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Abstract

Point Defect Engineering of Energy Materials from First-Principles Calculations

by

Daniel Peter Broberg

Doctor of Philosophy in Engineering - Materials Science and Engineering

and the Designated Emphasis in Energy Science and Technology

University of California, Berkeley

Professor Mark Asta, Chair

Atomic scale imperfections, know as point defects, dictate the performance and efficiency
of many modern energy materials. The challenges of climate change require the continued
improvement and identification of materials which can have point defects engineered in a
favorable fashion for the application of interest. With the rise of computer-aided materials
design, the possibility of performing high-throughput, first-principles computation on point
defects remains an attractive direction for improved screening of new energy materials. Yet
major barriers have prevented the large scale implementation of point defect calculations in
non-metals - namely, errors arising from the finite size of the computation cell, compounded
with errors associated with the underestimation of the band gap. Moreover, the lack of an
organized computational framework for storing and analyzing such calculations, as well as
the lack of a reliable benchmark for understanding the quantities which can be reliably com-
puted, have prevented high-throughput point defect calculations from being performed in a
practical context. In this dissertation, the notion of performing first principles calculations of
point defects in semiconductors and insulators in a high-throughput format is investigated.
This begins with an overview of the theoretical requirements for performing first principles
computation of defects, as well as the presentation of a set of open source command line
tools for doing the same. Then three different application areas in the energy space - thermo-
electrics for waste heat recovery, solid state electrolyte batteries, and solar cells - are explored
with first principles calculations of point defects. Finally, scaling of the previously presented
command line tools to a fully automated framework is demonstrated and used for a large
benchmark study of fully-automated point defect calculations with semi-local functionals as
compared to a set of previously published point defect calculations with hybrid-functionals.
This benchmark work outlines the strengths and weaknesses associated with such an au-
tomation framework, and advocates for the use of such a framework for qualitative screening
of doping limits and general carrier type for high-throughput computational discovery and
design of new energy materials.
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CHAPTER 1

Introduction

Climate change is the greatest challenge facing humankind today. The ramifications of
increasing global temperatures exacerbate current world issues surrounding food security,
water access, wildfires, displaced land from sea level rise, reductions in biodiversity, human
health and economic growth [1, 2]. In the 2015 Conference of the Parties in Paris, govern-
ments around the world reached an agreement to limit temperature increases below 1.5 oC
above pre-industrial levels [3]. According to the Intergovernmental Panel on Climate Change
(IPCC) Special Report that followed, limiting global temperature increases to 1.5 oC will
require adhering to a total carbon budget which has been more than 82% drained since
pre-industrial years, putting us on track to exceed the amount of allowed carbon by 2050.

To protect the world’s remaining carbon budget, drastic action must be taken to electrify
the transportation sector and increase the percentage of carbon-free electricity generation
and distribution. While great strides have been made towards these goals, improvements in
material efficiencies within energy generation and distribution (e.g. photovoltaics and waste
heat recovery) as well as improving fundamental limits for energy storage, will remain as
challenges for the materials science community for decades to come. The work that follows
motivates the importance of high-throughput, theoretical investigations of point-defects for
designing new materials which can aid in meeting the requirements of future energy systems.

1.1 Defects in Nature

Any material imperfection which deviates from the surrounding crystalline order can
be called a defect [4]. This definition applies to any material which demonstrates some
degree of crystalline order [5]. These imperfections give rise to many of the macroscopic
properties which concern all of engineering, such as the mechanical response of a material,
ionic, electronic and thermal transport, and stability against corrosion and degradation [5].
We can differentiate atomic-scale imperfections (point defects) from other defects which
occur on larger length scales (extended defects) [4]. Point defects, the sole focus of this
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thesis, include intrinsic defects that are entropically stabilized at any finite temperature,
and extrinsic solutes that may be intentionally added to dope the material [4].

Anti-Site
(AB)

Vacancy
(VB)

Substitution
(CB)

Interstitial
Bi

Schottky Defect
( VA-VB )= A = B

Complexes 
of Point 
Defects:

Frenkel Defect
( VA-Ai )

“Elementary” 
Point Defects

Un-defective 
“pure” system

Figure 1.1: Representative defect types for a hypothetical AB system (top). Elementary point
defects are single additions or removals of atomic specie from the pure system (middle row). Com-
plexes are combinations of multiple elementary defect types (bottom row).

A set of representative point-defect types are shown schematically in Figure 1.1. Ele-
mentary point defects are perturbations of a single site in the un-defective “pure” system,
with interstitials corresponding to the occupation of a previously unoccupied sub-lattice of
the crystal. Intrinsic defects correspond to the addition and removal of native species (A or
B in Figure 1.1), while extrinsic defects correspond to the addition of a foreign specie to the
crystal system (C in Figure 1.1). A linear combination of elementary defects becomes a defect
complex, which may become more energetically favorable than their isolated counterparts as
a result of local structure accomodation. Two famous examples of defect complexes are the
Schottky and Frenkel defects, which correspond to a pair of vacancies and a combination of
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a vacancy and an interstitial, respectively.
Typical defect concentrations vary widely from ∼1010 cm−3 in undoped semiconductors

to degenerately doped concentrations exceeding 1022 cm−3. Given such a large quantity of
point defects, the difference between a set of “Elementary” point defects and a complex of
defects is primarily differentiated by defects which have a large binding energy - that is, a
pair of elementary defects which prefer to form near each other is considered a complex, while
elementary defects do not have a preference for forming next to neighboring defect types.
This is almost a semantic difference, but such a distinction is important to make when
considering the vast permutation space that exists for arrangements of defect complexes.
This thesis focuses attention solely on the formation of elementary point defects, which is a
necessary first step to modeling complexes.

It is typical to define a labeling procedure for quickly defining defects [6]. In this notation
the new atomic site occupation is sub-scripted by the original site’s occupation (For example,
VacB is a B-site vacancy and AB is an A-on-B site antisite in Figure 1.1). For defects in
non-metals, charge can become trapped on the defective site and in the adjacent bonding
states. For such a case, it is standard practice to include a superscript for the charge state
relative to the neutral case, taken to be the formal charge after full removal (and/or addition)
of atomic specie(s), with valence electrons included. With this labeling procedure, it is then
possible to write reaction equations for the formation of point defects which conserve charge,
mass and site.

For example, in rocksalt MgO the formal oxidation state of oxygen is −2, so that upon
the removal of a neutral oxygen atom, Vac+0

O is formed with two electrons trapped on the
defect. Removal of these extra electrons with an electric field or a temperature fluctuation
would cause an “un-occupied” defect state with charge +2: Vac+2

O . The defect equilibria
reaction is written as:

MgMg +OO ↔ MgMg + V ac+0
O +

1

2
O2 ↔ MgMg + V ac+2

O + 2e− +
1

2
O2

(un-defective state) (occupied defect state) (un-occupied defect state)

Where mass conservation is reflected as oxygen being removed from the crystal to form
molecular oxygen (O2), in the gas phase, during the formation of the defect. The above
equations give an intuition for the charge compensation requirement for defects forming
in non-metals. The un-occupied defect state requires charge compensation by free electrons
(e−), known as electronic compensation. Alternatively, charge compensation by other defects
can occur, known as ionic compensation. This can be written as:

nil↔ V ac−2Mg + V ac+2
O (Schottky defect)

O+0
O ↔ O−2i + V ac+2

O (O-Frenkel defect)

Where the left side of each equation reflects a perfect crystal and the reactions conserve mass
and number of lattice sites. The equilibrium constants for each reaction are determined by
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the defect formation energies and dictate the more dominant reaction, and, subsequently,
determine the concentration of electrons in the crystal.

Given the above discussion, decades of work have gone into attempting to produce uni-
versal rules for defects formation in crystals. Such a set of rules would have a large influence
on the engineering of new materials with ideal point defect properties for a given applica-
tion. Early examples of such efforts were Kröger’s rules and Pauling’s rules, both of which
are born out of observed empirical evidence [4, 6]. More recent examples include work by
Zunger, which makes observations about the relative stability of defects with regard to the
position of band edges on an absolute scale [7]. However, universal rules for defect formation
always include important exceptions. For example, general rules for doping predicted p-type
GaN to be an impossible achievement, despite being ultimately achievable at concentrations
exceeding 1018 cm−3 and the subject of the 2014 Nobel Prize in Physics [8, 9].

1.2 Importance of Point Defects for Energy

Applications

semiconductor or insulator

EF

x
Eg

E

k

EF

x

E

k

metal

semiconductor or insulator with doping

EF

x
Eg

E

k

D(+/0)
Introduction of 
dispersion-less 

(donor) defect level

Figure 1.2: Schematic representations of the Fermi level in real and reciprocal space band struc-
tures of metals (top left), non-metals (top right), and non-metals with doping (bottom).

Point defects directly impact a given material’s performance for energy applications. To
provide a simple explanation for the impact on carrier concentrations, Figure 1.2 shows
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representatives schematics of the Fermi level position relative to band edges in reciprocal
and real space band structures. In metals, carrier concentrations are high as a result of the
available energy levels within kBT of the Fermi level (top left of Figure 1.2). The resistance to
free carrier motion in a metallic material is strongly dependent on the scattering from defect
sites [10]. While the defect-dependence of free carrier dynamics also exists for semiconductors
and insulators, the free-carrier concentrations themselves are strongly dependent on the
defect concentrations, as discussed for MgO in the previous section. Since the Fermi level of
non-metallic materials (without defects) lie in the band gap of unavailable electronic states,
thermal energy (∼ kBT ) is insufficient to excite free carriers to appreciable concentrations in
the absence of defects (top right of Figure 1.2). When dopant defects add occupied electronic
levels near the conduction band, thermal excitation is sufficient to excite free electrons to
the conduction band, resulting in a modified Fermi level position (bottom of Figure 1.2).

Besides the strong dependence of carrier concentrations on point defects in non-metals,
optoelectronic efficiencies are also strongly impacted by the appearance of defect levels in
the gap. For example, light emitted diode (LED) photon creation efficiency is strongly
dependent on the presence of defect levels which lie deep within the band gap. To illustrate
this, Figure 1.3 shows two recombination pathways for electrons and holes in an LED device.
In a perfectly functioning LED, the electron and hole directly recombine across the gap via
radiative recombination, producing a photon with an energy equal to the size of the band
gap (left side of Figure 1.3). In the case with deep defect levels present, a non-radiative
process can occur whereby the electron and hole recombine on the defect site, with energy
being dissipated in the form of thermal motion (right side of Figure 1.3). This former case
therefore decreases the number of photons emitted from an LED device, reducing efficiencies.

Radiative 
recombination

-

+

Photon 
emitted

Non-Radiative 
recombination

-

+

-----

Recombination on 
deep defect state

VBM

CBM

Figure 1.3: Two schematic representations of LED operation: (left) radiative recombination
causing photon emission as compared to (right) non-radiative recombination of electron and hole
on a deep defect state, which dissipates as thermal energy and leads to worse efficiencies in LED
materials.



6

This mechanism for decreased efficiencies in LED devices is equally important for the
operation of solar cell devices, which roughly act as modified LEDs acting in reverse -
absorbing solar photons to create an electron-hole pair which is then swept out of the device.
For this reason, any solar cell which is available in the global market place received some
degree of “defect engineering” for removing defects with deep levels [11–13]. As discussed
later in this thesis, defect engineering - or the promotion of certain defects over others - can
be done through varying the chemical environment surrounding the crystal growth [8, 14].
Silicon solar cells, traditionally riddled with harmful defects when grown without careful
control, serves as a pinnacle example of a material which required decades of empirical
observation to remove impurities and achieve extremely pure concentrations that exceed
defect detection limits [15,16].

Rather than relying on decades of empirical trial-and-error to discover the next energy
material of interest, modern investigations are able to make use of theoretical calculations,
like Density Functional Theory (DFT), which can provide qualitative and quantitative in-
sights into the nature of defect formation in semi-conductor materials during a materials
design investigation.

1.3 Fundamentals of First-Principles Calculations

First-principles calculations, such as Density Functional Theory (DFT), have been grow-
ing in popularity in the past few decades, due to improvements in parallel computer hardware
and the increased availability of computational software [17,18]. A fundamental tenet of DFT
is to reduce the many-body Schrödinger equation describing the energy of a material in terms
of the interactions between the many electrons and nuclei to a problem with a single electron
interacting with an effective mean field [17]. This relies on two theorems by Hohenberg and
Kohn, which state that the ground state energy is a functional of the electron density, and
that the real ground state density corresponds to the exact ground state energy [17, 19, 20].
The Kohn-Sham equations that result from minimizing the energy functional with respect
to the electron density are written as:

[
h̄2

2m
∇2 + V (r) + VH(r) + VXC(r)]ψi(r) = εiψi(r) (1.1)

where terms on the left hand side are the kinetic energy, the coulomb interaction with
nuclei, the coulomb interaction with other electrons (Hartree potential), and the exchange
and correlation (XC) potential, respectively. This last term is designed to include all other
quantum mechanical effects which are not included in the previous three terms [17] and is
formally defined as:

VXC =
δEXC [n](r)

δn(r)

the functional derivative of the exchange and correlation energy with respect to the electron
density. The Kohn-Sham wavefunctions (ψi) dictate the true ground state density, which
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is a required input for the potential terms in Equation 1.1. This requires a self-consistent
treatment where an initial guess for the density is made, the Schrödinger equation is solved,
and a new set of wavefunctions are produced and fed back into the self-consistent treatment
until the total energy (or forces) converge to a given tolerance.

The power of DFT is in the reduction of 3N degrees of freedom (3 spatial degrees of
freedom for N electrons) to 3 spatial degrees of freedom in the electron density, but the
weakness lies in the lack of a rigid definition for the exchange and correlation potential,
VXC . A good starting point for approaching VXC is based on exchange-correlation energy
of a uniform electron gas; in the Local Density Approximation (LDA) it is assumed that
the total exchange correlation energy of an inhomogeneous system can be written as an
integral of the exchange correlation energy density of a uniform gas, evaluated at the value
of local density [17]. A small improvement over LDA makes use of the local gradient of the
electron density, as well as its value: the Generalized Gradient Approximation (GGA), with
one popular implementation of GGA published by Perdew, Burke, and Ernzerhof known as
PBE-GGA [21, 22]. While these “semi-local” XC functionals are computationally efficient,
they are known to suffer from several limitations - most notably, the underestimation of the
band gap or the under binding nature of lattice constants in GGA.

It is possible to expand the amount of physics included in the exchange and correlation
description, but this often comes at an added computational cost. For example, Hartree-
Fock methods have relatively poor computational scaling with the number of electrons in a
system, but provide an exact treatment of the exchange energy [17]. Despite having a perfect
description of the exchange interaction of electrons, there are no correlation effects included.
This has inspired yet another class of approaches know as “hybrid approaches”, which in-
volve the mixing of computationally efficient semi-local functionals, like GGA-PBE, with
the exact exchange provided by Hartree-Fock. One popular hybrid implementation know as
HSE06 has been shown to balance computational efficiency with significant improvements in
thermochemical results, as well as improved band gap and lattice constant accuracy [23,24].
Using DFT to do research requires a careful balance of an adequate description of the physics
of interest for the XC potential with the computational requirements that one desires.

In Chapter 2 we outline many of the requirements for performing point defect calcula-
tions in non-metals with DFT. A popular approach is to make use of periodic boundary
conditions (PBCs) in an embedded supercell [8]. In order to minimize interactions with
periodic neighbors, it is necessary to extend the supercell to a large enough size such that
the defect wavefunction is fully contained within a single supercell. Regardless of the size of
the supercell, many computational artifacts may persist, such as the coulomb interactions
between mirror-image defects in neighboring supercells. Corrections to account for these
finite-sized effects have been discussed extensively in the literature [8, 25, 26]. For defects
in semiconductors and insulators, an under-estimation of the band gap can cause a defect
state, which normally would be confined within the band gap, to hybridize with host band
states, causing extended delocalization of the defect wavefunction outside of the calculation
supercell. This causes compounded errors of the defect state within semi-local functional
approaches which may not occur within hybrid functional approaches, leading most modern
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“state-of-the-art” defect calculations to be performed with hybrid functionals [8, 27–31].

1.4 High-throughput for Materials Discovery

All modern technological materials for energy generation and distribution were found
through “Edisonian” approaches that have relied on extensive trial and error approaches,
guided by limited theoretical predictions. A more optimistic way to state this is: decades
of semi-intelligent “guess-and-check” work led to the development of materials that changed
the way we live and work. This includes the use of silicon within solar cells and transistors,
lithium iron phosphate cathode materials for lithium-ion batteries, and lead-telluride for
thermoelectric devices. Designing new materials which can replace these deeply-entrenched
technologies is a monumental challenge which requires rethinking the traditional manner of
materials engineering [18].

To approach this materials design challenge with solely experimental efforts would be irre-
sponsible, as the sheer size of the combinatorial design space, as well as the number of param-
eters which must be engineered for the application of interest, would lead to decades of costly
experimentation without much of a guarantee for success. An alternative approach, which
has been increasing in popularity in the past decade, is to make use of “high-throughput”
computation - wherein a single set of calculations is performed many times, with the results
stored and data-mined for quantities of interest. The high-throughput screening materials
design approach for next generation energy materials has already shown promise in many
applications, including finding better electrode materials for batteries, as well as discovering
new materials for solar and thermoelectric applications [18, 32–35]. Moreover, the appear-
ance of openly available data sets, such as the Materials Project (www.materialsproject.org),
have allowed for first principles calculations to be more readily disseminated to the materials
engineering community [36].

As discussed earlier for silicon, defect engineering in electronic materials is an essential
step for improving the potential use of high efficiency optoelectronics devices and other ma-
terials which require charge conduction to be actively controlled. Moreover, the practical
limits for achieving certain properties - such as dopability - can be eliminated based on a
thermodynamic assessment of practical defect formation. Despite this intrinsic requirement
of knowledge about defect physics in energy materials, the majority of high-throughput ef-
forts to date have been focused on bulk properties such as thermodynamic stability and band
structure characteristics [37–39]. The few studies which include point defect information dur-
ing the screening stages are limited to tens of defect calculations at a time [27–29,40]. Two
reasons exist for the lack of high-throughput studies on defects: (i) there has historically not
been a reliable, user-friendly code base for automating and parsing point defect calculations
with DFT and (ii) there has not been a systematic benchmark study performed for the limits
of semi-local functional calculations, making the results of such calculations unclear in their
predictive value. Both of these challenges form the primary motivation for this dissertation.
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1.5 Dissertation Outline

The rest of this dissertation presents work under the unifying theme of setting up a
framework for future high-throughput point defect calculations to be performed with re-
gard to energy applications. In Chapter 2, the fundamental requirements for performing
point defect calculations are introduced and a novel new code for automating the setup,
parsing, and analysis of charged defect calculations is outlined (the Python Charged De-
fect Toolkit). Chapter 3 outlines the use of these automation tools for understanding the
behavior of materials with relevance to energy; focusing on materials for thermoelectrics,
solid-state batteries, and solar cells. In Chapter 4 we perform an in-depth benchmark analy-
sis of semi-local, automated point defect calculations as compared to “gold standard” hybrid
calculations previously published by several different experts in the community. Chapter 5
then summarizes the work done and suggests future work that remains to be investigated for
the prospect of high-throughput, first-principles studies of point defect formation in energy
materials.
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CHAPTER 2

Defect Fundamentals and Command Line Tools

Point defects have a strong impact on the performance of semiconductor and insulator
materials used in technological applications, spanning microelectronics to energy conversion
and storage. The nature of the dominant defect types, how they vary with processing
conditions, and their impact on materials properties are central aspects that determine the
performance of a material in a certain application. This information is, however, difficult
to access directly from experimental measurements. Consequently, computational methods,
based on electronic density functional theory (DFT), have found widespread use in the
calculation of point-defect properties. Here we have developed the Python Charged Defect
Toolkit (PyCDT) to expedite the setup and post-processing of defect calculations with widely
used DFT software. PyCDT has a user-friendly command-line interface and provides a direct
interface with the Materials Project database. This allows for setting up many charged defect
calculations for any material of interest, as well as post-processing and applying state-of-the-
art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and
demonstrates its use in an application to the well-studied GaAs compound semiconductor,
as well as 20 additional zinc blende and oxide systems. We anticipate that the PyCDT code
will be useful as a framework for undertaking readily reproducible calculations of charged
point-defect properties, and that it will provide a foundation for automated, high-throughput
calculations.

2.1 Forward

The work presented in this chapter was published as “PyCDT: A Python toolkit for
modeling point defects in semiconductors and insulators” by D. Broberg, B. Medasani, N.
E. R. Zimmermann, G. Yu, A. Canning, M. Haranczyk, M. Asta, and G. Hautier in Comp.
Phys. Comm., vol. 226, pages 165-179 (2018), and is reproduced here with permission of
the co-authors.
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2.2 Introduction

Point defects in semiconductors and insulators govern a range of mechanical, transport,
electronic, and optoelectronic properties [41–45]. Due to the fact that the properties of these
defects are difficult to characterize fully from experiment [8, 45], computational tools have
been widely applied. Many applications such as lanthanide-doped scintillator materials [46,
47], transparent conducting oxide materials [48–50], photovoltaic materials [13,51], and new
thermoelectric materials [40, 52] have benefited from leveraging theory for calculating point
defect properties in next generation technologies.

For this reason, calculations using electronic density functional theory (DFT) have arisen
as a reliable route to explore the dopability of materials at the atomic scale [8, 25, 29, 53].
However, two sources of error in the associated point defect calculations limit the application
of charged defect DFT efforts in a high-throughput framework. First, semi-local exchange-
correlation approximations (e.g., generalized gradient approximation (GGA)) can severely
underestimate the band gap so that usage of post DFT methods becomes pivotal (e.g.,
GW [54–56] and GGA+U methods [57, 58], and hybrid functionals [59]). Second, applying
periodic boundary conditions with finite sized defect supercells to model point defects makes
a defect interact with its own images [8, 60], thus, causing departure from the key assump-
tion made in the dilute limit formation energy formalism [8, 60]. In the case of charged
point defects, the finite sized supercell assumption also introduces the need for correcting
the electrostatic potential [8, 53]. Typically, the strongest defect-defect interaction is the
Coulomb interaction between charged point defects. Based on well-known scaling laws, these
interactions were first treated with computationally costly supercell scaling methods, which
require multiple calculations for each defect [60]. A faster route to computing defect forma-
tion energies became available with the development of a posteriori correctional techniques.
While the a posteriori corrections allow for fewer calculations to be performed, their usage
requires experience in addressing issues arising from delocalization of the defect wavefunc-
tion [53]. Furthermore, the calculations are often resource demanding and tedious because
of the large number of pre- and post-processing steps involved.

To address these problems we have developed the Python Charged Defects Toolkit (Py-
CDT), which enables expanded applications in the context of materials discovery and design.
Our python-based tools automate the setup and analysis of DFT calculations of isolated in-
trinsic and extrinsic point defects (vacancies, antisites, substitutions, and interstitials) in
semiconductors and insulators. While other efforts have recently been made available with
similar objectives [61–63], PyCDT is unique in its direct queries to the Materials Project [64]
database (expediting chemical potential and stability analysis for Perdew–Burke–Ernzerhof
(PBE) GGA calculations) [21].

A central objective of defects modeling in non-metallic systems is determining the relative
stability of different defect charge states. PyCDT therefore implements the defect forma-
tion energy formalism reviewed in Sections 2.3.1, 2.3.2, 2.3.3 and 2.3.4. To minimize the
errors in defect formation energies arising from the periodic boundary conditions, PyCDT
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supports the commonly used correction scheme due to Freysoldt et al. [65] and its extension
to anisotropic systems by Kumagai and Oba [66] (Section 2.3.4). Our tools also include
charge-state assignment procedures developed on the basis of extensive literature data (Sec-
tion 2.3.5) and an effective interstitial-finding algorithm [67] (Section 2.3.6). Furthermore,
PyCDT provides a user-friendly command-line interface that provides ready access to all
tools. We demonstrate the setup and analysis of the defect calculations from the command
line in Section 2.4 using gallium arsenide (GaAs) as an example system and by employing
the widely-used Vienna Ab initio Simulation Package (VASP) [68, 69] as a backend
DFT software. In Section 2.5, we validate the finite-size charge correction schemes imple-
mented and verify the results obtained for GaAs. We emphasize that our approaches and
implementations are entirely general, thus, seamlessly facilitating extensions to other DFT
packages.

2.3 Background and Methods

In general, point defects can be divided into two categories: intrinsic and extrinsic [45].
Intrinsic (or native [8, 45]) point defects (Figure 2.1: top) involve only chemical species
that are part of the perfect bulk material (e.g., Si in silicon). For elemental materials,
there are two basic intrinsic defect types: vacancies (e.g., vacSi, denoting a vacancy on Si
site) and self-interstitials (e.g., Sii). For compounds (e.g., GaAs), there is an additional
defect type: antisites (e.g., AsGa). Because intrinsic point defects are equilibrium defects
due to configurational entropy, they can be well described and their occurrence understood
in the framework of equilibrium thermodynamics (formation energies, Ef , used to predict
equilibrium concentrations, c).

Vacancy

Intrinsic

interstitialcy Antisite

Substitution Extrinsic interstitialcy

Figure 2.1: Intrinsic point defects (top: vacancy, intrinsic interstitialcy, antisite) and extrinsic
point defects (bottom: substitution, extrinsic interstitialcy).
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Extrinsic defects (Figure 2.1: bottom), which are also referred to as impurities [8, 45],
introduce a foreign chemical species into the perfect bulk material [41]. These include substi-
tutional defects (e.g., MnGa) and extrinsic interstitials (e.g., Mni). We distinguish between
extrinsic and intrinsic defects because impurities are often inserted on purpose (intentional
doping) under well-defined conditions to achieve desired material properties; in particular,
electrical and optoeletronic properties [45]. The conditions under which extrinsic defects
are inserted (e.g., via implantation or quenching) often differ extremely from the thermo-
dynamic equilibrium assumption made in the assessment of intrinsic point defects. Despite
the limited conceptual applicability, the thermodynamic framework still represents the most
commonly pursued route to assessing “dopability” of materials [8, 13,40,46–52].

In contrast to metals, point defects in semiconductors and insulators can carry a charge [45]
localized around the defect site. Physically, these charged point defects introduce states
within the band gap which can trap charge carriers (electrons and holes). Defect states that
are close to the band edges are able to ionize to create free carriers, while states that are deep
in the gap lead to strong carrier trapping. This may be wanted (e.g., in photovoltaics [51])
or not (e.g., solid-state electrolyte batteries [70]). Because many technological applications
use intentional doping to improve performance, knowledge of the capacity to dope a material
(“dopability”) is desirable and motivates the exploration of defect properties with theoretical
methods.

2.3.1 Formalism for equilibrium point defects

The thermodynamics of point defects has been the subject of many excellent reviews
(see, for example, refs. [8,25,53] and references therein), which have presented and discussed
the underlying physics and properties in great detail. In the following sections, we focus
on describing the procedures implemented in PyCDT for computing quantities of interest
for point defects (i.e., formation energies and transition levels) with DFT calculations. The
applications of the defect formalism to be described are limited by the intrinsic shortcomings
of DFT (e.g., the well-known underestimation of the band gap [53]).

There is a hierarchy of DFT-based methods that can be used within the defect formal-
ism implemented by PyCDT. The simplest approximation in DFT is the use of a semilocal
functional (i.e., local-density approximation (LDA), GGA), which is computationally most
efficient, but has well-known limitations due to band gap inaccuracies. Higher levels of
theory include hybrid-functionals and meta-GGA, both of which can be used to achieve
higher accuracy, however, at an increased computational cost [71, 72]. Despite the limita-
tions of semilocal DFT, defect calculations have proven useful for revealing the dominating
defects under different growth conditions encountered in many experiments, such as the III-V
semiconductors [73]. While recent developments in hybrid functionals and meta-GGA have
shown promise in addressing the inherent limitations in accuracy associated with semi-local
functionals [71,72], recent evidence shows that new improvements to the approximations for
exchange and correlation in one system do not always yield universal improvements for other
systems with similar chemistries [74]. With this fact considered, semi-local approximations
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at least have the benefit of having predictable errors which can be corrected with appropriate
techniques [53].

While PyCDT’s unique interface with the Materials Project (MP) database, which is
composed of GGA and GGA+U level data, suggests a restriction to semi-local approaches,
PyCDT has many functionalities which help place defect formation energetics closer to those
obtained from higher levels of theory. One feature that is particularly useful is the ability
for PyCDT to help expedite the setup and parsing stages of defect calculations performed
on higher levels of DFT theory (e.g. for improved chemical potentials, setting up a user’s
personal phase diagram calculation based on a composition of interest). These features are
described further in the following sections.

2.3.2 Defect Formation Energies

The primary quantity of interest is the formation energy, Ef [X], which is the energy cost
to form or create an isolated defect, X, in a bulk or host material. The formation energy of
an isolated defect (i.e., in the dilute limit) depends on the defect charge state, q: Ef [Xq]. It
can be calculated from DFT supercells using:

Ef [Xq] = Etot[X
q]− Etot[bulk]−

∑
i

niµi + qEF + Ecorr (2.1)

We illustrate this equation graphically in Figure 2.2 and note that each term will be described
in detail in subsequent sub-sections. Etot[X

q] and Etot[bulk] are the total DFT-derived
energies of the defective and pristine bulk supercells, respectively. The third term, −∑

i niµi,
is a summation over the atomic chemical potentials, or the energy cost of an atom, µi, being
added (ni = +1) or removed (ni = −1) from the bulk undefective supercell. The atomic
chemical potential can reflect the growth conditions of the material, allowing this formalism
to be used to guide defect engineering approaches (cf., Section 2.3.3). The fourth term,
qEF, represents the energetic cost of adding or removing electrons, where EF is the Fermi
energy, which serves as the chemical potential of the electron reservoir. The Fermi energy
is usually referenced to the valence band maximum from a band structure calculation, such
that the formation energy can be plotted as a function of the Fermi energy across the
band gap. Finally, Ecorr is a correction term due to the presence of periodic images that
becomes necessary for charged defects in DFT supercell calculations. This correction has
drawn significant attention from the defects modeling community, resulting in a number of
alternative computational approaches that are discussed in more detail in Section 2.3.4.

2.3.3 Chemical Potentials

The atomic chemical potential is associated with the thermodynamic energy cost for
exchanging atoms between the defect and a thermodynamic reservoir. The individual chem-
ical potentials are set by the composition of the material (e.g., the mole fraction of As in
GaAs) which itself is determined by the defect formation energies. Hence, two approaches
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(1)

(2)

Figure 2.2: Different contributions to the formation energy: (a) energy of defective supercell
in charge state q, (b) energy of pristine bulk supercell, (c) atomic chemical potential computed
from the ground state hull, (d) electron/hole chemical potential generated from electron reservoir,
and (e) correction terms to account for defect-defect interactions arising from periodic boundary
conditions as well as for the homogeneous background charge which requires potential re-alignment.
The different labeled X’s given in 2.2c show stable and metastable compounds. The latter case
yields a complication which will be discussed in Section 2.3.3.

can be used to derive the individual chemical potentials. One involves the use of a statisti-
cal thermodynamic formalism (canonical ensemble approach), to compute the concentration
dependent free energy of the compound and to derive the relationship between the chemical
potentials and composition [75]. More frequently, bounds on the chemical potentials are set
(grand-canonical ensemble approach), in a manner first defined by Zhang and Northrup [14],
from zero-temperature energies alone. Only the grand-canonical approach is currently in-
cluded in PyCDT, whereas future versions will also support canonical approaches to chemical
potential calculations. Below we demonstrate the grand-canonical approach for the simple
example of GaAs.

The bulk energy (or free energy at finite temperature) per formula unit, µ0
GaAs, fixes a

relation for the chemical potentials of gallium, µGa, and arsenic, µAs, respectively: µ0
GaAs =

µGa + µAs. For Ga-rich compositions, the values of µGa are constrained by stability of
the compound relative to the precipitation of excess Ga to form a bulk Ga phase. At
zero temperature, this constraint can be expressed as µGa < µ0

Ga, where µ0
Ga is the energy

per atom of bulk Ga. Thus, one extremum can be selected as the “Ga-rich” limit, where
µGa = µ0

Ga. The atomic chemical potential of As is then fixed: µAs = µ0
GaAs−µ0

Ga. The same
approach holds for As-rich compositions (above: interchange Ga and As labels with each
other). While the Ga-As system has a phase diagram with just one unique compound, the
more general case has multiple stable compounds, which requires the limits of stability to
be expressed in terms of the formation of compounds with neighboring compositions within
the phase diagram. In general, the chemical potentials in an n-component system will be
defined in PyCDT by defining the limits of stability for the different possible n-phase states
of equilibria.
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As an example, consider the Sn-Se system which has a 0 K ground-state hull that contains
the phases Sn, SnSe, SnSe2 and Se. When calculating defects in the SnSe phase, the “Se-
rich” limit would instead be defined by equilibrium with the SnSe2 phase (Equation 2.2),
combined with the stability condition for bulk SnSe (Equation 2.3). This forms a system of
equations for the chemical potentials of µSn and µSe.

µ0
SnSe2

> µSn + 2µSe (2.2)

µ0
SnSe = µSn + µSe (2.3)

This formalism for calculating equilibrium bounds on the chemical potentials requires
knowledge of the ground-state hull, which governs the zero-temperature limit of the phase
diagram of the system. The advantage of this formalism is that defect formation energies can
be obtained entirely from first principles calculations, rendering experimental input unnec-
essary. The drawback is that one must compute the full phase diagram of the system using
the same functional choice used for the defect calculations. In applications of the PyCDT
code based on the PBE-GGA exchange-correlation potential, PyCDT uses the ground-state
hulls that are made available through the MP database [64]. PyCDT has integrated func-
tionality that queries the MP database for every computed DFT entry in the phase diagram
so that no new calculations are required to compute the bounds on the chemical potentials.
Note that correct usage of the MP data for defect calculations requires consistency between
personal defect calculations and the calculations from the MP. This is easily checked through
the compatibility tools available in pymatgen [76]. If the bulk phase is thermodynamically
stable and is not already computed in the MP database, PyCDT manually inserts the com-
puted phase into the phase diagram and then provides all of the associated bounds on the
chemical potentials. If a user prefers to compute chemical potentials on a different level
of theory than is provided by the MP, the core code of PyCDT can be used to setup and
calculate atomic chemical potentials through first pulling the composition’s phase diagram,
and using the structural information to setup a personal phase diagram calculation for the
user. In a similar manner, this information can be setup for any DFT code desired by the
user through the use of Pymatgen’s code agnostic classes.

For highly correlated systems such as transition metal oxides, MP settings default to
GGA+U. When computing the phase diagram that contains a mixture of GGA and GGA+U
computed phases, MP employs the mixing scheme of Jain et al. [77], which adds an empirical
correction to the energies of GGA+U compounds. The mixing scheme was shown to give
formation energies that are consistent with experimental data with a mean absolute relative
error of under 2%. The resulting correction term to the chemical potentials was found to be
important in several defect studies [78,79].

One complication that should be mentioned is the case where the compound under con-
sideration does not reside on the convex hull. That is, the compound is higher in energy than
another compound with the same composition or with respect to phase separation to com-
pounds with other compositions. In this instance, the calculation is predicting the compound
to not be present in the equilibrium phase diagram in the limit of zero temperature. For
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small energy-above-hull values, this situation could indicate that the compound is stabilized
by entropic contributions at finite tempearture [80], or could be an artifact of the previously
mentioned inaccuracies of DFT [81], or the experimentally synthesized phase exists in a state
of metastable equilibrium [82]. Regardless of the reason, a positive energy-above-hull value
presents a practical problem for defining the chemical potential.

In such cases, PyCDT issues a warning and the chemical potentials used are with respect
to the phases in equilibrium at the given composition in the phase diagram. In figure 2.2c,
this situation is graphically represented by the data points labeled “(2)”, where the red X
above the hull is the compound of interest and PyCDT uses the red triangle to define a set of
compounds in equilibrium for defining the atomic chemical potentials. In these instances, the
computed defect physics should be interpreted with caution. The user may wish to define
the chemical-potential limits based on more detailed knowledge of the growth conditions
or compute the chemical potentials from a full finite-temperature free energy model of the
compound of interest.

2.3.4 Periodic Supercell Corrections

Periodic boundary conditions (PBCs) are the standard way to deal with the regular
arrangement of crystalline solids in DFT calculations. Once a defect is introduced, PBCs
can give rise to sizable interactions of the defect with its periodic images, contrasting the
assumption made above for the dilute-defect limit. Because this limit is consistent with
the thermodynamic formalism outlined in Sec. 2.3.2, the interactions between neighboring
defect images should be minimized to yield accurate formation energies. For charged defects
in semiconductors and insulators, Coulombic interaction with neighboring images exists,
which decays as 1/L, where L is the supercell periodic length. The charge interactions are
the dominant effect that need to be taken into account when correcting the formation energy
of defects in non-metals. Elastically-mediated interactions which are due to the strain fields
induced when the positions of atoms near the defects also exist, but decay more rapidly
in real space, and are often minimal [8]. In cases where these interactions are important,
methods have been developed to account for them (see [8] and references therein), which
will not be addressed in the following discussion.

To account for the charge correction one approach has been to create successively larger
defect supercells. Scaling laws for the electrostatic interactions with respect to system size
are then used in order to extrapolate Ef to the dilute limit [26,83]. An alternative approach
is based on an a posteriori analysis of the electrostatic potential for a single supercell cal-
culation [65, 84]. An important requirement for the alternative approach is that the charge
be sufficiently localized within the vicinity of the defect. If so, a moderately sized defect
supercell typically suffices, hence, offering a computationally more efficient route to calcu-
lating reliable defect formation energies. The latter methodology, referred to as “correction
methods” in the following, is employed in PyCDT.

Correction methods address two issues:
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1. the electrostatic energy from the interaction between the charged defect and its images,
and

2. a potential alignment term that corrects for a fictitious jellium background required to
maintain overall charge neutrality in the system.

Many different methods have been proposed to correct for these two terms, as summarized
in several comprehensive reviews (see, e.g., [8, 25,53,60] and references therein).

The theoretical starting point for the correction methods considers a periodic array of
point charges (cf., Figure 2.2e) with an associated Madelung energy, EM:

EM =
qVM

2
=
q2α

2εL
(2.4)

where VM is the Madelung potential, ε is the dielectric constant, and α is the Madelung
constant which solely depends on the geometry of the periodic array. Makov and Payne [85]
introduced one of the earliest charge correction methodologies by deriving the next leading
order term to the interaction potential. This results in a term that scales as L−3, and,
therefore, most supercell scaling approaches fit uncorrected formation energies to the form
of aL−1 + bL−3. Komsa et al. [86] used this supercell scaling method for evaluating the
performance of different correction methods that are based on single supercell calculations.
They concluded that the correction by Freysoldt et al. [65] produces the most reliable charge
corrections for defects with charges that are well localized within the supercell. From all
considered defects, the authors calculated a mean absolute error of 0.09 eV in the formation
energy between the estimate from the 64-atom supercell with charge corrections and the
estimate from the supercell-scaling method (i.e., using extrapolation toward the dilute-defect
limit, but without applying any charge correction).

PyCDT includes a Python implementation of the correction scheme derived by Freysoldt
et al. [65] and implemented in the open-source DFT software S/PHI/nX [87]. The approach
is based on a separation of the long-range and short-range interactions between charged
defects, using information directly outputted from a DFT calculation. Originally, an isotropic
dielectric constant was assumed. Recently, Kumagai and Oba [66] extended the approach to
anisotropic systems, by considering the full dielectric tensor. The analytic expression of the
Madelung potential under isotropic conditions facilitates the use of a Gaussian distribution
for the defect charge, whereas the analytic expression of Madelung potential for anisotropic
systems is limited to point charges.

The authors of the two correction methods suggest different approaches to calculating
the potential alignment correction. The isotropic correction by Freysoldt et al. uses a
planar average of the electrostatic short range potential while the anisotropic correction by
Kumagai and Oba takes averages of this same potential at each atomic site outside a given
radius from the defect. Both approaches are available in the PyCDT code, with the isotropic
correction by Freysoldt et al. being the default. The planar averaging method can become
problematic when large relaxation occurs, as the atomic sites contribute heavily to the change
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in electrostatic potential. The atomic site averaging method can become problematic if a
small cell size results in a small number of atoms being sampled, causing statistical sampling
errors. While, in principle, these alignment corrections should be equivalent, tests that
we conducted revealed non-negligible discrepancies. However, the potential-alignment term
often tends to be small (∼0.1 eV), and, therefore, to not change overall trends in defect
formation energies.

The correction methods used for point defects in semiconductors and insulators have been
an intensely debated topic in the past decade [8]. One issue upon which there is common
agreement is that large defect-defect interactions change the energetics of the system so
that the computed defect formation energies are no longer relevant for physical quantities
like defect concentrations or thermodynamic transition levels. These unwanted defect-defect
interactions frequently lead to delocalization of the defect charges, the instance of which has
to be ascertained manually. Several methods that address delocalization can be found in the
literature [8, 26, 53].

If we assume that the defect charge can indeed be localized within the level of DFT
used, then best practice demands to balance computational expediency (supercell size) with
sufficient localization of the charge around a defect as indicated by the outputs of the charge
correction method chosen. In the original derivation of the isotropic correction by Freysoldt
et al., the middle “plateau” region of the electrostatic potential yields information about the
separation of long range and short range effects. A flat plateau indicates that the Coulomb
potential has been removed from the total potential generated by DFT, and short range
effects have not delocalized throughout the entire supercell. As a result, Freysoldt et al. [65]
suggested that the flatness of the resultant “plateau” yields a qualitative metric for the
success of the calculation. When running the isotropic correction by Freysoldt et al. in
PyCDT, the planar averaged electrostatic potential is analyzed for variations larger than
0.2 eV—a number that stems from experience, and can be altered in the code if the user
prefers to. If this criterion is not met, the code raises a warning. In such a case, the user
should consider the possibility of delocalization.

For users who desire additional corrections related to improving corrections with semilocal
functional approaches, the development branch of PyCDT also includes the ability to include
band edge level alignment with respect to the average electrostatic potential, shallow level
corrections based on the values for band edge alignment, and Moss-Burnstein band filling
corrections [53]. Parts of these corrections require some subjective judgment calls to be made
by the user, so they are not included in the automation procedure by default.

2.3.5 Charge Ranges

Charge ranges, [qmin, qmax], have to be estimated beforehand for a given defect X, and for
this purpose ionic models typically form the basis of such predictions [28]. Known oxidation
states of the element(s) involved in X can then be used to define the charge states to be
considered. However, common ionic models do not always predict the most stable defect.
Tahini et al. have, in this context, shown that combining gallium or aluminum with group-V
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elements can yield negatively charged anion vacancies, whereas an ionic model predicts a
+3 charge state [73]. In PyCDT, we implemented different procedures to determine the
range of defect charges for semiconductors and insulators. Users can choose between either
of these two options and a custom range of defect charges for each defect, as described in
Section 2.4.1.

To address the issue of uncommon charge states found in semiconductors, we developed
a data-driven approach that combines elemental oxidation states with results from literature
for determining the optimal charge assignment process. We compiled a list of stable charge
states (Table A.1 in the Appendix) from previous studies for various defects in zinc blende
and diamond-like semiconductor structures [28, 59, 73, 88–93]. Procedures adhering more
or less strictly to ionic models resulted in too few charge states when compared with the
literature. The most effective approach that we found employs a bond-valence estimation
scheme [76,94] to obtain formal charges of elements in the bulk structure, as well as minima
and maxima of common oxidation states of bulk and defect elements. The formal charges and
common oxidation-state ranges are subsequently used in a defect type-dependent assignment
procedure:

1. Vacancies : Use the formal charge of the species originally located on the vacant site,
oxi, to define the charge range: [−oxi,+oxi]. For GaAs, this procedure results in
defect charges ranging from -3 to 3 for both VGa and VAs.

2. Anti-sites : Use the minimum and the maximum from combining all oxidation states
of all elements in the bulk structure, oxisbulk, to define the relevant charge range:
[min(oxisbulk),max(oxisbulk)]. Data mining determined that the upper range limit can,
in fact, be decreased by 2: [min(oxisbulk),max(oxisbulk)− 2]. With this procedure, the
antisites in GaAs are assigned charge values from -3 to +3.

3. Substitutions : Determine the oxidation states of the foreign (or, extrinsic) species,
oxisex. Then subtract the formal charge of the site species to be replaced from this list.
Use the minimum and maximum of this set to produce [min(oxissub),max(oxissub)].
Data mining determined that, if the new range has more than 3 charge states and has
an upper bound larger than 2, one can cap the range by 3 to prevent excessively high
charge states. For example, when GaAs is doped with Si, SiGa generates charges in the
range of [-7,1], and SiAs generates charges in the range of [-1,4].

4. Interstitials : Use the minimum and maximum of all oxidation states of the interstitial
species:
[min(oxisint),max(oxisint)]. If 0 is not included, data mining suggests that we extend
the range to 0 accordingly. For As interstitials in GaAs, the resulting defect charges
are in the range [-3, 5].

The algorithm successfully includes all charge states from our benchmark list in Table A.1
by yielding, on an average, 6.4 states per defect. The average number of states produced
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too much per defect in comparison to literature (excess charge states) are 1.1 is 1.9 at the
lower (more negative) and at the upper (more positive) charge bound, respectively. This is
desirable because including more charge states on either side ensures no extra states become
stabilized when varying the Fermi level within the band gap. Hence, the effective relative
excess in charge states is 20% and, thus, acceptable.

For insulators, the number of defect charge states is typically less than for the above
discussed semiconductors. For example, the charge states in MgO range from −2 to 0
and 0 to +2 for cation and anion vacancies, respectively [95]. Any other charge state is not
considered because of the high ionization energy required to form Mg3+ and the high electron
affinity of O2– to form O3– . Hence, the oxidation states of cations and anions are limited to
[0, y] and [−x, 0] for a binary AxBy insulator, where A is a cation and B is an anion.

2.3.6 Interstitials

PyCDT uses an effective and easily extendable approach for interstitial site finding (In-
terstitial Finding Tool: InFiT) that has been recently introduced by Zimmermann et al. [67].
The procedure systematically searches for tentative interstitial sites by employing coordina-
tion pattern-recognition capabilities [96, 97] implemented in pymatgen [76]. In Algorithm
1 (Figure 2.3), we provide a simplified pseudo-code representation of the approach. The
detected interstitial sites exhibit coordination patterns that resemble basic structural mo-
tifs (e.g., tetrahedral and octahedral environments). Such interstitial sites are particularly
important because several [98–107] β− emission channeling measurements [108, 109] have
identified them as the most prevalent types of isolated defects after substitutions for im-
purities implanted into similar materials as we consider here (zinc blende/wurtzite-like and
diamond-like structures). Bond-center interstitials in a so-called split-vacancy configuration
are also observed frequently. However, these are defect complexes—not isolated defects—
and, thus, beyond the scope of the present PyCDT implementation. The interstitial search
approach should also be suitable for intercalation and ion diffusion applications because re-
lated design rules typically rely on detection of tetrahedral, octahedral, bcc-, and fcc-like
environments [110,111].

2.3.7 Default DFT Calculation Details

PyCDT includes mechanisms to input user-defined settings for all DFT calculations. If
no user settings are specified, then the following initial settings are specified for the calcu-
lation. The ions in the defective supercells are geometrically relaxed at constant volume
until the force on each ion is less than 0.01 eV Å. At each geometric step, the energy of the
supercell is converged to 10−6 eV. By default, spin polarization is turned on, and crystal
symmetry is ignored to account for any symmetry breaking relaxations such as Jahn-Teller
distortions. Electronic states are populated using a Gaussian smearing method [112] with
a width of 0.05 eV. While no geometric relaxation is performed for the non-defective bulk
supercell, a calculation that is necessary for the charge correction, the electronic degrees of
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Figure 2.3: Algorithm for Interstitial Site Searching

freedom are optimized with the same settings applied to the defect-supercell calculations. A
2 × 2 × 2 Monkhorst-Pack k-point mesh is used for the defect calculations. For any other
parameters, we adopt the standard MP settings [76]. Finally, we emphasize that PyCDT
also includes mechanisms to input user-defined settings for DFT calculations which can be
used for extending calculations beyond the exchange and correlation approximation of GGA.
The practical implementation of user-defined settings is described at length in Appendix B.

2.4 PyCDT Usage and Examples

PyCDT was developed in a way that reflects different analysis stages (Figure 2.4): setup
of DFT calculations, parsing of finished jobs, computation of a correction term, and plotting
of formation energies. This allows reuse and integration of parts of the code in other packages.
Our package has a dependency on pymatgen [76], matplotlib [113] and numpy [114], and it
was developed and tested for Linux and Mac OS X. However, we also expect it to work on
Windows (with cygwin).

It is possible to designate three levels of involvement which an end user may desire from
the PyCDT code. Ranked in increasing order of involvement required these are: (Level
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Figure 2.4: Steps in the computation of charged-defect formation energies with PyCDT.

1) standard command-line user interface calls, (Level 2) isolated python scripts mimicking
command-line calls but for more personalized user involvement, and (Level 3) user cus-
tomized workflows for performing personalized high-throughput defect calculations. In the
subsections that follow, we illustrate these three levels of user involvement in the example of
zinc-blende GaAs with VASP [68, 69] as the backend DFT code. In order to be involved at
(Level 2) and (Level 3) it is neccessary to first understand the manner in which the PyCDT
command line tool makes use of the PyCDT core functionality. Accordingly, in sections
2.4.1-2.4.4 we describe how the command line approach to PyCDT (Level 1) can be used for
each step of the general charged-defect calculation workflow outlined in Figure 2.4.

For users interested in further customized applications of PyCDT (Levels 2 and 3), Ap-
pendix B includes a description of the code’s structure and the manner in which the command
line code makes use of the core functionality of PyCDT. This helps to reiterate that the core
classes within PyCDT are entirely general and can be used for any desired applications that
involves setting up, computing charge corrections for, and/or parsing defect calculations.
As a brief example of user customization beyond the command line tool, Appendix B also
demonstrates customizable approaches to (a) initializing and parsing a personalized phase
diagram for chemical potentials and (b) screening over non-intuitive charge states of defects
in a computationally efficient manner. As a demonstration of the brute power of these tools,
Subsection 2.4.5 displays a test set of high-throughput computation of defects (Level 3) by
performing intrinsic defect calculations on 15 additional zinc blende systems beyond GaAs
and 5 oxide systems.

2.4.1 Setup of DFT Defect Calculations

The starting point for setting up charged defect calculations is the crystal structure. The
user can provide the bulk structure in one of two ways:

1. by the name of a structure file of conventional format (e.g., cif, cssr), or code specific
formats such as POSCAR that are recognized by pymatgen, or

2. via a Materials Project identifier (MPID).

Crystal structures from MP [64] are obtained through the Materials Application Program-
ming Interface (MAPI) [76]. In the MP database, each structure is assigned a unique iden-
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tifier. These MPIDs have the format mp-XXX in which mp- is prefixed to a positive integer
XXX. In the following, we use GaAs (mp-2534), which has the zinc-blende structure, as
an example for performing all different stages of charged defect-property calculations with
PyCDT.

We first generate the defect supercells and the bulk supercell using pymatgen’s defect
structure generator and the defect structure classes in the core of PyCDT. The two steps for
generating the input files are combined into a single command:

With --nmax, the user defines the maximal number of atoms in the defect supercell. If
the parameter is not given, a default value of 128 is used, which was shown to result in well
converged defect formation energies after finite size corrections were included in systems with
dielectric constants greater than 5.0 [59, 86]. The mapi key is required if querying the MP
database, and is found on the Dashboard after logging into the MP website.

The input file-generation command creates a folder, representing the reduced chemical
formula of the crystal structure (e.g., GaAs). It contains several subfolders, whose names
are indicative of the calculations to be performed:

• bulk: calculation of pristine crystal structure,

• dielectric: calculation of macroscopic static dielectric tensor (ion clamped high fre-
quency, ε∞, plus the ionic contribution, εion) from DFT perturbation theory, (used by
the charged defect correction)

• deftype n info: calculation of the n-th symmetrically distinct defect of type deftype
(vacancies: vac; antisites: as; substitutions: sub; interstitials: inter) with properties
info.

By default, the above command generates vacancy and antisite defects only. Hence, there
are four defect folders for GaAs, which has two sublattices, corresponding to one antisite
and one vacancy defect on each sublattice. Table 2.1 summarizes the default defect types
and resulting folder names for GaAs.

Table 2.1: Default defects set up for GaAs with PyCDT

Defect Type Folder Name
V acGa GaAs/vac 1 Ga
V acAs GaAs/vac 2 As
GaAs GaAs/as 1 Ga on As
AsGa GaAs/as 2 As on Ga
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Substitutional and interstitial defects have to be invoked explicitly with the keyword
--sub host species substitution species. Multiple substitutional defects can be generated by
repeating the --sub keyword with the desired host species and the corresponding substituting
species. The substitution folders are labeled in the same manner as the antisites, only
changing as to sub.

The setup of coordination-pattern resembling interstitials is invoked by the
--include interstitials command-line option. PyCDT produces intrinsic interstitials as per
default only. Extrinsic interstitials can be achieved by providing a list of elements as po-
sitional arguments (e.g., --include interstitials Mn). To obtain both intrinsic and extrinsic
interstitials the intrinsic elements have to be explicitly mentioned (e.g., --include interstitials
Ga As Mn). As for the other defect types, PyCDT enumerates the interstitial calculation
folders according to symmetrically distinct sites found. The info part of the interstitial folder
names indicate (1) the type of the atom located on an interstitial site having a certain (2)
coordination pattern and (3) chemical environment. For example, inter 1 As oct Ga6 shows
that we are dealing with an As interstitial that is octahedrally coordinated by six Ga atoms.

For each defect type in semiconductors, multiple charge states are considered according
to the algorithm outlined in Sec. 2.3.5. For insulators a conservative charge assignment is
used as described in Sec. 2.3.5. By default, the input structure is considered a semiconductor.
To specify the input structure is of insulator type, the option --type insulator can be used.
The user can also modify the charge assignments for each defect by specifying either of the
two flags, --oxi state or --oxi range. Alternatively, the option --type manual allows for the
user to specify every charge state that is desired. The DFT input files associated with each
of these charge states, q, are deposited into subfolders named charge q. For example, seven
charge states are generated for the gallium vacancy in GaAs.

Apart from the structure file, PyCDT automatically generates all other input files ac-
cording to the settings used for the MP. The input settings can also be easily modified by
supplying the parameters in a yaml or json file and using the keyword --input settings file
〈settings file.yaml〉. For instance, the file user settings.yaml that we provide in the examples
folder changes the default functional from PBE to PBEsol and increases the energy cut-
off to 620 eV. The structure of this file is described in further detail in the supplementary
information. When such changes are made, the user has to keep in mind that the atomic
chemical potentials obtained from the MP database in the final parsing step have to be
replaced by user computed ones with the corresponding changes included during chemical
potential calculations - a process which can be sped up substantially with PyCDT’s phase
diagram set up and parsing feature. Any DFT settings that are specific to either the bulk,
or the dielectric, or the defect calculations can be thus realized, too, as demonstrated in the
example file. The input settings whether chosen by default or by the user are expected to
be tested for appropriate convergence criteria. In addition to the input files for DFT calcu-
lations, PyCDT saves a transformation.json in each calculation folder, except for dielectric,
to facilitate post-processing.
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2.4.2 Parsing Finished Calculations

The DFT calculations can be run either manually, with bash scripts, or with high through-
put frameworks [115]. Once all the calculations have successfully completed, the generated
output files are parsed to obtain all the data needed to compute defect formation energies,
Ef . This part of PyCDT is executed by reading the transformation.json file that was output
from the previous file generation step. To initiate parsing from the command line interface,
the user issues:

Here, directory is the root folder of the calculations. If executed within the folder of the
calculations the option can be omitted. Once the parsing is completed, PyCDT stores all the
data required for next steps in a file called “defect data.json”. If any of the calculations were
not successfully converged according to the code output files, PyCDT raises a warning, but
continues parsing the rest of the calculations. The output file “defect data.json” contains
the parsed energies of the defect and bulk supercells as well as other information required in
the next steps to calculate finite size charge corrections and defect formation energies. Some
of the additional data such as the dielectric constant is obtained by parsing the output from
the dielectric calculation. The band gap and atomic chemical potentials generated in this
step are obtained from computed entries in the MP database. Note that these band gaps
are only accurate at the level of GGA, which often underestimates the gap by about 50%.
The output file “defect data.json” is highly readable and users can edit the file to supplant
parameters either parsed from the DFT calculations or obtained from the MP database. If
the user prefers to have formation energies and transition levels closer to a higher level of
theory (which can provide better band gaps than the GGA approximation), the band edge
alignment procedures suggested in Section 2.3.4 can be used. Furthermore note that some
structures in the MP database do not have fully computed band structures, which results in
poorly converged band-gap characteristics.

2.4.3 Computation of Correction Term

Correcting the errors due to long-range Coulomb interactions in finite-size supercells
results in improved defect formation energies. A feature of PyCDT is the possibility to
compute such corrections with minimal work from the end user. The following command-
line call computes individual correction values for all charged defects found in the present
directory:
Here, correction method keywords can be either freysoldt for correction due to Freysoldt

et al. [65, 84] or kumagai for the approach extended to anisotropic systems by Kumagai
and Oba [66]. As shown in Section 2.5.1, these codes have been rigorously tested against
the results from the codes of the original authors. The command line interface requires the
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defect data file generated in the previous step, defect data.json, for computing the corrections.
This flag can be omitted if the file name is unchanged. The calculated corrections for each
defect charge state are stored in a file called corrections.json. By rerunning the command
with different correction keywords, one can quickly obtain the corrections computed with
different frameworks. Shown in Figure 2.8 are the resulting potential alignment plots for
each correction type on the Ga−2As defect in GaAs.

The sampling regions for obtaining the potential alignment correction defaults to 1 Å in
the middle region of the planar average plots recommended by Freysoldt et al. [84], and to
the region outside of the Wigner-Seitz radius for atomic site averaging method, following the
approach described in Ref. [66]. The width of these default sampling regions can be changed
by modifying the instantiation of the relevant PyCDT correction classes.
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Figure 2.8: Two different methods for computing the potential alignment correction on GaAs
calculation. At left is isotropic correction, developed by Freysoldt et al., using the planar average
method [65, 84], and at right is anisotropic correction by Kumagai and Oba, using the atomic site
averaging method. [66].

2.4.4 Formation Energy Plots and Transition Levels

Once the defect energetics and the correction values are obtained and specified in the
defect data.json and corrections.json files, the transitition levels and formation energies of
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each defect across the band gap can be determined by: By default, PyCDT uses the band gap

stored in the MP database, which is computed with GGA-PBE and, hence, under-predicted
when compared to the experimental band gap. As mentioned several times in this work,
this approximation can be improved upon with the optional corrections included, such as
the band edge realignment feature of PyCDT. A simpler approximation to improving the
defect formation energies is to plot the defect formation energies across the experimental gap
the user can specify the experimental band gap. This can be done from the command line
with the keyword –bandgap 〈band gap〉. This has the effect of extending the gap by shifting
the conduction band minimum, but keeping the position of the valence band maximum and
the defect levels fixed, and it is often called the “extended gap” scheme. We note that
the extended gap option is strictly for plotting purposes and, thus, does not alter the defect
formation energies nor the transition levels. If the names of the files obtained in the previous
two steps are not changed, the corresponding options can be omitted. If the corrections.json
file is not found and an alternative corrections file is not specified, PyCDT assumes that
electrostatic corrections are not desired and computes the defect formation energies without
any corrections. As detailed in Section 2.3.3, the defect formation energies are influenced
by the chemical environment, and their range is determined by the phase stability of the
various compounds formed by the constituent host and defect elements. Hence, two plots
are generated corresponding to the chemical availability of the constituent host elements in
the compound. The files ”Ga rich formation energy.eps” and ”As rich formation energy.eps”
are shown in Figure 2.10. These results are verified to be consistent with literature results
in Section 2.5.2.

2.4.5 Example Usage for High-throughput point defect
calculations

To demonstrate the capabilities of PyCDT in a high-throughput environment, we have
computed the defect formation energetics of 15 additional zinc blende systems and 5 oxide
systems. The results for these calculations are shown in Figure 2.11.

The calculations were performed using the core functionality of PyCDT which has been
outlined in Sections 2.4.1- 2.4.4 and described at length in Appendix B. For running the
DFT calculations, the Fireworks software [115] was used to set up atomic workflow tasks
from a structure which had random local symmetry breaking performed (a task which is
trivially performed with the Pymatgen software [76]). To expedite the handling of many
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Figure 2.10: Defect formation-energy plots from PyCDT for GaAs. The left panel is obtained
in the As-rich growth regime, whereas the right panel is obtained under Ga-rich conditions. In-
terstitial defects are colored according to their site within the lattice, with dashed lines given to
As interstitials and dash-dot lines given to Ga interstitials. The thick vertical dashed black line
indicates the GGA-PBE band gap of GaAs [64].

common DFT failures encountered (e.g. problems with electronic self-consistency etc.), the
Custodian software [76] was implemented to correct for standard job failures. The core
DefectsAnalyzer class, described further in Appendix B, was then implemented in a manner
similar to the charge screening procedure defined in Appendix B, to ensure additional charge
states were not stabilized within the gap. Parsing and accumulating all relevant quantities
for formation energetic analysis into a database was simple to implement with the use of the
DefectsAnalyzer class.

Out of a total 376 calculations that were run for this analysis, 56 jobs failed to finish
on the first run - either due to walltime errors or additional electronic convergence issues.
Fireworks database management coupled with PyCDT core analysis of the additional charge
states allowed for quick identification of jobs with errors that required follow up calcula-
tions. This approach allowed for fast re-submissions which took on the order of minutes,
rather than multiple hours/full days of analysis of failed defect jobs. This demonstrates the
massive scalability of calculations which PyCDT can provide for a researcher who desires to
intelligentlly implement defect calcualtions in a high-throughput environment.
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2.5 Validation and Verification

2.5.1 Validation

To validate PyCDT’s implementation of each correction method, we ran the correction
methods on the defects generated and computed for the 15 zinc blende structures (binary
and elemental), comparing the charge corrections generated by PyCDT with the open-source
code developed by Freysoldt et al., sxdefectalign, as well as with the command line code
developed by Kumagai and Oba. Over a total of 224 (non-zero charge) defects calculated,
the root mean square difference between PyCDT and the original author’s codes were 16.5
meV and 19.4 meV for the correction by Freysoldt et al. and the correction by Kumagai
and Oba, respectively. The differences in the corrections are almost entirely attributed to
the resolution in the calculation of the potential correction.

2.5.2 Verification

To verify the results predicted from the example GaAs test set, we compared the defect
formation energies in GaAs obtained from PyCDT with the data reported in literature.
We note that all of the transition levels for the V acGa and AsGa defects are within the
range of transition levels that we found for semi-local functional approximations in the
literature. An exception is the AsGa(-1/-2) transition, which appears very far into the GGA-
PBE conduction band. This outlier is off by 0.273 eV relative to the reported results by
Chroneos et al [89]. For all transition levels that we predicted, we find a root mean square
deviation of 0.218 eV from the window of values found in the literature [73,89,116–121]. This
is a modest variation that reflects the difficulty in predicting defect levels consistently—even
within the same level of theory.

In a similar manner, we use References [73] and [89] to verify 63 additional transition
levels in 5 systems within the high-throughput test set of Section 2.4.5 (AlP, AlAs, AlSb,
GaP, GaSb). We find a root mean square absolute error of 0.29 eV from the transition
levels reported in these two references, with a maximum error of 0.89 eV for the Aluminum
vacancy (-2/-3) transition level in AlP. Again, this deviation is consistent with the variation
of predicted transition levels from DFT and suggests a need for standardizing approaches to
computing defect formation energetics.

2.6 Summary

We have introduced PyCDT, a Python toolkit which facilitates the setup and post-
processing of point defect calculations of semiconductor and insulator materials with widely
available DFT suites. This open source code allows for coupling automated defect calcula-
tions to the massive amount of data generated by the Materials Project database. Apart
from the underlying theory, approaches, and algorithms, this paper presents a detailed guide
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for how to use PyCDT at every step of the computation of charged defect properties em-
ploying the well-studied example of GaAs. While the example results were obtained from
VASP [68,69] calculations, we carefully developed PyCDT in an abstracted form that adopts
the advantageous code agnosticism of pymatgen [76]. This makes the provided tools attrac-
tive to any user interested in running defect calculations, regardless of DFT code preference.
However, we emphasize that, despite its convenience and our effort to construct sensible
defaults, the computation of defect properties with PyCDT still requires user expertise for
choosing appropriate settings in certain circumstances and for interpreting the results mean-
ingfully in general (i.e., we discourage purely “black box” usage).

The PyCDT version presented here is 1.0.0. Future updates will, amongst others, include
adaptations related to improved charge delocalization analysis, further defect corrections for
issues like artificial band dispersion, as well as the possibility of generating defect complexes.
On the application side, PyCDT could also be extended to compute configuration coordinate
diagrams, so as to evaluate optical and luminescence transitions associated with the point
defects in materials targeting optical applications.

We hope that our openly available tools will help to standardize computational research
in the realm of charged defects. In particular, we hope that reproducibility issues commonly
encountered in DFT calculations [122] can be more effectively identified and tackled.
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Figure 2.11: Defect formation energy plots for 15 zinc blende systems and 5 oxide systems. The
spacegroups and materials project identification numbers for each of these structures is included
in Table C.1 of the Appendix. Solid red lines indicate cation vacancies, while dashed red lines are
cation antisites (Anion on Cation site defects). Solid blue lines are anion vacancies, while dashed
blues lines are anion antisites (Cation on Anion site defects). For the four ternary oxide systems,
green lines are also used to indicate defects on the secondary cation site. Legends are included
as insets for ternary sytems. The cation-rich growth condition dictates all of the atomic chemical
potentials as described in Section 2.3.3. Due to zero gap predictions at the GGA level of DFT, the
experimental gap was used for GaSb.
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CHAPTER 3

Example Applications of Defect Calculations for

Energy Materials

3.1 Forward

The work presented in this chapter is an accumulation of un-published and published
work making use of the PyCDT code for computing point defects. Section 3.3 presents
unpublished work performed by D. Broberg in between Fall 2013 - Spring 2014. Section 3.4
presents work published by P. Canepa, G. S. Gautam, D. Broberg, S-H. Bo, and G. Ceder
in Chem. Mater. Volume 29, Issue 22, pages 9657 - 9667 (2017), and is partially reproduced
here with the permission of all co-authors. Section 3.5 presents unpublished work performed
by D. Broberg in between Fall 2016 - Summer 2018.

3.2 Introduction

Point defects in energy materials impart critical macroscopic properties which can either
benefit or hinder material performance. The impact of a defect can be direct, as is the
case for deep traps in optoelectronic materials, or indirect, as is the collective aggregation
of defect types leading to a particular Fermi-level pinning position [5,6,8,25]. While general
defect-engineering approaches involve the modification of particular macroscopic properties,
it is important to remember that point defects are unavoidable (can only be replaced by
other defects as a result of configurational entropy) and are not universally characterizable
by experiment. Consequently, first principles computation of point defects have served as
a useful means for understanding defect formation, as well as understanding the thermody-
namic requirements for defect engineering in energy materials [8].

This chapter underscores the importance of DFT point defect calculations by applying
the automation capabilities described in Chapter 2 to three different energy application areas.
In Section 3.3 we describe work done on Thermoelectric materials, including an investigation
into theoretical requirements for a new, promising layered material - SnSe. In Section 3.4
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we present work on Mg-spinel materials which show promise for solid-electrolyte battery
applications. Then in Section 3.5 we consider two different materials for use in photovoltaic
applications. Section 3.5.1 covers the tendency for Fermi level pinning across a spectrum of
chemical and structural permutations within inorganic halide perovskite solar cell materials,
while Section 3.5.2 demonstrates a small-scale benchmark of experimental measurements
performed on thin-film CdTe against the results produced from DFT calculations.

3.3 Thermoelectrics

Thermoelectric materials have the ability to directly convert heat into electricity. To
accomplish this, charge carriers are made to move by exploiting a temperature gradient with
asymmetries in a material’s electronic band structure [123]. The movement of charge car-
riers in this way is known as the Seebeck effect, and the primary metric for thermoelectric
performance is the “figure of merit”: zT = S2σT/(κE + κL), where S is the Seebeck coef-
ficient, σ is the electronic conductivity, T is the temperature, and κE (κL) is the electronic
(lattice) thermal conductivity [123]. A typical figure of merit for a commercially available
thermoelectric material lies in the range of 0.6 - 1.2 [123].

This class of devices offers a unique approach to waste heat recovery and energy efficiency
improvements. For example, it has been proposed that modern thermoelectric devices could
be placed on the tail pipe of an internal combustion engine car to power some of the electronic
components of the car and improve the overall efficiency [124]. However, given the limited
efficiency and maximum surface temperature requirements of thermoelectric devices like
BiTeO3, their application has been limited to small scale, low-power electronics. In addition,
materials with higher figures of merit, like PbTe, remain too costly for large scale practical
applications [124]. This has inspired the materials science community to search for new
thermoelectric materials with high figures of merit.

One approach to improving the figure of merit is through “band engineering” wherein
intrinsic characteristics of the band structure are used to screen for prospective new mate-
rials [125]. Approaches of this variety have been used within a number of computational
high-throughput studies, searching for favorable material properties like high effective mass
and Seebeck coefficient [32]. Using approaches like this, recent high-throughput theoreti-
cal studies have identified TmAgTe2 and YCuTe2, with their underlying structure classes,
as new thermoelectric materials which subsequently produced promising zT values of 0.4 -
1 [40, 126].

Another new and promising candidate for thermoelectric applications is the layered SnSe
structure, which recently produced a record-setting figure of merit of 2.6 in a specific direction
of the crystal lattice [127,128]. This has inspired many theoretical studies into the origin’s of
SnSe’s favorable material properties for thermoelectric devices, including analyses of various
aspects of the Boltzmann transport equation, as well as structural and electronic tendencies
for SnSe’s broader crystal class [129–131]. The SnSe structure, shown on the left side of
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Figure 3.1, is a layered “rocking chair” orthorhombic phase with van der Waals bonding
between layers stacked in the c-axis direction.

A major contribution to the low figure of merit in SnSe is the ultra-low thermal con-
ductivity in the a and b-axis (in-plane) lattice directions [127]. This anisotropic signature
appears further in the planar averaged electrostatic potential profile for the Sn+3

Se defect cal-
culation, as shown on the right side of Figure 3.1. The anisotropic directional requirement
for a successful figure of merit limits the wide-spread applicability of using SnSe for thermo-
electric materials in the near future, since single crystal manufacturing on a large scale can
be costly. Regardless, by understanding the fundamental signatures that indicate favorable
thermoelectric behavior in SnSe, theory can help to find additional materials with similar
thermoelectric performance.
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Figure 3.1: The anisotropic SnSe system. Shown at left: The SnSe structure, with gray Sn
atoms, green Se atoms, and a layered c-axis direction. Shown at right: Planar averaged electrostatic
potential for two different axes of the Sn+3

Se defect calculation with lack of “plateau” far from defect
cite in C-axis direction.

The layered nature of SnSe raises questions about adequate treatment of van der Waals
forces within a calculation. Standard DFT fails in the implementation of accurate dispersion
forces, as this requires adequate treatment of long range correlation effects [17]. To circum-
vent this, approximate corrections for the energetic contribution of van der Waals forces
can be added to the Kohn-Sham DFT energy [132, 133]. Recent work by Björkman (2014)
suggests that the recently produced VdW-CX van der Waals approach, created by Berland
and Hyldgaard, works well for layered structures [134]. We consider the use of the VdW-CX
functional on SnSe presently.

In Table 3.1, we show the relaxed lattice constants of SnSe, as compared to experiment,
for several DFT energy functional implementations. All four functional implementations pro-
duced similar errors for the in-plane lattice constants with between 0.8-3% absolute relative
error. All of the errors for LDA are negative, consistent with the well-known over-binding
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tendency of the LDA functional [17]. For the out of plane direction (c-axis), the VdW-CX
functional approach minimizes error to 0.13%, suggesting excellent treatment of the out-of-
plane forces for SnSe.

a [Å] (% error). b [Å] (% error). c [Å] (% error)

Experiment (295 K) 4.153 4.445 11.501
LDA 4.120 (-0.79%) 4.315 (-2.92%) 11.308 (-1.69%)
GGA 4.219 (1.59%) 4.524 (1.78%) 11.790 (2.51%)
VdW-optB88 4.221 (1.64%) 4.496 (1.15%) 11.774 (2.37%)
VdW-CX 4.184 (0.87%) 4.344 (-2.27%) 11.516 (0.13%)

Table 3.1: Lattice constant comparison for different exchange and correlation functionals with
SnSe. Experimental data is from Reference [135].

In Figure 3.2 we plot the formation energies of intrinsic defects in SnSe, performed
with both the LDA and VdW-CX functional approaches, for Se-rich and Sn-rich growth
conditions. All calculations were performed using the automation capabilities of the Python
Charged Defect Toolkit (PyCDT) [136]. Due to the anisotropic charge localization tendencies
shown on the right side of Figure 3.1, we make use of the anisotropic charge correction given
by Kumagai et al. [66].
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Figure 3.2: Defect formation energetics for the SnSe layered structure, computed with LDA
and VdW-CX functionals, shown with Sn-rich and Se-rich growth conditions defining the chemical
potentials. Band edge extrema for the given functional is shown with vertical dashed lines, with
the VBM placed at zero.
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We first consider the results of the LDA calculations, considering how they relate to the
carrier concentrations produced for a practical thermoelectric figure of merit. In the Se-
rich limit for LDA formation energies, negatively charged Sn vacancies push the Fermi level
towards the valence band, creating p-type behavior with little competition from other defects.
In the Sn-rich limit for LDA formation energies, Sn vacancies still dominate the upper half of
the band gap, while Se vacancies become stabilized in the lower half. Antisite defects do not
play a particularly important role in the free carriers of SnSe. Anion-vacancies act as “hole
killers”, as they act to ionically compensate the negatively charged cation vacancies. Since
a larger carrier concentration improves the figure of merit, the LDA results of Figure 3.2
tell us that growing SnSe closer to Se-rich growth conditions would improve thermoelectric
performance. The qualitative nature of these theoretical results have been confirmed by at
least two other theoretical works published in the past two years [137,138].

Shifting attention to the results of the VdW-CX functional, a large energetic stabilization
of two defects (Sn vacancy and Se-on-Sn antisite) causes a strong deviation from the LDA
results. The Se-rich limit produces negative formation energies across the entire gap and the
Sn-rich limit has a very limited region of stability near the VBM. Negative formation energies
indicate either an improper computational treatment of the atomic chemical potentials or
an instability with regard to the formation of additional defects at a given Fermi energy.
Given that the VdW-CX functional still predicts the structure to be stable within the Sn-Se
phase diagram, the negative formation energies within the Se-rich results may suggest a de-
stabilization of the structure with the removal of Sn-site defects computed by the VdW-CX
functional.

To investigate this potential for structural destabilization further, in Figure 3.3 we con-
sider cross sections of the charge density as computed with LDA (top) and VdW-CX (bot-
tom). In particular, we draw attention to the lone-pair electron on each Sn atom, called
out with blue boxes in each subfigure. The lone pair electron on the Sn atom has been
documented to play a strong role in the stabilization of lower-symmetry phases within the
Sn-chalcogenide structure class [139]. The lone pair electron on Sn atoms in Figure 3.3 is
significantly more localized on the Sn-atom in the VdW-CX functional (bottom), relative to
the LDA functional (top). A weakening of the steric Sn-Se repulsion leads to a weakened
stabilization of the layered structure relative to other polymorphs of the SnSe structure class.
This effect helps explain the destabilization with regard to the removal of Sn-site defects for
the VdW-CX functional, as shown in Figure 3.3. The loss of additional Sn-atoms, which
previously acted to stabilize the structure with lone pair steric interactions, leads to the
triggering of long range relaxation that deviates from the original crystal symmetry. Such a
result deviates from dilute limit behavior, and therefore the two formation energy diagrams
shown at right in Figure 3.2 have computational artifacts that should be screened out. Avoid-
ing long range relaxation of this variety serves as a useful lesson for future high-throughput
studies.

Overall, the conclusions presented here for LDA are consistent with previously published
work done with semi-local functionals on the defect physics of SnSe [137,138]. We have also
re-confirmed the importance of the lone-pair electron in stabilizing the layered polymorph
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Figure 3.3: Charge density profile of SnSe for LDA (top) and VdW-CX (bottom) functionals,
showing variation in the description of the lone-pair electron by the two functionals. Region of lone
pair electron on Sn atom is called out with blue boxes.

of the SnSe structure class, as well as the importance of the choice of van der Waals forces
with regard to bulk structural stability. While the influence of van der Waals forces on the
defect physics of SnSe remains to be further investigated, the lessons learned about long
range structural relaxation serve to motivate strict screening for structural destabilization
in future high-throughput work.

3.4 Solid-state Batteries

Chalcogenide materials, based on sulfur, selenium and tellurium, are used in a range
of technological applications, including thermoelectric materials [123, 140], semiconductors
for light adsorbents and electronics [141–143], superconductors [144, 145], Li-ion battery
materials [146,147], quantum dots [148,149], and more recently, topological insulators [150,
151]. The chalcogenide defect chemistry, either in terms of intrinsic point defects or extrinsic
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substitutional impurities, has often been deemed responsible for their respective figures of
merit [152,153].

Recently, ternary Mg-chalcogenide spinels were also identified as possible high mobility
Mg-conductors [154]. This is relevant for the possible development of Mg transport coatings
or solid state electrolytes for Mg batteries [154], which have the potential to outperform
Li-ion batteries in terms of energy density [155]. Though significant Mg ionic conductivity
is observed in MgSc2Se4, the electronic conductivity is ∼ 0.04% of the ionic conductiv-
ity [154], and substantially larger than in other state of the art alkali-(Li- and Na-)ion
conductors [156]. Analogous to studies in semi-conductor applications [8], both intrinsic
and extrinsic structural defects can cause large variations in electron (hole) conductivity in
ionic conductors. Here we explore the defect chemistry of MgSc2Se4, MgSc2S4 and MgIn2S4

using first-principles calculations and aim to understand how structural defects modulate
the electronic properties in the bulk spinels, identify the origin of the undesired electronic
conductivity, and propose practical remedies. This section is an adaptation of the work
published in Reference [157], modified to accommodate the content of this dissertation.

All defect calculations in this work were performed using the automation functionalities of
PyCDT for setup, parsing, and the application of charge corrections [136]. In addition, core
functionalities within PyCDT were used to self-consistently solve for the charge neutrality
of the material, dictated by: ∑

X,q

qc[Xq] + nh − ne = 0 (3.1)

nh (ne) is the hole (electron) concentration, obtained by integrating the density of states with
respect to a given Fermi level, EFermi. c[Xq] is the concentration of defect Xq, stemming
from the Gibbs energy of defect formation, Gf [Xq] ≈ Ef [Xq], as c[Xq] ≈ exp(−Ef [Xq]/kBT ).
Since the formation energy also relies on the Fermi level position, a self consistent solution
of Equation 3.1 yields a corresponding Eeq

Fermi, which sets the defect concentrations at ther-
modynamic equilibrium for a given temperature. Note that in all the materials considered
in this work, we list a few defects as “dominant” owing to their low formation energies at
Eeq
Fermi.

Materials that are normally synthesized at a high temperature (∼ 1273 K, as in Ref. [154])
and rapidly cooled to room temperature, may have their high temperature intrinsic defect
concentrations “frozen-in” (or quenched) at room temperature, while the free carrier concen-
tration (nh - ne) changes with temperature, given the fixed defect concentration. A change
in intrinsic defect concentration will require significant atomic diffusion, which is likely to be
kinetically limited at low temperatures. Hence, for calculating defect concentrations and the
Fermi level, we have considered two scenarios within the constraint of charge neutrality: (i)
defect concentrations, equilibrium Fermi level (Eeq

Fermi) and free electron/hole concentrations
(c[e/h]eq) are self-consistently calculated at 300 K corresponding to equilibrium conditions.
(ii) defect concentrations are quenched from a higher synthesis temperature while the result-
ing Fermi level (Efrozen

Fermi ) and free carrier concentrations (c[e/h]frozen) are computed at 300 K.
When quenched or frozen conditions are assumed, the defect concentrations are calculated
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self-consistently at higher quench temperatures (such as at 1273 K), and are not allowed to
change when the Fermi level and the free-carrier concentrations are re-calculated at 300K.
Since defect concentrations increase with increasing temperatures, the frozen approximation
can quantify the possible deviations away from equilibrium in both defect and free carrier
concentrations at 300 K.

3.4.1 MgA2Z4 structure and phase diagram

The spinel structure MgA2Z4 (with A = In or Sc and Z = S or Se), crystallizes with the
anions in the face centered cubic (FCC) packing (space group: Fd3̄m). In “normal” spinel
structures, the higher valent cations (A = In3+ or Sc3+), occupy octahedral (oct) sites 16d,
as shown by the purple polyhedra in Figure 3.4c, and the Mg2+ occupy the tetrahedral (tet)
8a sites (orange polyhedra). Few spinels, such as MgIn2S4, can also exhibit “inversion”, as
experimentally observed by Gastaldi et al. [158], where a fraction of Mg2+ ions in the 8a
exchange sites with the In3+ in 16d.

(c)(b)(a)

Figure 3.4: (a) Ternary Mg-Sc-Se phase-diagram at 0 K computed from DFT data combined
with Materials Project, with (b) displaying a zoom-in of the concentration range of interest. (c)
Crystal structure of a normal spinel, such as MgSc2Se4 identified in the phase diagrams of panels
(a) and (b). The right fragment in (c) shows the scenario of spinel inversion (white arrows Mg ↔
Sc) in MgSc2Se4, leading to antisite MgSc and ScMg defects. Similar ternary phase diagrams for
MgIn2S4 and MgSc2S4 are shown in Figure S4 of Reference [157].

The ternary 0 K phase-diagrams of Figures 3.4a and 3.4b depict four phases: Se, MgSe,
ScSe and Sc2Se3 that can be in thermodynamic equilibrium with the ternary MgSc2Se4
spinel, at different atomic chemical potentials (µSe and µMg). Equivalent phase diagrams
have been constructed for the Mg-In-S and Mg-Sc-S systems and are presented in Figure
S4a and S4b of Reference [157]. The four different facets of Figure 3.4a and 3.4b, namely α
MgSc2Se4-Se-Sc2Se3 (light orange), β MgSc2Se4-Se-MgSe (dark orange), γ MgSc2Se4-MgSe-
ScSe (light violet), and δ MgSc2Se4-ScSe-Sc2Se3 (dark violet), define the possible limiting
chemical potential values for intrinsic point defect formation, such as vacancies (e.g., VacMg)
and anti-sites (e.g., MgSc). Subsequently, the α and β facets can be classified as “Se rich”
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domains, owing to elemental Se forming one of the bounding vertices of the respective facets,
while γ and δ are “Se poor”. The dashed line in Figure 3.4a and 3.4b highlights the binary
precursors, MgSe and Sc2Se3, which are used for the high-temperature synthesis (∼ 1200oC)
of MgSc2Se4 [144]. Off-stoichiometry of MgSc2Se4, will place the thermodynamic equilibrium
during synthesis into one of the four facets α to δ, which in turn can influence the formation
energetics and defect concentrations.

3.4.2 Native defect formation in MgSc2Se4

Figure 3.5 shows the formation energies of intrinsic defects in MgSc2Se4 obtained for
chemical potentials defined by each of the four facets in the Mg-Sc-Se system. The y-axis
of each panel in Figure 3.5 plots the defect energy against the EFermi (x-axis) in MgSc2Se4.
The absolute value of the Fermi energy is referenced to the Valence Band Maximum (VBM)
energy of the pristine MgSc2Se4 bulk. The zero of the x-axis is the VBM, with grey shaded
regions being the valence (EFermi < 0) and the conduction bands (EFermi > Egap ∼ 1.09 eV),
respectively. The band gap spans the white area in all panels of Figure 3.5. In general, the
defect levels with low formation energies in the band gap can considerably alter the intrinsic
electronic conductivity of semiconductors and insulators, thus forming the region of interest
in this analysis.

Facets α and β (Figures 3.5a and 3.5b) are Se-rich, and show qualitatively similar defect
energetics. For example, the defects with the lowest formation energies are the ScMg, MgSc

and VacMg in both α and β. Sc2Se3 has been previously detected as a prominent impurity in
the synthesis of MgSc2Se4 [154], thus motivating the choice of facet α (MgSc2Se4-Se-Sc2Se3)
to characterize the Se-rich domain. Similar conclusions are deduced by comparing the γ and
δ facets (Figure 3.5c and 3.5d), with comparable formation energies for the low lying defects
(e.g., ScMg), and only the γ phase is considered further to analyze the Se-poor domain.
Analogous behaviors are also observed for MgSc2S4 and MgIn2S4, showing similar trends for
the S-rich and S-poor domains (See Figures S5 and S6 in the SI of Reference [157]).

Given the dominant defects (Sc+1
Mg, Mg−1Sc and Vac+2

Mg) of the Se-rich region, charge com-
pensation causes Eeq

Fermi to be nominally pinned at midgap. Indeed, a self-consistent cal-
culation of the Eeq

Fermi at 300 K (i.e., assuming defect concentrations equilibrate at 300 K)
leads to a EFermi = 0.46 eV (see Figures 3.5a and S5a in the SI of Reference [157]), with
defect concentrations of 7.9×1011 cm−3 for Sc+1

Mg, 2.4×1011 cm−3 for Mg−1Sc , and 2.8×1011

cm−3 for Vac+2
Mg. Typically, defect contents above 1015 cm−3 are detectable via experiments,

such as electron paramagnetic resonance [8, 159, 160]. The “deep” Fermi level pinning for
the α-facet of MgSc2Se4 at 300 K will lead to low electronic (or hole) conductivity since
large thermal energies (>> kBT) will be required to ionize free electrons (holes) from the
Eeq
Fermi into the conduction (valence) band. Qualitatively similar conclusions about Fermi

level pinning can be drawn from an analysis of the defects in the β facet (Figure 3.5b and
Figure S7a of Reference [157]).

When defect concentrations are frozen-in at a higher temperature ( ∼ 1273 K used for
MgSc2Se4 synthesis [154]), the Efrozen

Fermi at 300 K drops below the VBM (∼ 0.10 eV) indicating



42

Figure 3.5: Defect formation energies for intrinsic point defects of MgSc2Se4 in four facets, α,
β, γ, and δ, of the Mg-Sc-Se phase diagram. Regions α and β are Se-rich, whereas γ and δ Se-poor.
The VBM is set to 0 eV and the white region spans the band-gap (∼ 1.09 eV). V ac in the legend
and dashed lines indicate vacancy defects while solid lines correspond to antisite defects.

that the material becomes a p-type conductor. Thus, significant hole conductivity can be
expected under frozen defect conditions, with free hole concentration of ∼ 2.6 × 1018 cm−3

(∼ 0.0001 per lattice site), which is beyond un-doped semiconductor levels (∼ 1010 cm−3 in
Si) but below metallic levels (∼ 1 charge carrier per lattice site). As the temperature at which
the defect concentrations are quenched decreases, the Efrozen

Fermi recovers beyond the VBM and
reaches ∼ 0.02 eV at 800 K (Figure S7a of Reference [157]), indicating the importance of
slow cooling conditions to reduce hole conductivity during the synthesis of MgSc2Se4.

The Se-poor region (Figure 3.5c) is dominated by n-type defects, such as Sc+1
Mg (dark

blue), Vac−2Se (dashed red), and Mg−3Se (orange). This causes the self-consistent equilibrium
Fermi level (∼ 1.08 eV at 300 K) for the Se-poor region to be set by the Sc+1

Mg defect. However,
for temperatures above 300 K, the Eeq

Fermi exceeds the Conduction Band Minimum (CBM,
∼ 1.1 eV, Figure S7a of Reference [157]), suggesting the occurrence of spontaneous electronic
conductivity when the spinel is synthesized under Se-poor conditions. Furthermore, when
defect concentrations are frozen-in from ∼ 1273 K, Efrozen

Fermi is well above the CBM ( ∼ 1.4
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eV) at 300 K, suggesting that fast cooling during synthesis will likely increase the electronic
conductivity. Similar conclusions can be extended by evaluating the defect energies in the
δ facet (Figure 3.5d, and Figure S7a in the SI of Reference [157]), where the equilibrium
Fermi level is beyond the CBM even at 300 K, suggesting that preventing intrinsic electronic
conductivity in MgSc2Se4 in Se-poor conditions may be challenging.

For a similar discussion on the defect physics of MgIn2S4 and MgSc2S4, including a
discussion about dopants, the importance of inversion in MgIn2S4 and chemical driving
forces for antisite defect formation, see the full text of Reference [157]. We summarize all
Fermi energies and free-carrier concentrations in Table 3.2 (defect concentrations are also
tabulated in Table S1 of Reference [157]) for a representative anion-rich and anion-poor
equilibrium in each system. Under all conditions, anti-sites (Mg{Sc/In} and {Sc/In}Mg) and
Mg-vacancies are the dominant defects, while anion vacancies only show up for MgSc2S4

under S-poor conditions.

Condition Dominant
Defects

Eeq
Fermi c[e/h]eq Efrozen

Fermi c[e/h]frozen

MgSc2Se4 (Egap = 1.09 eV)
Se-rich (α,
h+)

Sc+1
Mg, Mg−1Sc ,

Vac−2Mg

0.46 8.42×108 -0.10 2.58×1018

Se-poor (γ,
e−)

Sc+1
Mg 1.08 7.96×1015 1.39 2.77×1019

MgIn2S4 (Egap = 1.77 eV)
S-rich (α,
h+)

In+1
Mg, Mg−1In ,

Vac−2Mg

0.88 6.46×104 0.10 1.17×1018

S-poor (γ,
e−)

In+1
Mg, Mg−1In ,

Vac−2Mg

1.53 4.10×1014 1.80 1.12×1019

MgSc2S4 (Egap = 1.55 eV)
S-rich (α,
h+)

Sc+1
Mg, Mg−1Sc ,

Vac−2Mg

0.40 2.01×1011 -0.06 1.18×1019

S-poor (γ,
e−)

Sc+1
Mg, Mg−1Sc ,

Vac+2
S

1.48 1.81×1015 1.80 7.86×1019

Table 3.2: Defect energetics in the MgA2Z4 spinels (A = Sc, In, Z = S, Se), for both anion-rich
(α) and anion-poor (γ) conditions (facets). Self-consistent Eeq

Fermi at 300 K (in eV) and Fermi

levels with quenched defect content (from 1273 K, Efrozen
Fermi ), are indicated. c[e/h]eq and c[e/h]frozen

(in cm−3 at 300 K) are the free charge-carrier concentration in the self-consistent equilibrium and
frozen defect scenarios, with e− and h+ for electrons and holes. The charge of the dominant defect
is indicated with respect to the charged state of the defect at Eeq

Fermi.
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Figure 3.6: Free electron or hole concentrations c[e/h] at 300 K as a function of temperature at
which defect concentrations are quenched from. Solid and dashed lines indicate anion-rich (green-
shaded) and anion-poor (orange-shaded) regions, respectively. The blue, red, and green line colors
correspond to MgSc2Se4, MgIn2S4, and MgSc2S4. The dotted black lines indicate the typical free
carrier concentration in intrinsic Si (1010 cm−3) and in metals (1022 cm−3). The y-axis values at 300
K are the c[e/h]eq for each spinel and values at 1300 K should indicate c[e/h]frozen corresponding
to quenched defect concentrations from typical synthesis temperatures [154]. For the case of anion-
rich MgIn2S4, the free carrier concentration is taken as the maximum of free electron and hole
concentrations at each quench temperature.

3.4.3 Impact of cooling rates

The variation of c[e/h]frozen as a function of quench temperature —the temperature at
which the defect concentrations are frozen - is plotted in Figure 3.6. For similar plots of
Efrozen
Fermi , see Figure S7 in the SI of Reference [157] Solid and dashed lines in Figure 3.6

correspond to anion-rich and anion-poor conditions, while the blue, red, and green colors
indicate MgSc2Se4, MgIn2S4, and MgSc2S4. The quench temperature, which is determined
by the cooling rate, significantly impacts the hole/electron conductivity. For example, all
three spinels are expected to show spontaneous h+ conductivity at 300 K in the anion-rich
domain (α facet, bold lines) when defect concentrations are quenched from 1300 K, contrary
to the equilibrium scenario which would give negligible p-type conduction, as indicated
by Figure 3.6 and Table 3.2. Furthermore, quenched defect conditions in the anion-poor
domain (γ facet, dashed lines) dramatically increase the n-type conductivity in all spinels,
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resulting in c[e]frozen that are ∼ 3 to 4 orders of magnitude higher than c[e]eq (Table 3.2,
Figure 3.6). As a result, the synthesis of the chalcogenide spinels discussed in this work
not only requires anion-rich conditions but also slow cooling post-synthesis (i.e., low quench
temperatures, ∼ 400 − 500 K, see Figure S7 in the SI of Reference [157]) to minimize the
electronic conductivity.

3.4.4 Conclusions

Using first-principles calculations, we have analyzed the role of defect chemistry in in-
fluencing the electrical conductivities of three chalcogenide spinels, MgSc2Se4, MgSc2S4 and
MgIn2S4, which are potential Mg-ion conductors. We find that intrinsic point defects, such
as Mg-metal antisites (Sc+1

Mg , Mg−1Sc ) and Mg-vacancies (Vac−2Mg), dramatically affect the
free carrier concentrations of the spinels under consideration. Additionally, controlling the
anion-content during synthesis is an important factor in determining the defect energetics
and the resultant electrical conductivity, with all three spinels exhibiting high n-type con-
ductivity in anion-poor conditions and marginal p-type behavior in anion-rich conditions.
Also, fast cooling leads to large concentrations of intrinsic defects being quenched within the
structure, which can increase both the free hole (anion-rich) and free electron (anion-poor)
concentrations in MgSc2Se4, MgSc2S4 and MgIn2S4. Hence, the lowest electronic conductiv-
ity is to be expected for samples synthesized under anion-excess, and slowly cooled to room
temperature. Among the three structures considered, MgIn2S4 exhibits the lowest free car-
rier concentration across various conditions, largely due to inversion within the spinel. Our
work indicates the importance of defects in the field of solid electrolytes, and the framework
used here can be applied to other systems as well, which will eventually aid both in the
calibration of existing candidates and accelerated materials discovery.

3.5 Solar Cells

Photovoltaic (solar) cells are able to absorb a photon of light to create an electron-hole
pair which can then be swept out and used to power an electric load [161]. While many
solar cell technologies exist, approximately 93 % of the global solar cell market is made up
of silicon, the result of several decades of defect engineering [11,12]. While silicon is a cheap
and abundant material as a result of the markets of scale created by the semi-conductor
industry, it has an indirect band gap which requires the cells to be thick in order to have
high absorption. Moreover, the fundamental thermodynamic limit to efficiencies, known as
the Shockley-Queisser limit, causes marginal increases in efficiency to become more difficult
and costly over time [162].

The remaining 7% of the global market which is not Silicon is primarily made up of
thin film technologies, based on materials that typically have a direct band gap - thereby
requiring less material to be present for an equivalent amount of solar absorption to silicon.
Even less prevalent in the global market are tandem solar cells, which are not constrained
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by the single-junction Shockley-Quesser limit, as they make use of multiple material band
gaps to split the solar spectrum [163]. The potential for a reduction in cost from reduced
raw material or solution processable technologies [164], or the potential for higher module
efficiencies in tandem solar-cells motivates the materials design challenge of finding new solar
cell materials which have the potential to compete with silicon.

In this Section, we first present investigations into the defect physics of halide perovskite
solar cells, a relatively new class of solar cells which have shown promising device efficiencies
in the past decade. We then consider work done on CdTe, a well established thin-film solar
cell material used commonly in space applications.

3.5.1 Halide Perovskites

Halide perovskite materials have garnered a considerable amount of attention in the op-
toelectronics space in the past decade [165, 166]. To illustrate one reason for the spike in
interest, Figure 3.7 shows the maximum module efficiency for halide perovskites as com-
pared to silicon solar cells, as a function of time. With just over a decade of engineering,
maximum halide perovskite cell efficiencies have already surpassed that of multicrystalline
silicon. Promising applications as LED nano-dots and as tandem cells with silicon have also
contributed to a considerable interest in halide perovskite materials [163,166].
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Figure 3.7: Timeline of silicon and halide perovskite record efficiencies. Data assembled from
NREL’s “Best Research-Cell Efficiency Chart” [167]

A conventional halide perovskite composition is made up of the ABX3 formula unit, where
A is either an organic molecule (such as methyl-ammonium = MA) or a large inorganic cation
(e.g. Cs), the B-atom is a group IV element, and the X site is a halide anion. High efficiencies
for the organic halide perovskite come from an ideal combination of strong photo-generation
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from the organic molecule, coupled with the high electron affinity and mobilities associated
with the inorganic perovskite cage [168]. Moreover, material performance appears to not be
limited by defects - so called “defect tolerance” - even though the precise nature of defects
in MAPbI3 has been debated [31, 38]. Despite these beneficial traits, a remaining concern
for perovskites is their instability with respect to air, humidity, and UV light [169]. This has
inspired a slew of theoretical efforts trying to survey the halide-perovskite composition space
for additional favorable optical and electronic properties, with more favorable stability [37–
39].

Given the importance of point defects for the high efficiencies of halide perovskite solar
cells and LEDs, as well as the degree to which chemistry and structure are being surveyed
for new halide perovskite materials, it is useful to consider the impact that chemistry and
structure have on defect formation in halide perovskites. In the work that follows, we consider
how small perturbations to composition and structure effect the Fermi level pinning across a
variety of chemistry and structure polymorphs within Cs-based inorganic halide perovskites.
All defect formation energies are computed with GGA-PBE functionals and the automation
capabilities of the PyCDT package [136].

Figure 3.8 provides an overview of four CsBX3 (B=Pb, Sn, Ge; X = Br, I) halide per-
ovskite compositions considered presently. For all systems, the highest symmetry configura-
tion corresponds to the cubic phase (blue), with perfect (un-distorted, unrotated) octahedra
around the B-site cation. This high symmetry phase occurs at the highest temperature in
each composition. For CsPbBr3 and CsSnI3, lowering temperature from the region of stabil-
ity of the cubic phase corresponds to stabilization of the tetragonal phase (orange), which
has undistorted octahedra that are rigidly rotated within the a-b plane. Further lowering of
temperature in these two compositions results in the stabilization of the octahedral phase
(green), which maintains the undistorted, rotated octahedra of the tetragonal phase, with
additional rotations out of the a-b plane. For the CsGeI3 composition, a reduction of temper-
ature from the region of the cubic phase results in stabilization of the rhombohedral phase,
which has slightly distorted octahedral cages around the B-site cation, modifying the Ge-I
bond lengths. The orthorhombic-yellow phase of the CsPbI3 composition is not considered
in this work, as it is a severe departure from the corner sharing octahedrons of all the other
phases.

We first consider the effect of composition changes on Fermi level pinning within cubic
perovskites. Figure 3.9 is organized with B-site size decreasing from left to right, and X-
site size decreasing from top to bottom. To simplify analysis significantly, we restrict our
attention to trends in the Fermi level, as it is a tangible quantity that demonstrates the
important macroscopic effects of intrinsic defect formation in a structure.

Considering the results of CsPbI3 as a baseline, negatively charged cation vacancies force
the Fermi level towards the VBM, while positively charged anion vacancies push the Fermi
level towards the CBM. The net effect is to pin the Fermi level at 60% of the gap. Replacing
the Pb atom with Sn atoms has a stabilizing effect on cation vacancies, which pushes the
Fermi level significantly towards the VBM. This Fermi level behavior is consistent with the
experimental observation of p-type behavior in CsSnI3 [170]. The stabilization of cation
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Figure 3.8: Overview of inorganic halide perovskite structures considered in this subsection.
Color coding corresponds to variation in crystal structure and octahedral configuration.

Figure 3.9: Isostructural defect formation energies for the CsBX3-cubic chemistry, showing
trends with changes in the B-site and X-site element size. Fermi levels are shown with dashed
black lines. Chemical potentials are all defined by “B-rich” conditions (B-BX2 of the GGA-PBE
phase diagram).

vacancies could potentially be attributed to the lone-pair electron on Sn (discussed in Sec-
tion 3.3 in the context of SnSe) which may act to destabilize the cubic polymorph of CsSnI3,
and lower formation energies for cation vacancies as a result of reduced coulomb repulsion.
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This explanation of unique behavior in the Sn polymorph is further supported by previous
work that showed lone pair effects in Sn-based cubic perovskites lead to anomalous devia-
tions in electronic structure trends [171]. Upon changing the B-site cation from Sn to Ge, the
halide vacancy stabilizes, causing the Fermi level to be pushed back towards the middle of
the gap. The negative formation energies of the CsGeI3 defect phase diagram are indicative
of the stabilization of the rhombohedral phase for 0 K DFT calculations.

When considering changes in the halide (X-site) from I to Br, the relative stability of
vacancies remains the same, with a slight stabilization of the halide-on-Cs antisite, but
a nearly identical Fermi level pinning point relative to the VBM. However, the effect of
replacing the halide site opens up the band gap, causing the Fermi level to be pinned in the
middle of the gap, rather than in the upper half. This suggests that, for cubic isostructural
trends, permutation of halides have less of a dominating effect on Fermi level pinning than
movement of the gap itself.

Next we consider the effect of octahedral rotations on the Fermi level pinning behavior.
Shown in Figure 3.10 are defect calculations performed for the CsPbBr3 structural poly-
morphs. As described earlier, the cubic → tetragonal → orthorhombic series corresponds
to increasing octahedral rotations. The cubic phase of CsPbBr3 has a Fermi level that is
pinned at mid-gap by negatively charged Cs vacancies and positively charged PbCs antisites.
Transitioning through the tetragonal and orthorhombic phases causes a lowering and subse-
quent increase of formation energies, respectively. The collective motion of defect formation
energies, combined with a minimal change in the band gap, results in uniform mid-gap Fermi
level for all phases considered, with nearly identical Fermi level values of 1.2±0.1 eV above
the VBM. This lack of change suggests that the rigid octahedral motions do not change the
local bonding around each of the defects in CsPbBr3, leading to qualitatively similar pinning
behavior.

Lastly, we consider the effect of octahedral distortions on defect physics within the CsGeI3
composition. Figure 3.11 shows defect formation energetics for the cubic and rhombohedral
phases, with increasing distortions of octahedra going from left to right. In the cubic phase,
Fermi level pinning occurs between cesium and iodide vacancies at approximately 0.5 eV
(42% of the gap). The introduction of octahedral distortions in the rhombohedral phase has
the effect of shifting the vacancy formation energies for cesium and iodide, while keeping the
germanium vacancy formation energies relatively fixed. The net effect is to push the Fermi
level down while opening up the gap, leading to slightly more p-type behavior in the distorted
phase. Given the above analysis, the impact of distortions on bonding has a more direct
effect on Fermi level pinning than the effect of octahedral distortions. This is consistent
with the intuition that disruptions in bond angles would change the bonding character (i.e.
relative hybridization amounts in the band edges), which subsequently changes the formation
energy tendencies of point defects.

This preliminary analysis of the effect of structural and chemical permutations within
the inorganic halide perovskites serves as a proof of concept for studies which can be done
on a larger scale with the Python Charged Defect Toolkit (PyCDT) [136]. The work done
here suggests that the effects of chemistry on Fermi level pinning can be predicted to first
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Figure 3.10: Defect formation energies for a single chemistry (CsPbBr3) in three different phases
which correspond to changes in octahedral rotations. Fermi levels are shown with dashed black
lines. Chemical potentials are all defined by “B-rich” conditions (B-BX2 of the GGA-PBE phase
diagram).

Figure 3.11: Defect formation energies for a single chemistry (CsGeI3) in two different phases
which correspond to change in octahedral distortions. Fermi levels are shown with dashed black
lines. Chemical potentials are all defined by “B-rich” conditions (B-BX2 of the GGA-PBE phase
diagram).
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order by the band gap, with occasional unpredictable defect stabilization as a result of
unique electronic signatures, such as the lone pair effect discussed for CsSnI3. In addition,
the effect of structural rotations has less of an effect on the Fermi level pinning behavior
than distortions of octahedral units. More work remains to be done to understand the
physical origins of these trends, with more certainty coming from a larger dataset of defect
calculations. Regardless, this work demonstrates the potential power of PyCDT and high-
throughput screening procedures for point defect calculations with semi-local functionals in
the halide perovskite space.

3.5.2 Impact of point defects on thin film CdTe

As mentioned earlier, thin film solar cells makes up the vast majority of the current
non-silicon solar market. Within this subset of global sales, CdTe makes up the majority
of the market share [12]. Market forces, expensive module encapsulation requirements, and
stiff competition with the silicon solar cell market have limited the wide scale application
of CdTe [12]. While the defect tolerance of CdTe has led to useful performance as an n-
type material, the lack of adequate doping in the absorber layer is acknowledged as a major
barrier for technological improvement [172]. The continued interest in the defect physics of
CdTe provides motivation for methodological benchmarking with DFT defect computation.

Here we consider a comparison between computed defect formation energies from DFT
against experimental results for electron concentrations in CdTe, given as a function of
cadmium partial pressure [173]. Intrinsic antisite and vacancy calculations were performed
with GGA-PBE functionals and the automation capabilities of the PyCDT toolkit [136]. We
first describe the methodology considered for chemical potentials, band gap corrections, and
the procedure for calculating a “frozen-in” electron concentration.

To adequately describe the chemical potentials, the Cd partial pressure must be taken
into account. This is done using the following definitions for the chemical potentials:

µCd(P, T ) = µo
Cd + kBT ln(

P

P o
)

µTe(P, T ) = µo
CdTe − µCd(P, T )

Where µo
Cd is the reference chemical potential for cadmium, corresponding to the Cd partial

pressure in the standard state (P = P o). µo
CdTe is the reference energy for the bulk CdTe

phase, taken to be the DFT energy per formula unit of the bulk supercell. For our analysis,
we consider two different values for µo

Cd: (i) using µCd from Cd-rich conditions of a GGA-
PBE phase diagram for CdTe, and (ii) fit µo

Cd to minimize the error in experimental carrier
concentrations. The resulting formation energies resulting from approach (i) are shown in
Figure 3.12.

As discussed in other parts of this thesis (Sections 1.3 and 4.3.2), band gap errors with
DFT have a drastic impact on defect formation energetics. To correct for these, we consider a
modified band edge shifting routine based on the experimental gap, which produces different
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Standard GGA gap approach Band edge shift to experimental gap 

Figure 3.12: Formation energies for CdTe without (left) and with (right) band edge shifting
corrections, as described in the text. Chemical potentials are derived from Cd-rich conditions in
the GGA-PBE computed phase diagram of CdTe. All band edges are shown with black dashed
lines.

shifts for the CBM and VBM in the formation energy. As discussed in the next chapter
of this thesis, Fermi level renormalization, where the absolute position of the VBM from a
semi-local functional calculation is shifted to the absolute position of the VBM from a hybrid
functional calculation, results in better results for formation energies than a standard scissor
operator which solely opens up the CBM to fit experiment.

To define separate band edge shifts for the CBM and VBM, we use the average electro-
static potential as a reference for shifting the band edges from GGA-PBE to HSE06 [174].
The percentage of total shift required for this CBM (VBM) shift is then multiplied by the
total shift required to fit the experimental band gap, resulting in a modified CBM (VBM)
shift. The relative band edge shifts δEExp.−GGA

CBM (δEExp.−GGA
V BM ) is summarized as:

δEExp.−GGA
V BM = ηV BM∆EExp.−GGA

Gap δEExp.−GGA
CBM = ηCBM∆EExp.−GGA

Gap

where: ηV BM =
δEHSE−GGA

V BM

∆EHSE−GGA
GAP

where: ηCBM =
δEHSE−GGA

CBM

∆EHSE−GGA
GAP

Where δEX
{V BM,CBM} and ∆EX

Gap are the band edge shifts and band gap differences for

functional difference X (X=(HSE-GGA) or (Exp. - GGA)). With this procedure, one avoids
having to perform computationally intensive hybrid functional defect calculations but gains
a better band gap description for the formation energetics. The resulting band edge shifted
formation energies are plotted on the right side of Figure 3.12 for chemical potential approach
(i).

The experimental results from Reference [173] rely on measurements performed at room
temperature but synthesized at an elevated temperature (700 and 900 K). Given the quick
cooling rate of the experimental setup, the point defect concentrations are effectively fixed at
their equilibrium value at high temperature while the free carriers are then equilibrated with
these defect concentrations at room temperature. To model this, we repeat the “frozen-in”
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defect approach described in Section 3.4, by first calculating charge neutrality at an elevated
temperature, which sets the frozen-in defect concentrations. With the defect concentrations
held fixed, a second charge neutrality calculation is performed at room temperature. This
low-temperature Fermi level, with the bulk DOS, is used to compute the electron concentra-
tion to compare with experiment.

Figure 3.13: Comparison of electron concentration as a function of partial pressure for CdTe,
derived from “frozen-in” point defects at 700 oC (left) and 900 oC (right). Corrections used are
described in text. Experimental results (shown in blue) are from Reference [173].

The resulting computed electron concentrations at 700 and 900 K are plotted in Fig-
ure 3.13 with the experimental results (blue boxes) given by Reference [173]. Three different
correction sets are given: (a) Uncorrected GGA uses the chemical potential convention given
by a GGA-PBE phase diagram (chemical potential method (i)) and the GGA band gap, (b)
Empirical correction for µo

Cd uses a reference chemical potential that is fit to minimize error
(chemical potential method (ii)) and the GGA band gap, and (c) Empirical correction for
µo
Cd and Egap uses the fitted reference chemical potential (chemical potential method (ii))

and the experimental band gap shifting routine described earlier.
At both temperatures, the uncorrected GGA result (yellow X’s) gives an order of mag-

nitude higher carrier concentration than the experimental results, with an RMS log error at
700 oC (900 oC) of 3.85 (4.31). Upon applying an empirical fitting correction to µo

Cd (yellow
circles), a rigid shift in carrier concentrations occurs, reducing the RMS log error to 0.57
and 0.89 at 700 oC and 900 oC, respectively. As one would expect, solely shifting the carrier
concentrations does not effect the slope in partial pressure dependence. However, upon the
application of the band gap opening (green circles), the partial pressure dependence tilts to
resemble the trend of experimental data, with RMS log errors of 0.15 (1.14) for 700 oC (900
oC).

The remarkable fit of the Empirical correction for µo
Cd and Egap data (green circles) at

700 oC provides strong evidence for the origin of electron conductivity (at this temperature)
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arising from the intrinsic defects of CdTe - specifically, Fermi level pinning by the two
opposing vacancies near the CBM. In the case of the 900 oC data (right side of Figure 3.13),
a clear deviation from the partial pressure trend of the experimental data occurs below
100 atm. This suggests that additional physics is required to describe the partial pressure
dependence. A potential avenue for correcting this is through the inclusion of interstitial
defects - which Chen et al. (1998) suggested play a role in the n-type carrier concentrations
at elevated temperatures [175].

Overall, the work performed here shows both the power and limitation of comparing first-
principles point defect calculations against experiment. Qualitatively, trends and general
slopes of carrier concentration with partial pressure are fairly well described with a band
gap adjustment and without any empirical fitting corrections, assuming that a sufficient
number of defects are computed. Quantitatively, numerical adjustments of the chemical
potential to match experimental conditions are essential for reducing error. The exponential
nature of the formation energy in the determination of defect concentrations means that
small errors are exponentially propagated. Here we have fit the reference chemical potential
for cadmium, resulting in a rigid shift of computed electron concentrations with an impressive
RMS log error of 0.15 at 700 oC, after applying a band gap correction.

While fitting to minimize error relative to experiment is not an ideal procedure for high-
throughput computation, it is possible to consider alternative chemical potential adjust-
ments. For example, the chemical potential correction suggested in the work of Freysoldt et
al (2016) only relies on fitting to bulk formation enthalpies, rather than carrier concentra-
tions [176]. Such a correction may be more amenable to high-throughput as larger datasets
of measured formation enthalpies begin to be accumulated within open source databases like
the Materials Project.

3.6 Summary

In this chapter we have considered the application of the PyCDT toolkit to several specific
materials with applications in thermoelectrics, batteries, and solar cells. This work serves to
demonstrate the vast variety of applications which remain to be investigated with automated
point defect calculation methods. Most of our analysis so far has focused on formation
energies and the carrier concentrations determined by the position of the Fermi level, which
is dictated by charge neutrality. However there are additional quantities of interest to the
defect community; namely, defect transition levels and dopability limits. While this chapter
gives a sense for the qualitative and quantitative limits of defect calculations with semi-
local DFT, there remains to be seen a larger dataset for comparing the performance of such
calculations. In the next chapter, we consider this question further, with the intention of
informing and motivating further high-throughput studies of point defect calculations.
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CHAPTER 4

Benchmarking Quantities for High-throughput

4.1 Forward

The work presented in this chapter is un-published work by D. Broberg and M. Asta.
It makes use of hybrid defect calculations published in previous work by several other au-
thors [50, 177–185]. The data from previous references is used and reproduced here with
permission by the co-authors.

4.2 Introduction

High-throughput first-principles calculations using Density Functional Theory (DFT),
are finding wide use for screening over candidate materials for a variety of potential appli-
cations [32,39,186]. This approach offers the possibility to expedite the materials discovery
process and its application has been demonstrated in a vary of contexts including stud-
ies on solid-electrolyte batteries, transparent conducting oxides, and next-generation solar
cells [35,38,157]. In many such applications a focus has been optoelectronic properties, and,
despite the importance of intrinsic and extrinsic point defects in this context, the majority
of previous high-throughput studies have focused on bulk property calculations like ther-
modynamic stability and electronic structure alone. Point defects dictate the carrier type
and carrier concentration of semiconductor materials yet they are often not considered in
high-throughput screening studies [8, 25, 26]. In part, this situation can be related to the
time-consuming nature of point-defect calculations using first-principles methods based on
density functional theory (DFT), and the relatively complex workflows that they can entail.
In the past few years progress has been made to automate the setup and analysis of such
calculations, and these efforts have thus addressed some of the hurdles towards conducting
point-defect calculations in a high-throughput manner [18,32,61,136,187].

Modern studies of point defect computation make use of efficient DFT codes and periodic
boundary conditions to calculate the dilute-limit formation energy [8]. This approach makes
use of thermodynamics to determine macroscopic properties such as defect “trap” levels or
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the Fermi level arising from a given set of growth conditions. To capture the dilute-limit
assumption that is implicit in most thermodynamic treatments of point defects, large “super-
cells” are used to remove the energetic contribution of periodic-image-interactions, leading to
an increased computational requirement from every defect calculation performed. Moreover,
the computationally efficient and commonly used semi-local exchange approximations, like
the generalized gradient approximation (GGA) [21], suffer from a well-known underestima-
tion of the band gap, an error which compounds for charged defects whose levels often lie
close to the band edges.

To circumvent the issue of band gap underestimation, hybrid-functional approaches,
which mix exact exchange with semi-local correlation at the expense of added computational
cost, have become a “gold standard” for point defect computation with DFT [23, 30, 188].
While great strides have been made in improving the computational efficiency of hybrid func-
tional methods, such calculations remain significantly more computationally expensive than
those based on semi-local DFT. An alternative approach for high-throughput defect calcula-
tions is to make use of semi-local functionals with the application of a-posteriori corrections
to remove the energetic contributions from band gap errors [8, 25, 26]. Such an approach
remains an attractive prospect for developing large databases for initial screening studies in
an efficient manner, while allowing for more in-depth quantitative follow-up calculations at
a higher level of theory for interesting candidate compounds.

While many thorough reviews on point defect computational methodology have been
written over the years, comparative studies of semi-local functional performance relative to
hybrid have been confined to tens of calculations at a time [27,30]. To explore the application
of high-throughput defect studies with semi-local functionals, this work benchmarks several
defect quantities derived from semi-local defect calculations, performed in an automated
fashion, against a dataset of 245 hybrid-functional point defect calculations published by
several authors at lower levels of throughput [50,177–185]. Section 4.3 provides an overview
of the quantities and corrections to be considered in this work, as well as the automa-
tion procedure used. Section 4.4 details both a quantitative and qualitative comparison for
structural and electronic relaxation of defect supercells (4.4.1), calculated thermodynamic
transition levels (4.4.2), Fermi levels (4.4.3), formation energies (4.4.4), and dopability limits
(4.4.5). Sections 4.5 and 4.6 conclude with comments on the viability of high-throughput
approaches for calculating point-defect properties based on semi-local DFT approaches, em-
phasizing the potential for such calculations to aid qualitative screening of defect properties
in semiconductors and insulators.

4.3 Methodology

4.3.1 Properties of point defects from DFT

As mentioned in Section 4.2, the dilute-limit formation energy for a single charged defect
is commonly calculated using the supercell approach, wherein a single defect is placed inside
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of a supercell of the perfect lattice and internally relaxed with DFT [8,136]. The dilute limit
formation energy is given by:

Ef(Xq, εF) = Etot(X
q)− Etot(bulk)−

∑
i

niµi + qεF + Ecorr (4.1)

The first two terms on the right hand side of equation 4.1 are the DFT total energies for the
charged defect supercell and bulk supercell, respectively. The third term is a summation over
atomic chemical potential values (µi), or the energy cost of adding (ni = +1) or removing
(ni = −1) atoms from the bulk, undefective supercell. Limiting values of the atomic chemical
potentials can be calculated using the facets of a DFT phase diagram, corresponding to
different growth or annealing conditions [14]. The fourth term is the defect charge (q)
multiplied by the Fermi level (εF), which serves as the electron chemical potential reservoir.
The final term is a set of corrections for removing periodic image interactions and band gap
errors, to be elaborated on in Section 4.3.2.

The formation energy is traditionally plotted for a particular choice of atomic chemical
potentials as a function of the Fermi level, with the “zero” value representing the valence
band maximum (VBM). A qualitative example is displayed in Figure 4.1.

While the formation energy is essential for determining the concentration of a given defect
in a specific charge state, it is seldom the quantity directly measured in experiment. Instead,
one often considers the result of an ensemble of charged defects forming together. For a single
defect type forming in multiple charge states, it is possible to consider defect transition levels
which correspond to the energetic level at which a defect captures (or emits) a free carrier.
These are highlighted as purple boxes in Figure 4.1 and are given by the equation:

ε(q/q′) =
Ef(Xq, εF = EV BM)− Ef(Xq′ , εF = EV BM)

q′ − q (4.2)

where the formation energies (Equation 4.1) of the two defects are evaluated at the VBM,
producing the Fermi level position of the transition level, ε(q/q′), relative to the VBM. Since
the same chemical composition exists for both defects in Equation 4.2, the quantity ε(q/q′)
has a value that is independent of the value of the chemical potentials, and hence is not
affected by any ambiguities that may exist in their values for a specific application. If both
defect energies are determined from their relaxed ground state, then Equation 4.2 yields the
thermodynamic transition level. Many reviews have been written on the difference between
optical and thermodynamic transition levels, including the work by Lyons et al. [30], where
it was identified that semi-local functionals produce incorrect optical transition levels in GaN
as a result of improper localization of charge on a defect.

Another class of quantities which can be considered are those that are derived directly
from the collective consideration of all point defects within a system. This includes what can
be referred to as the “dopability limit” which is the Fermi level that first produces defects
with negative formation energy, indicating an instability in the structure with regard to
producing defects at that Fermi level [32,189]. These quantities are shown as orange circles in
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Figure 4.1: Schematic representation of formation energy diagram for defects, with a represen-
tative cation vacancy (blue) and anion vacancy (red). Band edges are shown as light dashed lines,
while the Fermi level (dictated by charge neutrality) is displayed as a thick, dashed line. The upper
and lower dopability limits are shown as orange circles, where the defect formation energies become
negative. Transition levels are called out with purple boxes.

Figure 4.1. Pushing the Fermi level beyond the dopability limit violates the thermodynamic
condition of structural stability, and is a fair signature of the dopability (whether a system
can be doped with a certain carrier type with additional extrinsic doping) of a material. This
can be particularly useful when screening for systems with a particular carrier type (p-type
vs. n-type).

A further set of quantities that can be derived from consideration of the collective set
of point defects are the carrier concentrations and Fermi level. These quantities are derived
from the condition of charge neutrality:∑

{X,q}

q[Xq] + p− n = 0 (4.3)

where the summation is over all defects, Xq, with concentration [Xq]. The charges from
the point defects are counter balanced by the free hole (p) and electron (n) concentrations,
determined from Fermi-Dirac statistics and the bulk DOS. For a fixed temperature and set
of chemical potentials, Equation 4.3 can be solved self-consistently to determine the Fermi
level, shown as a bold dashed line within Figure 4.1.
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Beyond explicit quantification of the Fermi level and formation energies at that value, the
qualitative description of defect structure, as well as the relative ordering of the formation
energies of defects for a given set of chemical potentials may be useful for certain applica-
tions, such as oxygen-ion conductors where high concentrations of oxygen vacancies may be
desirable. The exponential dependence of the defect carrier concentration on the formation
energy makes this quantity central for such applications. Moreover, corrections which can
reduce the intrinsic errors that result from self-interaction and band gap underestimation
can drastically reduce the errors that result for quantitative values of many of the quantities
described in this section.

4.3.2 Corrections

Several corrections have been proposed for improving the accuracy of point defect calcu-
lations in semiconductors [8, 25, 26, 136]. They can broadly be categorized into corrections
related to supercell periodic image interactions and corrections related to band gap errors.

Supercell Periodic Image Interactions

The periodic boundary conditions employed in many DFT calculations lead to spurious
interactions with neighboring image defects. The energy contribution from this interaction
leads to a deviation from the dilute limit formation energy that needs to be corrected. These
finite-size effets have been discussed at length in many reviews [8, 25,26,53,60,136].

For defects in semiconductors and insulators, charge can accumulate on the defect and
long range coulomb interactions with neighboring image charges become a leading energy
contribution to the finite-size effects. Moreover, a charged supercell causes an infinite bulk
system to have a diverging electrostatic energy. To account for this second effect, a ho-
mogenous background charge is introduced to neutralize the supercell. This requires the
use of a potential alignment method to remove the effect of the homogeneous background
charge on the defect formation energetics. To account for both of these effects, Freysoldt et
al. [65, 84] proposed a correction which can be seen as an extension of previous approaches
based on calculations of the Madelung energy of an array of point charges in a neutralizing
background charge [190], and involves a planar averaged electrostatic potential alignment
method. Another extension of this method for systems with anisotropic dielectric constants
was suggested by Kumagai et al. [66], and involves an atomic site averaged electrostatic
potential. The potential alignment method procedures used in both of these corrections also
can help to assess the localization the charge for a given defect.

Another effect arising from the finite-size of the calculation supercell is dispersion in the
single particle state. This effect has been explored for occupied single particle states within
the gap and a solution that has been proposed for addressing this effect is intelligent k-point
sampling to “average” out the dispersion [25, 90]. In practice, the use of a sufficiently large
supercell tends to make the energetic impact of dispersion from bandgap states negligible.
However, in the case of occupied defect states near the band edges, as is the case for hydro-
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genic defects or perturbed host states, the supercell size required to sufficiently remove this
effect drastically increases the computational cost required.

Near-band-edge defect states are dispersive in the same manner as the host bands. Lany
and Zunger (2008) provide a useful explanation of this effect by invoking a perturbed host
state explanation [26]. To correct this effect, a first-order bandfilling correction can be
applied which removes artificial delocalization. Since a true defect level is dispersionless,
any energetic occupation can be “moved” to the band edge as a first order correction to the
effect of charge delocalization at the band edges. The bandfilling correction can be written
for electrons as:

∆Ee−

MB = −
∑

n,k∈CB

wkηn,k(en,k − ECBM) (4.4)

and for holes as:

∆Eh+

MB = −
∑

n,k∈VB

wk(1− ηn,k)(EVBM − en,k) (4.5)

The summation is over bands in the Conduction Band (CB) or Valence Band (V B) with
band index, n, and kpoint index, k. The variable wk is the kpoint weight, ηn,k is the
occupation of the band index, and en,k is the eigenvalue energy of the band index. The net
effect is to “move the electron (hole) up (down)” to the band edge extrema.

Band gap corrections

As mentioned earlier, semi-local exchange approximations, like GGA, suffer from band
gap underestimation. This causes severe problems for defects which have a defect level in the
gap and may have delocalized resonant host band states as a result of gap underestimation.
A natural way to correct for this is to extend the gap to fit a value derived from a higher level
of theory or from experiment. The simplest way to do this is to extend the CBM outwards,
in a manner which we will call a “Basic Scissor Operator.” A schematic of this approach is
shown on the left side of Figure 4.2.

The Basic Scissor operator band edge shift (BS bes) does not renormalize the Fermi level
in Equation 4.1, since the VBM is held fixed. An alternative approach is to renormalize
the electron chemical potential by moving the band edges according to a common reference
energy in GGA and Hybrid calculations. This has been demonstrated to work well for
deep transition levels and for the averaged electrostatic potential (ESP) of a supercell [174,
191]. For the purposes of high-throughput calculations, the averaged ESP approach is fairly
straightforward to implement. This averaged ESP referenced band edge shift (bes) approach
is shown on the right side of Figure 4.2.

In addition to electron chemical potential renormalization, it has been suggested that
adjusting occupied single particle states appearing within the gap may help to improve the
accuracy of calculated defect formation energetics [26]. A simple way to achieve this is to
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Figure 4.2: : Illustration of band edge shift approaches used for this paper. The Basic Scissor
Operator (left) opens up the conduction band to the hybrid gap size, while the average electrostatic
potential (ESP) referenced shift (right) moves the individual bands to the hybrid level using the
average electrostatic potential as a reference.

fully shift any “free” electrons – occupied Kohn-Sham eigenvalues above the CBM which
are corrected via the bandfilling correction – with the conduction band shift. For occupied
states within the gap (further from the band edges) the direction for shifting can sometimes
be ambiguous. Moreover, the deep-level alignment work done by Alkasukas et al. (2008)
suggests that fully localized “deep” states should remain unshifted [191]. Within semi-local
functional approaches, it is common to find occupied gap states which do not have localized
wavefunction character. For such cases, a possible correction is to project the single particle
wavefunction onto valence and conduction wavefunctions to produce a percentage of VB
and CB character which can be used to shift the defect band [26]. To this end, Bystrom et
al. [192] have recently developed an open source python code for setting up and projecting
single particle wavefunctions onto host band states within the projector-augmented-wave
(PAW) formalism.

In this work, we demonstrate the use of two different defect level shifting (dls) approaches
which both include the use of the atomic ESP averaged band edge shift (bes) for Fermi
level renormalization, as well as the charge correction and band filling corrections, where
appropriate. The first level shifting correction (dls1) is a shift of the host band occupied
states with the band edges. As discussed earlier for the bandfilling correction, host band
states can become occupied within a defect calculation, and these can be corrected to first
order by moving them to the band edges. Once the band gap opens up, these band edge
states should presumably shift 100% with the band edges as well. (i.e. if n is the number of
free electrons occupying conduction band states then the level shifting correction corresponds
to n∆ECBM). The second correction (dls2) is to apply the host band projection shift method
to any occupied defect levels found within the gap, in addition to the free carrier shift (dls1)
to account for delocalized states which should be shifted with the host bands. A summary
of all the corrections considered within this work is given in Table 4.1.
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Name Acronym Description

Charge Correction and Band Filling
Correction

no bes Charge correction and bandfilling
corrections applied to any delocalized
band edge states

Basic Scissor Band Edge Shift BS bes Band edge shifting via a basic scissor
operator that extends the CBM to fit
the hybrid band gap

Band Edge Shift bes Band edge shifts for the two band
edges via a common reference point
(average electrostatic potential)

Deep Level Shift Method 1 dls1 Same band edge shift as bes, with
shifting of “free carriers” with their
respective band edge extrema

Deep Level Shift Method 2 dls2 Same corrections as dls1, but with
the addition of single particle level
shifts based on projections onto host
band states

Table 4.1: Overview of correction schemes used for this work. Note that all approaches include
charge corrections and band filling corrections (no bes). Where sufficient data was available, the
planar-averaged Freysoldt correction was used as the default charge correction. In other cases, the
atomic-site averaged method was used for the charge correction.

4.3.3 Defect workflow automation

As mentioned in the Introduction section, recently tools have been developed which aid
in the automation of defect calculations [61, 136, 187]. This includes the Python Charged
Defect Toolkit (PyCDT) produced by Broberg et al. (2018) [136]. Despite the work done
to improve the setup and analysis stages of performing defect calculations, there is yet to
be a demonstration of a fully automated workflow that is widely distributed and used by
the community. To this end, we have merged the essential functionalities of PyCDT into
the pymatgen [76], atomate [193] and emmet [194] code bases to produce a fully automated
defect workflow which is compatible with the Materials Project infrastructure [36]. Details
on the workflow and database design are outlined in Appendix D.

All DFT calculations considered in this study were performed using the Vienna Ab-
initio Simulation Package (VASP) [195, 196], and the projector augmented wave (PAW)
method [197] with a plane wave basis set. For the automated semi-local defect calculations,
we make use of the Perdew-Burke-Ernzerhof implementation of the generalized gradient ap-
proximation (GGA-PBE) [21], with a plane wave cut off of 520 eV, and a gamma-centered
k-point density of 100 kpoints/ Å3, which is twice the density of standard (converged) relax-
ation approaches used with the Materials Project infrastructure [36]. Spin-polarized relax-
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ation of atoms, with a fixed supercell volume, is allowed to occur until an energy tolerance
of 0.001 eV is reached for ionic convergence, and an electronic self-consistency tolerance of
0.0001 eV. For the computational details of all hybrid calculations, see the text of previously
published work from which the benchmark data is gathered [50,177–185].

4.3.4 Approach for benchmark comparison

For this work, we benchmark defect properties calculated by GGA with the correction
schemes described above against a set of 245 “gold standard” defect calculations carried out
with careful implementation of hybrid functionals in several previously published works [50,
177–185]. The chemistry and types of defects explored in the benchmark set is displayed in
Figure 4.3.
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Figure 4.3: Overview of defects considered in this work.

For the remainder of this paper, we present and analyze the differences between hybrid
and GGA-PBE-based results (referred to in what follows as “errors” associated with the
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GGA-based approaches) arising between (i) differences in structural relaxation and elec-
tronic delocalization in the defect supercell calculation (Section 4.4.1), (ii) transition levels
(Section 4.4.2), (iii) Fermi levels (Section 4.4.3), (iv) formation energies (Section 4.4.4), and
(v) dopability limits (Section 4.4.5).

For the errors analyzed in (iii) – (v) a choice for the chemical potentials was required.
These quantities should, in principle, be calculated from the phase diagram produced by
the same level of theory of the calculations (i.e. including the same PAW potentials and
exchange correlations as the defect calculations). However, the previously published hybrid
functional data involves a large array of different PAW potential implementations, as well as
differences in the practical definitions for chemical potentials. As an example of the latter,
in some calculations experimental values are used to fix some of the chemical potentials.
To ensure a consistent comparison with our fully automated defect calculations, we chose
to use chemical potentials produced by the GGA-PBE calculated phase diagram available
within the Materials Project across all calculations. Alternative methods for determining
chemical potentials under the condition of perfectly stoichiometric conditions, as detailed
in Reference [75], were also considered. The results from this approach did not change the
primary conclusions reached in this work, so we do not discuss results from this alternative
approach further.

For all quantities apart from the structural and electronic differences (Section 4.4.1), we
analyze the errors resulting from the different correction combinations outlined in Table 4.1.
These corrections were detailed at length in Section 4.3.2. For all of the systems considered,
we use identical sets of defect + charge calculations for both hybrid and GGA. Moreover,
several systems had quantities which were impossible to calculate within the bounds of
thermodynamics (i.e. Fermi levels can not be calculated if formation energies are negative
across the entire gap), and these subcases are mentioned where relevant.

To compute hybrid formation energies and corrections, raw data for every hybrid cal-
culation was inserted into the defect database described in Appendix D. After successful
integration into the database, the workflow infrastructure was used to compute charge cor-
rections and band filling corrections. The Freysoldt correction was prioritized in cases where
the planar average electrostatic potential was available, and the Kumagai anisotropic ex-
tension of Freysoldt’s correction was used in all other cases. These corrections should be
identical in the case of isotropic dielectric constants, as is the case for all of the compounds
considered in this study.

The primary motivation of this work is to benchmark the performance of automated,
semi-local point defect calculations. Associated with this goal are several difficulties in
the analysis of thermodynamic quantities, as a result of different hybrid computational ap-
proaches used in the literature and benchmarked in this study. For example, band edge
shifting corrections of PBE-GGA results required a hybrid band structure calculation in a
primitive unit cell for alignment of the band edge extrema with respect to the averaged elec-
trostatic potential [174]. For automation purposes, a single hybrid functional approach was
chosen - namely, the implementation by Heyd, Scuseria, and Ernzerhof (HSE06) [23], which
has shown to balance computational efficiency with significant improvements in thermo-
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chemical results relative to semi-local [24]. As a result of the different (non-HSE06) hybrid
implementations that exist within the benchmark set, some differences exist between the
computed band gaps of the previously published data and the hybrid gaps generated by the
automated defect workflow. Details on computed band gaps, as well as the hybrid version
which was used in each bulk system in previously published data is given in Appendix E.

While the automation workflow has the ability to rerun defect calculations in larger
supercells, this study chose to only run supercell sizes which contained no more than 300
atoms. In addition, no local perturbations around the defect site were introduced at the
beginning of the DFT relaxation. Symmetry was also left on during the relaxation process
to improve computational requirements. As noted later in this work, these limitations make
it difficult to distinguish errors which are artifacts of the calculation setup (local structural
initialization or supercell size), from errors which are due to the intrinsic limitations of the
GGA-PBE functional approach. Improvements in automated, semi-local GGA-PBE through
the introduction of local perturbations or increases in supercell sizes will be investigated in
future work. In the discussion that follows, we make a point of calling attention to errors
which may be improved with such approaches.

4.4 Results and Discussion

4.4.1 Structural and Electronic Relaxation

The degree of structural relaxation or electronic delocalization greatly influences the
energetics of a DFT point defect calculation. Large amounts of structural or electronic
delocalization indicate a larger supercell may be required to improve the physical description
of the defect, but small amounts of delocalization may always exist - as is the case for
a hydrogenic defect level. In this sub-section, we analyze several quantities which lend
themselves to analysis of structural and electronic delocalization for the purposes of a high-
throughput workflow.

One way to define structural relaxation is by integrating the (non-defect site) atomic
displacements as a distance from the defect. If the total modulus of the distance moved by
atom index i during the DFT relaxation is given by τi, then the total integrated motion
is defined here as

∑
i τi = T . If we define a “localization” radius, w, then we can retrieve

the total integrated relaxation within the localization radius through the use of a Heaviside
function:

Tw =
∑
i

Θ(w − ri)τi (4.6)

where ri is the distance between the defect and atom index i before the relaxation. Similarly,
the percentage of total motion within the localization radius is given by:

fT = 100%× 1

T

∑
i

Θ(w − ri)τi (4.7)
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Equations 4.6 and 4.7 can be used to investigate the magnitude of “long-ranged” structural
relaxation, which may lead to spurious elastic interactions that give rise to interactions
between periodic images that are not accounted for in the correction schemes described in
the previous section. Figures 4.4a and 4.4b display violin plot distributions of the difference
in these two quantities as computed with GGA and hybrid, for every defect. The localization
radius was chosen as the Wigner-Seitz radius of the supercell (the maximum radius of a sphere
contained within a Wigner-Seitz cell of the supercell lattice).
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Figure 4.4: Differences in structural relaxation properties (GGA – hybrid) displayed as violin
plots. See text for description of each property.

As listed in the inset tables of Figures 4.4a and 4.4b, average differences in the structural
relaxation amounts within Wigner-Seitz radii are less than zero (hybrid has a larger value
than GGA, on average). In addition, 75% of the errors shown in Figure 4.4b are less than
zero. This is consistent with the expectation that hybrid functionals tend to have more local
structural relaxation than semi-local functional approaches [30]. Despite this apparent trend,
several differences were positive (GGA larger than hybrid). For example, four defects have
relaxation differences greater than 2 Å in Figure 4.4a. We believe this is due to symmetry
locking around the defect, causing excessive movement in nearest neighbor atoms to preserve
symmetry during relaxation. Relaxation of this nature could be removed with improved local
perturbation routines during the high-throughput workflow, a topic for future work.

Another useful structural relaxation metric to consider is the total movement of the defect
site itself - that is, the total modulus of the distance moved by the defect index D during
the DFT relaxation: τD. DX centers like Si in AlGaAs require a large amount of relaxation
of the Silicon atom, which have previously caused issues for theoretical modeling [25, 198].
Figure 4.4c, shows the differences in defect site relaxation (τD) for all non-vacancy defect
sites between GGA and hybrid. The distribution lies relatively symmetric around zero, with
a slight skewing towards more negative errors (larger relaxations in hybrid). All relaxation
differences with positive values greater than 0.25 Å are interstitial defects which relaxed



67

further in the semi-local calculation, potentially due to the inaccurate accommodation of
coordinating atoms around the defect within the high-throughput setup routine. All of the
relaxation differences with negative values less than -0.25 Å involve substitutional defects
with a size mismatch that would need to be accommodated for by nearest neighbor atoms.
As discussed in Section 4.3.3, we have not yet distinguished whether such errors result from
the automation procedure, or whether the error is a more fundamental one within the semi-
local DFT implementation. The ability to use local coordination adjustments to reach global
energy minima is a subject for future work.

Electronic delocalization during a defect calculation is another important quantity to
monitor in charged defect calculations. As outlined in the description of bandfilling correc-
tions in Section 4.3.2, it is possible for Kohn-Sham eigenvalues to become occupied (unoccu-
pied) in the conduction band (valence band) as a result of artificial dispersion of the defect
level or band gap errors from the semi-local functional approach [26]. These new occupations
can be considered as “free electrons” (“free holes”) which should actually be localized on
the defect state in the limit of an infinite supercell size and a perfect band gap description.
While the true free carrier amounts in the crystal are ultimately dictated by the position of
the Fermi level, which is calculated from charge neutrality (as described in Section 4.3), the
free carrier amount discussed presently is a computational artifact that helps determine the
amount of charge that is adequately localized on the defect state.
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Figure 4.5: Differences in structural and electronic-related properties (GGA – hybrid) displayed
as violin plots. See text for description of each structural and electronic property.

Figures 4.5a and 4.5b show violin plot distributions of the difference in the number of free
carrier amounts found in the GGA and hybrid calculations. The large window of errors for
free carrier differences is related to their extreme dependence on the value of the potential
alignment (PA). The VBM of a charged defect calculation must be shifted to account for
the PA, causing small errors in PA to cause unoccupied defect states near the VBM to
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be considered as free holes and occupied defect states near the CBM to be considered free
electrons.

A larger standard deviation of 1.1 exists for holes, as compared to a standard deviation
of 0.3 for electrons. Additionally, the number of free hole differences greater than 1 is
23, while the number of free electron differences greater than 1 is only 2. The tendency
for excessive hole formation can be explained by inadequate charge accommodation after
initializing the defect calculation from a perfect bulk structure. Since the defect calculation
is not relaxed from an occupied defect configuration, any removed electrons must initially
come from the VBM and, if a correct defect structural configuration is never achieved, these
unoccupied states will remain inside of the VBM. This is yet another error that may arise
from the workflow implementation rather than a general error of GGA, and it is possible
that improvements would occur with more intelligent initialization of the local coordination
environment. Future work should be done to investigate whether the calculation of more
positive charge states from the occupied defect structure configuration improves the number
of free carriers at the end of the calculation.

Freysoldt et al. proposed the planar averaged PA and the use of a resulting “plateau”
within the sampling region far from the defect as a visual cue for defect localization [65,84].
As an extension of the Freysoldt method to anisotropic dielectric constants, Kumagai et al.
used an atomic site averaging PA method to do a similar version of localization analysis far
from the defect [66]. Figure 2.8 in Section 2.4.3 provides an example of how planar aver-
aged plotting is displayed in practice. It is worth noting that, even for a localized defect,
some deviation from the “plateau” behavior often occurs in practice as a result of negligible
amounts of charge delocalization or the minor movement of atomic core states far from the
defect. As a metric for quantifying the total deviation from full localization of the short
range potential, we consider the statistical variance of the short range potential in the sam-
pling region, as computed by the planar PA and atomic-site PA methods. Differences for
this quantity between GGA and hybrid are shown in Figures 4.5c and 4.5d, respectively.
Both PA method differences have a mean value which is slightly negative, providing fur-
ther evidence that the hybrid calculations are localizing defect charge more effectively than
GGA calculations. Large deviations in the computed variance are considered further in the
compatibility approach discussed in Section 4.4.4.

4.4.2 Thermodynamic Transition Levels

Figure 4.6 shows the differences in calculated thermodynamic transition levels (Equa-
tion 4.2) between the GGA and hybrid calculations, with and without scaling according to
the band gap size. For the unscaled results, average values are mostly negative (only slightly
positive for the bes correction), indicating that GGA tends to underestimate transition levels
relative to hybrid. For the gap-scaled results, the no bes performs similarly to the best case
band edge shifting routines. A summary of errors and standard deviations are provided in
Table 4.2.
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Figure 4.6: Thermodynamic transition level errors (GGA – hybrid) displayed with and without
gap scaling.

Transition Level Error (gap scaled, %)

Value no bes BS bes bes dls1 dls2

Mean Error 3.8 -17.4 8.7 -0.6 -17.7
Absolute Mean Error 15.7 23.5 19.2 15.4 27.3
Var. in Error 6.0 8.1 6.5 5.7 16.4
Var. in Absolute Error 3.6 5.6 3.6 3.3 12.0

Transition Level Error (gap NOT scaled, eV)

Value no bes BS bes bes dls1 dls2

Mean Error -0.7 -0.7 0.1 -0.2 -0.7
Absolute Mean Error 0.8 0.8 0.6 0.5 0.9
Var. in Error 0.9 0.9 0.7 0.5 1.5
Var. in Absolute Error 0.7 0.7 0.3 0.3 1.1

Table 4.2: Errors for Figure 4.6
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With gap scaling, the dls1 minimizes error better than all other correction schemes,
with an absolute mean difference of 15.4% (absolute mean variance of 3.3%) relative to
the hybrid calculations. While no band edge shifting (no bes) does not perform as well as
dls1, it still outperforms all other corrections considered. The BS bes correction results in
a skewing towards more negative errors (underestimation of GGA relative to hybrid), as a
result of opening up the CBM without moving the VBM. The bes correction skews towards
positive differences and increases the mean and absolute mean errors to 8.7% and 19.2%,
respectively. This indicates an improved comparison with the application of free carrier
shifts when performing band edge shifts, as in the dls1 correction. The host band shift
(dls2) correction increases the variance (16.4%) and average absolute error (27.3%), such
that it performs the worst out of all correction sets considered.

Without gap scaling, the no bes, BS bes, and dls2 corrections have the largest absolute
errors, with absolute mean errors of 0.8 eV, 0.8 eV, and 0.9 eV, respectively. Moreover, the
largest variance (1.5 eV) occurs, once again, with the dls2 correction. The dls2 correction’s
large variance suggests an inconsistent performance of universally applying the host band
projection correction, a subject for future discussion and consideration. The bes and dls1
corrections once again improve performance relative to other corrections, with absolute av-
erage errors of 0.6 eV and 0.5 eV respectively. Their distributions are also positioned fairly
uniformly around zero error, indicating no statistically significant under or over-estimation
of transition levels relative to the hybrid benchmark case. For these two corrections, the
largest errors primarily derive from hybrid transition levels lying outside of the gap: out of
132 transition levels lying inside the gap as hybrid calculations, 76% have absolute errors
less than 0.5 eV, as compared to 19% within this window of error for the 54 outside-of-gap
transition levels.

While quantitative assessments are useful for comparing directly with experiment, it is
rare to make use of quantitative transition level values produced by semi-local functionals.
Instead, the qualitative position of transition levels being deep or shallow can be used to
label defects as problematic or not for optoelectronic applications. To assess the ability of
high-throughput semi-local approaches for screening in this qualitative manner, we display
the confusion matrix for predicting shallow and deep levels for the each of the five corrections
in Figure 4.7. Any transition level in the window of 25% - 75% of the gap is considered a
“deep” level and anything outside of that window is considered a “shallow” level.

For estimating shallow vs. deep transition levels, the no bes and dls1 corrections perform
better than all other corrections, with an 83% and 82% success rate, respectively. All other
corrections achieve a reduced success rate of 70±5% as a result of reducing the number of
correctly predicted shallow levels (predicting too many deep levels). However, both level
shifting schemes (dls1 and dls2) improve in the number of false negative deep levels as
compared to the bes correction, suggesting that level shifting helps improve the description
of deep levels when band edge shifting is implemented.

The dominant failure of the no bes correction was the prediction of false shallow levels.
This failure is consistent with the fact that hybrid calculations often achieve larger local
relaxation than semi-local calculations, resulting in deeper transition levels. The missing
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Figure 4.7: Confusion matrix for determining deep vs. shallow levels for each correction scheme.
“deep” is defined as a transition levels in the window of 25% - 75% of the band gap.

energetic contribution of extra relaxation for these deep defects is not a universal first-
principles correction that can be applied to semi-local functional calculations. However, for
purposes of high-throughput it is possible to imagine the application of empirical shifts for
cases with large site mismatch or electronic delocalization. Quantifying this amount further
is a subject for future work.

Overall, any results relating to the non-gap-scaled transition level should rely on adequate
Fermi level renormalization (intelligent movement of the VBM energy in Equation 4.1).
Whereas, when considering transition levels as a percentage of the band gap or for considering
the qualitative nature of deep vs. shallow, the best performing correction for this test set is
achieved with the dls1 correction scheme.

4.4.3 Fermi Levels

The Fermi levels for the dataset were computed using the charge neutrality condition
described in Section 4.3.1. The resulting errors between GGA and hybrid are shown as a
scatter plot in Figure 4.8. Given a set of chemical potential values, only one Fermi level
can exist for a bulk system. We choose to omit systems which have only one defect in
consideration, given that a single defect is often insufficient to adequately compute the Fermi
level. All formation energies and Fermi level plots are shown in Appendix F. For the case of
SnO2 we were forced to remove two defects when determining the Fermi level (the SbSn and
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FO antisites) as a result of having negative formation energies across the entire band gap. In
addition, for the dls2 correction, the ZnO system had negative formation energies across the
entire gap, so there is no value for this system in the dls2 category. This results in a total
of 10 systems considered across the various corrections in Figure 4.8 (9 systems for the dls2
correction).
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Figure 4.8: Fermi level errors (GGA – hybrid) evaluated using the charge neutrality condition
described in Section 4.3.1.

The spread in errors for the 10 systems in every correction is fairly homogeneous. The
exception to this trend is the BS bes correction scheme, which skews errors in a negative
fashion (underestimating with respect to the hybrid results), including the ZnO system which
becomes a large outlier with -58.8% error as a result of the n-type Fermi level becoming p-
type with the CBM moving upwards.

When using the Fermi level in a high-throughput study, it is useful to consider the
determination of dominant carrier type. To assess the test set’s performance in predicting
the dominant carrier type, Figure 4.9 provides a confusion matrix for p-type, intrinsic (low
carrier concentration), and n-type behavior. We define p-type values as Fermi levels less
than 1

3
of the gap, intrinsic Fermi levels are in the window of (1

3
,2
3
) of the gap, and n-type

Fermi levels are greater than 2
3

of the gap.
The bes and dls1 corrections both achieve a success rate of 70%, improving over the

no bes correction’s success rate of 60%. Given the buffer window of intrinsic carrier type,
a prediction of n-type when the true value is p-type (or vice versa) would be considered a
catastrophic failure in prediction. The only correction which produces a catastrophic failure
of this nature is the BS bes correction type, in the case of the ZnO system mentioned earlier.
For all corrections except BS bes, p-type prediction at the semi-local level is always correct,
with the only failures occurring with intrinsic or n-type classification. Overall, the strong
classification of the dls1 correction for p-type vs. n-type provides motivation for the use of
this correction within future high-throughput studies.



73

p-type

intrinsic

n-type

0 2 0

0 4 1

0 1 2

no_bes

2 0 0

1 3 1

1 1 1

BS_bes

p-t
yp

e

int
rin

sic
n-t

yp
e

0 2 0

0 4 1

0 0 3

bes

p-t
yp

e

int
rin

sic
n-t

yp
e

p-type

intrinsic

n-type

0 2 0

0 4 1

0 0 3

dls1

p-t
yp

e

int
rin

sic
n-t

yp
e

1 1 0

0 4 1

0 1 1

dls2

0.0

0.8

1.6

2.4

3.2

4.0

Predicted Value

Tr
ue

 V
al

ue

Figure 4.9: Fermi level confusion matrix, where p-type, intrinsic and n-type Fermi levels are
defined in the text.

4.4.4 Formation Energies

The defect formation energy is the fundamental quantity used in Equation 4.1. Errors in
this quantity are exponentially compounded when computing defect concentrations. In Fig-
ure 4.10, we display the differences in formation energies, with two choices of the Fermi level:
one where it is set to the VBM and the other where it is determined by charge neutrality as
determined by Equation 4.3. The error distributions for all of corrections look characteristi-
cally similar, with average absolute errors of 2.2±.2 eV, for both choices of the Fermi levels,
for almost every correction. The exception is the dls1 correction, which has errors of 1.6 eV
and 1.7 eV for Fermi levels at the VBM and from charge neutrality, respectively. There is
no significant change between the error statistics for formation energy analysis at the VBM
or the Fermi level. Overall, average hybrid formation energies tend to be lower than GGA
values by about 1.5 eV. Given that errors in formation energies exponentially compound in
the computation of defect concentrations, these results suggest that direct computation of
defect concentrations from high-throughput should be used cautiously. The use of chemical
potential corrections to improve the quantitative description of defect formation energetics
is a promising direction for future work [176].

To reduce the primary outliers in formation energies within the dataset, we consider the
use of the structural and electronic metrics, analyzed within Section 4.4.1, as cutoff criteria
for calculations that should be flagged as problematic in the automated GGA calculations,
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Figure 4.10: Formation energy errors (GGA – hybrid) for (A) Fermi level equal to the VBM,
and (B) evaluated at the Fermi level determined by charge neutrality.

due to improper localization of the defect. Based on the metadata in our dataset, we defined
a “compatible” defect calculation to have:

1. less than 2.1 free holes or electrons

2. less than 0.0001 variance in the Freysoldt sampling region for potential alignment

3. less than 0.005 variance in the Kumagai sampling region for potential alignment

4. If total relaxation amount within Wigner-Seitz radius is greater than 2 Å, then the
percentage of total movement inside the Wigner-Seitz radius must be larger than 50%

Given this list of compatibility criteria, we re-plot the error relative to hybrid calculations
for the compatible and not-compatible formation energies at the VBM as a scatter plot in
Figure 4.11. All major outliers for the bes and dls1 corrections have been removed with the
compatibility classification, with all errors now lying in the range of (-6.1 eV, +1.9 eV). In
addition, the absolute mean error is improved from 1.6 eV to 1.35 eV. The skewing towards
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negative formation energies may be related to further relaxation of the defect structure
within the hybrid calculations. Future work should consider additional compatibility criteria
for screening and reducing the error in formation energies calculated.
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Figure 4.11: Formation energy errors (GGA – hybrid) for Fermi level equal to the VBM, broken
up into compatible (top) vs. not-compatible (bottom), as discussed in the text.

When considering qualitative conclusions to be derived from formation energies, we can
consider the correct ordering of stable defects and charge states from the VBM to the CBM,
as computed with hybrid and GGA. For example, the convex hull of stable charged defect
states (the set of lowest formation energies for all values of the Fermi energy across the gap)
gives a good indication of the prominent defects of interest. For all systems considered in
this study, the most stable defects at the hybrid level are within 0.1 eV of the convex hull at
the semi-local level, when using the bes or dls1 correction sets. The only exceptions to this
was found in the OB substitution in B6O, where insufficient local relaxation occurred in the
GGA calculation. The general success for categorizing defects on the convex hull suggests
semi-local calculations are still powerful tools for high-throughput, as such a categorization
reduces the number of defects required for future calculations at higher levels of theory.
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4.4.5 Dopability Limits

As mentioned in Section 4.3.1, dopability limits (the Fermi level value at which formation
energies become negative) can provide an indication of the dopability of a material. The
upper dopability limit would prevent the Fermi level from getting closer to the CBM (an
electron killer), while the lower dopability limit would prevent the Fermi level from getting
closer to the VBM (a hole killer). Errors in the gap-scaled dopability limits for 13 upper and
12 lower dopability limits are displayed in Figure 4.12. The dopability cannot be accessed
for cases with negative formation energies across the entire band gap, forcing dopabilities
from the ZnO system to be omitted for the dls2 correction. In addition, SnO2, which had
large errors of 225.5% and -459.2% for the upper and lower-limit dopabilities with the no bes
correction, are left outside of the y-axis limits for the no bes correction for the sake of clarity.
These large errors are a result of the previously mentioned intentional omission of negative
formation energy defects, causing the GGA dopability to be determined by defects with high
formation energy values.
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Figure 4.12: Errors in 10 upper and lower dopability limits (GGA-hybrid), as determined by the
Fermi level where defect formation energies first become negative. Errors are given as a percentage
of the total gap. Not shown for the no bes correction is the SnO2 dopability with errors of 225.5%
and -459.2% for the upper and lower-limit dopabilities, respectively. The ZnO system is also not
included for the dls2 correction due to formation energies being negative across the entire gap.

Overall, the bes and dls1 corrections improve the upper-limit dopability error relative to
no bes, increasing the number of systems within 10% of the correct answer from 4 to 7. The
number of systems within 10% error in the lower-limit dopability was not reduced for the
band edge shifting cases, but the number of outliers was reduced, with a reduced max/min
window of (+ 80%,-67%) error in the dls1 correction.
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The position of the hybrid dopability limit being inside or outside of the gap was a major
indicator of the performance of the GGA dopability limit, with hybrid dopability values
outside of the gap indicating a larger error in GGA values. A summary of average errors,
broken down according to whether the dopability value is inside or outside of the gap at the
hybrid level, is provided in Table 4.3. Similar to the overall trend in dopabilities, the average
errors are significantly reduced for the bes and dls1 corrections in the Upper-limit, while the
change is less drastic for the Lower-limit dopability errors.

Value Count no bes BS bes bes dls1 dls2

Upper-limit (Hybrid Outside Gap) 7 62.6 47.5 21.8 19.4 48.8
Upper-limit (Hybrid Inside Gap) 3 3.4 15.4 1.2 1.2 1.2
Lower-limit (Hybrid Outside Gap) 3 189.5 76.2 74.3 67.6 67.6
Lower-limit (Hybrid Inside Gap) 7 37.4 26.6 20.9 20.9 17.9

Table 4.3: Average errors (eV) for upper and lower limit dopabilities, broken up according the
position of the hybrid dopability value being inside or outside of the gap.
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Figure 4.13: Confusion matrix for potential doping as determined by the dopability limit. Pos-
sible p-type doping is determined from a lower dopability limit of less than 0.1 of the band gap,
while possible n-type doping is determined by an upper dopability limit greater than 0.9 of the
band gap.

As done in previous sections, it is worthwhile to consider the limits of qualitatively
screening for dopability limits in a high-throughput manner. The purpose of dopability
consideration in a high-throughput study would likely be to screen for materials which can
or cannot be doped with a certain carrier type. The lower dopability limit produces hole
killers which limit the possibility of p-type doping, while the upper dopability limit produces
electron killers which limit the possibility for n-type doping. Using the metric that any
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dopability limit within 10% of the bandgap away from the band edges is a free carrier-killer,
Figure 4.13 displays confusion matrices for deciding whether it is possible to dope a system
n-type or p-type for the upper and lower limit dopabilities, respectively.

For the upper dopability limit, the no bes, bes, and dls1 corrections all perform identically
well with an 80% success rate. The BS bes and dls2 corrections perform worse, with a 50%
and 56% success rate, respectively. For the lower dopability limit, the BS bes, dls1, and dls2
corrections have a 90% success rate as a result of correctly predicting the TiO2 structure
as potentially p-type dopable. The no bes and bes corrections both achieve a lowered 80%
success rate. It is interesting to note that for all band edge shifting corrections, apart from
the BS bes correction, there are no false positive predictions for possible dopability. The lack
of false positives and the minimal number of false negatives provides a strong motivation for
high-throughput screening studies looking for bulk materials with the potential for doping.

4.5 Insights for High-throughput Computation of

Point Defects

High-throughput computation for materials discovery is a relatively nascent field which
endeavors to speed up time-consuming growth and characterization experiments in efforts
to discover new materials with targeted combinations of properties for a given envisioned
technological application. In the context of point defect calculations in semiconductors and
insulators, valuable information about the electronic carrier type and dopability of a material
can be gleaned from theoretical work. Currently, no large scale high-throughput point defect
studies have been performed due to the computational cost of hybrid functional approaches
which are the most trusted approach for such calculations due to their reduction of band
gap and self-interaction errors.

In Section 4.4 and Table 4.4, we summarize the results of calculations assessing the ac-
curacy of computationally-efficient semi-local DFT calculations of point-defect properties,
including a variety of a-posteriori corrections, compared to benchmark hybrid-functional re-
sults. Given these results, semi-local defect calculations with band edge shifting routines
(bes or dls1), performed in a fully automated, high-throughput format show promise for
initial screening. In particular, the results of this study suggest these methods are successful
in their ability to qualitatively describe whether a defect is characterized by deep vs. shallow
transition levels, the dominant carrier type (namely p or n), and dopability limits. With
this in mind, it is possible to imagine an efficient screening procedure whereby semi-local
functionals with a-posteriori corrections can be used to assess defects and charge states
of interest within a chemical composition, and then can be followed up with more com-
putationally intensive hybrid approaches at a higher level of accuracy. This approach will
benefit from continued efforts aimed at the development of more computationally efficient
implementations of hybrid functionals.
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Value Best Quantifier Best Qualifier
Thermodynamic Transition
Levels

dls1 (0.5 ± 0.3 eV avg.
absolute error)

no bes (83% success rate
in deep/shallow
classification)

Fermi Levels dls1 (17% avg. absolute
error with gap scaling)

dls1 (70% success rate in
p-type/intrinsic/n-type
classification)

Formation Energies dls1 with compatibility
criteria (1.35 avg. absolute
error)

dls1 Nearly perfect defect
ordering across gap

Dopability Limits dls1 (21 % average error
with gap scaling, better
with hybrid values inside of
gap)

dls1 (90% success rate in
n-type/p-type doping
potential, no false positives)

Table 4.4: Summary of optimal performance for quantification and qualification of defect prop-
erties analyzed in this work.

4.6 Summary

This work sought to catalog the performance of defect calculations based on semi-local
DFT approaches (with a-posteriori corrections for band-gap errors) run in a fully auto-
mated, high-throughput framework. The accuracy of the approaches based on semi-local
DFT functionals was assessed by comparing against a benchmark set of 245 hybrid calcu-
lations performed by several authors in previously published work. A set of five different
correction sets for the semi-local DFT results were reviewed and considered, with a compar-
ison of the errors of five different classes of quantities produced from the defect calculations:
structural and electronic relaxation, thermodynamic transition levels, Fermi levels, forma-
tion energies, and dopability limits. With the initial established benchmark results reviewed
in Table 4.4, we believe qualitative high-throughput screening for all the quantities outlined
in this work are ripe for exploration by semi-local DFT with a-posteriori corrections.

Future work remains to be done on relating the quantitative performance of these correc-
tions. For example, the proposed host band projection scheme shows promise as an energetic
correction for delocalized defect states. Given the size of the test set, it is possible that addi-
tional classification or screening schemes for reducing error and identifying “delocalization”
can be derived. Overall, we hope this study proves to be a useful first step in future large-
scale studies looking to improve the potential for high-throughput DFT screening procedures
to be performed on point defect properties.
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CHAPTER 5

Conclusions and future work

5.1 Conclusions

Point defects influence electronic and ionic transport properties and whether an energy
material will perform well in a given application. Point defect engineering is the intentional
choice of growing a material in an environment which promotes beneficial defects or ex-
trinsic dopants for the application of interest. In order to address the challenges of deep
de-carbonization which are necessary to combat climate change, new materials are desired
which offer higher conversion efficiencies, higher storage densities and reduced costs. In this
context, Density functional theory (DFT) based methods can facilitate the process of materi-
als discovery and design, and for such studies there is a need to account for defect properties.
While point defect calculations with DFT can be hindered by finite size effects and band
gap errors, qualitatively useful information for doping limits and limiting defect properties
can still be gleaned from such calculations for new energy materials. This dissertation has
provided tools and motivation for future work on automating point defect calculations for
high-throughput materials design challenges.

Chapter 2 covered some of the essential methodology required for first principles calcula-
tions of point defects in semiconductors and insulators, and introduced the Python Charged
Defect Toolkit (PyCDT) for aiding the setup, parsing, and analysis stages of performing
point defect calculations in an automated fashion. We have made the software open source
and have used the related publication as a user manual, with the hope that it helps improve
upon the reproducibility of defect calculations in the future.

Chapter 3 outlined three different example use cases of the PyCDT codebase, for materials
of interest for solar cell, thermoelectric and energy storage applications. For thermoelectrics,
we have previously used PyCDT to understand doping limits in a promising new class of
materials: TmAgTe2 [40]. This previous study inspired work on the theoretical requirements
for performing defect calculations on SnSe, leading to a new understanding of the importance
of van der Waals functionals in describing the lone pair effect on Sn. For battery materi-
als, we made use of PyCDT to understand the doping behavior of three magnesium spinel
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structures which have shown promise as solid-state electrolytes. We found that controlling
the anion content, as well as the cooling rate, had a significant impact on the free carrier
concentrations. For solar materials, we surveyed trends in Fermi level pinning of inorganic
halide perovskites for a variety of chemical and structural distortions. We found that dis-
tortions of octahedral cages, which distort the local coordination, had a more pronounced
effect on Fermi level pinning behavior, than the effect of rotations. In addition, for CdTe
thin film solar applications we performed a small scale benchmark study against experimen-
tally measured carrier concentrations, showing that empirical chemical potential corrections
were necessary for computing the correct order of magnitude of carriers, while band gap
corrections were necessary for understanding the correct partial pressure dependence of the
carrier concentrations. Overall, the work done in this chapter demonstrates the power of
having automated point defect analysis for expedited searches across a variety of metrics for
efficient and resilient energy materials.

Chapter 4 demonstrated a systematic benchmark of automated GGA point defect cal-
culations against “gold standard” hybrid calculations that were previously performed at a
lower level of throughput. We compare first principles results at multiple levels of complex-
ity; ranging from structural and electronic relaxation amounts of the DFT supercell, to the
more complex thermodynamic transition levels and formation energies. We differentiated the
qualitative vs. quantitative successes in a way which is consistent with the goals of a high-
throughput materials design approach. We found that quantitative values for the Fermi level
and dopability limit, when scaled by the bandgap, were significantly more trustworthy than
the quantitative values for transition levels and formation energies. Qualitatively we found
greater than 80% success rates for classifying a number of metrics which would be useful
for high-throughput studies of energy materials. This provides strong motivation for per-
forming future high-throughput studies with semi-local DFT used for qualitative screening
of promising new energy materials.

5.2 Future Work

The work presented in this dissertation presents many opportunities for future work with
automated point defect calculations. Generally speaking, a large amount of work remains
to be explored with the connectivity of existing workflows within the Materials Project
framework. Existing workflows can be coupled nicely with the work presented here for point
defects. For example, workflows for point defects can be connected with the work done for
epitaxial strain produced by Angsten et al. [199]. Automating the search for defects as a
function of epitaxial strain in this way could prove to be a new design variable for defect
engineering in functional materials prepared as epitaxial films.

The increasing computational efficiency of hybrid functional approaches are also promis-
ing for improved quantitative analysis of defects. Balancing quantitative and computational
requirements in future work will likely require the use of semi-local functionals for initial
screening, with follow up screening performed at the hybrid functional level. Automation
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capabilities for this type of work would be extremely useful to the high-throughput materials
design community, and efforts to this end will be made within the atomate code base in the
future.

Additional directions for methodological development exist within canonical ensemble
definitions for defect thermodynamics. This method allows for the self consistent definition
of chemical potentials with Fermi level, temperature, and stoichiometry - which could allow
for more direct connections with experimental observations. While canonical ensemble ap-
proaches for defect physics have been published before [75], the final constraint required for
equilibrium is commonly taken as a zeroth order low temperature expansion of the grand
canonical potential. Work remains to be done to benchmark whether an extended method-
ology, which includes higher order terms of the grand canonical potential, could be beneficial
for point defect analysis.

Finally, a number of improvements remain to be investigated for point defect workflow
automation in the atomate code base. For example, avoiding defect relaxation into local
minima - especially when global minima can be reached with perturbations of local co-
ordination - would help improve automation results. Performing further analysis of large
relaxation defects could allow for the identification of structural signatures which require
further symmetry breaking.

Inconsistent relaxation in a DFT calculation has led to inconsistent results on defect
physics in the literature, even for the same structure, with the same pseudopotential [26].
The best way to differentiate defect results is to precisely document every step of the DFT
relaxation process. High-throughput infrastructure lends itself to such a process, as careful
documentation and reproducibility is required for any intelligent data generation procedure.
Some in the field of defect computation have been (rightly) skeptical of proceeding with point
defect computation in a high-throughput format. However, it is entirely possible that the
high standards set for documenting high-throughput workflows is precisely the requirement
for fixing reproducibility issues that have plagued the point defect computational community
for decades. In this way, intelligent engineering of automation processes for point defect
calculations with DFT has the potential to remedy many problems for the entire field of
point defect computation.
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APPENDIX A

Charge States from Literature for PyCDT Charge

Analysis

Table A.1: Charge states from literature; brackets refer to hybrid functional rather than (semi-
)local functional results.

Structure Defect Charge States Ref.
from to

C VC +2 −2 88
NC +1 −1

AlP VAl 0 −3 73
VP +1 −2
AlP +1 −2 89
PAl +2 −2

AlAs VAl 0 −3 73
VAs +1 −2
AlAs +1 −2 89
AsAl +1 −1

AlSb VAl 0 −3 73
VSb +1 −3
AlSb 0 −2 89
SbAl +1 −1

Si VSi +2 −2 90
ZnS VS +2 0 91

VZn 0 (+1) −2 91 (28)
SZn 0 −2 91
ZnS +2 0
Zni +2 0
Si 0 −2
To be continued on next page.
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Structure Defect Charge States Ref.
from to

ZnSe VSe +2 −2 92
VZn +2 −2
ClSe +2 −1
FSe +1 −2
FZn −2 −2

ZnTe VZn 0 (+1) −2 28
GaN VGa 0 (+1) −3 93 (28)

VN +1 +1 93
GaN +1 −2
NGa +2 −1
Ni +3 −1
Gai +3 +1
CN 0 (+1) −1 28

GaP VGa 0 −3 73
VP +1 −3
GaP 0 −2 89
PGa +2 −2

GaAs VGa −1 −3 73
VAs +1 −3
GaAs 0 −3 89
AsGa +1 −2

GaSb VGa 0 −3 73
VSb 0 −3
GaSb 0 −2 89
SbGa +1 −1

CdS VS +2 0 59
VCd 0 −2
CdS +2 +2
SCd +4 −2
Cdi +2 +2
Si +4 −2

MnCd +1 0
FeCd +2 0
CoCd +1 0
NiCd +1 0
Mni +3 +2
Fei +3 +2
Coi +3 +2
Nii +2 +1
To be continued on next page.
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Structure Defect Charge States Ref.
from to

InP VIn 0 −3 73
VP +1 −1
InP +1 −2 89
PIn +2 −1

InAs VIn 0 −2 73
VAs +1 0
InAs 0 −1 89
AsIn +1 0

InSb VIn −1 −2 73
VSb +1 0
InSb 0 −1 89
SbIn +1 0
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APPENDIX B

Practical Notes on PyCDT

B.1 Overview of PyCDT Codebase

In Chapter 2, we gave an overview of PyCDT and described how PyCDT can be used from
command line. PyCDT is implemented in Python and leverages the language’s flexibility. For
those users interested in using PyCDT for high-throughput defect calculations or customizing
PyCDT, in this Appendix, the core classes in PyCDT are briefly described. Python snippets
are given to showcase few usage scenarios. To use PyCDT in python scripts, we expect
the users to be familiar with the pymatgen codebase also. For more details, python’s help
command would be helpful.

PyCDT consists of classes implementing a specific functionality as well as scripts that
use the defined classes in accomplishing the desired tasks. The implementation of PyCDT’s
command line is nothing but a python script calling different classes based on user input
arguments. For minor customization, editing the PyCDT command line script should suf-
fice. Based on the functionality implemented, PyCDT can be broadly divided into three
components: a) code to set up defect calculations, b) post-processing the defect calcula-
tions including corrections to various errors associated with density functional theory based
supercell formalism, and c) defect thermodynamics.

B.1.1 Set up of Defect Supercell Calculations

In PyCDT, setting up defect supercell calculations is accomplished in three stages. Gen-
erating defect supercells, assigning charges to the defects, and generating DFT inputs cor-
responding to each supercell and charge state.

Defect Charge Assignment

To assign defect charges, we need to know the oxidation state of the ions in the crystal
as well as the range of oxidation states admitted by the ions in the crystal. While the latter
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can be easily obtained by referring to the commonly available ion oxidation tables, the for-
mer is evaluated using a bond-valence based charge assignment procedure. This procedure
developed by the authors and implemented in pymatgen as ValenceIonicRadiusEvaluator
class had been tested on hundreds of crystal structures and was found to work even in
mixed valence compounds. Once the charge of the ions in the crystal were determined, the
range of the defect charges was calculated based on defect type, the range of valences of
the ions in the crystal. The abstract base class DefectCharger in pycdt.core.defectsmaker
defines the prototype class of charge assignment. The users have the choice to assign various
charges ranges for defects based on whether the crystal is ionic or semiconductor compound.
Both the charge assignment procedures were implemented in DefectChargerInsulator, and
DefectChargerSemiconductor respectively. For ionic compounds, for example MgO, Mg va-
cancy admits [0, -1, -2] charges and the anion vacancy admits [0, 1, 2] charges. A sample
script to obtain the defect charges in MgO is given below.

# Get MgO structure from MP database

from pymatgen.ext.matproj import MPRester

with MPRester() as mpr:

mgo_struct = mpr.get_structure_by_material_id(’mp-1265’)

# Automatic Defect Charge Assignment for ionic crystals

from pycdt.core.defectsmaker import DefectChargerInsulator

defect_charger = DefectChargerInsulator(mgo_struct)

# Charges for Mg vacancy

mg_vac_charges = defect_charger.get_charges(’vacancy’, site_specie=’Mg’)

Defect Supercell Generation

To generate vacancy, substitutional, and antisite defects, the symmetry of the input
structure is analyzed and each of the symmetrically distinct site is used as a defect site. For
interstitials, bond-order parameter based interstitial generation algorithm which performs a
grid-search is utilized. The development of the above mentioned algorithms precedes the de-
velopment of PyCDT and were implemented in pymatgen by the developers. An alternative
version for interstitial generation based on Voronoi decomposition was also implemented by
the authors in pymatgen. For interstitial generation algorithm to be effective, correct ionic
radii are required. To accurately predict ionic radii that are based on valence of ions in the
crystal, we utilized the ionic valences identified in ValenceIonicRadiusEvaluator. The class
returns the ionic radii of the symmetrically distinct ions in the crystal. Further, PyCDT
generates maximally cubic defect supercells by minimizing the differences in a, b, c of the
defect supercells.
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DFT Settings

The DFT settings for defect calculations are automatically generated by classes DefectRe-
laxSet and DefectStaticSet. Both are subclassed from MPRelaxSet and MPStaticSet classes
in pymatgen to take advantage of the heuristic knowledge encoded in pymatgen to perform
high-throughput DFT calculations. MP{Relax,Static}Set classes can automatically set up
many VASP parameters based on the input crystal structure including LDA+U parameters
without any user input. In the defect subclasses, some parameters are added or modified
to suit defect calculations, for example setting VASP parameters LVTOT and LVHAR to
True to compute finite size electrostatic corrections. Users can alter any settings or give new
settings as keyword arguments to the classes. A python snippet generating DFT inputs to
a particular defect structure is given below.

# Vasp Input Generation for Defect Structure

from pycdt.core.defectsmaker import ChargedDefectsStructures

charged_defects_structs = ChargedDefectsStructures(mgo_struct)

from pycdt.utils.vasp import DefectRelaxSet

defect_struct = charged_defects_structs.get_ith_supercell_of_defect_type(

0, ’vacancies’)

vasp_input = DefectRelaxSet(defect_struct) # defect_struct is defect supercell

vasp_input.write_input(output_dir) # Writes VASP inputs to output_dir

# To change functional to PW91 input the choice as keyword argument

vasp_input = DefectRelaxSet(defect_struct, potcar_functional="PW91")

# Alternatively to input multiple settings

user_settings = {

’potcar_functional’: ’PW91’,

’user_incar_settings’: {

’EDIFFG’: -1e-3, ’EDIFF’: 1e-8, ’LASPH’: True}}

vasp_input = DefectRelaxSet(defect_struct, **user_settings)

When working from command line, the same settings can be given from a yaml file with the
following syntax.

POTCAR:

functional: PW91

INCAR:

EDIFF: 1e-8

defects:

EDIFFG: -1e-3

EDIFF: 1e-7

LASPH: True

dielectric:

EDIFF: 1e-9

When the functional is changed, in practice, it is changed for all the calculations related to
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defects, bulk, dielectric, and chemical potential evaluations. The full format of the YAML
file is given below.

POTCAR:

<keyword1_all>: <value1_all>

<keyword2_all>: <value2_all>

...

INCAR:

<keyword1_all>: <value1_all>

<keyword2_all>: <value2_all>

...

bulk:

<keyword1_bulk>: <value1_bulk>

<keyword2_bulk>: <value2_bulk>

...

defects:

<keyword1_defects>: <value1_defects>

<keyword2_defects>: <value2_defects>

...

dielectric:

<keyword1_dielectric>: <value1_dielectric>

<keyword2_dielectric>: <value2_dielectric>

...

chempot:

<keyword1_chempot>: <value1_chempot>

<keyword2_chempot>: <value2_chempot>

...

In the above file, keyword1 all and value1 all are the keyword, value pair that applies to
all the calculations. The keyword, value pairs that fall under under either of bulk, defects,
dielectric, chempot sections apply only to relevant calculations. If a keyword defects equals
a keyword all, then the corresponding value defects overrides the corresponding value all for
defect calculations. The same logic applies to other sections as well.

B.1.2 Chemical Potentials

The class ChemPotAnalyzer is used to compute the atomic chemical potentials based on
the computed phase diagram of a material. The thermodynamic aspects of this approach
are described at length in Section 2.3.3 of the main text. To provide chemical potentials
from the Materials Project database, the MPChemPotAnalyzer is subclassed from ChemPot-
Analyzer. This subclass is capable of pulling a Pymatgen PhaseDiagram object from the
Materials Project database based on a given bulk composition. Once this object is pulled,
the relevant facets of the phase diagram that are adjacent to the composition of interest are
identified. With these facets, the subclass then makes use of the linear programming aspects
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of ChemPotAnalyzer to determine numerical values for the chemical potentials in the various
growth extremes of the phase diagram. A sample script for obtaining the atomic chemical
potentials of GaAs is provided below.

from pycdt.core.chemical_potentials import MPChemPotAnalyzer

from monty.serialization import dumpfn

from monty.json import MontyEncoder

cpa = MPChemPotAnalyzer(mpid=’mp-2534’) #this is mp-id for GaAs

chempot_data = cpa.analyze_GGA_chempots()

dumpfn(chempot_data, ’chempots.json’, cls=MontyEncoder, indent=2)

As identified in the main text, it is also possible to set up and parse chemical potentials
in the case of a user computed phase diagram. This is important if a user decides to calculate
the formation energetics on a level of DFT that is not pre-computed by the Materials Project
(i.e. spin-orbit coupling, hybrid functionals etc.).

The class UserChemPotInputGenerator is provided for pulling the structure objects from
the Materials Project phase diagram. The code provided below allows for set up of the
relevant phases of a GaAs calculation in a local directory called ’PhaseDiagram’. By default
only the structure files are provided for set up, however, additional file set up is straight
forward by using the methods outlined in the DFT Settings section of this Appendix.

from pycdt.core.chemical_potentials import UserChemPotInputGenerator

from pymatgen.core.composition import Composition

cpa = UserChemPotInputGenerator(Composition({’Ga’: 1, ’As’: 1}))

cpa.setup_phase_diagram_calculations()

After the calculations that were set up in the ’PhaseDiagram’ directory have been run,
the user can make use of the UserChemPotAnalyzer, which has also been subclassed from the
ChemPotAnalyzer. The following example code allows for a user to run follow-up parsing of
the chemical potentials. Here we make use of the ease of conversion of VASP’s vasprun.xml
files to ComputedEntry objects with pymatgen. This can be expanded to arbitrary DFT
codes by similarly instantiating a ComputedEntry object from the code’s output files.

from pycdt.core.chemical_potentials import UserChemPotAnalyzer

from pymatgen.io.vasp import Vasprun

from monty.serialization import dumpfn

from monty.json import MontyEncoder

bulk_vr = Vasprun(’path_to_bulk/vasprun.xml’) #provide a path to the computed

bulk vasprun file

bulk_ce = bulk_vr.get_computed_entry()

cpa = UserChemPotAnalyzer(bulk_ce)

chempot_data = cpa.analyze_GGA_chempots()

dumpfn(chempot_data, ’chempots.json’, cls=MontyEncoder, indent=2)
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It is possible that additional phases which were not documented in the ICSD (and there-
fore may not exist in the MP database) may influence the determination of the atomic
chemical potentials. If the user knows of such a structure, then they can compute the struc-
ture on their own and achieve manual insertion of the computed entry into the phase diagram
by including the files within the local PhaseDiagram folder.

As a comment on computational time saved for this method, if a user desires to run this
procedure on their own, many steps would be required. They would first need to research the
structures that are stable within the phase diagram of their composition of interest. As an
example case where this become an arduous task, consider the phase diagram of the Fe-P-O
system considered by Jain et al. [77]. In this system they find a total of 20 phases, with close
competition for stability in the middle of the phase diagram. If a user wished to perform
defect calculations on a material in this system, they must both set up and run the structures
adjacent to the composition of interest in the phase diagram. Considerable computational
time can be saved by either making use of PyCDT’s quick queries of the calculations already
performed by the MP or by making use of PyCDT’s quick set up feature for the intial starting
point of the MP documented structures. The user would then need to formulate a system
of equations (a procedure discussed at length within Section 2.3.3) and solve for the atomic
chemical potentials in the various regions of interest. While many have gone through the
practice of setting up their own codes to perform this task, PyCDT provides an open source,
robust interface for expediting this process.

B.1.3 Post-processing

The class ComputedDefect in pycdt.core.defects analyzer is used to represent the data of a
relaxed defect, such as its structure, total energy from the defect calculation, any corrections
associated with the energy, multiplicity, etc.

After the DFT calculations of the defects in a material are completed, the computed
data of all the defects as well as the bulk data required for defect thermodynamics can be
obtained with PostProcess class. This class is somewhat similar to the BorgQueen class in
pymatgen. The calculations pertaining to defect supercells, dielectric constant, and bulk
supercell, whose inputs are generated with PyCDT, can be parsed with few of lines of code.

from pycdt.utils.parse_calculations import PostProcess

from monty.serialization import dumpfn

from monty.json import MontyEncoder

defect_data = PostProcess(root_dir, mpid).compile_all()

dumpfn(defect_data, ’data.json’, cls=MontyEncoder, indent=2)

Finite Size Electrostatic Error Correction

Two correction schemes were implemented to reduce the electrostatic error due to finite
size supercells. Freysoldt, Neugebauer, Van de Walle (FNV) scheme and its anisotropic
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counterpart by Kumagai and Oba can be used for isotropic and anisotropic systems [34, 35].
The code snippet below shows how to call FNV correction on a charged defect calculation.

from pymatgen.io.vasp.outputs import Locpot

from pycdt.corrections.finite_size_charge_correction import \

get_correction_freysoldt

blk_locpot = Locpot.from_file(’bulk_locpot_path’)

fnv_correction, = get_correction_freysoldt(

defect, blk_locpot, epsilon, title=’example_fnv’)

#Here defect is ComputedDefect object

#blk_locpot is the LOCPOT object from bulk supercell calculation

#epsilon is the dielectric constant

#Names of any plots generated start with example_fnv

Calling anisotropic charge correction is slightly more involved as shown in the code snippet
below.

from pycdt.corrections.finite_size_charge_correction import \

get_correction_kumagai

from pycdt.corrections.kumagai_correction import KumagaiBulkInit

kumagai_init = KumagaiBulkInit(blk_locpot.structure, blk_locpot.dim,

epsilon, encut, tolerance=1e-4)

anistropic_fnv_correction = get_correction_kumagai(

defect, path_blk, kumagai_init, bulk_locpot=blk_locpot,

title=’example_aniso_fnv’)

B.1.4 Defect Thermodynamics

The class DefectsAnalyzer is used to compute the thermodynamics of the defects in
a material. As such, the class requires the bulk properties such as bulk structure, total
energy of the bulk structure, dielectric constant, band structure details, etc. In addition the
optimized defects represented by the ComputedDefect objects are also input to the class.

Based on the above data, the class provides method functions to compute transition
levels, defect formation energies, and band gap related corrections to the formation energies.

#To initialize DefectsAnalyzer, supply the bulk properties as below

#bulk_entry is pymatgen ComputedStructureEntry object

#vbm: Valence Band Minimum

#mu: Chemical potentials in python dictionary format at the phase boundaries

#bandgap: Experimental bandgap

da = DefectsAnalyzer(blk_entry, vbm, mu, bandgap)

#Add a defect

da.add_computed_defect(defect) # defect is ComputedDefect object

#Once all the defects are added, get transition levels as
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da.get_transition_levels()

#To plot formation, input DefectsAnalyzer object to DefectPlotter

plotter = DefectPlotter(da)

form_en_plot = plotter.get_plot_form_energy()

#form_en_plot is a matplotlib object. It can be saved to the formats supported

form_en_plot.savefig(’defect_formation_energy.png’)

B.2 Example Customization of PyCDT Core

Functionality

B.2.1 Interstitial charge state screening

Determining the relevant charge state and stability of self-interstitials can be difficult. For
example, when considering defects that contain nitrogen, a large range of possible oxidation
states can occur as a result of the variety of oxidation states that nitrogen can assume.
One solution is to run the defects in a large variety of possible oxidation states. However,
this procedure introduces the possibility of computing many excess charges which do not
have the lowest formation energy for all values of the Fermi level within the gap. This
wasted computational time becomes particularly important to consider if one wishes to
perform defects on the scale of high-throughput with reasonable computational resources.
In this subsection, we demonstrate a manner for adapting the core functionality of PyCDT
to calculate relevant charge states for a defect in a computationally efficient manner.

Initialization of defect files can be done through the manner described in Section 3 or
through custom adaptations of the ChargedDefectsStructures class of PyCDT. Rather than
running DFT calculations of all of these charges at once, an alternate procedure is to in-
crementally consider additional charge states of the defects through use of the PyCDT core
functionality. The procedure goes as follows:

1. Run the neutral charge state of each defect produced by PyCDT.

2. Use the DefectsAnalyzer to determine the minimum formation energy from each chem-
ical potential region, for each defect.

3. Only run follow up analysis on defects which have a neutral formation energy less than
some set tolerance

4. Parse and pull together results within the DefectsAnalyzer module of PyCDT to quan-
tify the position of the transition states relative to the band edges.

5. For each defect, check to see if the transition to a more stable positive (negative) charge
state is above (below) the valence band (conduction band). If it is not, then use the
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ChargedDefectsStructures to set up the next positive (negative) charge state for the
defect and run the DFT calculation.

6. Repeat from Step (4) until both positive and negative charge states have transition
levels outside of the band gap.

This procedures provides one example for how the core set of PyCDT can be customized
to perform any number of custom tasks for expediting high-thoughput DFT calculations of
point defects in semiconductors.
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APPENDIX C

Materials Used in PyCDT Data Set

Name Spacegroup Materials Project ID
1 AlP F 4̄3m mp-1550
2 AlAs F 4̄3m mp-2172
3 AlSb F 4̄3m mp-2624
4 BP F 4̄3m mp-1479
5 C F 4̄3m mp-66
6 CdS F 4̄3m mp-2469
7 CdSe F 4̄3m mp-2691
8 CdTe F 4̄3m mp-406
9 GaAs F 4̄3m mp-2534
10 GaN F 4̄3m mp-830
11 GaP F 4̄3m mp-2490
12 GaSb F 4̄3m mp-1156
13 Si F 4̄3m mp-149
14 ZnS F 4̄3m mp-10695
15 ZnSe F 4̄3m mp-1190
16 ZnTe F 4̄3m mp-2176
17 ZnO P63mc mp-2133
18 Cu2O Pn3̄m mp-361
19 Ag3PO4 P 4̄3n mp-4198
20 Rb3AuO Pm3̄m mp-4405
21 K3AuO Pm3̄m mp-9200

Table C.1: Table of Materials from Test Set of Chapter 2
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APPENDIX D

Details on Workflow for Defect Automation

This section describes the workflow that was used for full automation of charged defect
calculations with DFT. The functionalities displayed here are extensions of the PyCDT code
base [136] which were refactored into the pymatgen [76], atomate [193] and emmet [194] code
bases to produce a fully automated defect workflow which is compatible with the Materials
Project infrastructure [36]. All of these codes are openly available for use on their respective
github pages. The overall workflow process for defect calculations is displayed in Figure D.1.

Defects Store

DefectBuilder
(emmet.vasp.builders.defects)

DefectThermoBuilder
(emmet.vasp.builders.defect_thermo)

DefectCompatibility
(pymatgen.analysis.defects.

defect_compatibility)
+

Atomate Resubmission

DefectThermo Store

Figure D.1: Diagram of database management within Materials Project (right) and within
automated defect calculations used in this work (left).

Following the practice of data provenance observed by the Materials Project database
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(right side of Figure D.1), a database of first principles calculations is removed from the
processing stage by designating separate databases (or “Stores” in the parlance of the emmet
code base). The Tasks Store contains raw information from the first principles calculations,
while all other Stores contain material or thermodynamic data to be used for high-throughput
screening or to be displayed on the Materials Project website. Builder objects, defined within
the emmet code base, manipulate data from a given store and then push it to another store.
For more information on stores and builders, refer to the emmet documentation [194].

The DefectBuilder and DefectThermoBuilder work to create the DefectsStore and De-
fectThermo Stores, respectively. The DefectsStore contains single Defect class objects from
pymatgen, which store all metadata required for follow up corrections and formation energy
analysis. The DefectThermo Store then accumulates a set of defects from the DefectsStore
which have identical bulk structures and metadata for the run (same pseudopotentials etc.).
After defects have been initialized within the DefectsStore, the DefectCompatibility from
pymatgen works in tandem with atomate functionality to resubmit any defect calculations
which are deemed incompatible based on several delocalization metrics described further in
Section 4.4.1 (potential alignment sampling region variance, free carrier delocalization, or
excessive structural relaxation far from the defect). Several quantitative decisions must be
made when performing such an analysis, and this newly integrated code is designed to allow
for customization of the values which trigger follow up calculations to be performed.
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APPENDIX E

Bulk Systems Used for Benchmark Study
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APPENDIX F

Formation Energy Plots for Benchmark Study
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Figure F.1: CaZrO3 orthorhombic
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Figure F.2: SrH2 orthorhombic
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Figure F.3: BaZrO3 cubic
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Figure F.4: ZnO hexagonal
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Figure F.5: BaH2 orthorhombic
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Figure F.6: ZnGeN2 orthorhombic
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Figure F.7: CaH2 orthorhombic
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Figure F.8: B6O trigonal
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Figure F.9: TiO2 tetragonal
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Figure F.10: SnO2 tetragonal (Fermi levels determined without SbSn or FO defects)
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Figure F.11: BeO cubic
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Figure F.12: InP cubic
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Figure F.13: BSb cubic
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Figure F.14: AlP cubic
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Figure F.15: ZnO cubic
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Figure F.16: BP cubic
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Figure F.17: ZnTe cubic
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Figure F.18: MgTe cubic
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Figure F.19: ZnSe cubic
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Figure F.20: MgS cubic
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Figure F.21: BeS cubic
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Figure F.22: MgSe cubic
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Figure F.23: BAs cubic




