is an upper triangular matrix. Therefore, Sk can be evaluated by 

 
( ) ( )

( ( )) ( ( ))

sim T T sim
k k k k k k k

sim T sim
k k k k k k

S U U

U U

  

  

Y Y Y Y

Y Y Y Y
  (B6) 

Acknowledgments 

The research was supported by the National Natural Science Foundation of China (project no. 

50939004 and 51025931), and by the US Department of Energy, Biological and Environmental 

Research Program, Contract No. DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory. The 

first author was also partially supported by a scholarship from the China Scholarship Council. We wish 

to thank Hoshin Gupta, Jasper Vrugt, and three anonymous reviewers for valuable comments and 

suggestions. We also wish to thank Daniel Hawkes and Michael Kowalsky from Lawrence Berkeley 



 35  

National Laboratory for providing detailed comments on the manuscript. 

References 

Abbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O'Connell, and J. Rasmussen (1986), An introduction to 

the European Hydrological System -- Systeme Hydrologique Europeen, "SHE", 1: History 

and philosophy of a physically-based, distributed modelling system, J. Hydrol., 87(1-2), 45-59, 

doi:10.1016/0022-1694(86)90114-9. 

Ajami, N. K., Q. Y. Duan, and S. Sorooshian (2007), An integrated hydrologic Bayesian multimodel 

combination framework: Confronting input, parameter, and model structural uncertainty in 

hydrologic prediction, Water Resour. Res., 43, W01403, doi:10.1029/2005WR004745. 

Ajami, N. K., Q. Duan, and S. Sorooshian (2009), Reply to Comment by B. Renard et al. on "An 

integrated hydrologic Bayesian multimodel combination framework: Confronting input, 

parameter, and model structural uncertainty in hydrologic prediction'', Water Resour. Res., 45, 

W03604, doi:10.1029/2008WR007215. 

Bates, B. C., and E. P. Campbell (2001), A Markov chain Monte Carlo scheme for parameter estimation 

and inference in conceptual rainfall-runoff modeling, Water Resour. Res., 37(4), 937-947, 

doi:10.1029/2000WR900363. 

Beven, K. (2006), A manifesto for the equifinality thesis, J. Hydrol., 320(1-2), 18-36, 

doi:10.1016/j.jhydrol.2005.07.007. 

Chen, J. S., G. M. Hoversten, D. Vasco, Y. Rubin, and Z. S. Hou (2007), A Bayesian model for gas 

saturation estimation using marine seismic AVA and CSEM data, Geophysics, 72(2), 

WA85-WA95, doi:10.1190/1.2435082. 

Chen, J. S., A. Kemna, and S. S. Hubbard (2008), A comparison between Gauss-Newton and 

Markov-chain Monte Carlo-based methods for inverting spectral induced-polarization data for 



 36  

Cole-Cole parameters, Geophysics, 73(6), F247-F259, doi:10.1190/1.2976115. 

Chow, V. T., R. M. David, and W. M. Larry (1988), Applied Hydrology, McGraw-Hill Inc. 

Clark, M. P., and A. G. Slater (2006), Probabilistic quantitative precipitation estimation in complex 

terrain, J. Hydrometeorol., 7(1), 3-22. 

Clark, M. P., A. G. Slater, D. E. Rupp, R. A. Woods, J. A. Vrugt, H. V. Gupta, T. Wagener, and L. E. Hay 

(2008), Framework for Understanding Structural Errors (FUSE): A modular framework to 

diagnose differences between hydrological models, Water Resour. Res., 44, W00B02, 

doi:10.1029/2007WR006735. 

Cong, Z. T., D. W. Yang, B. Gao, H. B. Yang, and H. P. Hu (2009), Hydrological trend analysis in the 

Yellow River basin using a distributed hydrological model, Water Resour. Res., 45, W00A13, 

doi:10.1029/2008WR006852. 

Gelfand, A. E., and A. F. M. Smith (1990), Sampling-based approaches to calculating marginal densities, 

J. Am. stat. Assoc., 85(410), 398-409, doi:10.2307/2289776. 

Gelman, A., and D. Rubin (1992), Inference from iterative simulation using multiple sequences, Statist. 

Sci., 7(4), 457-472, doi:10.1214/ss/1177011136. 

Geman, S., and D. Geman (1984), Stochastic relaxation, Gibbs distributions and the Bayesian 

restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 

721-741, doi:10.1109/TPAMI.1984.4767596. 

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (1996), Markov Chain Monte Carlo in Practice, 

Chapman & Hall. 

Gneiting, T., A. Westveld, A. Raferty, and T. Goldman (2004), Calibrated probabilistic forecasting using 

ensemble model output statistics and minimum CRPS estimation, (Technical Report no. 449), 

Department of Statistics, University of Washington, Washington. 



 37  

Gotzinger, J., and A. Bardossy (2008), Generic error model for calibration and uncertainty estimation of 

hydrological models, Water Resour. Res., 44, W00B07, doi:10.1029/2007WR006691. 

Green, P., and A. Mira (2001), Delayed rejection in reversible jump metropolis-hastings, Biometrika, 88, 

1035-1053. 

Gupta, H., K. Beven, and T. Wagener (2005), Model calibration and uncertainty estimation, in 

Encyclopedia of Hydrological Sciences, edited by M. G. Anderson, John Wiley & Sons. 

Haario, H., E. Saksman, and J. Tamminen (2001), An adaptive Metropolis algorithm, Bernoulli, 7(2), 

223-242. 

Haario, H., M. Laine, A. Mira, and E. Saksman (2006), DRAM: Efficient adaptive MCMC, Stat. 

Comput., 16(4), 339-354, doi:10.1007/s11222-006-9438-0. 

Hastings, W. K. (1970), Monte Carlo sampling methods using Markov chains and their applications, 

Biometrika, 57(1), 97-109. 

Huard, D., and A. Mailhot (2008), Calibration of hydrological model GR2M using Bayesian uncertainty 

analysis, Water Resour. Res., 44, W02424, doi:10.1029/2007WR005949. 

Immerzeel, W. W., and P. Droogers (2008), Calibration of a distributed hydrological model based on 

satellite evapotranspiration, J. Hydrol., 349(3-4), 411-424, doi:10.1016/j.jhydrol.2007.11.017. 

Kavetski, D., S. W. Franks, and G. Kuczera (2003), Confronting input uncertainty in environmental 

modelling, in Calibration of Watershed Models, Water Sci. Appl., vol. 6, edited by Q. Duan et 

al., pp. 49–68, AGU, Washington, D. C., doi:10.1029/WS006p0049. 

Kavetski, D., G. Kuczera, and S. W. Franks (2006), Bayesian analysis of input uncertainty in 

hydrological modeling: 1. Theory, Water Resour. Res., 42, W03407, 

doi:10.1029/2005WR004368. 



 38  

Khu, S. T., H. Madsen, and F. di Pierro (2008), Incorporating multiple observations for distributed 

hydrologic model calibration: An approach using a multi-objective evolutionary algorithm and 

clustering, Adv. Water Resour., 31(10), 1387-1398. 

Kuczera, G. (1988), On the validity of first-order prediction limits for conceptual hydrologic models, J. 

Hydrol., 103(3-4), 229–247. 

Kuczera, G., and E. Parent (1998), Monte Carlo assessment of parameter uncertainty in conceptual 

catchment models: the Metropolis algorithm, J. Hydrol., 211(1-4), 69-85, 

doi:10.1016/S0022-1694(98)00198-X. 

Kuczera, G., D. Kavetski, S. Franks, and M. Thyer (2006), Towards a Bayesian total error analysis of 

conceptual rainfall-runoff models: Characterising model error using storm-dependent 

parameters, J. Hydrol., 331(1-2), 161-177, doi:10.1016/j.jhydrol.2006.05.010. 

Liu, Y. Q., and H. V. Gupta (2007), Uncertainty in hydrologic modeling: Toward an integrated data 

assimilation framework, Water Resour. Res., 43,W07401, doi:10.1029/2006WR005756. 

Marce, R., C. E. Ruiz, and J. Armengol (2008), Using spatially distributed parameters and 

multi-response objective functions to solve parameterization of complex applications of 

semi-distributed hydrological models, Water Resour. Res., 44, W02436, 

doi:10.1029/2006WR005785. 

Marshall, L., D. Nott, and A. Sharma (2004), A comparative study of Markov chain Monte Carlo 

methods for conceptual rainfall-runoff modeling, Water Resour. Res., 40,W02501, 

doi:10.1029/2003WR002378. 

McMillan, H., B. Jackson, M. Clark, D. Kavetski, and R. Woods (2011), Rainfall uncertainty in 

hydrological modelling: An evaluation of multiplicative error models, J. Hydrol., 400(1-2), 

83-94, doi:10.1016/j.jhydrol.2011.01.026. 



 39  

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller (1953), Equation of State 

Calculations by Fast Computing Machines, J. Chem. Phys., 21(6), 1087-1092. 

Naidu, P. S. (1996), Modern Spectrum Analysis of Time Series, CRC Press. 

Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models, part I, A 

discussion of principles, J. Hydrol., 10, 398-409. 

New, M., M. Hulme, and P. Jones (2000), Representing twentieth-century space-time climate variability. 

Part II: Development of 1901-96 monthly grids of terrestrial surface climate, J. Climate, 

13(13), 2217-2238. 

Reichert, P., and J. Mieleitner (2009), Analyzing input and structural uncertainty of nonlinear dynamic 

models with stochastic, time-dependent parameters, Water Resour. Res., 45, W10402, 

doi:10.1029/2009WR007814. 

Renard, B., D. Kavetski, and G. Kuczera (2009), Comment on "An integrated hydrologic Bayesian 

multimodel combination framework: Confronting input, parameter, and model structural 

uncertainty in hydrologic prediction'' by Newsha K. Ajami et al., Water Resour. Res., 45, 

W03603, doi:10.1029/2007WR006538. 

Renard, B., D. Kavetski, G. Kuczera, M. Thyer, and S. W. Franks (2010), Understanding predictive 

uncertainty in hydrologic modeling: The challenge of identifying input and structural errors, 

Water Resour. Res., 46, W05521, doi:10.1029/2009WR008328. 

Renard, B., D. Kavetski, E. Leblois, M. Thyer, G. Kuczera, and S. W. Franks (2011), Toward a reliable 

decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall 

errors using conditional simulation, Water Resour. Res., 47(11), W11516, doi: 

10.1029/2011WR010643. 

Robinson, J. S., and M. Sivapalan (1996), Instantaneous response functions of overland flow and 



 40  

subsurface stormflow for catchment models, Hydrol. Processes, 10(6), 845-862. 

Salamon, P., and L. Feyen (2010), Disentangling uncertainties in distributed hydrological modeling 

using multiplicative error models and sequential data assimilation, Water Resources Research, 

46, W12501, doi:10.1029/2009WR009022. 

Schaefli, B., D. B. Talamba, and A. Musy (2007), Quantifying hydrological modeling errors through a 

mixture of normal distributions, J. Hydrol., 332(3-4), 303-315, 

doi:10.1016/j.jhydrol.2006.07.005. 

Schoups, G., and J. A. Vrugt (2010), A formal likelihood function for parameter and predictive inference 

of hydrologic models with correlated, heteroscedastic, and non‐Gaussian errors, Water Resour. 

Res., 46, W10531, doi:10.1029/2009WR008933. 

Shrestha, R. R., and M. Rode (2008), Multi-objective calibration and fuzzy preference selection of a 

distributed hydrological model, Environ. Modell. & Softw., 23(12), 1384-1395, 

doi:10.1016/j.envsoft.2008.04.001. 

Singh, V. P., and D. A. Woolhiser (2002), Mathematical modeling of watershed hydrology, J. Hydrologic 

Eng., 7(4), 270-292, doi:10.1061/(ASCE)1084-0699(2002)7:4(270). 

Thyer, M., G. Kuczera, and Q. J. Wang (2002), Quantifying parameter uncertainty in stochastic models 

using the Box-Cox transformation, J. Hydrol., 265(1-4), 246-257. 

Thyer, M., B. Renard, D. Kavetski, G. Kuczera, S. W. Franks, and S. Srikanthan (2009), Critical 

evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A 

case study using Bayesian total error analysis, Water Resour. Res., 45, W00B14, 

doi:10.1029/2008WR006825. 

Vrugt, J. A., C. J. F. ter Braak, M. P. Clark, J. M. Hyman, and B. A. Robinson (2008), Treatment of input 

uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte 



 41  

Carlo simulation, Water Resour. Res., 44, W00B09, doi:10.1029/2007WR006720. 

Yang, D. W. (1998), Distributed hydrological model using hillslope discretization based on catchment 

area function: development and applications, Ph.D. thesis, University of Tokyo, Tokyo. 

Yang, D. W., and K. Musiake (2003), A continental scale hydrological model using the distributed 

approach and its application to Asia, Hydrol. Processes, 17, 2855-2869, 

doi:10.1002/hyp.1438. 

Yang, D. W., S. Herath, and K. Musiake (2002), A hillslope-based hydrological model using catchment 

area and width functions, Hydrol. Sci. J., 47(1), 49-65. 

Yang, D. W., T. Koike, and H. Tanizawa (2004), Application of a distributed hydrological model and 

weather radar observations for flood management in the upper Tone River of Japan, Hydrol. 

Processes, 18, 3119-3132, doi:10.1002/hyp.5752. 

Yang, J., P. Reichert, K. C. Abbaspour, and H. Yang (2007), Hydrological modelling of the chaohe basin 

in china: Statistical model formulation and Bayesian inference, J. Hydrol., 340(3-4), 167-182, 

doi:10.1016/j.jhydrol.2007.04.006. 

 



 42  

Tables 

Table 1. Prior ranges of parameters for calibration of the GBHM 

Table 2. True values, prior ranges, and estimated statistics of the calibrated variables for the synthetic 

study with 10% input errors, where "HPD" refers to the 95% highest posterior density domains 

Table 3. Calibration results of the GBHM parameters with and without estimating input errors in the 

synthetic case study 

Table 4. Calibration results of the three GBHM parameters with and without estimating input errors 

when the synthetic data include model structure errors. The standard deviation of input errors used for 

generation of synthetic dataset is set to 10%. 

Table 5. Estimated posterior statistics of the GBHM parameters 

Table 6. Posterior statistics of variables in the Bayesian model other than GBHM parameters 



 43  

Figure Captions 

Figure 1: Schematic diagram of the geomorphology-based hydrological model (GBHM). 

Figure 2: Definition of saturated outflow length ls in an actual hillslope and a GBHM hillslope. 

Figure 3: Description of the Chuzhou catchment and the synthetic basin, where "Q" and "P" refer to 

discharge gauges and rainfall gauges respectively, and "syn" refers to synthetic gauges. One actual 

rainfall gauge and two synthetic rainfall gauges are used for the synthetic study. 

Figure 4: Estimated φ versus the true values of φ in the synthetic study with 10% input errors. Each 

point represents an input error for an individual storm at one particular gauge (there are a total of four 

storms and three rainfall gauges). The solid circles represent the estimated medians, and vertical line 

segments show the 95% highest posterior density domains (HPD). 

Figure 5: Comparison of the posterior distributions of the GBHM parameters for the synthetic study 

with 15% input errors. The black curves are the results obtained by jointly estimating rainfall errors, and 

the red curves are those obtained by ignoring rainfall errors (i.e., fixing φ=0). The black triangles are the 

true values. All the priors are assumed to be uniform on the ranges shown in the figures. 

Figure 6: Comparison of the effects of different warm-up lengths on the model calibration. The black 

solid, red dashed, green solid and blue dashed curves are the estimated posterior probability densities of 

GBHM parameters using the warm-up lengths of 7, 20, 30, and 40 days, respectively. 

Figure 7: Comparison of the posterior distributions densities of the GBHM parameters for the field case 

study given by considering (black curves) and ignoring (red curves) rainfall errors. 

Figure 8: Scatter-plots and histograms of the estimated input errors for different rainfall gauges during 

the flood on September 22, 1981. 
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Figure 9: Observed and estimated spatial distributions of precipitation over the Chuzhou catchment for 

a time step during the flood on September 22, 1981. The angular distance-weighted method is used for 

the spatial interpolation. 

Figure 10: Evaluation of the estimated discharge medians for the calibration period: (a) medians of the 

estimated discharges (black curves) and observed discharges (red circles); (b) plots of residuals between 

the simulated and observed discharges; (c) normal probability plot of residuals for the high flow data; (d) 

autocorrelation functions (ACF) of high flow residuals; and (e) partial autocorrelation functions (PACF) 

of high flow residuals. For readability, 16 isolated floods are plotted together in (a) and (b). 

Figure 11: Simulated and observed discharges for the calibration period: (a) Bayesian model that 

estimates φ together with GBHM parameters in calibration. The darker shadow areas show the 95% 

model simulation uncertainty related to the uncertainty of GBHM parameters and input errors. The 

lighter shadow areas show the total uncertainty with the additional influence of model residuals. Within 

a flood event, discharges with relatively wide uncertainty ranges are those classified into high flow data; 

others are classified into low flow data. (b) Fixing φ = 0 in calibration. Thus, the dark shadow areas are 

related exclusively to parameter uncertainty. 

Figure 12: Evaluation of the estimated discharge medians for the validation period: (a) medians of the 

estimated discharges (black curves) and observed discharges (red circles); (b) plots of residuals between 

the simulated and observed discharges; (c) normal probability plot of residuals for the high flow data; (d) 

autocorrelation functions (ACF) of high flow residuals; and (e) partial autocorrelation functions (PACF) 

of high flow residuals. For readability, 16 isolated floods are plotted together in (a) and (b). 

Figure 13: Predicted and observed discharges for the validation period: (a) Bayesian model that 
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estimates φ together with GBHM parameters in prediction. The darker shadow areas show the 95% 

model prediction uncertainty related to the uncertainty of GBHM parameters and input errors. The 

lighter shadow areas show the total uncertainty with additional influence of model residuals; and (b) φ = 

0 fixed in prediction. Thus, the dark shadow areas are related exclusively to parameter uncertainty. 

Figure 14: Predictive quantile-quantile plot (PQQ) of the estimated predictive uncertainty for both 

calibration and validation periods. The PQQ curves of 16 flood events are plotted together. The symbol 

size is proportional to the magnitude of the observed data. 

 



T-1 

 

Table 1. Prior ranges of parameters for calibration of the GBHM 

No.  Parameter  Description of parameter  Unit  Distribution  

1  kep  Coefficient of potential evaporation   U(0.5, 1.5)  

2  log(Kt)  Saturated hydraulic conductivity of top soil  mm/h  U(1, 3)  

3  log(Kb)  Saturated hydraulic conductivity of bottom soil  mm/h  U(0, 2)  

4  log(Kg)  Saturated hydraulic conductivity of unconfined aquifer  mm/h  U(0, 1)  

5  log(fss)  Slope shape factor   U(-1.5, -0.5)  

6  dsurf  Maximum surface storage  mm  U(3, 15)  

7  log(Sy)  Specific yield   U(-2, -1)  

8  log(ns)  Roughness on the hillslope surface   U(0, 1)  

9  log(nc)  Roughness in the river channel   U(-2.5, -1)  
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Table 2. True values, prior ranges, and estimated statistics of the calibrated variables for the synthetic 

study with 10% input errors, where "HPD" refers to the 95% highest posterior density domains 

 True value Prior range Mode Median 95% HPD 

kep  1 (0.5, 1.5)  0.678 0.770 (0.502,1.274) 

log(Kt)  2 (1, 3)  2.206 2.173 (1.683,2.592) 

log(Kb)  1 (0, 2)  0.863 0.949 (0.471,1.604) 

log(Kg)  0.5 (0, 1)  0.578 0.565 (0.381,0.725) 

log(fss)  -1 (-1.5, -0.5)  -1.139 -1.106 (-1.421,-0.780) 

dsurf  9 (3, 15)  11.976 11.772 (8.606,14.855) 

log(Sy)  -1.5 (-2, -1)  -1.240 -1.268 (-1.566,-1.000) 

log(ns)  0.5 (0, 1)  0.466 0.462 (0.327,0.570) 

log(nc)  -1.75 (-2.5, -1)  -1.745 -1.740 (-1.944,-1.521) 

μφ 0 (-0.05, 0.05) -0.005 -0.003 (-0.049, 0.044) 

τφ 100 (44.4, 400) 114.9 140.6 (44.8, 331.6) 

ρy 0.8 (0, 1) 0.825 0.795 (0.478, 0.973) 

ρz 0.8 (0, 1) 0.807 0.807 (0.710, 0.919) 

τy 100 (0, +∞) 105.3 113.5 (24.3, 218.8) 

τz 25 (0,+∞) 26.2 26.3 (11.3, 40.2) 
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Table 3. Calibration results of the GBHM parameters with and without estimating input errors in the 

synthetic case study 

Specified  

input errors a 

Input errors in  

calibration 

Mean absolute 

error (%) b 

Mean  

St. dev. (%) c 

Percentage located in  

HPD (%) d 

10% 
Estimated 11.35 13.57 100.0 

Not estimated 12.23 12.62 88.9 

15% 
Estimated 8.07 13.06 88.9 

Not estimated 18.52 11.02 55.6 

a Standard deviation of input errors used for generating synthetic data 

b Mean of absolute errors of calibrated medians of GBHM parameters relative to their corresponding 

prior ranges 

c Mean of standard deviations of the posterior distributions of the GBHM parameters relative to their 

corresponding prior ranges 

d Percentage of true values of GBHM parameters located in the estimated 95% highest posterior density 

domain for nine parameters 
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Table 4. Calibration results of the three GBHM parameters with and without estimating input errors 

when the synthetic data include model structure errors. The standard deviation of input errors used for 

generation of synthetic dataset is set to 10%. 

Input errors in  

calibration 

Mean absolute 

error (%) a 

Mean  

St. dev. (%) b 

Percentage located in 

HPD (%) c 

Not estimated (set φ = 0) 9.09 6.41 66.7 

Not estimated (set φ to their true values) 8.65 4.76 33.3 

Estimated with τφ ~ [1/(10%)2, 1/(5%)2] 2.81 5.34 100.0 

Estimated with τφ ~ [1/(15%)2, 1/(5%)2] 2.80 5.46 100.0 

Estimated with τφ ~ [1/(20%)2, 1/(5%)2] 2.62 5.48 100.0 

Estimated with τφ ~ [1/(30%)2, 1/(5%)2] 2.91 5.55 100.0 

a Mean of absolute errors of calibrated medians of GBHM parameters relative to their corresponding 

prior ranges 

b Mean of standard deviations of the posterior distributions of the GBHM parameters relative to their 

corresponding prior ranges 

c Percentage of true values of GBHM parameters located in the estimated 95% highest posterior density 

domain for three parameters 
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Table 5. Estimated posterior statistics of the GBHM parameters 

Parameter Mode Median Mean Low HPD Up HPD 

kep 1.192 1.196 1.193 0.960 1.439 

Kt (mm/h) 956.185 914.086 859.605 613.440 999.986 

Kb (mm/h) 95.424 90.367 85.962 63.661 100.000 

Kg (mm/h) 3.665 3.669 3.647 3.070 4.489 

fss 0.063 0.066 0.066 0.047 0.080 

dsurf (mm) 3.112 3.248 3.333 3.000 4.036 

Sy 0.010 0.011 0.011 0.010 0.013 

ns 2.400 2.387 2.376 1.914 3.036 

nc 0.024 0.023 0.023 0.019 0.027 
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Table 6. Posterior statistics of variables in the Bayesian model other than GBHM parameters 

 μφ τφ ρy ρz τy τz 

Mode -0.046 45.007 0.779 0.651 293.938 8.640

Median -0.041 45.612 0.757 0.651 311.487 8.628

Mean -0.038 46.213 0.746 0.652 321.400 8.628

Low HPD -0.050 44.440 0.571 0.568 151.660 6.468

Up HPD -0.014 49.921 0.903 0.735 511.983 10.703
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Figure 1. Schematic diagram of the geomorphology-based hydrological model 
(GBHM). 
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Figure 2. Definition of saturated outflow length ls in an actual hillslope and a GBHM 
hillslope. 
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Figure 3. Description of the Chuzhou catchment and the synthetic basin, where "Q" 
and "P" refer to discharge gauges and rainfall gauges respectively, and "syn" refers to 
synthetic gauges. One actual rainfall gauge and two synthetic rainfall gauges are used for 
the synthetic study. 
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Figure 4. Estimated φ versus the true values of φ in the synthetic study with 10% 
input errors. Each point represents an input error for an individual storm at one particular 
gauge (there are a total of four storms and three rainfall gauges). The solid circles 
represent the estimated medians, and vertical line segments show the 95% highest 
posterior density domains (HPD). 
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Figure 5. Comparison of the posterior distributions of the GBHM parameters for the 
synthetic study with 15% input errors. The black curves are the results obtained by jointly 
estimating rainfall errors, and the red curves are those obtained by ignoring rainfall errors 
(i.e., fixing φ=0). The black triangles are the true values. All the priors are assumed 
uniform on the ranges shown in the figures. 
 
 
 
 
 
 



F-6 

 
 
 

 
Figure 6. Comparison of the effects of different warm-up lengths on the model 
calibration. The black solid, red dashed, green solid and blue dashed curves are the 
estimated posterior probability densities of GBHM parameters using the warm-up lengths 
of 7, 20, 30, and 40 days, respectively. 
 



F-7 

 
 
 
 
 
 
 
 

 
Figure 7. Comparison of the posterior distributions densities of the GBHM parameters 
for the field case study given by considering (black curves) and ignoring (red curves) 
rainfall errors. 
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Figure 8. Scatter-plots and histograms of the estimated input errors for different 
rainfall gauges during the flood on September 22, 1981. 
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Figure 9. Observed and estimated spatial distributions of precipitation over the 
Chuzhou catchment for a time step during the flood on September 22, 1981. The angular 
distance-weighted method is used for the spatial interpolation. 
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Figure 10. Evaluation of the estimated discharge medians for the calibration period: (a) 
medians of the estimated discharges (black curves) and observed discharges (red circles); 
(b) plots of residuals between the simulated and observed discharges; (c) normal 
probability plot of residuals for the high flow data; (d) autocorrelation functions (ACF) of 
high flow residuals; and (e) partial autocorrelation functions (PACF) of high flow 
residuals. For readability, 16 isolated floods are plotted together in (a) and (b). 
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Figure 11. Simulated and observed discharges for the calibration period: (a) Bayesian 
model that estimates φ together with GBHM parameters in calibration. The darker 
shadow areas show the 95% model simulation uncertainty related to the uncertainty of 
GBHM parameters and input errors. The lighter shadow areas show the total uncertainty 
with the additional influence of model residuals. Within a flood event, discharges with 
relatively wide uncertainty ranges are those classified into high flow data; others are 
classified into low flow data. (b) Fixing φ = 0 in calibration. Thus, the dark shadow areas 
are related exclusively to parameter uncertainty. 
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Figure 12. Evaluation of the estimated discharge medians for the validation period: (a) 
medians of the estimated discharges (black curves) and observed discharges (red circles); 
(b) plots of residuals between the simulated and observed discharges; (c) normal 
probability plot of residuals for the high flow data; (d) autocorrelation functions (ACF) of 
high flow residuals; and (e) partial autocorrelation functions (PACF) of high flow 
residuals. For readability, 16 isolated floods are plotted together in (a) and (b). 
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Figure 13. Predicted and observed discharges for the validation period: (a) Bayesian 
model that estimates φ together with GBHM parameters in prediction. The darker 
shadow areas show the 95% model prediction uncertainty related to the uncertainty of 
GBHM parameters and input errors. The lighter shadow areas show the total uncertainty 
with additional influence of model residuals; and (b) Fixing φ = 0 in prediction. Thus, the 
dark shadow areas are related exclusively to parameter uncertainty. 
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Figure 14. Predictive quantile-quantile plot (PQQ) of the estimated predictive 
uncertainty for both calibration and validation periods. The PQQ curves of 16 flood 
events are plotted together. The symbol size is proportional to the magnitude of the 
observed data. 
 



DISCLAIMER  
 
This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor The Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or The Regents of 
the University of California. 
 
Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity 
employer. 
 




