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Sequence analysis
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Abstract

Motivation: The haploid mammalian Y chromosome is usually under-represented in genome

assemblies due to high repeat content and low depth due to its haploid nature. One strategy to

ameliorate the low coverage of Y sequences is to experimentally enrich Y-specific material before

assembly. As the enrichment process is imperfect, algorithms are needed to identify putative

Y-specific reads prior to downstream assembly. A strategy that uses k-mer abundances to identify

such reads was used to assemble the gorilla Y. However, the strategy required the manual setting

of key parameters, a time-consuming process leading to sub-optimal assemblies.

Results: We develop a method, RecoverY, that selects Y-specific reads by automatically choosing

the abundance level at which a k-mer is deemed to originate from the Y. This algorithm uses prior

knowledge about the Y chromosome of a related species or known Y transcript sequences. We

evaluate RecoverY on both simulated and real data, for human and gorilla, and investigate its

robustness to important parameters. We show that RecoverY leads to a vastly superior assembly

compared to alternate strategies of filtering the reads or contigs. Compared to the preliminary

strategy used by Tomaszkiewicz et al., we achieve a 33% improvement in assembly size and a 20%

improvement in the NG50, demonstrating the power of automatic parameter selection.

Availability and implementation: Our tool RecoverY is freely available at https://github.com/mako

valab-psu/RecoverY.

Contact: kmakova@bx.psu.edu or pashadag@cse.psu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The haploid mammalian Y chromosome reference sequence is often

not properly assembled as part of large next generation sequencing

(NGS) projects, for several reasons. The Y is absent from the female

and only present in one copy in the male. Therefore, to obtain the

desired sequencing depth, twice as much sequencing needs to be per-

formed. Further, the presence of repeat families shared with the

autosomes and the presence of regions with high homology to the X

chromosome complicate the identification and assembly of the non-

unique regions of the Y (reviewed in Tomaszkiewicz et al., 2017).

There are several targeted approaches for assembling the

Y. Single-haplotype iterative mapping and sequencing (SHIMS) is a

BAC-based technique which was used to generate assemblies of the

human (Skaletsky et al., 2003), chimpanzee (Hughes et al., 2010),
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rhesus macaque (Hughes et al., 2012) and mouse Y chromosomes

(Soh et al., 2014). Although SHIMS remains a highly accurate

technique, it is cost- and time-prohibitive for most projects.

Alternatively, deep NGS sequencing of a male can produce an

assembly that includes Y chromosome sequence. The challenge in

this case is to identify which of the contigs originate from the Y.

Contigs that do not align to the female assembly of the same species

(if available) can be flagged as coming from the Y. Alternatively, the

reads can be filtered using such alignments prior to assembly.

However, such approaches are deficient at identifying Y sequence

that has homology to the X, such as the pseudo-autosomal regions,

or to the autosomes, such as the DAZ gene region (Saxena et al.,

2000).

Because of the different copy count in males (XY) versus females

(XX), male-specific sequences can also be identified based on the

number of reads aligning to them (i.e. their sequencing depth).

Sequencing both a male and female of a species and comparing the

read depth along the male assembly can help identify Y contigs.

Methods based on this approach include the Y chromosome genome

scan (Carvalho and Clark, 2013) and the chromosome quotient

method (Hall et al., 2013). Such approaches still require sequencing

the male at high-depth and additional sequencing of the female.

Moreover, they may still mis-classify high-copy transposable ele-

ments and other high-copy number regions shared with the X or

autosomes.

In order to decrease the cost of sequencing, experimental techni-

ques have been developed to increase the amount of Y chromosome

material present in the sample. This process of chromosome-specific

enrichment can be achieved by the experimental techniques of flow

sorting (Dole�zel et al., 2012) or micro-dissection (Zhou and Hu,

2007). In particular, flow sorting is a separation process by which a

chromosome of interest can be separated using its size and AT/GC

ratio (Dole�zel et al., 2012). Flow sorting has been applied prior to

sequencing and assembly of the Gorilla Y (Tomaszkiewicz et al.,

2016) and the pig sex chromosomes (Skinner et al., 2016).

Although flow sorting increases the amount of Y chromosome

data, there still remains a significant amount of non-Y sequence in

the sample. This may originate from debris from large chromo-

somes, or from chromosomes that have similar size and GC content

to the Y (e.g. chromosomes 21 and 22 in the human and great apes).

Consequently, the read data will consist of genome-wide reads with

an enrichment for Y reads at a level dictated by the efficiency of

flow sorting. This non-specificity must then be removed from the

data, either before or after assembly. This can be accomplished by

aligning the reads or the contigs against a known female assembly,

as described above for deep NGS male sequencing. However, as

already mentioned, such strategies require a female reference and

are inefficient in retaining regions with high homology to the X

chromosome and autosomes.

An alternative strategy of isolating Y-specific reads was origi-

nally proposed by our group in Tomaszkiewicz et al. (2016). This is

an alignment-free strategy that uses k-mer (substring of length k)

coverage as a discriminator to identify reads originating from the Y.

The underlying principle is that, in the case of an enriched dataset,

k-mers originating from the Y chromosome occur at a higher abun-

dance than non-repetitive k-mers from elsewhere in the genome.

K-mers that have an abundance above a user-selected threshold are

selected as Y-mers (Y-specific k-mers). Subsequently, reads that con-

tain a number of Y-mers above a user-defined threshold (i.e. the

Y-mer match threshold) are identified as originating from the Y and

used to perform an assembly. This strategy was used to assemble the

gorilla Y chromosome from flow-sorted data, however, it required

manually finding both the abundance and Y-mer match thresholds

using time-consuming and potentially biased guess-and-check

approaches.

In this paper, we present an improved and automated tool to iso-

late Y chromosome specific reads (RecoverY). Its main improvement

over the original strategy proposed in Tomaszkiewicz et al. (2016) is

an algorithm to automate the choice of the abundance threshold and

an automated calculation of the Y-mer match threshold. These are

executed prior to the filtering step of RecoverY. We evaluate the

accuracy of these thresholds and the effect of the choice of k using

simulated data from the human Y. Finally, we run RecoverY on the

simulated data and on the real flow-sorted Gorilla Y data. We dem-

onstrate that the resulting assemblies are superior to the ones

obtained with the alternate approaches of using alignment to the

female to either pre-filter the reads or post-filter the contigs.

These improvements also lead to a longer and more contiguous

assembly of the gorilla Y than using the parameters proposed in

Tomaszkiewicz et al. (2016). RecoverY is open-source and freely

available on https://github.com/makovalab-psu/RecoverY.

2 Materials and methods

Figure 1 shows the workflow for sequencing and assembling the Y

chromosome using RecoverY. First, the DNA is enriched for the Y

chromosome by flow-sorting. Then, it is sequenced using Illumina

technology, generating what we call fsY reads. Then, RecoverY is

run to identify Y-specific reads. Finally, these reads are passed

downstream to the assembler. In the following, we describe the

RecoverY method.

To minimize time and memory requirements when running on

large paired-end datasets, by default each step during the RecoverY

process is run only on the forward (i.e. left or R1) reads in the data-

set. Once all the Y-specific forward reads are selected by the

Fig. 1. Workflow for sequencing and assembly of the Y chromosome with

RecoverY. Y-enrichment increases the proportion of chromosome Y (in

green) as compared to autosomes (in red) or chromosome X (in blue).

Subsequent sequencing results in an increased coverage of Y. Four reads are

shown here for illustrative purposes, along with their constituent k-mers.

Grey cross marks within reads indicate sequencing errors, which affect (grey)

k-mers overlapping the erroneous base. These error k-mers, along with non-

Y k-mers, fall mostly to the left of the abundance threshold selected by

RecoverY, shown by the vertical black dotted line in the histogram. Finally,

RecoverY identifies as originating from the Y only those reads which have a

high number of constituent k-mers with abundance above the threshold.

These reads are then used for downstream assembly
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RecoverY procedure, the corresponding reverse (right or R2) reads

for these pairs are included in the output dataset.

The first step of RecoverY is to count the occurrences of differ-

ent k-mers in the fsY reads. This can be performed using any k-mer

counting software [e.g. BFcounter (Melsted and Pritchard, 2011),

Jellyfish (Marcais and Kingsford, 2011), KMC3 (Kokot et al.,

2017) and khmer (Crusoe et al., 2015)]. RecoverY uses DSK

v2.0.2 (Rizk et al., 2013). As most of the very low abundance

k-mers are erroneous, we use the minimum threshold recom-

mended by DSK (-abundance-min 3) to immediately discard these

k-mers. This significantly reduced the computational resources

used by downstream steps.

Next, the user must provide a set of sequences which are

expected to occur in single copy on the Y chromosome. The k-mers

from these sequences are called ‘trusted k-mers.’ The counts of

trusted k-mers in fsY data can act as a proxy for expected counts of

Y-chromosome k-mers, thus aiding in determining the optimal

abundance threshold. Trusted k-mers can be obtained from the

sequence of single-copy Y chromosome genes (e.g. X-degenerate

genes) from the same species—often, these are known in advance

using targeted approaches (Goto et al., 2009). Another source of

trusted k-mers is from single-copy sequences from a well-assembled

Y chromosome of a closely related species.

More specifically, RecoverY first loads the result of k-mer count-

ing into a dictionary called AllKmerCounts. Next, it creates a

TrustedKmer list, by extracting all k-mers from the set of provided

single-copy Y sequences. Subsequently, RecoverY looks up every

k-mer from the TrustedKmer list in the AllKmerCounts dictionary,

and assigns the corresponding abundance from the dictionary to this

k-mer. The results are stored in a list and the 5th percentile of the

abundances in this list is calculated. This abundance value is chosen

as the abundance threshold.

RecoverY then generates the Y-mer table, which is a dictionary

that contains all the k-mers in AllKmerCounts whose abundance is

above the abundance threshold. The idea is that this table contains

at least 95% of all the sequenced k-mers that originated from the Y.

The Y-mer table allows an efficient check of whether a given k-mer

is abundant. Next, for every input read in our dataset, we consider

its constituent k-mers. If a sufficient number of these constituent

k-mers are present in the Y-mer table, we classify this read as a

Y-read.

The minimum number of constituent k-mers, which we will refer

to as the Y-mer match threshold (YT), depends on read length and

error rate. RecoverY chooses the Y-mer match threshold automati-

cally using the formula YT¼ 0:4 l � kþ 1� 2kl
100

� �
. The formula is

derived using the following logic. A read contains l � kþ 1 k-mers.

A single error affects up to k k-mers—that is, these k-mers are no

longer in the Y-mer table. We aim to recover reads that have at most

two errors per 100 bp window. We choose this threshold because

reads with multiple errors will produce k-mers that, even if an error-

correction algorithm is later used, are unlikely to be very informa-

tive for the construction of de Bruijn graphs in the downstream

assembly process. We also tolerate that up to 60% of those k-mers

may not be in the Y-mer table, due to undersampling. This number

was chosen based on our simulation results.

3 Results

3.1 Datasets
We used both simulated and real data to evaluate RecoverY

(Table 1). Two simulated datasets were generated to test different

levels of enrichment. We simulated reads from the human reference

genome (hg38) using the wgsim simulator v0.3.1 from the Samtools

package (Li et al., 2009), with default parameters for autosome sam-

pling—mutation rate 0.1, base error rate 0.02, fraction of indels

0.15—and the following parameters for X- and Y-sampling: muta-

tion rate 0.0, base error rate 0.02, fraction of indels 0.0. The settings

for mutation rate and fraction of indels reflect that the X and Y

chromosomes are haploid in a male. For the first simulated dataset,

reads were sampled at 150x, 3x and 6x sequencing depth from the

Y, the X and the autosomes, respectively. For the second simulated

dataset, reads were sampled at 300x, 3x and 6x, respectively. These

two cases simulate a male genome dataset where the Y is enriched

by 40.57% and 68.06%, respectively (Supplementary Note S2). We

refer to these datasets as human 6A_150Y and human 6A_300Y,

respectively. In addition, we used a real dataset of flow-sorted

gorilla Y data stored under SRA accession number SRX1160374

(Tomaszkiewicz et al., 2016).

3.2 K-mer abundance threshold estimation
We first applied RecoverY to select the abundance threshold for the

simulated and real datasets, using a value of k¼25. We experimented

with two lists of trusted k-mers. The first, called trusted-gene-kmers,

was generated from the set of single-copy Y chromosome X-degener-

ate gene sequences of human, retrieved from Ensembl (Supplementary

Table S1). The second, called trusted-singleton-kmers, was based

on the set of k-mers present in single copy in the human reference

Y chromosome (hg38). To obtain the trusted-singleton-kmers set,

these single copy k-mers were further filtered by removing k-mers

that mapped to the autosomes or the X chromosome of the hg38

reference, using the BWA aligner (Li and Durbin, 2009). Such k-mers

are removed because they are too similar to non-Y k-mers and may

negatively affect the choice of abundance threshold.

Figure 2 presents the abundance histograms generated by

RecoverY, which the corresponding distributions shown in

Supplementary Figure S2. Note that the shape of the fsY curve

closely follows that of the two trusted k-mer distributions except for

the low-abundance k-mers, which is consistent with the expected

effect of sequencing errors. This is the case even for the gorilla,

despite the trusted k-mers being generated from human sequence.

For the gorilla dataset, RecoverY recommended a threshold of 71x

when using the trusted-gene-kmers set and 111x using the trusted-

singleton-kmers set. When the trusted-gene-kmers and trusted-

singleton-kmers thresholds differ, we recommend choosing the

lower of the two thresholds to achieve higher sensitivity. For the

human, applying RecoverY resulted in a threshold of 31x for

the 6A_150Y dataset and 66x for the 6A_300Y dataset. These

thresholds were the same regardless of whether trusted-gene-kmers

or trusted-singleton-kmers were used as the trusted k-mer set. We

note that for the human dataset, using trusted-singleton-kmers is not

a realistic experiment, since the whole human assembly was used to

construct trusted-singleton-kmers. We include the result here only

for completeness.

Next, we determined the accuracy of the Y-mer table in identify-

ing Y chromosome k-mers, in the two simulated datasets (Table 2).

Table 1. Simulated and real datasets used to test RecoverY

Dataset Type Read length (bp) Total # reads

Human (6A_150Y) Simulated 150 143 272 798

Human (6A_300Y) Simulated 150 170 831 998

Gorilla fsY Real 150 279 209 084
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We tested the membership of all k-mers in the Y-mer table and in

the human Y chromosome reference. Table 2 shows that RecoverY

correctly identifies about 95% of all k-mers on the human Y chro-

mosome reference. Of the k-mers from non-Y chromosomes,>99%

are classified as such by RecoverY. We observe that additional cov-

erage gives the algorithm the power to reduce false positives, with-

out a significant effect on the false negatives.

3.3 Accuracy of RecoverY in identifying Y-reads
Next, we measured the accuracy of RecoverY at classifying reads’

origin. Figure 3 shows that for every read, the number of its constit-

uent k-mers that appear in the Y-mer table can be used to separate

Y-origin reads (reads simulated from a Y location) from non-Y

reads. However, there is some overlap of the two histograms, which

naturally leads to classification errors. We measured the sensitivity

as the percentage of Y-origin reads that satisfy the Y-mer match

threshold. The specificity is the percentage of non-Y reads that do

not satisfy the Y-mer match threshold. Figure 4 shows the tradeoff

in accuracy when varying Y-mer match thresholds are used. Using a

cutoff of 20, as suggested by our Y-mer match threshold formula,

RecoverY achieves a sensitivity of 0.98 and a specificity of 0.83 for

the 6A_300Y dataset and a sensitivity of 0.98 and a specificity of

0.81 for the 6A_150Y dataset. Notice that for high sensitivity

Fig. 2. K-mer abundances in the gorilla flow-sorted Y real data (A), human

male simulated data at 150x sequencing depth of the Y (6A_150Y) (B),

and human male simulated data at 300x sequencing depth of the Y

(6A_300Y) (C). The curve with solid line shows the abundance histogram of

k-mers from all the reads. We used a random subsample of 10% of the k-

mers, effectively lowering the height of the solid line curve ten-fold and

making its shape visually comparable to the other curves. The dash-and-

dotted (respectively, dotted) curve shows the abundance histogram of

k-mers in the dataset based on unique regions (respectively, single-copy

genes). The threshold found by RecoverY using trusted-gene-kmers is

shown as a dashed black vertical line. The threshold found when using

trusted-singleton-kmers is the same in the case of the simulated data, but is

shown as a dashed light grey vertical line for the gorilla. The same data plot-

ted as a distribution, instead of a heuristic, is shown in Supplementary

Figure S2

Table 2. Accuracy of the Y-mer table in correctly identifying k-mers

from the Y chromosome

Dataset Specificity (%) Sensitivity (%)

Human (6A_150Y) 99.38 95.32

Human (6A_300Y) 99.79 94.94

Fig. 3. Ability of RecoverY to identify read origin. A plot showing the numbers

of reads according to their number of constituent k-mers in the Y-table. (A)

The 6A_300Y dataset; (B) the 6A_150Y dataset. The dotted black vertical line

indicates the Y-mer match threshold chosen by RecoverY’s formula (20).

Note that the first point at x¼0 has been vertically cut off in the plot but has

the number of reads as 49 040 for 6A_300Y and 56 935 for 6A_150Y. The

spikes at x¼51 76 101 and 126 represent reads with 3, 2, 1 and 0 single base

pair errors, respectively. Each plot is generated for a random subsample of

100 000 forward reads
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values, higher coverage leads to a better specificity for the same

sensitivity.

We also investigated the source of false negative reads. A manual

inspection (Supplementary Note S1, Supplementary Fig. S1) suggests

that the major source of false negatives are reads with multiple

sequencing errors. Among the constituent k-mers of such reads,

there is a large number of very low-abundance error k-mers. These

error k-mers are not in the Y-mer table, and such reads will be mis-

takenly classified as non-Y.

3.4 Effect of varying k-mer size on classification of

Y-reads
In bioinformatics applications, the k-mer size is often a parameter

that has to be estimated by trial and error. Choosing a large k

ensures a higher proportion of unique k-mers in the dataset at the

cost of a higher probability of a k-mer containing an error.

Conversely, choosing a too short k results in many repeated k-mers

in the dataset. We tested different k-mer lengths and constructed

receiver operating characteristic (ROC) curves for the human

6A_150Y dataset (Fig. 5). For each value of k, the abundance

threshold was chosen by RecoverY and Y-mer match threshold was

varied from 10 to 120 in increments of 10. The plot shows that with

higher values of k, a better specificity can be achieved for a fixed

sensitivity. However, higher values of k (k>31) make it impossible

to achieve high sensitivity values even at very low Y-mer match

thresholds (YT¼10). Based on these results, the optimal choice of k

for applying RecoverY on mammalian Y chromosomes, with similar

levels of coverage and enrichment, is between 21 and 31.

3.5 Effect of RecoverY on assembly
We compare the effect of RecoverY on downstream assembly qual-

ity against two alternate approaches. The first assembly, called

PreFiltReads, is generated by assembling only those reads which

remain unmapped to a repeat-masked female reference genome

(hg38 minus the Y chromosome). RepeatMasker version open-4-0-3

was used with -s sensitive setting. BWA-MEM v0.7.5a (Li, 2013)

was used for read mapping, with default parameters (seed length 19,

mismatch penalty 4 and gap open penalty of 6). The second assem-

bly, PostFiltCtgs, is generated by assembling all reads but retaining

only those contigs which remain unmapped to a repeat-masked

hg38 female genome. For alignment of contigs, BLASR (Chaisson

and Tesler, 2012) was used with default parameters (min. seed

length 12, mismatch penalty 6) and the -unaligned option to collect

unaligned contigs. Among the various short read assemblers, we

chose the SPAdes assembler for its ability to deal with uneven cover-

age profiles (Bankevich et al., 2012). We use SPAdes version 3.6.1

with the following parameters: –only-assembler and -k 21, 33, 55.

Note that the k-mer size used in RecoverY is an independent parame-

ter to the k-mer sizes used for assembly and both values might differ

widely, depending on the data set. We also used Discovar assembler

version r52488 (Weisenfeld et al., 2014) to replicate our conclusions

on real data. Because it did not perform as well as SPAdes, we only

used SPAdes for the simulated data. Soapdenovo2 (Luo et al., 2012)

or Minia (Chikhi and Rizk, 2013) or other assemblers could also be

tried, though we did not test them on our datasets.

To evaluate the assemblies, we use the standard QUAST tool v3.1

(Gurevich et al., 2013), which reports contiguity and quality metrics.

It defines the NG50 (respectively, N50) as the length at which contigs

of size longer or equal to that length sum to up at least half of the

reference (respectively, assembly) length. It defines a misassembly as a

position in a contig where flanking sequences do not align concord-

antly to the reference (in this case, the hg38 human Y chromosome).

The number of mismatches per 100 kb is defined as the number of

single-nucleotide mismatches between contigs and the reference,

including SNPs and sequencing errors. Because SPAdes produces a

very large number of small contigs, we filter out all contigs shorter

than 1000 bp using the QUAST parameter: –min-contig 1000.

Table 3 compares the PreFiltReads and PostFiltCtgs assemblies

against the one produced by assembling the RecoverY filtered reads,

on the 6A_150Y dataset. Pre-filtering of reads significantly reduces

the size of the dataset input to the assembler, thus improving run

time and memory usage. However, the assembly is much smaller

than expected (�25 Mb, according to the known euchromatic length

of the reference hg38 human Y assembly) (Skaletsky et al., 2003).

Additionally, it exhibits low N50, along with significant number of

misassemblies and mismatches. Post-filtering of contigs produces an

assembly that is only a tiny fraction (2%) of the expected size.

Compared to these strategies, RecoverY works best. It achieves the

largest assembly by far, with relatively few misassemblies and mis-

matches. Its N50 is five times higher than the N50 with the pre-

filtering strategy, though at the expense of memory usage and speed.

We also evaluated the improvement in assembly due to the new ver-

sion of RecoverY as compared to the preliminary strategy used while

Fig. 4. ROC plot with varying Y-mer match threshold (YT). For the same

subsample of reads as used for Figure 3B, we show sensitivity and specificity

for correctly identifying reads from the Y, across different YT values (intervals

of 10)

Fig. 5. ROC plot with varying k-mer size. For the same subsample of 6A_150Y

reads as used for Figure 3, the k-mer size was varied from k¼21 to k¼ 101.

The abundance thresholds as generated by RecoverY were 35 (k¼ 21), 31

(k¼25), 25 (k¼31), 18 (k¼41), 9 (k¼61), 4 (k¼81) and 4 (k¼101). Within

each line, solid markers represent increasing Y-mer match thresholds from

10 (top right) up to a maximum threshold of 120 (bottom left), in stepwise

increments of 10
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assembling the draft gorilla Y chromosome (Tomaszkiewicz et al.,

2016). Both versions of RecoverY were run on the gorilla fsY dataset

(Table 1), followed by SPAdes. For the preliminary RecoverY version,

we used the parameters described in Tomaszkiewicz et al. (2016):

Y-mer match threshold of 50 and abundance threshold of 100. For the

new version, RecoverY selected an abundance threshold of 71 (Fig. 2A)

and a Y-mer match threshold of 20.

Table 4 shows that the improvements resulted in a 33% improve-

ment in assembly size and a 20% improvement in the NG50. To eval-

uate the reproducibility of our findings, we repeated the experiment

using the Discovar assembler version r52488 (Weisenfeld et al., 2014)

in place of SPAdes (Table 5). While the absolute quality of the assem-

bly was lower for Discovar, the relative performance of the new

RecoverY to its preliminary version remained the same.

We also compare the performance of RecoverY against a non-enrich-

ment-based approach which simply sequences a male genome, assembles

it and then flags contigs that do not align to the female as being puta-

tively from the Y (Supplementary Note S3). The cumulative length of

these Y-contigs is 1.51 MB with an N50 of 1895bp (Supplementary

Note S3), which is an order of magnitude lower than the results from

the RecoverY enrichment approach. Further, because this method relies

on sequence matching and not on k-mer counts, it might fail to retrieve

regions that show homology to the female autosomes or the X chromo-

some (e.g. pseudo-autosomal region and X-transposed regions).

3.6 Speed and memory performance
We measured the runtime and memory usage of DSK k-mer counting,

RecoverY after DSK and the downstream assembly, in all of our data-

sets (Table 6). We ran our experiments on a x86_64 system with up to

64 available AMD Opteron 6276 processors and 512 GB available

memory. Using 8 processors, the run time of DSK and RecoverY is

approximately 4h for each of the datasets. This is only about 3–5% of

the cumulative times that include assembly. RecoverY’s memory usage,

as well, is less than half of what the SPAdes assembler uses.

A major component in the performance improvement provided by

RecoverY in comparison to male whole-genome assembly-based

approaches is due to reduction in k-mer search space. For example,

the raw reads that are k-merized in the full gorilla fsY dataset result in

a k-mer table of approximately 15 GB of space. However, after the

abundance threshold is selected and the ‘contaminant’ k-mers are dis-

carded, the new Y-mer table contains only �500 MB of k-mers. This

represents a reduction in the k-mer search space by about 97%.

4 Discussion

In this paper, we present a method for the identification of Y-specific

reads from chromosome flow-sorted data. It builds on the previous

strategy of Tomaszkiewicz (2016) by automatically selecting the

abundance level at which a k-mer is deemed to originate from the Y.

The major benefit of RecoverY is that it removes non-Y reads which

otherwise would confound a genome assembler. Additionally, it

reduces the size of the dataset provided to the assembler, thus speed-

ing up the assembly process and reducing memory requirements. Our

tests indicate that RecoverY is a drastic improvement over two other

alternate filtering strategies, as well as over the preliminary version in

Tomaszkiewicz (2016).

The main methodological novelty of RecoverY is the method of

using trusted k-mers to automate the selection of the abundance

threshold. To the best of our knowledge, this is the first application

of trusted k-mers to parameter selection for de novo assembly proj-

ects. In many other tools, parameter selection is often an after-

thought, resulting in low-quality results. We demonstrated the

power of using trusted k-mers to choose the threshold by showing

that the resulting assembly is 33% larger and has 20% higher NG50

than the one generated without the use of trusted k-mers. The notion

of trusted k-mers has the potential to affect bioinformatics tools

more broadly, e.g. trusted k-mers could potentially be used in de

novo assembly, read error correction, metagenomic analysis or

index creation for sequencing databases. They can also potentially

be used to find contaminants in an enriched dataset.

RecoverY is designed to sacrifice specificity to achieve high sensi-

tivity, in terms of classifying read origin. The downstream cost of

mistakenly classifying a non-Y read as coming from the Y is not

high–these reads tend to be scattered across the genome and contrib-

ute to very short contigs during assembly. Such short contigs are

usually anyway removed at later stages. On the other hand, mistak-

enly classifying a Y-origin read as non-Y may have the effect of

breaking an otherwise long contig during assembly. Our choice of

Y-mer match threshold is, therefore, designed with this in mind, as

illustrated by Figures 3 and 4. In situations where specificity is

nevertheless preferred over sensitivity, the user may adapt the

thresholds to better suit their needs.

An extension of RecoverY can be applied as a binary classifier

on any dataset to isolate an enriched chromosome of interest.

Further improvements in the future include improving the specificity

Table 3. Comparison of different assembly strategies on simulated

human reads (6A_150Y)

Methods PreFiltReads PostFiltCtgs RecoverY

Number of read pairs used 2 092 460 71 636 399 19 549 390

Assembly length 5.3 Mb 0.51 Mb 21.85 Mb

Contig N50 2.77 kb 35.60 kb 12.41 kb

Number of contigs 2191 39 4282

Number of misassemblies 189 1 9

#Mismatches per 100 kb 686 31 56

Assembly time 3 h 14 min 243 h 32 min 64 h 07 min

Maximum memory used 71 G 568 G 153 G

Table 4. SPAdes gorilla Y assembly using the preliminary

RecoverY strategy from Tomaszkiewicz et al. (2016) versus the one

proposed in this study

Methods Tomaszkiewicz et al. This study

Number of Y-read pairs 122 850 054 125 485 506

Assembly length 18.68 Mb 24.86 Mb

Contig NG50 (G ¼ 23 Mb) 9.40 Kb 11.26 Kb

Number of contigs 3319 6685

Assembly time 127 h 46 min 124 h 07 min

Maximum memory used 152 Gb 131 Gb

Table 5. Discovar gorilla Y assembly using the preliminary

RecoverY strategy from Tomaszkiewicz et al. (2016) versus the one

proposed in this study

Methods Tomaszkiewicz et al. This study

Number of Y-read pairs 122 850 054 125 485 506

Assembly length 5.57 Mb 8.34 Mb

Contig NG50 (G ¼ 8.34 M) 1489 bp 2124 bp

Number of contigs 2655 3917

Assembly time 3 h 25 min 3 h 45 min

Maximum memory used 278.33 Gb 281.51 Gb
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of the method by probabilistic weighting of k-mers while comparing

to the Y-mer table. An extension of RecoverY to PacBio data is also

a direction of future work. Further improvements to the run time of

RecoverY are likely possible by re-implementing the codebase in a

lower-level language such as C/Cþþ.

RecoverY requires some known Y single-copy sequences to choose

the abundance threshold. This information might be available prior to

de novo assembly, but sequence-composition agnostic approaches are

also possible. For instance, the abundance threshold could be selected

by fitting a statistical model to the histogram, similar to the approach

used by KmerGenie (Chikhi and Medvedev, 2014). A threshold can

also be chosen using a formula based on the enrichment levels and

expected error rates. We leave these approaches to future work.
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Table 6. Runtime and memory usage of the different stages of RecoverY (with 8 processors)

Stage 6A_150Y 6A_300Y Gorilla FsY

Time Mem. (GB) Time Mem. (GB) Time Mem. (GB)

DSK processing 0 h 37 min 4.5 1 h 18 min 5.1 0 h 40 min 6.9

RecoverY (post DSK) 2 h 36 min 59.1 3 h 05 min 63.3 2 h 58 min 29.2

SPAdes assembly 64 h 07 min 153 83 h 29 min 208 124 h 07 min 131

Cumulative 67 h 20 min N/A 87 h 52 min N/A 127 h 45 min N/A

Note: RecoverY total times are separated into DSK k-mer counting and post counting.
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