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Proteomic analysis of cardiorespiratory 
fitness for prediction of mortality and 
multisystem disease risks

Despite the wide effects of cardiorespiratory fitness (CRF) on metabolic, 
cardiovascular, pulmonary and neurological health, challenges in the 
feasibility and reproducibility of CRF measurements have impeded 
its use for clinical decision-making. Here we link proteomic profiles to 
CRF in 14,145 individuals across four international cohorts with diverse 
CRF ascertainment methods to establish, validate and characterize a 
proteomic CRF score. In a cohort of around 22,000 individuals in the 
UK Biobank, a proteomic CRF score was associated with a reduced risk 
of all-cause mortality (unadjusted hazard ratio 0.50 (95% confidence 
interval 0.48–0.52) per 1 s.d. increase). The proteomic CRF score was also 
associated with multisystem disease risk and provided risk reclassification 
and discrimination beyond clinical risk factors, as well as modulating 
high polygenic risk of certain diseases. Finally, we observed dynamicity 
of the proteomic CRF score in individuals who undertook a 20-week 
exercise training program and an association of the score with the degree 
of the effect of training on CRF, suggesting potential use of the score for 
personalization of exercise recommendations. These results indicate that 
population-based proteomics provides biologically relevant molecular 
readouts of CRF that are additive to genetic risk, potentially modifiable and 
clinically translatable.

CRF is a powerful prognostic marker linked to greater health, qual-
ity of life and longevity across the life course1–6. Measuring CRF is an 
important component of clinical care in several disease conditions3,7 
and is often considered an essential health metric on par with clini-
cal vital signs6. Nevertheless, widespread clinical assessment of CRF 
for risk stratification and health promotion has been limited by test 
availability, cost and factors (for example, musculoskeletal) that may 
limit the ability to perform maximum effort exercise. An alternative 
approach—easily accessible, training-responsive biomarkers of CRF—
may address these limitations and enable discovery of pharmacologi-
cal targets that mimic effects of exercise. Exercise is accompanied by 
widespread changes in the human metabolic state, spanning pathways 
of tissue regeneration and fibrosis, muscle structure, mitochondrial 
dysfunction, insulin resistance and inflammation8–12. While molecular 

surrogates of CRF and training responses are associated with clinical 
prognosis8,10,13, most studies have been across a single population with 
limited follow-up and outcomes and have demonstrated effect sizes 
that are not significantly additive over standard risk factors.

Here, we performed an international population-based study 
of 14,145 individuals with CRF measures spanning four different 
population-based observational cohorts (the Coronary Artery Risk 
Development in Young Adults (CARDIA) study; the Fenland Study; the 
Baltimore Longitudinal Study of Aging (BLSA); and the Health, Risk 
Factors, Exercise Training and Genetics (HERITAGE) family sutdy) with 
diverse modes of CRF assessment to define and validate a proteomic 
signature of CRF. Leveraging data from around 22,000 participants 
from the UK Biobank (UKB), we tested the association of a proteomic 
signature of CRF with a broad array of clinical outcomes (death, 
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Results
Characteristics of study samples
Our initial sample to establish relations of the circulating proteome 
with CRF included participants from CARDIA. The CARDIA sample 
consisted of 2,238 individuals with a median age 51 years (56% female, 
43% Black; Table 1). CARDIA participants were generally overweight 
(median body mass index (BMI) 29 kg m−2) with a modest prevalence 
of diabetes (14%) and treated hypertension (26%). We did not observe 
any important differences between our CARDIA derivation (70%) and 
validation (30%) subsets (split randomly, balanced on exercise treadmill 
test (ETT) time). We validated our findings in three external cohorts: 
Fenland14; BLSA15; and HERITAGE10. These cohorts spanned early to older 
adulthood with a wide range of BMI and comorbidity (Supplementary 
Table 1a). A subsample of the UKB (N = 21,988; median age 58 years, 54% 
female, 93% white; Supplementary Table 1b) with available proteomics 
was used to test the association of the CRF proteome with a broad array 
of outcomes. The method of CRF assessment differed across cohorts 
(Methods), which—in conjunction with cohort-specific differences 
(for example, age)—contributed to differences in CRF distributions.

Development of a proteomic CRF score
We sought to develop an integrative score of CRF to leverage the 
multiorgan and diverse drivers of CRF. Using penalized regression 
(least absolute shrinkage and selection operator (LASSO)) across 
the assayed proteome, we developed a proteomic CRF score in the 
CARDIA derivation subset, using ETT time as the CRF measure, and 
validated it across approximately 12,500 participants across four sam-
ples (Fig. 1). We achieved a >95% reduction in proteomic space (272 
aptamers selected from 7,230 candidates) with good calibration in both 
the CARDIA derivation (Spearmanʼs ρ = 0.79) and validation subsets 
(Spearmanʼs ρ = 0.67; Fig. 2), comparable with previously published 
metabolomic13 or proteomic instruments16. We observed mechanisti-
cally plausible directionality for many of the proteins of the highest 
effect sizes (Table 2), including proteins implicated in innate immunity 
and inflammation (C5a17,18), atherosclerosis (AGER19, RGMB19), neuronal 
survival and growth (CDNF20, LSAMP21), cell physiology (TNR—migra-
tion, adhesion, differentiation; DUSP13—differentiation, prolifera-
tion), oxidative stress (MRM122), energy expenditure and substrate fuel 
utilization (OLFM223, FABP424, FABP325, HNF4A26, GLYATL2), adiposity 
(LEP, CA627), peripheral muscle responses to exercise (MB28, ATF629) 
and autophagy (GLIPR230).

After recalibration to shared proteins across each of our valida-
tion samples (Fenland, HERITAGE, BLSA; Supplementary Tables 3–5 
and Methods), we observed differences in fit against measured CRF, 
most likely owing to heterogeneity in methods for assessment of 
CRF (Extended Data Fig. 1). The best validation fits were observed 
in HERITAGE (ρ = 0.71) and BLSA (ρ = 0.68), where CRF was assessed 
by symptom-limited peak exercise testing with directly measured 
gas exchange (peak VO2). The weakest validation fit was observed in 
Fenland (ρ = 0.35), where CRF was estimated from heartrate response 
to submaximal exercise with extrapolation to age-predicted maximal 
heartrate. We observed consistent differences in the proteomic CRF 
score by sex (men higher) and inverse associations with age and BMI 
(Extended Data Figs. 1 and 2), consistent with the general epidemiol-
ogy of CRF14.

Relations of a proteomic CRF score with clinical outcomes
Given the multicohort replication of the proteomic CRF score and its 
biological plausibility, we next sought to test its clinical relevance. 
We identified a sample of 21,988 UKB participants with proteomic 
data (Olink Explore 1536) and with survival data for a wide array of out-
comes (Supplementary Table 1b). Over a median follow-up of 13.7 years 
(25th–75th percentile, 13.0–14.5 years), 2,394 deaths occurred (other 
outcomes reported in Supplementary Table 7). Per each 1 s.d. higher 
CRF proteome score, we observed a near 50% lower hazard of all-cause 

cardiovascular, metabolic, malignancy, neurological) and examined 
the interaction with polygenic risk. In HERITAGE, we evaluated whether 
a 20-week exercise training program modified a proteomic signa-
ture of CRF. To our knowledge, this study provides the largest, most 
comprehensive human population-based proteomic study of CRF, 
demonstrating its broad functional and clinical relevance to human 
disease with a path for clinical translation.

Table 1 | Baseline characteristics of the CARDIA study 
population

Characteristic Overall 
n = 2,238

Derivation 
n = 1,569

Validation 
n = 669

P value

Age (years) 51.0 (47.0, 
53.0); 0%

50.0 (47.0, 
53.0); 0%

51.0 (48.0, 
54.0); 0%

0.015

Sex, n (%) >0.9

 Male 978 (44%); 
0%

686 (44%); 
0%

292 (44%); 
0%

 Female 1,260 (56%); 
0%

883 (56%); 
0%

377 (56%); 
0%

Race, n (%) 0.3

 Black 973 (43%); 
0%

670 (43%); 
0%

303 (45%); 
0%

 White 1,265 (57%); 
0%

899 (57%); 
0%

366 (55%); 
0%

CARDIA Field 
Center, n (%)

0.7

 Birmingham 531 (24%); 
0%

362 (23%); 
0%

169 (25%); 
0%

 Chicago 564 (25%); 
0%

403 (26%); 
0%

161 (24%); 
0%

 Minnesota 523 (23%); 
0%

368 (23%); 
0%

155 (23%); 
0%

 Oakland 620 (28%); 
0%

436 (28%); 
0%

184 (28%); 
0%

Body mass index 
(kg m−2)

29 (25, 33); 
<0.1%

29 (25, 33); 
<0.1%

28 (25, 33); 
0%

0.8

Lifetime smoking 
pack years

0 (0, 5); 0% 0 (0, 5); 0% 0 (0, 7); 0% 0.5

Systolic blood 
pressure (mmHg)

116 (108, 
126); <0.1%

116 (107, 
126); 0%

116 (108, 
125); 0.1%

0.7

Diastolic blood 
pressure (mmHg)

73 (66, 80); 
<0.1%

73 (66, 80); 
0%

72 (66, 80); 
0.3%

0.8

Treated for 
hypertension, 
n (%)

583 (26%); 
0%

395 (25%); 
0%

188 (28%); 
0%

0.15

Diabetes, n (%) 313 (14%); 
0%

210 (13%); 
0%

103 (15%); 
0%

0.2

History of CVD 44 (2.0%); 
0%

36 (2.3%); 
0%

8 (1.2%); 0% 0.5

eGFR 
(ml min−1 1.73m−2)

94 (82, 107); 
<0.1%

93 (82, 106); 
<0.1%

94 (83, 108); 
0.1%

0.087

Total cholesterol 
(mg dl−1)

190 (167, 
215); 0%

190 (167, 
215); 0%

190 (166, 
215); 0%

0.5

High density 
lipoprotein 
(mg dl−1)

55 (45, 67); 
0%

56 (45, 67); 
0%

54 (45, 67); 
0%

0.7

Year 20 ETT  
time (s)

420 (304, 
539); 0%

420 (304, 
539); 0%

420 (304, 
539); 0%

>0.9

The study population was split into derivation/validation samples, balanced by Year 20 ETT 
time. Continuous variables are reported at median (25th, 75th percentile) with percentage 
missingness. Categorical variables are reported as n (%) with percentage missingness. 
Reported P values are from two-sided Wilcoxon tests (for continuous variables) and two-sided 
Chi-square tests (categorical variables).
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mortality (hazard ratio (HR) = 0.53, 95% confidence interval (CI) 0.50–
0.56; P < 0.0001) and cause-specific mortality (Fig. 3a; all HRs and 95% 
CIs in Supplementary Table 7), robust to adjustment for standard clini-
cal risk factors and bioimpedance-based measured fat mass. In addition 
to censoring at other causes of death for models for cause-specific 
mortality, we observed similar results using Fine–Gray competing risk 
models (Supplementary Table 8). Strikingly, we observed a consistent 
and strong protective association of a greater proteomic CRF score 
for cardiovascular, metabolic and neurological outcomes (but not 
with most cancers). Moreover, the proteomic CRF score improved risk 
prediction beyond standard risk factors, with improved discrimination 
and reclassification across nearly every endpoint (for example, all-cause 
mortality: C-index 0.75 to 0.77, P < 0.001; cardiovascular mortality: 
C-index 0.79 to 0.82, P < 0.001; Fig. 3a). Reclassification was substantial, 
with a near 30–40% net reclassification beyond clinical risk factors for 
most conditions across several systems.

To evaluate whether the strong associations with clinical outcomes 
were confounded by proteomic markers of disease in the CARDIA 
cohort from which the proteomic CRF score was derived, we conducted 
a sensitivity analysis by deriving the proteomic CRF from a subset of 
the CARDIA study cohort that excluded participants with a history 
of cardiovascular disease (CVD—myocardial infarction, stroke, heart 
failure, carotid artery disease, peripheral artery disease), diabetes and 
hypertension. This proteomic CRF score was then translated for use in 
the UKB in the same manner, and we observed directionally consist-
ent results as our primary analysis with slightly decreased effect sizes 
(Supplementary Tables 9–12).

Integration of a proteomic CRF score and polygenic risk
Previous reports have highlighted the complementary impact of poly-
genic risk and lifestyle in human disease31–34. Given the centrality of CRF 
as an integrative measure of human health, we next explored interaction 
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Fig. 1 | Study design. We developed and validated a circulating proteomic 
signature of CRF across four cohorts and various exercise modalities. In the UKB, 
we examined the relationship a proteomic CRF signature with a broad range of 
clinical endpoints and examined its interaction with polygenic risk. In HERITAGE, 

we examined the association of the proteomic CRF signature with response 
to exercise training and correlated changes in signature with changes in CRF. 
NAFLD, nonalcoholic fatty liver disease.
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between the proteomic CRF score and polygenic risk of common dis-
eases (Fig. 3b and Supplementary Table 13). We constructed models 
for six conditions with established polygenic risk scores (PRS) within 
the UKB, as a function of the proteomic CRF score, a corresponding 
PRS and their multiplicative interaction with adjustments for age, 
sex, race and four principal components of genetic ancestry. While 
several PRS-by-proteomic CRF score interactions reached weak statisti-
cal significance (including CVD and type 2 diabetes), the effect sizes 
were marginal. Overall, we observed a substantial and additive effect 
between the proteomic CRF score and each PRS on the corresponding 
disease outcome, with highest hazards of disease observed among 
those participants with the lowest proteomic CRF score (corresponding 
to poor CRF) and high genetic risk (Fig. 3c). For most conditions, the 
standardized estimates for the proteomic CRF score were on the order 
of (or higher than) those for PRS (for example, diabetes: HRproteome = 0.37, 
95% CI 0.35–0.40; HRPRS = 1.97, 95% CI 1.83–2.12).

Association of a parsimonious proteomic CRF score with 
clinical risk
Even with regularization in regression, one main limitation in most 
multivariable proteomic approaches is the lack of sufficient reduction 
in molecular dimension to permit clinical translation16 (for example, 
307 proteins in our recalibrated proteomic CRF score used in UKB). 
To address the feasibility of clinical translation, we constructed an 
‘abbreviated’ score including coefficients from the top 21 most impor-
tant proteins (ranked by absolute value of the LASSO beta coefficient). 
We selected 21 proteins since Olink currently offers 21-plex absolute 
quantification panels. In CARDIA, this abbreviated 21-protein score 
was correlated with CRF (ρ = 0.71). In UKB, we observed consistent 
effect sizes for nearly all outcomes between the recalibrated prot-
eomic CRF score (307 proteins) and the abbreviated 21-protein 
score, albeit with generally slightly lower effect sizes for the abbrevi-
ated CRF score (Fig. 3d and Supplementary Table 7). These results 

support plausibility of translation of these results as a biomarker 
panel of CRF that can be measured at the scale necessary to offer  
clinical utility.

Dynamicity of the proteomic CRF score with training
To leverage the human proteome for CRF assessment, it is critical to 
evaluate its potential for modification through intervention. After 
a 20-week exercise training program in HERITAGE35, we observed an 
increase in the recalibrated (nonabbreviated) proteomic CRF score 
(paired t-test, 0.14; 95% CI, 0.11–0.18; P = 2.5 × 10−15), which was cor-
related with a change in peak VO2 (Extended Data Fig. 3). In regression 
modeling, we found that a change in the recalibrated proteomic CRF 
score was associated with a change in peak VO2 (1 s.d. increase in recali-
brated proteomic CRF score ≈ 0.84 ± 0.25 ml kg−1 min−1 increase in peak 
VO2; P = 8.5 × 10−4), independent of age, sex, race, BMI, pretraining peak 
VO2 and pretraining recalibrated proteomic CRF score. There were 
no differences in the response to changes in the proteomic CRF score 
with training by sex (P = 0.62). Additionally, we examined whether the 
pretraining proteomic CRF score was associated with the VO2 response 
to training, and observed that a higher recalibrated proteomic CRF 
score was associated with a greater increase in peak VO2 with training, 
independent of age, sex and race (0.59 ± 0.17 ml kg−1 min−1 increase 
per 1 s.d. increase in recalibrated proteomic CRF score; P = 6.4 × 10−4), 
with mitigation of the association when further adjusted for BMI 
(0.30 ± 0.17 ml kg−1 min−1 increase per 1 s.d. increase in recalibrated 
proteomic CRF score; P = 0.08). Constituents of the proteomic CRF 
score that exhibited significant changes with 20-week training in 
HERITAGE36 were correlated with an array of metabolic, vascular and 
myocardial phenotypes in CARDIA (Fig. 4 and Supplementary Table 14). 
Several of these proteins exhibit clinical and molecular plausibility, 
with reduction in adiposity (LEP), lipid metabolism (RARRES2), regula-
tion of bone morphogenic protein pathways (RGMB) and mitigation 
of ischemia-reperfusion injury (CDNF37) among others. Many were 
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Fig. 2 | Development of the proteomic CRF score in CARDIA. a, Correlations 
between the proteomic CRF score and CRF (defined by ETT time) in CARDIA 
across derivation (left) and validation (right) samples. b–d, Correlations of the 
proteomic CRF score with age (b), sex and race (c) and BMI (d). Colors on scatter 
plots represent density of overlapping observations, with red being the most 

dense and blue the least dense. P values in a, b and d are from Spearman  
rank correlation tests. P values in c are from linear regression modeling of  
the proteomic CRF score as a function of sex and race. All P values are from  
two-sided tests.
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not related to cardiometabolic phenotypes in CARDIA, suggesting 
potential new mechanisms of benefit.

Discussion
The notion that tissue-specific, exercise-responsive biomolecules 
(‘exerkines’35,38) mirror the metabolic benefits of physical exercise 
has prompted various efforts to catalog these biomolecular chan
ges8,10,11,13,16,39. Several studies have highlighted acute metabolic changes 
during physical exercise that are linked to important physiological 
processes such as insulin resistance, inflammation and metabolic 
health across a wide array of mediators (for example, metabolites8,11,39,40, 
proteins10,16 and transcripts11,41), some of which overlap in association 
with total habitual physical activity12. While all biomolecule types offer 
relevant insights as functional biomarkers of CRF, the proteome can 
rapidly capture functional information (a ‘cause’ and ‘effect’ of CRF), 
broad cellular processes (with direct pathway implication) and applica-
tion to a clinical setting as a quantifiable blood-based surrogate of CRF.

Here, we studied a diverse group of 14,145 individuals with varied 
modes of CRF assessment to characterize the circulating proteomic 
architecture of CRF. Beginning in a sample of 2,238 middle-aged Black 
and white adults in the CARDIA study, we successfully developed and 
validated a broad-based proteomic signature of CRF (‘proteomic CRF 
score’) using symptom-limited treadmill exercise test that displayed 
a consistent relation across submaximal treadmill exams in 10,320 
individuals in the UK (Fenland, estimated maximal VO2) and maximal 
cardiopulmonary exercise tests (CPETs) in 1,587 individuals in the 
USA (BLSA, treadmill VO2; HERITAGE, cycle VO2). Proteins included in 
the proteomic CRF score specified pathways canonically implicated 
in CRF biology across several systems, including inflammation and 
hemostasis, muscle and adipose physiology, pathways of energy and 
fuel metabolism, oxidative stress and neuronal survival, among others. 
In 21,988 UKB participants, we observed two key findings of clinical 
relevance. First, the proteomic CRF score was strongly, independently 
associated with a range of metabolic, cardiovascular and neurological 

Table 2 | Biological curation of selected CRF-related proteins

Gene (protein) LASSO 
directionality

Molecular evidence

C5 (C5a anaphylatoxin) − Pro-inflammatory response to complement activation; rise with acute exercise; may have cross-tissue roles in 
innate immune activation, lipid metabolism and survival17,18

CDNF (cerebral dopamine 
neurotrophic factor)

+ Central nervous system expression, involved in neuronal survival20; Increases in spinal cord with exercise in 
Parkinsonism67

GLIPR2 (Golgi-associated plant 
pathogenesis-related protein 1)

+ Negative regulator of autophagy30

LEP (leptin) − Adipocyte product, implicated in obesity pathogenesis; previous associations with fitness

OLFM2 (noelin-2) − Deficiency is protective against diet-induced obesity via reduced energy intake and augmented energy 
expenditure owing to brown adipose tissue thermogenesis and fat browning23

HTRA1 (serine protease HTRA1) − Serine protease; pleotropic effects on protein metabolism, signaling, skeletal muscle physiology and bone 
growth; deficiency leads to increased bone growth, potentially via modulation of TGFβ signaling68

LSAMP (limbic 
system-associated membrane 
protein)

− Growth of neurons in limbic system21

MB (myoglobin) + Muscle product; increased during chronic exercise28

ATF6 (cyclic AMP-dependent 
transcription factor ATF6 alpha)

+ Involved in unfolded protein response during ER stress; unfolded protein response activation in peripheral 
muscle during exercise is adaptive and facilitates recovery29

EWSR1 (RNA-binding protein 
EWS)

− Nucleic acid binding protein; involved in regulation of transcription and posttranscriptional events69

PLXNA1 (plexin-A1) − Involved in semaphorin signaling

FABP3 (fatty acid binding 
protein, heart)

− Involved in lipid handling in skeletal and cardiac muscle; elevated levels in myocardial infarction (potentially 
from cellular release)25

PDHA2 (pyruvate 
dehydrogenase E1 component 
subunit alpha, testis-specific 
form, mitochondrial)

− Expressed in testis; unclear connection to fitness

F10 (coagulation factor Xa) + Coagulation factor

CA6 (carbonic anhydrase 6) + Also known as gustin; involved in taste perception; genetic studies reveal role in adiposity27

NCBP1 (nuclear cap-binding 
protein subunit 1)

− Involved in mRNA processing

SVEP1 (Sushi, von Willebrand 
factor type A, EGF and pentraxin 
domain-containing protein 1)

− Vascular smooth muscle cell product; implicated in atherosclerosis development70

HNF4A (hepatocyte nuclear 
factor 4-alpha)

− Transcription factor; involved in regulation of lipid and carbohydrate metabolism in the liver, including 
gluconeogenesis26

CRISP2 (cysteine-rich secretory 
protein 2)

+ Expressed in testis; unclear connection to fitness

FABP4 (fatty acid binding 
protein, adipocyte)

− Regulation of lipid metabolism; increased after acute exercise24; increased circulating FABP4 associated with 
insulin resistance71

The top 20 CRF-related proteins (LASSO regression) were examined via literature search to assess potential implications in metabolic disease and health.
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clinical outcomes, many displaying significant prognostic improve-
ment over standard risk factors (via reclassification and discrimina-
tion metrics). Second, these associations appeared to be additive to 
polygenic risk, suggesting a role for multiomic evaluation in clinical 
risk assessment. These prognostic relations were maintained using an 
abbreviated 21-protein panel (the largest currently available for direct 
absolute protein quantification with Olink). The proteomic CRF score 
was also dynamic with a 20-week exercise training program, and was 
associated with response to training. To our knowledge, these data 
provide the largest report to date establishing a biologically plausible, 
population-based proteomic biomarker of CRF across a diverse setting, 
linking these measures to phenotypes and precision medicine risk 
assessment approaches (including human genetics) longitudinally.

Although other studies have demonstrated the ability of broad cir-
culating proteomics to predict diverse health outcomes16, the highest 
priority protein targets are likely to differ for each outcome, present-
ing challenges for developing unifying lifestyle or pharmacological 
approaches for broad risk modification or health promotion. In line 
with established relations of greater CRF itself with protection from 
a wide array of adverse cardiovascular2,42, respiratory43, oncological44 
and neurocognitive outcomes45, we observed a proteomic signature 
trained on CRF (‘proteomic CRF score’) was associated with diverse 
clinical outcomes in a large sample of around 22,000 UKB participants 
(an order of magnitude larger than previous studies16). Beyond merely 
establishing a statistical association, the proteomic CRF score offered 
significant improvement in risk reclassification and discrimination 
across several conditions (for example, all-cause death, cardiovas-
cular death, diabetes), suggesting its potential to augment clinical 
risk prediction. Moreover, in line with previous work demonstrating 
lack of strong interaction between genetics and lifestyle31, proteomic 
and genetic risk were complementary, with the highest clinical risks 
observed for those individuals with both high proteomic and genomic 
risk and a lowered risk for those individuals with high proteomic CRF 
across genetic risk. A critical finding was that these associations were 
robust to increased parsimony via an abbreviated 21-protein proteomic 
CRF score, laying groundwork for future studies of clinical translation. 
In this context, a proteomic CRF score may have clinical utility as a 
surrogate of CRF to extend its applicability to resource-limited set-
tings, older adults or individuals with contraindications to exercise 
or musculoskeletal disabilities (with impaired achievement of peak 
exercise) in whom direct CRF assessment is challenging.

Given modifiability of CRF with lifestyle interventions (for exam-
ple, physical activity46)—a critical test for any precision biomarker of 
CRF lies in modifiability with training. After a 20-week exercise train-
ing program within HERITAGE, we observed a modest but significant 
relation between changes in the proteomic CRF score with training and 
the peak VO2, with a 1 s.d. increase in proteomic score corresponding 
to an increase in peak VO2 of nearly 1 ml kg−1 min−1 (approximately 
20% of the mean effect of training in HERITAGE). While HERITAGE 
is a healthy group (and effect sizes in a clinical population probably 
vary), 1 ml kg−1 min−1 is considered a ‘clinically actionable’ effect size in 
CVD47: in the HF-ACTION trial, an increase in peak VO2 of approximately 

0.9 ml kg−1 min−1 was associated with a ~5% lower risk of mortality48. This 
effect size is greater than the median 3-month increase in peak VO2 
observed among HF-ACTION participants randomized to exercise inter-
vention (0.6 ml kg−1 min−1), but is on par with effects of diet and exercise 
within a trial of participants with HFpEF49. Moreover, we observed 
an association between pretraining proteomic score and changes in 
peak VO2 with training. These findings contribute new contributory 
evidence on the plasticity of the proteomic CRF biomarker, supporting 
broad, ongoing efforts to develop multiomic biomarkers of CRF with 
divergent exercise and training regimens toward personalization of 
exercise training responses50.

The innovation of our approach is contextualized by a rich history 
of approaches targeting CRF prediction to ease clinical translation. 
Indeed, previous work to develop nonexercise prediction models 
of CRF has spanned physical activity questionnaires51–60, resting 
heartrate53,58,60, BMI/body composition51–63, genetics64, proteomics16, 
metabolomics13 and activity monitor data61–63,65. However, most previ-
ous studies have been conducted in healthy or trained individuals and 
lack a demonstration of strong relations with to multisystem clinical 
outcomes. The current approach represents a notable advance, merg-
ing populations at higher metabolic risk (mirroring the advancing 
prevalence of cardiometabolic diseases worldwide), modes of exercise, 
a broad proteomic space, with several validation samples incorporating 
human genetics (UKB), subclinical phenotypes (CARDIA) and exercise 
training response (HERITAGE). As precision medicine approaches 
advance, incorporation of several methods (for example, wearable 
activity monitor plus ‘omics’) to refine clinically translatable estimates 
of CRF are likely to improve on any single method.

While biological plausibility and reproducibility of previous 
smaller studies suggest external validity, several important limitations 
of this work merit discussions. CRF assessments were not standardized 
across cohorts, which were themselves variable by age, geography, race 
and time epoch, although this heterogeneity may also be viewed as a 
strength since it highlights the robustness of our approach through 
successful crossvalidation. In addition, there was an interval of around 
5 years between the proteomic and CRF assessment in CARDIA, which 
may have introduced additional variability in our estimates. However, 
replication of our multivariable proteomic CRF score across three 
additional studies (Fenland, HERITAGE and BLSA), and demonstration 
of its modifiability with exercise training (HERITAGE) testifies to the 
transportability of this approach. Although our study was limited in 
representation of older adults, the prognostic utility of proteomics 
independent of age, sex and race are a testament to potential clinical 
relevance. The proteomic platform utilized in the derivation samples 
was aptamer-based (SomaScan), which has some limitations in terms 
of specificity on per-protein level66. Nonetheless, we validated the 
clinical associations of these signatures in a different platform (Olink) 
in a broader set of individuals (UKB). The assessment of outcomes in 
UKB was administrative, with potential attendant misclassification 
and ascertainment biases, which we would anticipate leading to a bias 
toward null association. Additional forthcoming consortium-level 
studies across a wider range of exercise types will be important tools to 

Fig. 3 | Proteomic CRF score, polygenic risk and multisystem clinical 
outcomes. a, Forest plot of Cox model results with proteomic score as the main 
predictor, grouped by outcome category. The ‘full’ adjustment model includes 
adjustment for age, sex, race, BMI, systolic blood pressure, diabetes, Townsend 
deprivation index, smoking, alcohol and LDL. Error bars, 95% CI. The adjoining 
table reports the C-index for Cox models without proteomic score (Base) and 
with the score (Score). Base models include age, sex, race, BMI, systolic blood 
pressure, diabetes, Townsend deprivation index, smoking, alcohol and LDL. 
Reported P value is from comparison testing of C-indices by z distribution (two-
sided) without correct for multiple comparison. b, Cox beta coefficients from 
models including an interaction between the protein score of CRF and PRSs of the 

indicated conditions or diseases. Error bars, 95% CI. c, Contour map of the model 
predicted HR across the range of protein score of fitness and PRSs. The referent 
hazard was set at the median of the protein score and median of the PRS. Values 
reported and visualized are from point estimates and 95% CI. d, Comparison 
of Cox model coefficients from a parsimonious 21-protein panel and the full 
307-protein panel. The halo represents the 95% CI around the model coefficient. 
P value is from two-sided Spearman rank correlation test. For visualization, 
we reversed the sign of the beta coefficients. Full data on sample sizes, model 
estimates and results of statistical testing may be found in Supplementary  
Tables 7 and 13.
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study for potential sex-specific differences and may help clarify prot-
eomic effects from changes in metabolic or lifestyle factors and CRF50.

In summary, we define, characterize, and validate a CRF-related 
proteome across four studies including approximately 14,000 

individuals, spanning age, sex, race, geography and type of CRF 
assessment. CRF-related proteins demonstrated biological plausi-
bility (including consistency with previous studies) and identified 
individuals with high risk of adverse clinical events across a wide 
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Fig. 4 | Proteins related to CRF whose levels are dynamic with exercise 
training are related to cardiometabolic risk factors and diseases. Heatmap 
of Pearson correlations between individual proteins and cardiometabolic risk 
factors and disease in CARDIA using the CARDIA validation sample (N = 589–
669). Proteins visualized are included in the proteomic CRF score and change 
after a 20-week exercise intervention in HERITAGE (false discovery rate < 5%). 
Proteins marked with an asterisk are included in the abbreviated 21-protein 

score. Cells marked with an asterisk indicate Pearson correlations with false 
discovery rate < 5%. AAC, abdominal aorta calcification; AHA LS7, American Heart 
Association Life Simple 7; CAC, coronary artery calcification; DBP, diastolic blood 
pressure; eGFR, estimated glomerular filtration rate; FC, fold change; GLS, global 
longitudinal strain; HbA1c, hemoglobin A1c; HDL, high density lipoprotein; LV, 
left ventricular; PA, physical activity; SAT, subcutaneous adipose tissue; SBP, 
systolic blood pressure; VAT, visceral adipose tissue.
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array of organ systems in around 22,000 individuals. Proteomic risk 
appeared additive to polygenic risk and was maintained down to 
a clinically actionable proteomic panel. These results suggest the 
potential for population-based proteomics to provide a biologically 
relevant, clinically actionable molecular barometer of CRF with clinical  
potential.
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Methods
Population-based cohorts
Coronary Artery Risk Development in Young Adults. The CARDIA 
study is a prospective, population-based, cohort study designed to 
study risk factors for cardiovascular disease development through 
the lifecourse. The original study commenced in 1985–1986 across 
four US field centers (Birmingham, AL; Chicago, IL; Minneapolis, MN 
and Oakland, CA) to study risk factor development throughout young 
adulthood to midlife, as previously described72–75. For this study, we 
included 2,238 individuals with circulating proteomics (SomaScan) 
at Year 25 (2010–2011) and ETT time for CRF at year 20 (2005–2006). 
We intentionally did not refine the CARDIA study population based on 
reason for stopping ETT or thresholds signifying maximal effort (for 
example, 85% maximum predicted heartrate) to preserve a maximal 
sample size and include participants who stopped early for several 
reasons that may reflect heightened clinical risk. Characterization of 
demographic, clinical and exercise test data were used as previously 
published76,77. Specifically, CVD was defined as a history of myocardial 
infarction, heart failure, stroke, carotid artery disease and peripheral 
artery disease. Participants provided written informed consent and 
approval to use deidentified data from CARDIA for this study was pro-
vided by the Institutional Review Board (IRB) at Vanderbilt University 
Medical Center (IRB no. 211402).

Fenland. The Fenland Study is a population-based cohort study of 
12,435 participants (born between 1950 and 1975) recruited from gen-
eral practices in Cambridgeshire, UK, from January 2005 to April 201578. 
Exclusion criteria were known diabetes, pregnancy or lactation, inabil-
ity to walk unaided for a minimum of 10 min, psychosis or terminal 
illness. Our analytic sample included 5,473 women and 4,847 men with 
available CRF testing, proteomic and clinical data who attended one of 
three study sites (Cambridge, Ely or Wisbech). The study was approved 
by the Cambridge Local Research Ethics Committee (NRES Commit-
tee, East of England Cambridge Central, reference no. 04/Q0108/19). 
All participants provided written informed consent for blood sample 
measurements, exercise testing and other assessments beyond the 
baseline examination.

Baltimore Longitudinal Study of Aging. The BLSA is a prospective, 
longitudinal cohort study commenced in 1958 to study age-related 
conditions15,79. Our analytic sample included 845 participants who had 
undergone CPETs and had circulating plasma proteins quantified at the 
same time. Demographic and exercise data were defined as previously 
published80. The BLSA study protocol was approved by the Internal 
Review Board of the Intramural Research Program of the National Insti-
tutes of Health (protocol no. 03AG0325) and all participants provided 
written informed consent at each visit.

Health, Risk Factors, Exercise Training and Genetics study. HERIT-
AGE is a study of the genetic and nongenetic contributors to biological 
responses to aerobic exercise training81. Participants were recruited as 
family units with African or European descent at five centers in the USA 
and Canada between 1992 and 1997, as described81. Participants had 
to be healthy without cardiometabolic disease but with a sedentary 
lifestyle for the 3 months preceding enrollment. We included published 
association data from 742 participants with directly measured maximal 
aerobic capacity (peak VO2) before exercise training and circulating 
proteomics10. Proteomic changes after a 20-week training period were 
also included36. All participants provided written informed consent. 
The IRB at Beth Israel Deaconess Medical Center approved this study 
(IRB no. 2016P000186).

UK Biobank. The UKB is a population-based study of >500,000 partici-
pants aged 40–69 years when recruited between 2006 and 2010 across 
the UK. UKB was constructed to enable large-scale scientific discoveries 

of human health82. Recently, the study coordinators released proteom-
ics data using the Olink Explore 1536 panel on approximately 52,000 
UKB participants. Our analytic sample included 21,988 participants 
without missing values for the proteins used to calculate a proteomic 
score of CRF. Approval for UKB access is under proposal no. 57492.

To maximize external validity and generalizability across broad 
populations, we selected CARDIA as the discovery cohort to develop 
a proteomic score of CRF, despite 5-year differences between prot-
eomic and CRF assessments. Unlike Fenland and HERITAGE, which 
excluded participants with prevalent cardiometabolic disease, CARDIA 
is a population-based study inclusive of prevalent conditions. While 
BLSA and UKB included participants with prevalent cardiometabolic 
disease, the number of participants with both CRF and proteomic 
data is less than half of that in CARDIA. Additional considerations that 
guided our selection of CARDIA include its broad proteomic coverage 
(7k SomaScan versus 5k SomaScan in HERITAGE, Fenland and Olink 
Explore 1536 in UKB), and use of a symptom-limited maximal stress 
test (Fenland and UKB impute peak VO2 data from submaximal tests).

CRF assessment
CRF was assessed in CARDIA, BLSA, Fenland and HERITAGE according 
to cohort-specific protocols. In CARDIA, a symptom-limited ETT (modi-
fied Balke protocol) was performed as previously described76,83,84. Each 
test consisted of a maximum 18 min, with changes in treadmill speed or 
grade every 2 min with a maximum workload of 19 metabolic equiva-
lents of task (METs) (for example, 5.6 miles per hour and 25% incline). 
Participants were excluded from ETT if they had cardiovascular or 
pulmonary diseases, musculoskeletal diseases worsened by exercise, 
uncontrolled metabolic or infectious disease, severe rest hypertension 
(systolic over 200 mmHg or diastolic over 110 mmHg), electrocardio-
graphic features of ischemic heart disease or arrhythmia, pregnancy 
or at the discretion of exercise personnel. CRF was estimated as the 
duration of time a participant was able to walk/run on the treadmill. 
We did not exclude participants based on submaximal or early test 
conclusion in CARDIA.

In Fenland, CRF was assessed using a submaximal treadmill test 
(with imputation to maximal effort as described, methods taken from 
ref.14 with attribution provided by this statement) to generate esti-
mated maximal oxygen consumption (peak VO2) per kilogram of total 
body mass. Participants exercised for up to 21 min while treadmill 
speed and incline increased across four stages. Exercise heartrate 
response was recorded using a combined heartrate and movement 
sensor (Actiheart; CamNtech)85. The test ended if one of the follow-
ing criteria were satisfied: (1) levelling-off of heartrate (<3 beats per 
min (bpm)) despite an increase in workrate; (2) reaching 90% of the 
participant’s age-predicted maximal heartrate86; (3) exercising above 
80% of age-predicted maximal heartrate for over 2 min; (4) reaching a 
respiratory exchange ratio (RER) of 1.1; (5) participant desire to stop; 
(6) participant indication of angina, light-headedness or nausea; or (7) 
failure of the testing equipment. Gas exchange measurements were 
sometimes unavailable for various reasons (for example, participants 
declining to wear a gas analysis mask, mask fit issues during exercise, 
system errors) that could be correlated with health-related factors. To 
mitigate biases that would emerge from the exclusion of participants 
lacking gas exchange data, and to maintain a standardized approach 
in estimating peak VO2 across the study, we opted to extrapolate the 
workrate-to-heartrate relationship to age-predicted maximal heart-
rate. Peak VO2 was estimated by extrapolating the linear relationship 
between heartrate and treadmill workrate87 to age-predicted maximal 
heartrate86, adding an estimate of resting energy expenditure, and then 
converting the resultant workrate value to VO2 (ml O2 min−1 kg−1) using 
a caloric equivalent for oxygen of 20.35 J ml O2

−1.
In HERITAGE, CRF was measured using a cycle ergometer with 

metabolic cart gas exchange measures with VO2 averaged over 20 s 
intervals, as described10. CRF was defined as the peak VO2 and exercise 
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peak was determined from at least one of the following: RER >1.1, a 
plateau in VO2 (<100 ml min−1 change in the last three measures), or a 
maximal heartrate within 10 bpm of the age-predicted maximum. After 
baseline CRF assessment, HERITAGE participants underwent super-
vised exercise training three times per week for 20 weeks10. CRF assess-
ment was then repeated after completion of the training protocol.

In BLSA, CRF was measured using a symptom-limited tread-
mill exercise test with metabolic cart gas exchange measures using 
a modified Balke protocol with VO2 averaged over 30 s intervals80. 
Exercise testing ended after self-reported exhaustion or health- and/
or safety-related stopping criteria occurred. To ensure that the maxi-
mal VO2 was achieved, the analysis was limited to participants with an 
RER ≥ 1. Of the 845 participants included in our study, 133 (15%) had RER 
between 1 and 1.1. Of these participants, 119 (89%) either reached >85% 
of their age-predicted maximum heartrate (calculated as 220 − age) or 
rated their exertion during the treadmill test as 17 or great on a 20-point 
Borg perceived exertion scale.

Proteomics
Proteomic quantification in CARDIA was performed using 
aptamer-based technology (Somalogic). Overall, 7,524 circulating 
aptamers were quantified. A total of 68 participants had more than one 
measurement of plasma proteins (at the same visit), and their protein 
data was averaged. We excluded nonhuman proteins (N = 233) and 
proteins with a coefficient of variation >20% (N = 61). Using principal 
component analysis on a matrix of the log-transformed, and scaled 
proteomic data, we checked visually for batch effects and participant 
outliers by plotting the first two principal components against each 
other. No batch effects were detected, and no participant outliers 
were identified (Supplementary Fig. 1). Fenland (5k aptamer platform), 
HERITAGE (5k aptamer platform) and BLSA (7k aptamer platform) 
also used SomaScan proteomics technology with methods described 
previously10,16,88,89. The UKB quantified circulating proteins using the 
Olink Explore 1536 panel90, and we excluded proteins where >40% of 
measurements were below the limit of detection (N = 130) or were miss-
ing in >20% of participants (N = 3). Of note, as noted above, HERITAGE 
data was used as published; the remainder of cohorts were analyzed 
as part of this work.

Statistical methods
Construction and validation of a proteomic score of CRF (‘CRF 
proteome’). To explore the multidimensionality of the CRF proteome, 
we used LASSO regression within a linear modeling framework to 
develop a multivariable signature of CRF. For the purposes of analysis, 
the CARDIA cohort was split into a 70% derivation and 30% validation 
sample balanced on ETT time. The LASSO model was constructed in the 
CARDIA derivation sample with CRF (ETT time) as the outcome. Adjust-
ments for age, sex, race and BMI were included as unpenalized factors 
(forced in regression models) with the entire proteome included as 
penalized factors for selection. Proteins were log-transformed, and 
proteins and CRF were standardized (mean 0, variance 1) for modeling. 
Crossvalidation was used for model hyperparameter optimization. 
Each CARDIA participant’s proteomic CRF score was defined as a linear 
combination of each protein concentration by the respective model 
coefficient. We excluded age, sex, race, BMI and intercept coefficients 
in the score calculation, such that each protein coefficient was condi-
tioned on these covariates (to reduce dependence of the final score on 
these covariates). Protein scores were standardized (mean 0, variance 
1) for downstream analyses.

External cohort validation of the CRF proteome. To test the external 
validity of the CRF proteome across additional cohorts with different 
proteomic coverages, we employed a recalibration approach. Our 
recalibration effort used a LASSO model in CARDIA, where the origi-
nal score (as above) was the dependent variable and all overlapping 

proteins were included as independent variables. This approach gener-
ated coefficients in CARDIA that could be applied to Fenland, HERITAGE 
and UKB. It was not needed in BLSA, where the platform was the same 
as CARDIA. Recalibration accuracy (based on correlation between the 
original score and the recalibrated scores in CARDIA) was excellent 
(HERITAGE score, Pearson r = 0.98; Fenland score, Pearson r = 0.99; 
UKB score, Pearson r = 0.93).

Relation of the CRF proteome with clinical outcomes and its inter-
action with polygenic risk. Finally, we performed survival analysis in 
UKB to estimate the prospective association of the CRF proteome with 
a broad array of outcomes. Death and death category (cardiovascular 
death, cancer death, respiratory death) were defined by using death 
registry data (UKB Data Field 40000) and the International Classifi-
cation of Disease tenth revision (ICD10) code provided for primary 
cause of death (UKB Data Field 40001). Mappings for ICD10 data to 
death category were informed by previous work91. The censor dates 
for death data (and other outcome data) were determined for each 
participant using the location of initial assessment (UKB Data Field 
54) and the region-specific censor dates provided by the UKB. Survival 
analysis with death outcomes were censored on 30 November 2022 for 
all alive participants. Survival analysis with incident disease outcomes 
(for example, chronic obstructive pulmonary disease) were censored 
on 31 October 2022 for participants in England (N = 19,768), 31 July 
2021 for participants in Scotland (N = 1,356), and 28 February 2018 
for participants in Wales (N = 864) without events or the death date. 
Other outcomes in UKB were defined by ICD10 diagnosis codes. To 
group the ICD10 codes into relevant phenotypes, we used the PheWAS 
package to generate Phecodes, which represent a composite pheno-
types comprised of several related ICD10 codes92. For each Phecode, 
we generated a case, control and excluded status for each partici-
pant. Participants with an ‘excluded’ status for a given Phecode were 
those who had a confounding ICD10 code. This confounding code 
would not qualify the participant as a case but would disqualify them 
as being a control. To determine the date of onset for each phenotype, 
source ICD10 codes were mapped individually to Phecodes, and the 
date of the earliest qualifying ICD10 code was selected. Prevalent 
cases were excluded from incident disease models, with prevalent 
cases being defined as those with a Phecode before their assessment 
visit, a self-reported diagnosis (UKB Data Field 20002), or a physi-
cian diagnosis (UKB Data Fields 2453, 2443, 6150). Details for model 
phecodes and the corresponding exclusion criteria are listed in the  
Supplementary Table 7.

Models were constructed using standard Cox regression with the 
proteomic CRF score as the predictor and the following nested adjust-
ments: (1) unadjusted; (2) age, sex, race; (3) age, sex, race, Townsend 
deprivation index, body mass index, diabetes, smoking status, alcohol 
use, systolic blood pressure, low-density lipoprotein (LDL); (4) age, sex, 
race, Townsend deprivation index, body mass index, diabetes, smoking 
status, alcohol use, systolic blood pressure, LDL, fat mass as measured 
by bioimpedance (UKB Data Field 23101). We compared survival models 
using the maximal set of adjustments with and without the proteomic 
CRF score to examine differences in C-statistics and net reclassifica-
tion index (NRI; calculated at the 75th percentile for NRI for events). 
Our primary analysis for cause-specific death used a ‘cause-specific’ 
approach where participants without the event of interest (for exam-
ple, CVD death) are censored at the time of last known vital status or 
time of death from another cause (for example, cancer death). This 
approach was complemented using a competing risk framework with 
a Fine–Gray model with separate models for each of the three modes 
of death analyzed (for example, CVD, cancer, respiratory). For incident 
disease models, participants who did not experience the event were 
censored at the region-specific censor date or the date of death.

To examine potential complementarity of the CRF proteome with 
polygenic risk of diseases associated with CRF, we used Cox regression 
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models with proteomic CRF score and standard polygenic risk score 
(UKB Fields 26206, 26212, 26223, 26244, 26248, 26285 (ref. 93)) as 
independent variables (with an interaction term between the two) 
with adjustments for age, sex, race and four principal components of 
genetic ancestry (UKB Field 26201).

To examine the potential for clinical translation, we examined 
performance of a 21-protein score (the maximum number of proteins 
in an absolute quantification Olink panel currently available) with the 
recalibrated protein score (307 proteins) in standard Cox models in 
UKB and compared beta coefficients on the two versions of the CRF 
proteome. The 21 proteins selected were the top 21 proteins from the 
recalibrated 307-protein score LASSO model, ranked by the absolute 
value of the beta coefficients.

Dynamicity of CRF proteome with exercise training. Finally, to 
examine the modifiability of the proteomic CRF score with exercise 
training and how it tracks with changes in peak VO2, in HERITAGE we 
used paired t-tests and regression models for change in peak VO2 as a 
function of change in proteomic CRF score with adjustments for age, 
sex, race, BMI, pretraining peak VO2 and pretraining proteomic CRF 
score. To test whether the proteomic CRF score was associated with the 
response to exercise training, we used a model of posttraining peak VO2 
as a function of pretraining proteomic CRF score adjusted for baseline 
peak VO2, age, sex, race and BMI.

Analyses were conducted with R v.4 or later. All P values reported 
are from two-sided tests.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data for this study are publicly available via the CARDIA coordinating 
center (www.cardia.dopm.uab.edu), the Fenland Study coordinating 
center (https://www.mrc-epid.cam.ac.uk/research/data-sharing/), 
published data from HERITAGE10,35 and the UKB (https://www.
ukbiobank.ac.uk). Participants did not consent to unrestricted data 
sharing at the time of study conduct for BLSA. Data from BLSA may 
be obtained via application to the BLSA coordinating center (https://
www.blsa.nih.gov).

Code availability
Statistical code for the analyses can be found at https://github.com/
asperry125/CRF-Proteomics.
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Extended Data Fig. 1 | Relationship of a protein score of fitness with VO2 max, 
age, sex, race and BMI in 3 validation cohorts. The proteomic CRF score was 
scaled (mean 0, variance 1) in BLSA and HERITAGE cohorts. Colors on scatter 
plots represent density of overlapping observations with red being the most 
dense and blue the least dense. P values on panels showing the relationship of  

the proteomic CRF score with sex and race are from linear regression models of 
the proteomic CRF score as a function of sex and race. All other panels report 
P values from Spearman rank correlation tests. P values below 2.2 × 10–16 are 
reported as p < 2.2e-16.
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Extended Data Fig. 2 | Relations of a protein score of fitness with age, sex, race 
and BMI in UK Biobank. Colors on scatter plots represent density of overlapping 
observations with red being the most dense and blue the least dense. P values on 
panels showing the relationship of the proteomic CRF score with sex and race are 

from linear regression models of the proteomic CRF score as a function of sex  
and race. All other panels report P values from Spearman rank correlation tests.  
P values below 2.2 × 10–16 are reported as p < 2.2e-16.
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Extended Data Fig. 3 | Correlation of change in proteomic CRF score with 
change in peak VO2 with exercise training in HERITAGE. After a 20-week 
exercise training program in HERITAGE, we observed correlation between 

changes in the proteomic CRF score with changes in peak VO2, which were 
replicated in regression models. P value is from two sided Spearman rank 
correlation test.
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