
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Self-Explanation of Worked Examples Integrated in an Intelligent Tutoring System Enhances 
Problem Solving and Efficiency in Algebra

Permalink
https://escholarship.org/uc/item/2pf6n9jk

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors
Vest, Nicholas A
Silla, Elena Marie
Bartel, Anna N.
et al.

Publication Date
2022
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2pf6n9jk
https://escholarship.org/uc/item/2pf6n9jk#author
https://escholarship.org
http://www.cdlib.org/


Self-Explanation of Worked Examples Integrated in an Intelligent Tutoring System 

Enhances Problem Solving and Efficiency in Algebra 

Nicholas A. Vest (navest@wisc.edu) 
University of Wisconsin-Madison, 1202 West Johnson Street, Madison, WI 53706, USA 

Elena M. Silla (esilla@udel.edu) 
University of Delaware, 16 West Main Street, Newark, DE 19716, USA 

Anna N. Bartel (anbartel@wisc.edu) 
University of Wisconsin-Madison, 1202 West Johnson Street, Madison, WI 53706, USA 

Tomohiro Nagashima (tnagashi@cs.cmu.edu) 
Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA 

Vincent Aleven (aleven@cs.cmu.edu) 
Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA 

Martha W. Alibali (mwalibali@wisc.edu) 
University of Wisconsin-Madison, 1202 West Johnson Street, Madison, WI 53706, USA 

 

Abstract 

One pedagogical technique that promotes conceptual 

understanding in mathematics learners is self-

explanation integrated with worked examples (e.g., 

Rittle-Johnson et al., 2017). In this work, we 

implemented self-explanations with worked examples 

(correct and erroneous) in a software-based Intelligent 

Tutoring System (ITS) for learning algebra. We 

developed an approach to eliciting self-explanations in 

which the ITS guided students to select explanations that 

were conceptually rich in nature. Students who used the 

ITS with self-explanations scored higher on a posttest 

that included items tapping both conceptual and 

procedural knowledge than did students who used a 

version of the ITS that included only traditional 

problem-solving practice. This study replicates previous 

findings that self-explanation and worked examples in 

an ITS can foster algebra learning (Booth et al., 2013). 

Further, this study extends prior work to show that 

guiding students towards conceptual explanations is 

beneficial. 

Keywords: learning; self-explanation; worked 

examples; Intelligent Tutoring System; middle-school 

algebra 

Introduction 

How can instruction foster learners’ acquisition of deep 

understanding in mathematics? And how can technology-

based learning environments, such as Intelligent Tutoring 

Systems, support this learning? Deep understanding of 

mathematics involves several distinct types of knowledge, 

including knowledge of fundamental concepts, knowledge of 

how to solve problems, and understanding of the connections 

between them (Crooks & Alibali, 2014; Hiebert & LeFevre, 

1986).  

Intelligent Tutoring Systems (ITSs) are computer-based 

programs that administer lessons and learning activities to 

students. ITSs support learning across various domains (for a 

meta-analysis, see Ma et al., 2015). Many studies have 

provided evidence that practice in an ITS can support 

procedural understanding of mathematics (Ma et al., 2015). 

However, current ITSs are less successful at promoting gains 

in conceptual understanding (e.g., Long & Aleven, 2017; 

Pane et al., 2014; but see Aleven & Koedinger, 2002). In this 

research, we extended and tested an ITS for equation solving 

in algebra, with the broad goal of creating an ITS that would 

foster gains in conceptual understanding. 

One pedagogical technique that has been shown to support 

gains in conceptual knowledge in a range of domains is self-

explanation. Self-explanation involves generating 

explanations of to-be-learned material for oneself, in an effort 

to more deeply process that material (Chi et al., 1994). Many 

studies have documented the value of self-explanation as 

means to help students learn and retain new material (for a 

review, see Rittle-Johnson et al., 2017). In a foundational 

study, Chi (1994) prompted some students to provide self-

explanations as they read a brief text about the circulatory 

system. Students who produced self-explanations retained 

more information and generated more accurate inferences 

based on the material than students who did not produce self-

explanations. Other studies have documented the value of 

self-explanation in mathematics (Barbieri & Booth, 2020; 

Barbieri et al., 2019; Hilbert et al., 2008; Rittle-Johnson, 

2017), including in ITSs (Aleven & Koedinger, 2002). 
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In the context of mathematical problem solving, some 

research has suggested that self-explanation can potentiate 

other sorts of learning activities, enhancing their benefits for 

conceptual knowledge. For example, instruction that involves 

both strategy comparison and prompts to self-explain yields 

greater benefits for learning than instruction that involves 

comparison on its own (Sidney & Alibali, 2015). Similarly, 

instruction that involves self-explanations of worked 

examples or problems steps yields greater benefits for 

learning than similar instruction without self-explanation 

prompts (Aleven & Koedinger, 2002; Barbieri et al., 2019).  

In general, self-explanation is thought to be effective 

because it engages constructive processes, such as identifying 

inconsistencies, filling in knowledge gaps, integrating 

different knowledge elements, and monitoring understanding 

(e.g., Roy & Chi, 2005). However, the quality of self-

explanations also matters. High-quality self-explanations–

ones that demonstrate inference generation or knowledge 

integration–are associated with greater benefits for learning 

than lower-quality self-explanations, such as simple 

restatements or paraphrases (Wylie & Chi, 2014).  

Given the established benefits of high-quality self-

explanation for building conceptual understanding, we 

sought to integrate activities that would elicit high-quality 

self-explanations into an Intelligent Tutoring System for 

early algebra. Building on previous research with similar 

aims (e.g., Booth et al., 2013), we extended an ITS so it 

incorporates worked examples produced by hypothetical 

students, and prompts learners to explain the bases of (correct 

or erroneous) problem-solving steps taken by these 

hypothetical students. Rather than have students “build” self-

explanations from pieces (as in Booth et al., 2013)–a process 

that some students find challenging and laborious–we drew 

on previous studies that showed that selecting possible 

explanations from a menu is a practical, time-effective, and 

straightforward way to elicit explanations from students 

(Rittle-Johnson et al., 2017), especially within ITSs. 

Although it is not known whether the cognitive processes 

involved in selecting explanations are the same as those 

involved in generating explanations, past research has 

documented benefits of selecting explanations for student 

learning (e.g., Rau et al., 2015; Rittle-Johnson et al., 2017). 

In designing the self-explanation activities for the ITS, we 

based the set of explanation choices that we offered on self-

explanations that were generated by middle-school students 

in a one-on-one tutorial interaction in a pilot study (Bartel et 

al., 2020). As might be expected, student-generated self-

explanations varied widely in their quality, and many student-

generated self-explanations did not incorporate relevant 

concepts. In our ITS, we included choice options that aligned 

with students’ typical explanations–including non-

conceptual explanations–but when learners selected non-

conceptual explanations, the ITS prompted them to select a 

second explanation that invoked key concepts.    

In brief, in this work we test the effectiveness of an ITS 

that incorporates an approach to self-explanation of worked 

examples that involves (1) students selecting possible 

explanations, and (2) students receiving encouragement to 

consider conceptually rich explanations, if they initially 

select explanations that are not conceptually rich. We 

compare this tutor to a baseline tutor that does not include 

self-explanation activities, and we evaluate participants’ 

gains in both procedural skill and conceptual understanding. 

We hypothesized that students who studied worked examples 

and who provided self-explanations in addition to solving 

problem-solving items would perform better than students 

who received only problem-solving items on measures of 

procedural and conceptual knowledge, and that these students 

would also show enhanced performance on problem-solving 

items in the tutor (i.e., less time spent per step, fewer incorrect 

steps, fewer hint requests).  

Method 

Participants 

Participants were 175 middle-school students recruited via an 

online database and via word of mouth. Six participants were 

excluded due to technical issues (e.g., computer 

malfunctions, n = 5, and incomplete session, n = 1). Two 

additional participants were excluded for having tutor 

interactions (e.g., length of time per steps) that were three 

standard deviations above the mean. Thus, the final analytic 

sample consisted of 167 students (M age = 12.81 years, SD 

age = 0.76 years; 57 6th grade, 73 7th grade, 36 8th grade, 

one declined to respond). Of the 167 participants in the final 

sample, 128 were White, 23 were biracial, six were 

Black/African American, six were Asian, one was Native 

Hawaiian/Pacific Islander, and three declined to report race 

and ethnicity. Ninety-nine of the students identified as male, 

64 as female, three as non-binary, and one declined to report 

their gender. Ninety-three students reported they were in 

advanced math, 73 reported they were not in advanced math, 

and one declined to report. Participants were compensated 15 

USD in the form of a gift card, cash, or check after 

completing the study. 

Design and Procedure  

Data were collected as part of a study assessing the 

effectiveness of a range of interventions on students’ 

conceptual and procedural knowledge of algebra. 

Participants completed the study in a virtual setting, and the 

sessions were conducted by trained experimenters. 

 
Figure 1: Study procedure 
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Figure 2: Participants in the experimental condition received both (A) worked examples and (B) problem solving. 

Participants in the baseline condition only received (B). Both were presented in the Intelligent Tutoring System. 

 

 

Each session lasted for about one hour. Participants were 

randomly assigned to one of five conditions. In four of these 

conditions, participants completed both worked examples 

with self-explanation prompts and practice problems within 

the ITS; these conditions varied in whether participants also 

saw visual representations (yes/no) or engaged in warm-up 

activities (yes/no). Preliminary analyses showed that the 

visual representation and warm-up manipulations had little 

impact on student performance. Thus, for purposes of this 

paper, we collapsed these conditions into a unified 

experimental condition, in which all students used a version 

of the ITS that included self-explanations of worked 

examples (n = 134). We compared students in the unified 

experimental condition against students in a baseline 

condition who used an ITS that included problem-solving 

activities but that did not include self-explanations or worked 

examples (n = 33). 

This study was preregistered on the Open Science 

Framework. The preregistration includes many analyses that 

fall outside the scope of the current report. Here, we focus 

specifically on comparing students who used a version of the 

ITS that included self-explanations of worked examples and 

students who used a version of the ITS that did not include 

these activities (Hypothesis 1 in the preregistration; see 

Figure 1 for a schematic of the study procedure). 

Measures of Learning: Pretest and Posttest Participants 

completed an online pretest and isomorphic posttest that 

assessed algebra knowledge. Specifically, these tests 

assessed students’ procedural knowledge (3 items) and 

conceptual knowledge (8 items) of basic algebra. Items 

assessing procedural knowledge measured students’ abilities 

to solve linear equations, whereas items assessing conceptual 

knowledge measured students’ understanding of underlying 

concepts in algebra, such as understanding inverse operations 

and doing the same thing to both sides of the equation when 

solving problems The posttest contained two additional 

transfer items. Items were adapted from prior literature (Fyfe 

et al., 2018; Nagashima et al., 2020; Rittle-Johnson et al., 

2011). Some items had multiple parts and were thus scored 

accordingly. Participants were given 11 minutes to work on 

the pretest, and 13 minutes to work on the posttest.  

Measures of Performance in the Intelligent Tutoring 

System Participants then solved problems in an Intelligent 

Tutoring System (ITS). The ITS consisted of two sections: 

worked examples (unified experimental condition only) and 

problem solving (all conditions; see Figure 1). Before each 

section, students watched a short instructional video. In both 

the worked examples and problem-solving activities, 

students received immediate feedback on their responses. 

They also could request scaffolded hints from the tutor at any 

time. 

Participants in the unified experimental condition were 

presented with correct and incorrect worked examples (with 

a maximum of 8 problems). In each worked example, 

students were asked to use a drop-down menu to provide 

explanations about what operation a hypothetical student 

performed at a specific step of the equation, as well as to 

identify the conceptual basis of the step (see Figure 2A). 

Students could select from two conceptually-focused 

explanations (e.g., “the step keeps both sides of the equation 

equal” in Figure 2), two procedurally-focused explanations 

(e.g., “the step makes the equation simpler” in Figure 2), and 

two incorrect explanations (e.g., “the step removes the x 

variable” in Figure 2). Unique to this tutor was that students 

had to choose a conceptual response in order to advance. If 

students chose a response that was procedural or incorrect, 

they were asked to choose another response (even if the 

procedural explanation was, in fact, correct) via a prompt 

(e.g., “That’s true but does not tell why the student did this 

step.”) 

Participants in both the unified experimental condition 

and the baseline condition were then presented with linear 

equations to solve (e.g., 3x + 8 = 11; max. 11 problems) in 

increasing levels of difficulty. Participants typed their 

response for each problem-solving step of the equation into 

the ITS and received immediate feedback (Figure 2B).  To 

keep time consistent across conditions, participants in the 

experimental condition had 10 minutes to complete the 

worked example activities and 10 minutes to complete these 

problem-solving items, while participants in the baseline 

condition had 20 minutes to complete the problem-solving 

item. 
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Table 1: Procedural (max: 3) and conceptual (max: 15) pretest and posttest scores and transfer (max: 2) posttest scores, with 

standard deviations in parentheses. 

 

  Procedural Conceptual Transfer 

Condition Pretest Posttest Pretest Posttest Pretest Posttest 

Baseline 2.12 (0.86) 2.33 (0.74) 6.91 (3.17) 9.06 (3.65)   0.64 (0.74) 

Experimental 2.17 (0.97) 2.51 (0.74) 7.55 (3.89) 9.74 (3.63) 0.75 (0.84) 

Demographic Questions Parents were sent a demographic 

questionnaire prior to the study session. Questions included 

age, grade, gender, math level in school, and self-reported 

socioeconomic status. 

Results 

Effects on Learning 

In this section, we report the effect of the intervention on 

three measures of learning: procedural knowledge, 

conceptual knowledge, and transfer. Table 1 presents average 

pretest and posttest scores on each measure. 

 

Procedural knowledge We first examined the effect of the 

intervention on procedural learning. Recall that we 

hypothesized that students who received worked examples 

and self-explanations in addition to problem-solving items 

(i.e., the unified experimental condition) would perform 

better than students who received only problem-solving items 

(i.e., the baseline condition). To analyze the data, we 

constructed a linear regression with procedural posttest score 

as the dependent variable and procedural pretest score, 

condition (coded: baseline = -.5; experimental = .5), grade 

level (coded: 6th grade = -1; 7th grade = 0; 8th grade = 1), 

and number of problem-solving items attempted in the ITS as 

independent variables. We included grade level and number 

of problem-solving items completed in the ITS as covariates 

to account for algebra experience and for the number of   

problem-solving items to which students were exposed. We 

chose to control for number of problem-solving items 

attempted to zero in on whether increases in performance 

were a result of students’ self-explanations of the worked 

examples or because they were able to solve more problems 

and potentially learn more from the problem-solving 

condition.  

Students in the experimental condition scored higher on the 

procedural posttest than students in the baseline condition, β 

= 0.28, F(1, 161) = 5.32, p = 0.022, indicating that students 

who generated self-explanations benefited more than those 

who simply solved a comparable number of problems. 

However, it should be noted that the effect of condition was 

non-significant if the covariate (number of problem-solving 

items attempted) was not included in the model, β = 0.16, p  

 

 

= 0.148. Students with higher pretest scores scored higher on 

the procedural posttest, F(1, 161) = 48.8, p < 0.001, as did 

students who attempted more problems in the ITS, F(1, 161) 

= 7.26, p = 0.008. 

Conceptual Knowledge We next examined the effect of the 

intervention on conceptual knowledge. We constructed a 

linear regression with conceptual posttest score as the 

dependent variable and conceptual pretest score, condition, 

grade level, and number of problem-solving items attempted 

in the ITS as independent variables. Again, grade level and 

number of problem-solving items completed were included 

as covariates to account for algebra experience and exposure 

to problem-solving items in the ITS.   

As hypothesized, students in the experimental condition 

scored higher on the conceptual knowledge posttest than 

students in the baseline condition, β = 1.23, F(1, 161) = 7.18, 

p = 0.008, indicating that students who generated self-

explanations gained more conceptual knowledge than those 

who simply solved a comparable number of problems. Once 

again, the effect of condition was non-significant if the 

covariate (number of problem-solving items attempted) was 

not included in the model, β = 0.35, p = 0.459. Students with 

higher conceptual knowledge at the pretest scored higher on 

the conceptual knowledge posttest, F(1, 161) = 90.62, p < 

0.001, as did students who attempted more problems in the 

ITS, F(1, 161) = 29.23, p < 0.001. 

Procedural Transfer Because transfer items were not 

included in the pretest, we could not test for pre to posttest 

improvement. However, we tested the effect of condition on 

transfer. We constructed a linear regression with transfer 

score as the dependent variable and procedural pretest score, 

condition, grade level, and number of problem-solving items 

attempted in the ITS as independent variables. We also 

included the procedural pretest score in the model because it 

most closely resembled the transfer items. There was not a 

significant effect of condition; however, the pattern of 

findings aligned with those reported above (β = 0.27, F(1, 

161) = 3.41, p = 0.067). There were significant main effects 

of the procedural pretest, F(1, 161) = 12.41, p < 0.001, and 

number of problem-solving items attempted in the ITS, F(1, 

161) = 12.64, p < 0.001.  
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Figure 3: Each performance measure organized by condition. Error bars reflect standard error. 

Effects on Performance in the ITS 

To investigate students’ performance in the ITS, we analyzed 

log data collected by the ITS during problem-solving items. 

Specifically, we explored the total number of problems 

attempted, the average number of incorrect attempts at each 

problem-solving step, the average number of hints requested 

at each step, and the amount of time spent on each step. These 

are standard measures investigated in the ITS literature (Long 

& Aleven, 2013). To examine whether learners in the 

baseline or experimental condition exhibited more efficient 

learning, we conducted four separate linear regressions with 

each of the performance measures in the ITS. In each model, 

condition, pretest score (procedural and conceptual 

separately), and grade level were included as independent 

variables. Additionally, we included the number of problems 

attempted in the ITS as an independent variable in three of 

the models (the ones in which it was not the dependent 

variable, because the number of problems solved was 

strongly/moderately correlated with each of the other 

dependent variables). 

Number of Problems Attempted Students in the baseline 

condition solved more problems (M = 8.97, SD = 2.67) than 

students in the experimental condition (M = 6.83, SD = 3.29), 

β = -2.42, F(1, 161) = 29.30, p < 0.001, presumably  because 

students in the baseline condition received more time to 

complete the problems than students in the experimental 

condition. Moreover, procedural pretest scores, F(1, 161) = 

39.50, p < 0.001, and conceptual pretest  scores, F(1, 161) = 

35.86, p < 0.001, were both positively associated with 

number of problems attempted in the ITS. 

 

Incorrect Attempts per Step Overall, students made about 

one incorrect attempt per two steps (M per step = 0.58, SD 

per step = 0.8). Controlling for pretest (procedural and 

conceptual separately), grade, and problems attempted in the 

ITS, students in the unified experimental condition  

 

 

exhibited fewer incorrect attempts per step than students in 

the baseline condition, β = -0.34, F(1, 160) = 8.75, p = 0.004 

(see Figure 3). Students who attempted more problems also 

made fewer incorrect attempts per step, β = -0.19, F(1, 160) 

= 103.31, p < 0.001. 

Number of Hints per Step Controlling for pretest 

(procedural and conceptual), grade, and number of problems 

attempted in the ITS, students in the unified experimental 

condition requested fewer hints per step than those in the 

baseline condition, β = -0.10, F(1, 160) = 6.97, p = 0.009 (see 

Figure 3), and number of problems attempted in the ITS was 

inversely related to the number of hints used, β = -0.10, F(1, 

160) = 52, p < 0.001.  

Average time spent per step On average, students spent 

13.35 seconds on each step (SD = 15.49). Controlling for 

pretest (procedural and conceptual), grade, and number of 

problems attempted in the ITS, students in the baseline 

condition spent more time on each step, β = -5.83, F(1, 160) 

= 7.84, p = 0.006; see Figure 3. Number of problems 

attempted in the ITS was inversely related with the average 

time spent per step, β = -5.83, F(1, 160) = 108.02, p < 0.001.  

Discussion 

In the current study, we investigated whether a new self-

explanation task integrated with worked examples, in which 

students were guided towards conceptual explanations, 

influenced performance and learning in middle-school 

students learning algebra with an Intelligent Tutoring 

System. Our findings indicate that, indeed, this form of 

intervention helped students gain conceptual and procedural 

knowledge of algebra over and above a problem-solving 

control. Moreover, students who studied worked examples 

and provided explanations solved problems faster, asked for 

fewer hints, and made fewer mistakes within the ITS than 

those in the baseline condition.  
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This study confirms earlier work that showed that worked 

examples with self-explanation can enhance learning within 

an ITS (e.g., Salden et al., 2010). Prior research suggests that 

self-explanation helps learners integrate to-be-learned 

information with prior knowledge, resulting in deeper 

understanding of the content (Bisra et al., 2018; Rittle-

Johnson & Loehr, 2017). 

This study also extends past work on self-explanations and 

worked examples (e.g., Booth et al., 2013) through the design 

of an ITS that guides students towards conceptually-focused 

explanations, and by demonstrating that this new format for 

selecting self-explanations is effective. Like previous efforts 

(Burr et al., 2020; Rittle-Johnson & Loehr, 2017), this 

intervention has menu-based explanations with correctness 

feedback, but unlike some previous efforts, students are 

asked for two-step explanations that ask for the operation and 

the conceptual justification. A special feature of the second 

explanation step is that, included among the menu options 

(for the conceptual justification) are correct procedural 

explanations. These explanations do not “count” as correct, 

but they do give the system an opportunity to give feedback 

stating that these explanations do not get at why the step is 

justified, so they may help the student learn how conceptual 

and procedural explanations differ. In this way, this version 

of the ITS may also help students recognize that–in general–

they should think about, not only what to do, but why it is 

correct.  

Moreover, this intervention led to improvements on 

posttest scores as well performance measures in this ITS. 

These findings suggest that self-explanations and worked 

examples affect both problem-solving accuracy and problem-

solving efficiency. In future work, researchers should explore 

the relations between learning measures (e.g., pre- to posttest 

gains) and ITS performance measures. 

Our findings do not specify the nature of the cognitive 

processes elicited by the self-explanation task or how these 

processes may have yielded the observed benefits of self-

explanation. It is worth noting that our task involved selecting 

potential explanations from a menu, rather than generating 

explanations “from scratch”, and our system also did not 

accept solely procedural explanations, but rather encouraged 

students to consider why steps were correct. It is possible that 

the mechanism of action for this type of self-explanation may 

differ from that for self-explanations that are spontaneously 

generated. To elucidate these mechanisms, future work that 

involves collecting talk-aloud protocols as students perform 

the self-explanation task would be valuable.  

We acknowledge several limitations of this study. First, the 

baseline and experimental conditions had dramatically 

unequal numbers of students, due to the design of the larger 

experiment. We recognize this may violate assumptions 

about equal variance between samples, but we believe that 

our findings hold value as they correspond with the findings 

of previous research. Moreover, this experiment was 

conducted remotely during the COVID-19 pandemic. Given 

the unique context of the study, it may not be warranted to 

generalize conclusions to more typical settings. Lastly, the 

sample of students in this study was fairly homogeneous and 

made up primarily of White students, and it included many 

students who were above grade level in mathematics. Future 

studies are needed to investigate the impact of this 

intervention with students from a wider variety of 

backgrounds. 

Conclusion 

In brief, this study replicates past findings that self-

explanations with worked examples can promote both 

procedural and conceptual understanding, and it introduces a 

new approach to eliciting such explanations within an ITS. 

Like a human tutor, our new version of the ITS encourages 

students to provide more conceptually rich explanations, if 

they initially provide less rich ones. In so doing, this new ITS 

supports students in focusing on the conceptual basis of their 

problem-solving steps, supporting both performance and 

learning.  
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