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Abstract

Strongly Correlated Electron Systems Near Criticality: From Nodal Semimetals to
High-Temperature Superconductors

by

Philipp Dumitrescu

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Ashvin Vishwanath, Chair

In this thesis, we will study aspects of two phases close to criticality arising in solid
state systems with strong interactions between electrons. In the first part, we study fi-
nite temperature transport in a non-Fermi-liquid phase arising from a nodal semimetal
with long-range interactions – the so-called Luttinger-Abrikosov-Beneslavskii phase.
We are particularly interested in calculating the finite temperature shear viscosity
of the phase and find that it is consistent with a bound proposed in the context of
gauge-gravity duality. In the second part of the thesis, we study a minimal model of
nematic fluctuations in the high-temperature superconductor iron selenide. Nematic
fluctuations arising from a quantum critical point have been proposed to explain the
phenomenology of several high-temperature superconductors. In a numerical simula-
tion using determinant quantum Monte Carlo methods, we find no direct evidence of
a nematic critical point. However, we still observe a wide region of superconductivity
correlated with nematic fluctuations as well as an unusual antiferro-quadrupole order.
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Chapter 1

Introduction

Exploring and describing the nature of phases and phase transitions is a central theme
of condensed matter physics. A macroscopic system, such as a solid or a liquid, is
made from a very large number of atomic constituents. The laws that govern the
large distance and long timescale properties of the system may be entirely different
from the laws at the atomic scale. As we are confronted with a wealth of new physical
materials and theoretical models, we are steadily increasing our understanding of the
effective degrees of freedom which describe a phase and of the external responses
associated with those degrees of freedom.

The ideas of the renormalization group (RG) give a natural framework to under-
stand interacting systems with many degrees of freedom, where fluctuation effects
between different energy scales become important. Conceptually, we consider the
systems starting from the microscopic theory at short-distance scales and construct a
theory at successively larger length-scales by integrating out fluctuations at the inter-
mediate scales. This procedure generates effective models, that neglect microscopic
details but correctly describe the long distance behavior of the full theory. Iterating
this procedure to the longest distances leads us to so-called fixed points, which de-
scribe the essential nature of phases or phase transitions. The renormalization group
picture naturally highlights the universal nature of phases – different systems have
similar long distance properties when their behavior is governed by the same fixed
point.

The ideas of RG become precise in the vicinity of a critical point – quintessen-
tial examples are the liquid-gas critical point and the Curie point of a ferromagnet.
The correlation length ξ of the interaction becomes larger than any characteristic
microscopic length-scale of the system `

ξ � `, (1.1)

and typically diverges in a scaling form
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ξ ∼ 1

|g − gc|ν
. (1.2)

Here g is some tuning parameter and gc its critical value; the scaling exponent ν
is a universal property of the critical point. Close to the critical point, there is a
wide separation of scales, and the dependence on physics at the microscopic scale `
generally enters physical response functions in only a simple form. This constrains
the structure of the theory at and in the vicinity of the critical point and allows
predictions to be made, which depend only on general aspects such as the symmetries
and dimensionality of the system.

In the traditional ‘Ginzburg-Landau-Wilson’ picture of a critical point, phases
are distinguished by broken symmetries and the transitions between them are driven
by the fluctuations of the broken symmetry order parameter [3–6]. Far away from
the phase transition, the correlation length ξ is generically at the microscopic scale
` and we can understand the essential phase structure from considering only a small
number of interacting constituents. In a classical ferromagnet, for example, the mag-
netic phase at low temperatures can be thought of as the alignment of neighboring
spins, while the paramagnet at high temperatures can be thought of as independent,
thermally fluctuating spins. The symmetries and symmetry breaking patterns also
determine the low energy excitations of the system through Goldstone’s theorem and
through the classical hydrodynamics of conserved currents [7–9].

The above considerations apply equally to phase transitions in classical systems,
driven by thermal fluctuations, and to phase transitions in quantum mechanical sys-
tems, driven by the non-commuting nature of terms in a many-body Hamiltonian [10].
The study of quantum critical phenomena, describing the zero-temperature transi-
tions between different ground-states, has received much interest in recent years due
to experimental progress in a variety of materials including high-temperature su-
perconductors, strongly interacting spin systems, heavy-fermion systems, cold-atom
systems or quantum Hall systems. While no experiment is ever performed truly in
the ground state, the special nature of critical points means that they can dominate
the physics of a system even at temperatures and tuning parameters far away.

Beyond the experimental impetus, quantum phases and critical phenomena nat-
urally provide a richer structure then their classical counterparts. Even the most
traditional of condensed matter systems – a metal – requires the presence of anti-
commuting fermions forming a Fermi surface; it’s excitations are quite different from
classical order parameter fluctuations. The study of gauge structures and symmetry
representations has led to a more refined understanding of phases not distinguished
by any local order parameter. This includes symmetry protected topological states
such as topological insulators and their interacting analogs [11–13] or topologically
ordered states as in fractional quantum Hall systems [14]. Additionally, such struc-
tures allow new types of phase transitions, such as between phases not breaking any
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symmetries or deconfined criticality driven by degrees of freedom emerging only close
to the critical point [15, 16].

1.1 Gapless Electronic Phases

Landau’s theory of Fermi liquids adapted for the screened Coulomb interaction is
the foundation of our understanding of the electronic properties of metals [17–20].
The fundamental idea is that the phase of the interacting electrons is analytically
connected to the non-interacting system. For a free fermion model of solids, the
electrons are determined by the band-structure

H =
∑
p

εpc
†
pcp, (1.3)

where εp is the dispersion relation and p the momentum; other quantum numbers
such as band index and spin are suppressed. The Fermi surface is specified at T = 0
by εp = εF ; the states below εF in energy are occupied and the states above empty.
The electron spectral function is

A(p, ω) = δ(ω − vFp), (1.4)

where ω is the frequency above the chemical potential and vF the Fermi velocity.
The delta-function form reflects the well-defined nature of the electronic excitations,
which have a fixed dispersion.

In the presence of interactions, the electron spectral function will still be sharply
peaked around a well-defined dispersion

A(p, ω) =
1

πτ

Z

(ω − v∗Fp)2 + 1/τ 2
+ . . . ∼ Zδ(ω − ε∗p). (1.5)

This gives a notion of electronic quasi-particles, with renormalized Fermi velocity
v∗F . The degree of overlap with a free fermion state is captured by the quasi-particle
residue Z; the neglected terms marked ‘. . .’ are the weak incoherent background. A
key insight of Landau was that the form (1.5) will be valid even in the presence of
strong interactions. The smallness of 1/τ is guaranteed close to the Fermi surface by
phase space restrictions and the Pauli exclusion principle. In fact, 1/τ is determined
by the leading RG irrelevant perturbation. In three spatial dimensions, 1/τ ∼ ω2/εF ,
which is small if ω � εF . In a different language, the smallness of phase space is a
type of 1/N expansion [21, 22].

The phase space restriction on electrons is a strong constraint on the emergence of
novel phases. For a generic Fermi surface without singularities in the density of states,
the only weak coupling instability is attractive Cooper pairing. At low temperatures
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this leads to the U(1) gauge-symmetry breaking superconducting state. To obtain
behavior with gapless electronic excitations, which is qualitatively different from a
Fermi liquid one either has to consider a Fermi surface with strong interactions or
consider the limit where the size of the Fermi surface is vanishing – so called nodal
semimetals or zero-gap semiconductors.

Non-Fermi-liquid states arising from a strongly interacting Fermi surface have re-
ceived much attention over the last decades in the study of high-temperature super-
conductors [23]. With sufficiently strong electron-electron interactions, Fermi liquids
can undergo spontaneous symmetry breaking transitions; examples include charge-
density, spin-density, nematic or ferromagnetic order. The resultant state may be
Mott insulating and all charge degrees of freedom gapped. In the case where a metal
undergoes a phase transition into another metallic state, the bosonic critical fluctu-
ations at the transition point can couple strongly to the low lying electronic states.
This can lead to the destruction of quasi-particles and to non-Fermi-liquid behavior
at the transition point.

Experimentally, there is vast evidence of non-Fermi-liquid behavior in the cop-
per and iron based superconductors. The strange-metal region seen at temperatures
above the superconducting dome in a wide variety of high-temperature superconduc-
tors has a famous linear-T resistivity, which suggests a state without quasi-particles
[24]. Similarly, many experiments suggest that the pseudo-gap region seen in cuprate
superconductors has vanishing quasi-particle weight [23]. It is, however, still an open
question if these regions are new bona-fide phases of matter.

An entirely different approach to realizing non-Fermi-liquid phases has been to
consider systems with small or vanishing Fermi surfaces; the Fermi level is at the
point where a conduction and valance band touch. Perhaps the most celebrated
experimental realization in recent years is graphene, which hosts two dimensional
Dirac electrons [25–27]. Other recent realizations include three dimensional Dirac
and Weyl semimetals [28–32]. However, the electron-electron interactions in graphene
are RG irrelevant and this is found to be the case in many semimetals. Therefore, a
quasi-particle picture remains valid and the interactions give only corrections to the
Dirac spectrum at low energies [33]. In contrast, models were interactions are RG
relevant are typically driven to a symmetry broken state where a quasi-particle picture
may again be applied. In two and three dimensional systems1, only exceptionally few
theories are known which flow to a truly gapless, strongly correlated ‘non-Fermi-
liquid’ phase2, such as a conformal field theory (CFT). One well known example is
QED3 describing algebraic spin liquids, which has been proposed to be realized in
certain strongly coupled spin systems [36, 37].

1The special kinematic restrictions and symmetries of quasi-one dimensional systems mean that
many non-trivial conformal field theories are known [34, 35].

2While weakly coupled semimetals lack a Fermi surface and are never true Fermi liquids, we
reserve the expression ‘non-Fermi-liquid’ to cases where the quasi-particle description breaks down.
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1.2 Quantum Criticality

A schematic phase diagram of a system with a quantum critical point is shown in
Figure 1.1. In addition to the diverging length-scale ξ (1.2) there is an associated
energy scale (gap) that vanishes at the critical point

∆ ∼ ξ−z ∼ |g − gc|νz, (1.6)

where z is the dynamic critical exponent, which also sets the dispersion of excitations
at criticality ε ∼ kz. When z 6= 1, the anisotropy of scaling between space and time
is analogous to classical spatially anisotropic critical points (Lifshitz transitions) [38].
Even in non-relativistic systems, many critical points are found to have an emergent
Lorentz invariance, giving rise to a critical exponent z = 1.

It is convenient to consider the system in imaginary time τ , since this naturally
describes both the zero and finite temperature cases. At finite temperatures, an
effective dimensional reduction occurs as the imaginary time direction is compactified
in a circle of circumference β. At finite temperatures directly at g = gc, the properties
of the system are set by the finite size scaling of the critical behavior in the imaginary
time direction. Even away from g = gc, where a gap opens according to (1.6), the
scaling regime of the quantum critical point persists provided that the temperature
is sufficiently high compared to the gap scale ∆. This is referred to as the quantum
critical region or ‘quantum critical fan’ (Figure 1.1). Only once T . ∆, are the long
distance properties determined again by non-universal aspects of the phases.

Just as for a classical critical point, the scale invariant nature of the quantum
critical point imposes strong constraints on the form of correlation functions and
responses. In the quantum critical regime, correlation functions at finite T , probed
at certain frequency ω and momentum k – say of susceptibility of the order parameter
φ – will have the form

G(ω, k, T ) ∼ T−2∆φ/zg

(
ω

T
,
kz

T

)
, (1.7)

where ∆φ is the scaling dimension of φ at the critical point, and g(x, y) some universal
scaling function.

Understanding the properties of the quantum critical region is interesting, as they
are both fingerprints of the universal physics of the underlying critical point and
accessible to experiments. Additionally, fundamentally new physics can emerge out
of the quantum critical region. For example, in a quantum critical metal, the non-
Fermi liquid arising from critical fluctuations strongly coupling to the Fermi surface
is itself unstable towards Cooper paring. The exact nature of superconductivity in
the vicinity of critical points and to what extent the incoherent regime survives at all
are still open questions [39].
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Figure 1.1: Schematic phase diagram of a quantum critical point at T = 0, g = gc
tuned by a parameter g. In the case shown here, the ordered phase also persists
to finite temperature and there is a second-order finite-temperature phase transition
(solid line). The gray shaded region is the classical critical region, i.e. the range of
classical fluctuations. Directly above the quantum critical point is the incoherent,
quantum critical region – the crossover lines ∆ ∼ T are dashed.

1.3 Transport Properties

Transport coefficients, such as the electrical and thermal conductivities or the vis-
cosities, play a central role in describing condensed matter systems. They are experi-
mentally measurable and contain signatures which characterize the different phases of
matter. Nonetheless, for non-Fermi-liquids at finite temperatures, as in the vicinity
of a quantum critical point, there remain great difficulties in calculating transport co-
efficients analytically due to the lack of a quasiparticle description. This is true even
when the nature of the underlying critical point is well understood and the transport
coefficients are determined by universal physics.

Consider as an example the electrical conductivity at finite frequencies and tem-
peratures, which is related to the current-current correlation function. The expected
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scaling behavior is

σ(ω, T ) ∼ T (d−2)/zf
(ω
T

)
, (1.8)

where f(x) is a universal scaling function. As has often been emphasized [10], the
limits of ω and T do not commute and the physics in the regimes ω � T and ω � T
is very different.

The limit ω � T is essentially that of the zero-temperature fixed point and the
correlation function can accurately be calculated in the same way the critical point
is accessed – for example order-by-order in a perturbative renormalization-group cal-
culation controlled by an ε or 1/N expansion. In contrast, the limit ω � T describes
the hydrodynamic regime of thermally activated scale-invariant excitations moving
through the sample and interacting with each other over long distances. Calculating
the form of the correlation-function in this limit is significantly more complex, even
in the ε or 1/N expansion. Indeed, if the critical point is not particle-hole symmetric
the ω = 0 (DC) conductivity is typically infinite in the absence of translation symme-
try breaking effects, due to the total electric current coupling to the conserved total
momentum.

Recently, insight has been gained from the relationship between strongly coupled
field theories and classical gravitational theories in the context of gauge-gravity dual-
ity [40, 41]. From the studies of various special cases, Kovtun, Son and Starinets [42,
43] conjectured a lower bound on the ratio of the shear viscosity η and the entropy
density s for a general class of finite temperature field theories

η

s
≥ ~

4πkB
. (1.9)

This bound exactly applies to the DC transport limit, which is theoretically difficult
to describe. Since all scattering channels between excitations are saturated in the
quantum critical regime, the mean free time of interaction is expected to approach
the thermal equilibration time τeq ∼ ~/kBT . This naturally gives rise to universal
amplitude ratios which characterize the interacting field theory [10]. Nonetheless, it
is very surprising that (1.9) does not contain the speed of light (which is a fixed prop-
erty of a Lorentz invariant CFT) and therefore should also apply to non-relativistic
strongly coupled systems. Models which saturate this bound have been referred to as
‘perfect fluids’.

The bound (1.9) is similar to the Mott-Ioffe-Regel limit for the minimal conduc-
tivity in disordered metals [44]. As mentioned above, with the exception of particle-
hole symmetric theories, the conductivity is determined by mechanisms which break
translational symmetry. The ratio η/s is therefore singled out as a good indicator for
studying the intrinsic strength of interaction of the underlying carriers. While there
are theoretical counter-examples [45, 46] to the bound (1.9), the notion that there
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exists some fundamental bound on transport in strongly coupled systems remains.
Indeed, most phases which have been studied satisfy (1.9) [47–51].

1.4 Outline

This thesis will study transport phenomena in two different strongly interacting elec-
trons systems, both close to quantum criticality. Part I will consider the so-called
Luttinger-Abrikosov-Beneslavskii phase, which is a stable quantum critical phase aris-
ing in a spin-orbit coupled zero-gap semiconductor with long-range Coulomb inter-
actions. The particular emphasis will be on understanding the finite temperature
shear-viscosity, which has been proposed as a measure of the strength of correlations
in an interacting system. Part II will consider a Hubbard-like model describing the
physics of the iron-based high-temperature superconductor FeSe and study the rela-
tionship of superconductivity to orbital fluctuations.

Note that, unless otherwise stated, we will use units in which the reduced Planck
constant ~ = 1 and the Boltzmann constant kB = 1.
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Part I

Strongly Correlated
Non-Fermi-Liquid Phase
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Overview

In the first part of this thesis, we will consider questions related to a strongly corre-
lated non-Fermi-liquid phase arising in a spin-orbit coupled, gapless semiconductor.
This phase was originally considered in [52–54] and recently dubbed the ‘Luttinger-
Abrikosov-Beneslavskii’ (LAB) phase by [55].

In chapter 2, we will summarize how the LAB phase arises and the nature of the
non-Fermi-liquid behavior. Then we will consider response functions at the one-loop
level in chapter 3. The primary goal will be to develop a kinetic equation formalism
to describe the d.c. (ω = 0) transport properties, which are dominated by collisions.
In particular, we will be interested in computing the shear viscosity η, which we do
in chapter 4. The shear viscosity η is relevant to ultrasound attenuation experiments
[56–58] and also allows us to characterize the LAB phase in the context of the proposed
η/s bound (1.9).
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Chapter 2

Luttinger-Abrikosov-Beneslavskii
Phase

The low energy excitations of Luttinger-Abrikosov-Beneslavskii (LAB) phase are de-
scribed by an interacting scale-invariant field theory, which has many unusual fea-
tures compared to other known non-Fermi liquids: it is realized in a three dimensional
system, there is an unusual spin-orbit symmetry, there are long-range Coulomb in-
teractions and the low energy degrees of freedom do not have emergent Lorentz or
even Galilean invariance. It has been suggested [55] that this phase could arise in
strongly correlated pyrochlore iridates and might explain some of the unusual prop-
erties of Pr2Ir2O7. More generally, the model has garnered recent attention as part of
a focus on emergent quantum phases in materials with strong spin-orbit coupling and
in semimetals – these include systems as different as graphene, the surface states of
topological insulators, Weyl semimetals or nodal superconductors [59, 60]. Although
there are still open question about the low energy properties of the model [61], the
LAB phase gives general insights into the nature of non-Fermi liquid phases arising
from electron-electron interactions. In this chapter we will consider the origins of the
LAB phase and show the existence of the fixed point [52].

2.1 Origins of the Zero-Gap Band-structure

The band-structure which gives rise to the LAB phase is a version of the Luttinger
Hamiltonian [62], in which a band inversion occurs. Let us consider a typical s-
p semiconductor with cubic symmetry Oh, such as GaAs (Figure 2.1a). The energy
bands in the vicinity of the Fermi energy are the 4s, 4p, 5s states, with the conduction
band 5s like (Γ6). Because of spin-orbit coupling, the 3p states split into four 3P3/2

and two 3P1/2 states at the Γ point. Away from the Γ point the P3/2 bands split
into two twofold degenerate bands, forming the valance ‘light-hole’ and ‘heavy-hole’
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(a) (b)

Figure 2.1: Schematic of band-structures in spin-orbit coupled s-p semiconductors.
The band-structure in (a) shows a typical direct bandgap semiconductor such as
GaAs. There are p-wave light and heavy hole valance bands, which are degenerate at
Γ8; the conduction band is s-wave Γ6. The band-structure of (b) has a band inversion
so that the Γ6 point lies below the Γ8 point in energy; this is the case in HgTe. A
quadratic band touching forms at the Γ8 point as one of the hole bands is pushed up
in energy. The region of the effective model giving rise to the LAB phase is shown in
the dashed box.

bands.
While the basic structure of the P3/2 bands close to the Γ point are determined

by the representation of the crystal symmetries, the nature of the dispersion is not.
In particular, one of the P3/2 might be electron-like in nature giving rise to a zero-
gap semi-conductor. This typically occurs – such as in the classic examples of α-Sn
or HgTe – when the higher s-band is pushed below the P3/2 bands (Figure 2.1b).
This band inversion is also the origin of topological insulators; HgTe in particular
has received much attention in this respect [63, 64]. The four-fold degeneracy at the
Γ point is protected by the presence of the Oh symmetry and can only be lifted by
applying external strain or confining the system to lower dimensions in a quantum
well.

The most general form of the band-structure close to the Γ8 point in k · p theory
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was considered by Luttinger in [62]. The P3/2 bands are conveniently written in terms
of j = 3/2 angular momentum matrices:

Jx = 1
2


0
√

3 0 0
√

3 0 1 0

0 1 0
√

3

0 0
√

3 0

 , Jy = i
2


0 −

√
3 0 0

√
3 0 −1 0

0 1 0 −
√

3

0 0
√

3 0

 , Jz = 1
2


3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3

 ,

(2.1)

so J2 = J2
x + J2

y + J2
z = 15/4. We can use these to construct a set of 16 independent

matrices onto which we can decompose all other matrices:

1

Jx, Jy, Jz

J2
x , J

2
y ,

1
2
{Jx, Jy}, 1

2
{Jy, Jz}, 1

2
{Jz, Jx},

1
2
{(J2

y − J2
z ), Jx}, 1

2
{(J2

z − J2
x), Jy}, 1

2
{(J2

x − J2
y ), Jz},

J3
x , J

3
y , J

3
z , JxJyJz + JzJyJx

(2.2)

In the absence of any external strain or time-reversal symmetry breaking due to a
magnetic field, the most general quadratic Hamiltonian of the bands around the Γ8

point is [62]

H = β1k
2 + β2

(
k2
xJ

2
x + k2

yJ
2
y + k2

zJ
2
z

)
+ 2β3 (kxky{Jx, Jy}+ kykz{Jy, Jz}+ kzkx{Jz, Jx}) (2.3)

with β1, β2, β3 constants. We will restrict ourselves to the fully rotationally invariant
case β2 = β3, which will turn out to be the relevant case for the LAB phase. We write
the Hamiltonian in the more insightful form [52]

H = fk2 + cAijkikj, (2.4)

where

Aij =
1

2
{Ji, Jj} −

1

3
J2δij. (2.5)

The Aij matrices satisfy a more complex mathematical structure which makes them
suitable for generalization, which we will consider below. The energy spectrum of the
free bands has the simple form

εk = (f ± c)k2, (2.6)

with each band being twofold degenerate.
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2.2 Aij Matrices

For the model which is isotropic in all directions we chose

Aij =
1

2
{Ji, Jj} −

1

3
J2δij, (2.5′)

in the physical dimension d = 3. Because we will be performing an ε-expansion
we need to extend the spin structure to fractional dimension; there is an intrinsic
ambiguity on how to do this. The choice will affect both the fixed point value of the
interaction found from the RG analysis as well as the scattering elements entering a
kinetic equation. The simplest choice is to formally use the d = 3 structure. One
can also use a spin structure in d = 4 – the starting point of the ε-expansion – by
embedding the rotation group SU(2) for j = 3/2 spin in a higher dimensional group,
such as SO(4).

Alternatively, Abrikosov [52] constructed a series of spin-orbit coupled models
with quadratic band touching in arbitrary dimensions d using Clifford matrices. The
relationship of states around the Γ8 point to the SO(5) Clifford algebra has been
stressed recently in [65]. The Hamiltonian is

H = γada(k), a = 1, 2, . . . , (d− 1)(d+ 2)/2 (2.7)

where γa are anti-commuting Clifford matrices. The da(k) are functions determined
by requiring that the dispersion should be quadratic [H2 = da(k)da(k) = c2k4] and by
imposing an orthogonality condition over angular integration [

∫
dΩkda(k)da(k

′) = 0
for k′ constant]. Since one can construct the SO(N) Clifford algebra from sets of
Pauli matrices, it is easy to determine the dimension of the representation rd – in
particular, r3 = 4, r4 = 16. From the γa, we define generalized Aij matrices satisfying

{Aij, Akl} =
d

d− 1
(δikδjl + δilδjk)−

2

d− 1
δijδkl (2.8)

This relationship is also well defined in fractional dimensions and is useful for the
ε-expansion since only this combination appears in the RG calculation. In certain
dimensions, a γ matrix will not enter the Hamiltonian and thus give a notion of chiral
symmetry to the states. Importantly, this does not occur for the relevant dimensions
for our model d = 3, 4. This does occur d = 2, where the Hamiltonian describes,
e.g. a special case of the quadratic chiral edge state at the surface of a crystalline
topological insulator [66].

2.3 Eigenstates

The eigenstates of the free system (2.4) are plane waves with spinor structure. The
fields are
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ψa(x) =

∫
d3k

(2π)3
[um(k)]a cm(k)eik·x (2.9)

where

[um(k)]a = D3/2
am (ϕ, θ, 0) (2.10)

with (ϕ, θ) the Euler angles of k̂ and D3/2 the Wigner D-symbols associated with
the rotation R which takes ẑ to k̂ [67]. The fact that we set the Euler angle γ = 0
is a phase choice in the definition of the wave-functions. The states with helicity
k̂ ·J = ±1/2 correspond to the valance band and the states with helicity k̂ ·J = ±3/2
correspond to the conduction band.

Parity acts as

Pcm(p)P−1 = ηc−m(−p) (2.11)

where η is a phase choice. Using the property of Wigner matrices Dab(−p) =
iDa,−b(p), the action of parity on the field is

Pψ(x)aP
−1 = iηψ(−x)a (2.12)

as required for the Hamiltonian to be invariant. The action of time-reversal is

Tcm(p)T−1 = ζ(−1)3/2−mcm(−p) (2.13)

where ζ is a phase choice. We obtain the action on the fields

Tψ(x, t)aT
−1 = ζMabψ(x,−t)b. (2.14)

To make manifest the time-reversal symmetry of the Hamiltonian, we note the sym-
metry of the A matrices

A∗ij = ATij = MAijM
−1 (2.15)

where

M = τxσy = i

(
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

)
(2.16)

Finally, even in the case f = 0, where the dispersion of the conduction and valance
band are symmetric, ε = ±ck2, the model does not have particle-hole symmetry. This
is most easily seen by noting that the magnitude of the helicities of the two bands
are different (±3/2 vs. ±1/2). On a technical level, the Hamiltonian written as (2.7)
in d = 3 requires all five γ matrices and no additional matrix can be constructed
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to represent the action of particle-hole symmetry. This lack of particle-hole symme-
try has far reaching consequences. For example, unlike many critical theories, the
clean system does not have a universal finite temperature conductivity as the electric
current couples to the conserved total momentum.

Matrix Elements

We will need the form of matrix elements for transitions between the various bands.
For convenience, we introduce the spherical basis

ê+1 = − 1√
2
(x̂ + iŷ) (2.17)

ê0 = ẑ (2.18)

ê−1 = 1√
2
(x̂− iŷ) (2.19)

which satisfies the orthogonality condition ê∗q êq′ = δqq′ . We wish to evaluate quantities
of the type u†m(n̂ · J)um and similar. Denote the vector spin-1 rotation matrix taking
k̂→ ẑ by R−1(k).

u†m(k)(n̂ · J)um(k) = ê∗q{R−1(k)[n̂]} 〈m′| Jq |m〉 (2.20)

〈m′| Jq |m〉 =

{
mδm,m′ , q = 0

∓δm+q,m′
√

(j ∓m)(j ±m+ 1)/2, q = ±1
(2.21)

Hence we obtain the matrix elements

u†±3/2(k)(n̂ · J)u±3/2(k) = ±3
2
n̂ · k̂ (2.22)

u†±1/2(k)(n̂ · J)u±1/2(k) = ±1
2
n̂ · k̂ (2.23)

u†±3/2(k)(n̂ · J)u∓3/2(k) = 0 (2.24)

u†±1/2(k)(n̂ · J)u∓1/2(k) =
√

2T±(n̂) (2.25)

u†±3/2(k)(n̂ · J)u∓1/2(k) = 0 (2.26)

u†±3/2(k)(n̂ · J)u±1/2(k) =
√

3
2
T±(n̂) (2.27)

where

T+(n̂) = T †−(n̂) = −ê∗+{R−1(k)[n̂]} =
[ê− · k̂](−ik̂× n̂− n̂ + (k̂ · n̂)k̂) · ẑ

1− (k̂ · ẑ)2
(2.28)
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Denote by ni,mi the components of the unit vectors n̂, m̂:

u†±3/2(k)(Aijnimj)u±3/2(k) = 9
4
(n̂ · k̂)(m̂ · k̂)− 5

4
(n̂ · m̂)

+ 3
4
[T+(m̂)T−(n̂) + T−(m̂)T+(n̂)] (2.29)

u†±1/2(k)(Aijnimj)u±1/2(k) = 1
4
(n̂ · k̂)(m̂ · k̂)− 5

4
(n̂ · m̂)

+ 7
4
[T+(m̂)T−(n̂) + T−(m̂)T+(n̂)] (2.30)

u†±3/2(k)(Aijnimj)u±1/2(k) = ±
√

3
2

[
(n̂ · k̂)T±(m̂) + (m̂ · k̂)T±(n̂)

]
(2.31)

u†±3/2(k)(Aijnimj)u∓1/2(k) =
√

3T±(m̂)T±(n̂) (2.32)

u†+3/2(k)(Aijnimj)u−3/2(k) = 0 (2.33)

u†+1/2(k)(Aijnimj)u−1/2(k) = 0 (2.34)

and their Hermitian conjugates. In particular, we will need the form

u†±3/2(k)(Aijnikj)u±3/2(k) = +n̂ · k (2.35)

u†±1/2(k)(Aijnikj)u±1/2(k) = −n̂ · k (2.36)

u†±3/2(k)(Aijnikj)u±1/2(k) = ±k
√

3
2
T±(n̂) (2.37)

and all others being zero. As expected, the form of the Hamiltonain is

H =
∑
m

∫
d3k

(2π)3
σmEkc

†
mcm (2.38)

where Ek = ck2 and σm = m2 − 5/4.

2.4 The Luttinger-Abrikosov-Beneslavskii Model

We now consider the Luttinger band-structure (2.4) with the Fermi level fixed at the
quadratic band touching. The electrons are interacting via the long range Coulomb
interaction. The T = 0 partition function in path integral form is

Z =

∫
D [ψ, ψ†] eiS, (2.39)

where the action S is
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S = S0 + Sint

S0 =

∫
dtd3x

[
iψ†a(∂tψa)− f(∂iψ

†
a)(∂iψa)− c(∂iψ†a) [Aij]ab (∂jψb)

]
,

Sint = −1

2

∫
dtd3xd3x′

[
ρ(x)ρ(x′)

|x− x′|

]
.

(2.40)

Here ψ(x) are the four component electron fields, ρ(x) = eψ†(x)ψ(x) is the electric
charge density and e is the charge of the electron. It will be convenient to decouple
the interaction in the density channel using a real Hubbard-Stratonovitch field ϕ, by
inserting

1 =

∫
Dϕ exp

[
i

2

∫
dω ddk

(2π)d+1
ϕ(ω,k) · k2

4πe2
· ϕ(−ω,−k)

]
(2.41)

to the partition function and shifting fields. The interaction term of the action be-
comes

Sint =

∫
dtd3xd3x′

[
−1

2

ρ(x)ρ(x′)

|x− x′|

]
=

∫
d3xdt

[
1

8πe2
(∂iϕ)(∂iϕ)− ϕψ∗aψa

]
. (2.42)

Because we are considering the usual non-dynamic Coulomb interaction between elec-
trons, the terms can be derived by coupling the theory to electromagnetism and only
considering the scalar part. From the electromagnetic Maxwell term, rescaled by the
interaction

− 1

16πe2
FµνF

µν → +
1

8πe2
(∂iϕ)(∂iϕ). (2.43)

The second term in (2.42) is the density interaction and comes from the U(1) minimal
substitution ∂t → ∂t + iϕ.

2.5 Low Energy Behavior in an ε-expansion

We will first consider the scaling in general spatial dimension d to determine the effect
of the Coulomb interactions at low energies. Let the scaling variable be [K] = −[L] =
1. We perform the scaling such that the kinetic term cAij∂iψ

†∂jψ remains invariant.
The scaling dimensions of the other variables at tree level (bare scaling) are

[ω] = −[T ] = 2,

[f ] = 0, [e2] = 4− d,
[ψ(t,x)] = 1

2
d, [ϕ(t,x)] = 2,

[ψ(ω,k)] = −1
2
(d+ 4), [ϕ(ω,k)] = −d.

(2.44)
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(a) (b) (c)

Figure 2.2: One-loop diagrams needed to be considered for the perturbative renor-
malization (a) Electron self-energy (b) Boson self-energy (polarization) (c) Vertex
correction.

We see that the interaction between electrons is relevant in the physical dimension
d = 3 and marginal in d = 4. In order to control the RG flow, we can therefore use
an epsilon expansion (ε = 4 − d � 1) with non-integer dimension d to control the
perturbative RG calculation; this will be the simplest way to access the LAB fixed
point [52].

Within the ε-expansion, the dimensionless coupling constant α = e2/cΛε evolves
under the renormalization group and one finds that the system flows towards a stable
Wilson-Fisher fixed point [52, 55]. In particular, in the scaling limit close to the fixed
point the propagator of the auxiliary Coulomb field remains unscreened and takes the
general form

V (ω,q) =
1

q2−ηϕ
S

(
ω

qz

)
. (2.45)

Here z is the anomalous exponent describing the scaling between energy and momen-
tum ε(k) = ckz and ηϕ is the anomalous scaling dimension of the Coulomb field. The
scaling function S(x) is defined so that in the asymptotic limit S → 1 as x→ 0.

One-Loop ε-expansion

In this section, we perform the ε-expansion to lowest order and show the presence of a
stable fixed point. Since we are expanding about the dimension where the interaction
is marginal, it is sufficient to keep only logarithmically diverging terms. The free
causal electronic Green function at T = 0 is

G
(0)
ab (ω,k) = [ω −He(k) + iδ sgn(ω)]−1

ab , (2.46)

=
(ω − fk2)δab + c [Aij]ab kikj
(ω − fk2)2 − (ck2 − iδ′)2

, (2.47)

where δ, δ′ → 0+. The non-dynamic Coulomb Green function is
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D(0)(ω,k) =
4πe2

k2
. (2.48)

We use a hard momentum cutoff Λ; physically this momentum must be sufficiently
small that the approximation of the Luttinger band-structure is valid. The divergent
part of the one-loop electronic self-energy (Figure 2.2a) is

Σ
(1)
ab (ω,k) = i

∫
dΩ ddq

(2π)d+1
D(0)(ω,k)G

(0)
ab (Ω + ω,q + k), (2.49)

= c [Aij]ab kikj ·
2πe2(d− 2)

c(d+ 2)

Λ∫
ddq

(2π)d
1

q4
+ . . . , (2.50)

while divergent contribution of the first correction to the polarization (Figure 2.2b)
is

Π(1)(ω,k) = −i tr

∫
dΩ ddq

(2π)d+1
G(0)(Ω− 1

2
ω,q− 1

2
k)G(0)(Ω + 1

2
ω,q + 1

2
k), (2.51)

= −rd
4c

Λ∫
ddq

(2π)d

(
k2

q4

)
+ . . . (2.52)

The first correction to the electron-photon vertex (Figure 2.2c) is convergent so that
we can neglect the contribution in the peturbative RG

γ(1) =

∫
dΩ ddK

(2π)d+1
G(0)(Ω + ω,K + q)G(0)(Ω,K)D(0)(ω′ − Ω,k−K), (2.53)

∼
∫

ddK

(2π)d
O(K−6) + . . . (2.54)

Summing the corrections for the electron and photon Green function

G = G(0) +G(0)Σ(1)G =
G(0)

1− Σ(1)G(0)
, (2.55)

=

ω − fk2 − cAijkikj

1 +
2πe2(d− 2)

c(d+ 2)

Λ∫
ddq

(2π)d
1

q4

+ iδ sgn(ω)

−1

, (2.56)

D = D(0) +D(0)Π(1)D =
D(0)

1− Π(1)D(0)
=

 k2

4πe2
+
rd
4c

Λ∫
ddq

(2π)d
k2

q4

−1

. (2.57)
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Now set d = 4− ε and, imagining we have integrated out high momentum shells from
Λ to Λ/b, where we denote b = ed`.

S =

Λ/b∫
dω ddk

(2π)d+1

[
ψ∗a(ω,k)

(
ω − fk2 − c [Aij]ab kikj · (1 +Bd`)

)
ψb(ω,k)

+
1

2
ϕ(ω,k)

(
k2

4πe2
+ k2 rd

2c(4π)d/2Γ(d/2)
d`

)
ϕ(−ω,−k)

]

−
Λ/b∫

dω dΩ ddk ddq

(2π)2d+2
[ϕ(−Ω,−q)ψ∗a(ω + Ω,k + q)ψa(ω,k)] (2.58)

here the Λ/b applies only to the momentum integrals and we have defined

B =
4πe2(d− 2)

(4π)d/2c(d+ 2)Γ(d/2)
. (2.59)

Now rescale k → ke−d`, ω → ωe−zd` and renormalize the fields so that the coefficients
of the Aij and the interaction term are unchanged

ψ → ψ(1 +Bd`)−1/2e(d+z+2)d`/2, (2.60)

ϕ→ ϕ(1 +Bd`)e(2z+2d−(d+z+2))d`. (2.61)

We obtain for the time-dependent term

ωe(2−z)d`

1 +Bd`
' ω exp [(2− z −B) d`] , (2.62)

which sets the dynamical critical exponent

z = 2−B. (2.63)

The action is now a self-similar form, provided we let

f ′ =
f

1 +Bd`
(2.64)

1

e′2
=

(
1

e2
+

2πrd
(4π)d/2Γ(1

2
d)

d`

)
e(d+z−6)d` (1 +Bd`)2 (2.65)

which we can express as a flow equation
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df

d`
= −Bf (2.66)

de2

d`
= (6− d− z)e2 − e4

(
4πrd

2c(4π)d/2Γ(1
2
d)

+
2B

e2

)
(2.67)

Letting d = 4− ε we obtain a perturbative fixed point; to lowest order in ε

α∗ =

(
e2

c

)∗
=

24π

3rd + 2
ε→ 12π

25
(2.68)

To lowest order in ε, the dynamical critical exponent

z = 2− 2

3rd + 2
ε→ 2− 1

25
. (2.69)

If we set r4 = 16 – the smallest dimension of the representation in d = 4 – and
set ε = 1 we obtain exactly the results first obtained by [52]. We trivially expand
e2 = (e2)∗ + δe2 so

dδe2

d`
= −εδe2 (2.70)

which implies the fixed point is stable. If we were to have chosen to formally use the
d = 3 structure (2.5′) of the commutation relation but still perform the integrals in
d = 4− ε the results would be

α∗ =

(
e2

c

)∗
=

64π

3(3rd + 2)
ε→ 32π

21
, z = 2− 9

4(3rd + 2)
ε→ 2− 9

56
(2.71)

with r3 = 4. The difference in the above results is mostly due to the different
dimension of the representation r3,4, rather the form of the commutator {Aij, Akl} or
the prescription of angular integration. For calculating the shear viscosity in Chapter
4, we shall therefore use the d = 3 structure (2.5′) with r3 = 4.

We see from (2.66) that the isotropic term is irrelevant at the Wilson-Fisher fixed
point. Therefore, we shall generally consider the low energy regime, where these
terms are asymptotically small and can be neglected and set f = 0 form the outset.
Abrikosov argues [52, 68] that the IR fixed point will be isotropic in general.

Large-N Theory

One can also develop a controlled RG calculation in d = 3 in the limit of a large
number N of electronic fields [52], which gives a consistent picture with the fixed



23

point found above. We will not pursue this calculation here. This restriction is due
to technical features of the kinetic equation calculation. A consistent large-N theory
needs to includes the full frequency dependent one-loop renormalized interaction; see
[10].
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Chapter 3

One-Loop Response Functions

In this chapter, we will compute the one-loop response functions for the conductivity
and shear viscosity of the LAB model. These correspond to the response of the free
band-structure without interaction effects. Apart from being interesting in their own
right, they will be useful for setting up the form of the correlation functions that will
be calculated in the fully interacting case and address some subtleties in the definition
of the viscosity. Additionally, they allow us a platform to draw connections to the
kinetic equation approach developed later.

3.1 Conductivity

Keeping in mind that in the LAB phase the band-structure becomes isotropic under
the RG flow, let us consider the simplest band-structure of (2.4) with f = 0, and
couple a background U(1) field (a0, ai) using minimal substitution. The action is

S =

∫
dtddx

{
iψ†a∂tψa − ea0ψ

†
aψa − c [Aij]ab

[
(∂i + ieai)ψ

†
a

]
[(∂j − ieaj)ψb]

}
. (3.1)

The minimal substitution procedure guarantees invariance under the gauge transfor-
mation

ai → ai + ∂if, a0 → a0 − ∂tf, ψa → eiefψa. (3.2)

The charge density

ρ(x, t) = eψ†aψa, (3.3)

and current density
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ji(x, t) = j
(p)
i (x, t) + j

(d)
i (x, t),

j
(p)
i (x, t) = ec [Aij]ab

[
ψ†a(−i∂jψb) + (i∂jψ

†
a)ψb

]
,

j
(d)
i (x, t) = 2e2c [Aij]ab ψ

∗
aψbaj.

(3.4)

are given from Noether’s theorem. The current has both a paramagnetic and diamag-
netic contribution, both of which are needed to obtain a gauge invariant conductivity.

In linear response theory, the current induced by an external field is given by

〈ji(r)〉 = −
∫

ddr K
(M)
ij (iωn, r− r′)aj(r

′) = −
∫

ddr Π
(M)
ij (iωn, r− r′)aj(r

′)− 〈j(d)
i (r)〉,

(3.5)

where we have explicitly separated out the diamagnetic contribution 〈j(d)
i (r)〉. The re-

sponse Π(M) from the paramagnetic current can be calculated using the Kubo formula
[69] for the current-current correlator. In imaginary time

Π
(M)
ij (iωn, r− r′) = −1

2

β∫
−β

dτ eiωnτ 〈Tτj(p)
i (r, τ)j

(p)
j (r′, 0)〉. (3.6)

To obtain the conductivity we consider an external electric field and change variables
Ei = −∂tai to obtain

σ(ω) = i

[
K(M)(iωn,p = 0)

iωn

]
iωn→ω+iδ

. (3.7)

Gauge Invariance

The diamagnetic term in (3.5) is not a linear response coefficient, but arises at
quadratic order in the external gauge field ai. Nonetheless, it is needed even at
linear order to obtain a well-defined conductivity, as it cancels any contribution from
the zero-frequency, zero-momentum linear response term Π

(M)
ij (iωn = 0,p = 0). Phys-

ically, K
(M)
ij (iωn = 0,p = 0) = 0 since a pure gauge configuration of ai cannot induce

a current. Here we show that this cancellation explicitly occurs at the one-loop level;
the proof naturally generalizes to the higher loops.

The diamagnetic term can be computed directly

〈j(d)
i (r)〉 = −2e2c [Aij]ab 〈ψ∗aψb〉 aj(r), (3.8)

= −2e2c lim
τ→0+

T
∑
εn

∫
ddp

(2π)3
[Aij]ab (−1)G

(M)
ba (iεn,p)e−iεnτ , (3.9)
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where we have introduced the free Matsubara Green function from (2.47)

G
(M)
ab (iεn,p) =

[
1

iεn − cAijpipj

]
ab

=
iεnδab + c [Aij]ab pipj

(iεn)2 − c2p4
. (3.10)

At the free level

∇piG
(M)
ab (iεn,p) = G(M)

ac (iεn,p)(2 [Aik]cd pk)G
(M)
db (iεn,p). (3.11)

Integrating (3.9) by parts, and using (3.11) gives

〈j(d)
i (r)〉 = −2e2c lim

τ→0+
T
∑
εn

∫
ddp

(2π)3
[Aij]ab piG

(M)
bc (iεn,p)·

(2 [Aik]cd pk)G
(M)
da (iεn,p)e−iεnτ (3.12)

which is exactly −Π
(M)
ij (iωn = 0,p = 0), as required. Equation (3.11) is the statement

of the Ward identity for U(1) charge conservation in the free theory. The proof for
the interacting case is identical, but now uses the general form of the Ward identity

∇piG
(M)
ab (iεn,p) = G(M)

ac (iεn,p)Γab,i(p,p)G
(M)
db (iεn,p) (3.13)

where Γab,i(p,p) is the dressed current vertex.

One-Loop Conductivity

With the above set-up, the form of the one-loop electromagnetic response is

Kij(iωn,p) = 4e2c2T
∑
εn

∫
ddq

(2π)d

tr
{
Aimqm(iεn + iωn + cAop(q + 1

2
p)o(q + 1

2
p)p)[

(iεn + iωn)2 − c2
∣∣q + 1

2
p
∣∣4] ·

·Ajnqn(iεn + cAkl(q − 1
2
p)k(q − 1

2
p)l)
}[

(iεn)2 − c2
∣∣q− 1

2
p
∣∣4] − (ωn = 0,p = 0)

 (3.14)

where (ωn = 0,p = 0) is the diamagnetic term. Note that the ωn → 0 limit and the
Matsubara summation do not commute, due to the coalescing of poles. This reflects
at a technical level the difference between the regimes ω/T � 1 and ω/T � 1. Setting
p = 0, performing the Matsubara sums, and Wick rotating to real frequencies gives
the conductivity
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σij(ω) = iδijcrde
2

∫
ddq

(2π)d

[
(ω + iδ) tanh(cq2/(2T ))

(ω + iδ)2 − 4c2q4
+

1

ω + iδ
· cq2

dT cosh2(cq2/(2T ))

]
(3.15)

Note that we have to be careful with the causal iδ terms. To proceed, we use the
Sokhotski-Plemelj formula

1

ω ± iδ = PP
1

ω
∓ iπδ(ω) (3.16)

The real part of the conductivity is made from two parts (Figure 3.1). The first,
corresponds to the finite frequency response due to inter-band transitions between
the conduction and valance band

σ
(I)
ij (ω) = −δijcrde

2

2

∫
ddq

(2π)d
tanh

(
cq2

2T

)
Im

[
1

ω + iδ − 2cq2
+

1

ω + iδ + 2cq2

]
,

(3.17)

=
πδijcrde

2

4(4π)d/2Γ(d/2)

( |ω|
2c

)(d−2)/2

tanh

( |ω|
4T

)
. (3.18)

In the limit T → 0 this is simply

σij(ω) =
πδijcrde

2

4(4π)d/2Γ(d/2)

( |ω|
2c

)(d−2)/2

. (3.19)

Since the band-structure does not have a gap, the edge of the inter-band spectrum
reaches ω = 0. The scaling of the frequency is exactly what we expect from (2.44).
In d dimensions, the fields ψ(x, t) scale as +d/2, so the current scales as d + 1 and
the conductivity scales as (d− 2)/2.

In contrast, the second contribution to the conductivity only occurs at finite T
and comes from thermally excited electrons moving ballistically (ω = 0) through the
sample without relaxation:

σ
(II)
ij (ω) = δ(ω)πδijcrde

2

∫
ddq

(2π)d

[
cq2

dT cosh2(cq2/(2T ))

]
, (3.20)

= δ(ω)δij
2πcrde

2ζ(d/2)(1− 21−d/2)

(4π)d/2

(
T

c

)d/2
. (3.21)
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Figure 3.1: Schematic of one-loop conductivity σ(ω, T ) in d = 3 as a function of ω at
a finite T [solid line; the arrow indicates the presence of δ(ω) at finite T ]. The T = 0
result is showed as a dashed line.

Collision-less Kinetic Equation

We will now reproduce the results of the one-loop calculation above using the collision-
less kinetic equation. Define the distribution function

fab(t,R,p) =

∫
dω

2π

∫
dDr

〈
c†b(R + 1

2
r)ca(R− 1

2
r)
〉
e−ip·r (3.22)

here p = (ω,p), R = (t,R), and r = (t′, r); the integral over ω sets t = t′. The kinetic
equation for fab(t,p) in a uniform external field without collision is just given by the
streaming term

dfab
dt

=
∂fab
∂t
− i [f, cAijpipj]ab + eE · ∂fab

∂p
= 0. (3.23)

The second term arises from the commutator in the Heisenberg equation of motion
for the density matrix – this does not just reduce to the classical Poisson bracket
because of the matrix structure. Since the system here is spatially uniform, we can
rotate to the band (m) basis using (2.9) and (2.10), giving

fmm′(t,p) =
[
u†m(p)

]
a
fab(t,p) [um(p)]b . (3.24)

The form of the paramagnetic current (3.4) in this basis is j = j1 + j2, where
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j1 = 2ec
∑
m

∫
d3k

(2π)3
k
(
m2 − 5

4

)
c†m(k)cm(k) (3.25)

n̂ · j2 = 2ec
∑
σ=±

√
3

2

∫
d3k

(2π)3
|k|
(
σTσ(n̂)c†σ3/2(k)cσ1/2(k) + h.c.

)
(3.26)

Writing the distribution function in terms of the equilibrium value and perturba-
tions by the electric field gives

fmm′(ω,k) = 2πδ(ω)f (0)(σmcp
2)δmm′ + f

(1)
mm′(ω,p) (3.27)

where σm = m2− 5/4 denotes the conduction (+1) or valance (−1) nature of the ex-
citation. We now have to distinguish the cases of the diagonal distribution functions,
describing the motion of particles within a band, and the off-diagonal distribution
describing inter-band transitions.

For the diagonal distribution functions m = m′ and so

−iωf (1)
mm + e(E · p)σmc

[
∂f 0(ε)

∂ε

]
ε=σmcp2

= 0 (3.28)

where we do not sum in m. This has a solution

f (1)
mm(ω,p) =

2σmce(E · p)

−iω + η
· 1

4T cosh2(cp2/2T )
(3.29)

where η is a small damping factor introduced in the time derivative. From (3.25), we
find the conductivity

σ(ω) =
e2crdδij
−iω + η

∫
ddp

(2π)d
cp2

dT cosh2(cp2/2T )
, (3.30)

where we generalize to d dimensions and let
∑

m 1 = rd. This is exactly the second
term in (3.15), which we denoted σ(II)(ω).

For the off-diagonal distribution functions (m 6= m′) only transition between the
conduction and valance band occur, so σm = −σm′ with distribution function

f
(1)
mm′ = −ieE ·

{[
u†m′

]
a

∂ [um]a
∂p

}
f (0)(σmcp

2)− f (0)(−σmcp2)

ω − 2cp2σm
(3.31)

This contribution needs a more careful evaluation of the matrix elements and we will
not generalize to arbitrary dimension d here. Let E = Eẑ and define

Θm′m = p
[
u†m′

]
a

∂ [um]a
∂pz

= −i(p̂× ẑ) · 〈m′|J|m〉 (3.32)
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So

Θ1/2,3/2 =
√

3
2
(ê+ · p̂) = −Θ∗3/2,1/2 (3.33)

Θ−1/2,−3/2 =
√

3
2
(ê− · p̂) = −Θ∗−3/2,−1/2 (3.34)

The contribution to the current (3.26) gives the conductivity

σ
(I)
ij (ω) = 4ie2cδij

∫
d3p

(2π)3
tanh

(
cp2

2T

)
ω

ω2 − 4c2p4
. (3.35)

With the replacement ω → ω + iη and rd = 4, this is exactly the first term in (3.15),
which gave rise to σ(I)(ω).

Finally, it is important to note that the kinetic equation has manifest gauge in-
variance and, unlike in the calculation for the Kubo formula (3.5), we did not need
to include the diamagnetic term.

3.2 Shear Viscosity

The shear viscosity is the transport coefficient which characterizes the relaxation of a
transverse momentum gradient back to local equilibrium. Considering slow variations
of the local momentum P(x) on a length-scale much larger than the mean free path,
the leading dissipative contribution to the stress tensor Tij defines the viscosities. For
a pure shear flow

∆Tij = −η
[
∂Vi
∂xj

+
∂Vj
∂xi
− 2

d
δij(∂kVk)

]
, (3.36)

where for the LAB model (2.40) with f = 0 we can identify the velocity V = 2cP.
Being linear response coefficients, the viscosities can be written in terms of a Kubo
formula [70]

ηijkl(ω) =
Xijkl(ω)

Ld
+

i

ω+
δijδkl

(
p+ Ld

∂p

∂Ld

)
, (3.37)

Xijkl(ω) =
1

ω+

〈[
T̃ij(0), Jkl(0)

]〉
+

1

ω+

∞∫
0

dt eiω
+t
〈[
T̃ij(t), T̃kl(0)

]〉
. (3.38)

here ω+ = ω + iδ with δ → +0, p is the pressure of the system, Ld the volume of the
system. The integrated stress tensor is
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T̃ij =

∫
ddx Tij. (3.39)

Additionally, Jij are strain generators defined by

Jij = −
∫

ddx xipj, (3.40)

where pj is the momentum density. We are only interested in the shear flow (3.36),
which is the traceless component of the symmetric part of the total viscosity tensor

ηijkl = η

(
δikδjl + δilδjk −

2

d
δijδkl

)
+ . . . (3.41)

We will therefore not need to consider the pressure corrections in equation (3.37). The
∼ 〈[T̃ , J ]〉 term in (3.38), however, is a contact term analogous to the diamagnetic
term in the calculation for the conductivity. In general, we will have to include it to
obtain the correct form of the response function.

An important, but subtle problem which arises when using the Kubo formula for
viscosity is that the stress tensor is in general not uniquely defined. The space and
time translational symmetry imply that the energy-momentum tensor tµν is conserved
through Noether’s theorem

∂µt
µν = 0. (3.42)

Here µ is a space-time index. The energy density H = t00, the momentum density
pi = ti0 and the stress tensor Tij = tij. However, we can change (‘improve’) the
energy-momentum tensor

tµν → tµν + ∂ρbρµν , (3.43)

Provided bρµν = −bµρν , this change does not affect the conservation law (3.42). The
different choices of improvements are physical – they correspond to different micro-
scopic ways the system can respond to a strain.

LAB Stress Tensor

We will use choose a stress tensor for the LAB phase that is symmetric in the indices
ij, which can be done due to the emergent rotation invariance of the model. The
Noether stress energy tensor is
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t00 = c [Aij]ab (∂iψ
∗
a)(∂jψb), (3.44)

t0i = −1
2
i (ψ∗a∂iψa − (∂iψ

∗
a)ψa) , (3.45)

ti0 = −c [Aik]ab [(∂kψ
∗
a)(∂tψb) + (∂tψ

∗
a)(∂kψb)] , (3.46)

tij = c [Aik]ab (∂kψ
∗
a∂jψb + ∂jψ

∗
a∂kψb) + δijL , (3.47)

where

L =
1

2
[iψ∗a(∂tψa)− i(∂tψ∗a)ψa]− ea0ψ

∗
aψa − c [Aij]ab (∂iψ

∗
a) (∂jψb) , (3.48)

is the time-symmetrized Lagrangian. Since tij is a physical current, we may evaluate it
on-shell using the equation of motion, which imply that L = 0, giving the integrated
stress tensor

t̃ij =

∫
ddx c [Aik]ab (∂kψ

∗
a∂jψb + ∂jψ

∗
a∂kψb) . (3.49)

Since this form of the stress tensor is not symmetric, we will add the improvement to
obtain the final form of the stress tensor

pi = t0i + 1
2
εijk∂jsk, (3.50)

T ij = tij − 1
2
εijk∂tsk, (3.51)

where

sk = −c ψ∗a [Jk]ab ψb. (3.52)

The strain generators are

Jij =
i

2

∫
ddx xi [ψ

∗
a(∂jψa)− (∂jψ

∗
a)ψa]−

c

2
εijk

∫
ddx ψ∗a [Jk]ab ψb. (3.53)

In the band (m) basis using (2.9) and (2.10) the form of the integrated stress

tensor is T̃
(1)
ij + T̃

(2)
ij , where

T̃
(1)
ij = c

∑
σ

∫
ddk

(2π)d
2kikj

(
c†σ3/2(k)cσ3/2(k)− c†σ1/2(k)cσ1/2(k)

)
, (3.54)

T̃
(2)
ij = c

√
3

2

∑
σ

∫
ddk

(2π)d
k
(

[σTσ(êi)kj + σTσ(êj)ki] c
†
σ3/2(k)cσ1/2(k) + h.c.

)
. (3.55)

Here êi is the unit vector in the i direction.
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One-Loop Viscosity

We now proceed to calculate the one-loop viscosity response function for the LAB
band-structure. The contact term 〈[T, J ]〉 can be calculated directly and vanishes.
The imaginary time correlator of the stress tensor is

χ
(M)
ijkl (iωn) =

1

2

β∫
−β

dτ eiωnτ
〈
Tτ T̃ij(τ)T̃kl(0)

〉
, (3.56)

= −c2Ld
∫

ddk

(2π)d
T
∑
εn

tr [(Aiqkqkj + Ajqkqki)

G(M)(iεn + iωn,k)(Akrkrkl + Alrkrkk)G
(M)(iεn,k)

]
. (3.57)

As in the case of the conductivity, performing the Matsubara summation gives rise to
two contributions – a finite frequency inter-band response and a zero-frequency delta
function response. At finite frequencies

χ
(M)
ijkl (iωn) =

2c3Ldrdd

d2 + d− 2

(
δilδjk + δikδjl −

2

d
δijδkl

)∫
ddq

(2π)d
q6 tanh(cq2/2T )

ω2
n + 4c2q4

, (3.58)

so the viscosity only has a shear contribution. Wick rotating to real frequencies

ηsh(ω) =
2ic3Ldrdd

(d2 + d− 2)(ω + iδ)

∫
ddq

(2π)d
q6 tanh(cq2/2T )

(ω + iδ)2 − 4c2q4
, (3.59)

gives rise to shear viscosity caused by inter-band transitions

ηsh,(I)(ω) =
πrdd

4(d2 + d− 2)(4π)d/2Γ(1
2
d)

( |ω|
2c

)d/2
tanh

( |ω|
4T

)
. (3.60)

At ω = 0, the Matsubara summation gives

χ
(M)
ijkl (0) = χ

(M)
ijkl (iωn → 0)− 2c2Ldrd

d(d+ 2)T
(δijδkl + δikδjl + δilδjk)

∫
ddq

(2π)d
q4

1 + cosh(cq2/T )
.

(3.61)

Here χ
(M)
ijkl (iωn → 0) is the zero frequency limit of (3.58), which does not contribute.

The second term is not a pure shear viscosity, due to neglecting the pressure terms
in (3.37). Considering only the shear contribution gives
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ηsh,(II)(ω) =δ(ω)
2πcrd
d(d+ 2)

(
T

c

)(d+2)/2 ∫
ddx

(2π)d
x4

1 + cosh(x2)
,

=δ(ω)
πcrd

2(4π)d/2
ζ(1

2
d+ 1)

(
T

c

)(d+2)/2

. (3.62)

As was the case for the conductivity (3.21), this term is caused by thermally excited
quasi-particles moving ballistically through the sample. Since there is no relaxation
from interactions, there is an infinite δ-function shear response.

As in the case of the conductivity, we could have also arrived at this result through
a collisionless kinetic equation calculation. We will however, directly develop the
kinetic approach in for the interacting system in the next chapter.
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Chapter 4

Finite-Temperature Shear
Viscosity of the
Luttinger-Abrikosov-Beneslavskii
Phase

In this chapter, we develop a kinetic equation formalism to describe the d.c. transport
properties of the LAB phase, which are dominated by collisions, and compute the
shear viscosity η. The ratio of shear viscosity to entropy density η/s is a measure
of the strength of interaction between the excitations of a quantum fluid. As a
consequence of the quantum critical nature of the system, η/s is a universal number
and we find it to be consistent with the bound proposed from gauge-gravity duality.

η

s
≥ ~

4πkB
. (1.9′)

In the first part of the chapter, we will discuss the logical structure of the result
and discuss its implications. Technical details are presented after the main result.

4.1 Finite-temperature Shear Viscosity in the

LAB phase

To understand the transport of the LAB phase at finite temperatures, we emphasize
the similarity to a system in the vicinity of a quantum critical point [10]. The long dis-
tance behavior of the system is described by a scale invariant, interacting field theory,
whose transport properties are described by universal functions. At finite frequencies
there are two regimes for the transport coefficients. The collision-less limit ω/T � 1
is dominated by particle-hole production; the effect of interactions is small and the
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form of η may be found from the RG flow. In contrast, the limit ω/T � 1 is domi-
nated by collisions between thermally excited particles and holes. In a non-interacting
system, the excited particles move ballistically and give a delta-function peak; this
delta function is broadened by the Coulomb interactions. Phenomenologically, we can
understand the dc transport properties from a simple mean free time argument. The
temperature is the only characteristic energy scale in the problem; the characteristic
length scale is ∼ (c/T )1/z and the mean free path is ` ∼ α−2(c/T )1/z, which includes
the dimensionless scattering rate. A simple Drude theory would predict a dc shear
viscosity η ∼ nv̄`/c ∼ α−2(T/c)d/z. The scaling of the temperature is exactly that of
the entropy density s ∼ (T/c)d/z as expected.

We now develop a kinetic equation approach to calculate the shear viscosity to
leading order in the ε-expansion, which will recover the above considerations and also
give a numerical estimate for the value of η/s. Formally, the kinetic equation makes
use of a semi-classical expansion and assumes quasi-particles which interact locally.
It was shown that in the weakly coupled finite-temperature theory of a scalar field
[71, 72], the diagrammatic summation in a Kubo calculation using (3.37) matches the
results from a high temperature effective kinetic equation. The LAB phase does not
contain quasi-particles, but for small ε the quasi-particles become well defined and
this approach is justified during the calculation. The long range Coulomb interaction
will be screened at finite temperature on the Debye length-scale `D ∼

√
αT/c, which

is much less than the mean free path, justifying the local collision term.
We write the fields ψ in terms of particle and hole eigenstates, by performing a

particle-hole transformation on the valance band in (2.9)

ψ(x) =

∫
k

[
uσ(k)cσ(k)eik·x + vσ(k)h†σ(k)e−ik·x

]
(4.1)

where σ = ± is the helicity of the state, uσ(k), vσ(k) are spinor factors and
∫
k

=∫
(ddk)/(2π)d. Since we have a four-band model, the most general semi-classical

kinetic equation is for a matrix of distribution of functions including both diago-
nal distribution functions ∼ 〈c†σcσ〉, 〈h†σhσ〉 and distribution function that describe
particle-hole pairs ∼ 〈cσhσ′〉, 〈c†σh†σ′〉. Here, we neglect the latter type of distribution
function, since we are interested in the dc limit of the viscosity. Additionally, we shall
drop spin-orbit coupling in matrix elements in the equation and neglect scattering in
the Mandelstam s-channel, which involves electron-hole annihilation and production.
This is justified in a ‘leading q’ approximation, where the dominant contribution is
from particles with small momentum transfer; however, this would tend to overesti-
mate the viscosity. In this limit, the scattering matrix elements are not affected by
the spin structure of the theory. We note that at leading order in ε, the details of the
RG scheme do not enter the form of the Coulomb interaction and we use the lowest
order expression 4πα∗c/q2 as the interaction between excitations. At this order, the
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thermal screening of the interaction is also negligible. Unlike the bare Coulomb in-
teraction in d = 3, there is no low-momentum divergence of the collision integral and
thermal screening is not needed as a regulator.

With the above conditions, the full quantum kinetic equation encapsulating the
non-equilibrium time-evolution of the system, reduces to the usual semi-classical case

(∂t + v · ∂x + Fext · ∂k) fa(t,x,k) = −C[f ] (4.2)

where a labels both the species (electrons or holes) and helicity, v = 2ck is the particle
velocity and C[f ] is the collision term describing two-particle scattering. The method
of extracting the viscosity is standard – one considers the slowly varying local mo-
mentum as an external disturbance Xij = [∂jPi + ∂iPj − (2δij/d)(∂kPk)] /2, assumes
this weakly modifies the equilibrium distribution function f0(k) = 1/ [exp(ck2/T ) + 1]
and uses this modified distribution function to find the stress tensor Tij and hence η.
We linearize the distribution function fa(k) = f0(k) + δfa(k), where

δfa(k) = β[1− f0(k)]f0(k)χaij(k)Xij (4.3)

and χaij(k) =
√
d/(d− 1) (kikj − δijk2/d)χa(k) has the appropriate symmetry for the

shear flow factored out, so that χa(k) is a function of the magnitude k only.
For the stress tensor, we consider the contributions from the diagonal fermion distri-
bution functions

Tij =
∑
a

∫
k

2ckikjf
a
σ (k) (4.4)

In addition to neglecting the distribution function describing particle-hole creation,
we neglect the contribution from the Coulomb interaction between carriers to the
stress tensor; we find this to be sub-leading in ε in our approach.

We solve the kinetic equation using a variational approach [19, 73, 74]. The kinetic
equation, linearized for χ, can be viewed as an operator equation on function space
|Sij〉 = C|χij〉. Here Sij corresponds to the streaming term in (4.2); C is an operator
encoding the collision term and is Hermitian with respect to an inner product 〈f, g〉 =∑

a

∑
i,j

∫
k
faij(k)gaij(k). Finding the solution χ(k) of is equivalent to maximizing the

functional Q[χ] = 〈χij, Sij〉−〈χij, Cχij〉/2 with respect to variations in χ. Physically,
this means that the realized solution is that which maximizes entropy production
subject to the constraints imposed by the external disturbance and subsequent time
evolution of the system. We project χ onto a set of 12 basis functions and optimize the
coefficients numerically to find the variational approximation; the optimal function is
shown in Figure 4.1.

Using this solution, we find the viscosity
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Figure 4.1: Plot of optimized dimensionless function δ̃f(K) = −(T (α∗)2c) ·
χ (K)K2[1− f0(K)]f0(K) as a function of K = k

√
T/c.

η ' 3.1

(α∗)2

(
T

c

)2

, (4.5)

Since we are calculating η/s to leading order in ε, we can use the entropy density for
the unrenormalized band-structure in d = 4

s =
9ζ(3)

16π2

(
T

c

)2

, (4.6)

along with the fixed point value α∗ = (32π/21)ε to finally obtain

η

s
=

0.63

ε2
. (4.7)

Setting ε = 1 gives 4πη/s = 8.0; consistent with the original bound (1.9′). A priori,
there was perhaps reason to believe that this model might strongly violate the original
bound, given the unusual properties of the LAB phase – strong interactions, both
particle and hole carriers, no Galilean invariance and an anomalous scaling z with
softer excitations than in a relativistic system. The value of η/s ' 0.63 is, however,
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similar to the values found in the unitary Fermi gas (η/s ≤ 0.5) or in the quark-gluon
plasma (η/s ≤ 0.4) [47].

The LAB phase only emerged with the chemical potential at the Γ8 degeneracy
point, so the system lacked a Fermi surface. Changing the chemical potential away
sufficiently, we expect to recover the usual Fermi liquid behavior. For a Fermi liquid
η/s ∼ (εF/T )3 is temperature dependent [75]; in this limit the quasi-particles are well
defined and weakly interacting. By comparison, graphene with Coulomb interactions
is described by a field theory with marginally irrelevant interactions, but stays in a
scaling regime for a large range of energies [76, 77]. The ratio η/s ∼ 1/α(T )2 has
a form similar to the quantum critical case (4.7), except that the effective coupling
constant α(T ) ∼ 1/ log(TΛ/T ) ultimately renormalizes to zero as T → 0 [51]. In both
of these cases, η/s diverges as T → 0 in contrast to the universal ratio obtained for
the LAB phase.

Throughout our analysis, we have worked in the ε-expansion to retain analytic
control, both for the description of the RG flow and the kinetic equation calculation.
The use of the ε-expansion is well established [4, 6]. Determining its accuracy for
finite temperature transport coefficients in quantum critical systems by comparison to
numerical simulations is an active research area for which we refer to the literature [10,
78, 79]. The extrapolation to the physical dimension is, however, always a sensitive
matter and relies on the fixed point evolving smoothly as ε → 1. This may fail if
there is interference from another fixed point. While there is no other fixed point at
small ε, it was suggested in [61] that such a fixed point might arise at strong coupling
and destabilize LAB phase for the physical dimension d = 3; this is still an open
question [80].

Finally, we want to briefly comment on the experimental implications of the above
discussion. In order to define the viscosity, the mean free path of effects which vio-
late momentum conservation, such as disorder or umklapp processes, must be much
larger than the mean free path of electron-electron interaction. This hydrodynamic
regime is generally difficult to access in a solid state system, although, for example,
recent experiments in PdCoO2 observe very low resistivity and a temperature behav-
ior consistent with phonon drag [81]. In this regime, we might expect the viscosity
to dominate the damping of acoustic waves and also to observe viscous drag effects,
which may be a route to accessing η. Alternatively, the possibility of more dramatic
signatures due to electronic turbulence has been suggested in low viscosity phases
[51]; the LAB phase would be a prime candidate for searching for such effects. Over-
all, we anticipate that the hydrodynamic regime will become increasingly important
in the study of solid state systems.
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4.2 Variational Solution of the Kinetic Equation

Within the approximations discussed above, the kinetic equation with interaction
reduces to the semi-classical kinetic equation for the diagonal distribution functions

(∂t + vk · ∂x + Fext · ∂k) fa(t,x,k) = −C[fa] (4.8)

The collision term is

C[f ] =
1

2

∑
bcd

∫
p′,k,k′

|M cd
ab (p,k,p

′,k′)|2·

(2π)d+1δ(εp + εk − εp′ − εk′)δd(p + k− p′ − k′)·{
fa(p)f b(k)[1− f c(p′)][1− fd(k′)]− f c(p′)fd(k′)[1− fa(p)][1− f b(k)]

}
(4.9)

The matrix terms are given by the tree-level scattering processes ab→ cd. As stated
in the main text, we shall neglect scattering processes in the s-channel (involving
particle-hole annihilation and reformation). To find the transport coefficients, we
look for perturbations about equilibrium

fa(k) = f0(k) + β[1− f0(k)]f0(k)χa(k)Iij...(k)Xij... (4.10)

where Xij... is the external driving force appropriate for the transport coefficient
under consideration, Iij...(k) is tensor appropriate for the symmetry of the driving
force and χ(k) the perturbed distribution function. We also introduce the short-hand
χij...(k) = Iij...(k)χ(k). We shall keep this generality for the moment, and focus on the
case of shear viscosity later. For both particles and holes, the equilibrium distribution
function is f0(k) = 1/[exp(ck2/T ) + 1]. Explicitly

Q[χ] = −
∑
a

∫
k

f0(k)[1− f0(k)]βqaχa(k)

− β

16

∑
abcd

∫
k,p,k′,p′

|M cd
ab (p,k,p

′,k′)|2f0(p)f0(k)[1− f0(p′)][1− f0(k′)]·

(2π)d+1δ(εp + εk − εp′ − εk′)δd(p + k− p′ − k′)·{
χaij...(p) + χbij...(k)− χcij...(p′)− χdij...(k′)

}2
(4.11)

where we used detailed balance to make manifest that C is hermitian. Here qa are
‘charge factors’; in the case of the shear viscosity qa = k4 for all species. The above
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rewrite also gives rise to the factor 1/8 to stop overcounting of a ↔ b and ab ↔ cd
processes.

We maximize Q[χ] by projecting the function χ(k) =
∑

µ aµFµ(k) onto a set of
basis functions Fµ(k). Maximizing Q then reduces to the solution of matrix equation∑

ν

Cµνaν = bµ (4.12)

for aν . From now on we set d = 4, since we are working in the ε-expansion and
interesting in the dominant ε term. We also denote by P,K,Q the scaled momenta
P = p

√
c/T . We defin q such that p′ = p + q and k′ = k − q; we perform the k′

integral to remove the delta function in momentum and replace the p′ integration by
a q integration. We rewrite the delta function enforcing energy conservation during
scattering as

δ(εp + εk − εp′ − εk′)

=
2Q

c
· c
T

∞∫
−∞

dy δ(K2 − |K−Q|2 − 2Qy)δ(P 2 − |P + Q|2 + 2Qy) (4.13)

=
2Q

T · (2KQ)(2PQ)

y1∫
y0

dy δ

(
cos θKQ −

2y +Q

2K

)
δ

(
cos θPQ −

2y −Q
2P

)
(4.14)

where y0 = min[P+Q/2, K−Q/2] and y1 = max[−P+Q/2,−K−Q/2] are restrictions
imposed so that the cosines are defined.

Unlike usual ‘leading-q’ expansions [74], we only modify the matrix elements –
dropping the spin structure as well as particle-hole creation processes – but do not
expand the functions χij(p

′), χij(k
′) in q nor set q = 0 in the Fermi functions. After

performing the angular integrals analytically, we are left with a four-dimensional
integral (over k, q, p, y) to calculate Cµν , which we perform numerically using the
cubature algorithm Cuhre of the Cuba library [82].

To find the shear viscosity we apply a divergence-free background flow pattern of
momentum P(x) with ∂kPk = 0:

Xij =
1

2

(
∂Pj
∂xi

+
∂Pi
∂xj

)
(4.15)

Iij(k) =

√
d

d− 1

(
kikj −

1

d
δijk

2

)
(4.16)

and solve the kinetic equation for χ. The shear viscosity can then be found from the
stress tensor



42

Tij = −η (δikδjl + δilδjk) 2cXij =
∑
a

∫
k

2ckikjf
a(k) (4.17)

Due to the symmetry of the diagonal part of the stress tensor under particle and
hole exchange, the function χ(k) will be the same for particles and holes. The charge
factors qa = k4 for all species. In the low-q approximation for a matrix element,
the sum entering the kinetic equation functional is

∑
abcd |M cd

ab (p,k,p
′,k′)|2 = r2

d ·
(4πα∗c/q2)2, taking into account the exchange symmetry and over-counting factors.
We define the dimensionless scaling function

Φ(K) =
T (α∗)2

c
· χ
(
k

√
T

c

)
(4.18)

which we expand onto a set of basis functions Φ(K) =
∑

µ aµFµ(K). We choose

Fµ(K) =
[
1 + e−K

2
]2

L(3)
µ (K2) (4.19)

where L
(3)
µ (x) are associated Laguerre polynomials. The choice of Laugerre polyno-

mials is well known from the case of transport in a Boltzmann gas [19] – it simplifies
the form of bµ to

bµ =
r4

16π2(α∗)2

(
T

c

)2
18√

3
δµ,0 (4.20)

due to the orthogonality properties of the Laguerre polynomials. These basis functions
also give a reasonably well conditioned matrix Cµν which can easily be evaluated and
inverted numerically. We use a set of 12 basis functions. Performing the variational
solution gives

η = − rd
16π2(α∗)2

(
T

c

)2
1

3
√

3

∞∫
0

dK f0(K)[1− f0(K)]K7Φ(K) (4.21)

= − rd
16π2(α∗)2

(
T

c

)2
a0√

3
' 3.14

(α∗)2

(
T

c

)2

(4.22)

with rd = 4. This is the result given in the main text.

4.3 Coulomb Contribution to Stress Tensor

In addition to the contribution of the electrons and holes given in (3.54) and (3.55),
the stress tensor has a contribution from the Coulomb interaction
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T
(int)
ij = − 1

4πe2

∫
d4k

(2π)4

[
kikj −

1

2
δijk

2

]
〈ϕ(k)ϕ(−k)〉 (4.23)

where by the average 〈ϕ(k)ϕ(−k)〉 we mean the semi-classical limit of the correlator
evaluated in the non-equilibrium case. We will argue in our approach that the above
term is of higher order in ε and can be neglected in our calculation of η. Since
the Coulomb interaction is non-dynamic, the contribution to the viscosity when we
apply a background momentum P(x) will be through loop corrections involving the
fermions. We shall use the results we found from the Boltzmann equation so that our
answer is self-consistent. We can show in Keldysh perturbation theory [19, 83–85],
that for the scalar interaction

〈ϕ(x1)ϕ(x2)〉 = −DR(x1, x3)Π−+(x3, x4)DA(x4, x2) (4.24)

where DR,A are the retarded and advanced Green functions of the scalar field and
Π−+ the appropriate self-energy. Here we use the notation of [19] for the contour
labels. We now perform a semi-classical expansion, retaining only the lowest order
derivatives of P

〈ϕ(k)ϕ(−k)〉 = −DR(k)Π−+(x,k)DA(k)

+
i

2

[
∂DR(k)

∂ki

∂Π−+(x,k)

∂xi
DA(k)−DR(k)

∂Π−+(x,k)

∂xi

∂DA(k)

∂ki

]
+ . . . (4.25)

where further terms in the semi-classical expansion are higher derivative of P and can
be neglected. At our level of approximation we include the thermal screening term
and the lowest order k2 term with the fixed point interaction

DR,A(k) =
1

νrdTc−2 + k2/(4πcα∗)
(4.26)

where ν is a numerical constant. Since the electron contribution to the viscosity goes
as ∼ 1/ε2 we need the dominant power of 〈ϕ(k)ϕ(−k)〉 in ε to be no higher than ∼ 1/ε
in order for (4.23) to be important. The second term in (4.25) does not contribute –
to see this consider that the spatial derivative on Π−+, which acts only on P(x) in
the equilibrium distribution function of the fermions. To order ∂Pj/∂xi, ∂Π−+/∂xi
does not contribute any powers of ε, while the k derivatives of DR,A only contribute
positive powers of ε.
In our approximation of considering only the diagonal distribution functions discussed
in the main text, the semi-classical self-energy in the first term of (4.25) is

Π−+(x,k) = −
∑
a

∫
d4q

(2π)4
fa(q)[1− fa(k + q)]δ(εk+q − εq) (4.27)
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where fa are the non-equilibrium distribution functions (4.10). To order ∂Pj/∂xi,
the f contribute a single ∼ 1/ε2, which are, however, compensated. For a generic
momentum k ∼

√
T in (4.23), we may neglect the screening in DR,A and each prop-

agator contributes a power ε. For a soft momentum on the order of the screening
scale or above k ∼

√
εT , the contribution to (4.23) is suppressed by powers of k from

∼ k2d4k in the integral. To lowest order in ε, we can therefore neglect (4.23) in our
calculation of η.
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Part II

Numerical Simulation of
Strongly-Correlated Electrons in a
High-Temperature Superconductor
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Overview

In the second part of the thesis, we will consider questions related to high-temperature
superconductivity observed in monolayer iron selenide FeSe. We will be approaching
this question from a mostly numerical perspective, performing unbiased Quantum
Monte Carlo simulations on Hubbard-type models, designed to capture the essential
physics of highly doped FeSe. In chapter 5, we will give a brief overview of the
unconventional superconductivity in the iron based superconductors in general. We
discuss general questions related to the numerical methods in chapter 6 and present
the details and results of the numerical simulation in chapter 7.
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Chapter 5

Unconventional Superconductivity
in Iron Based Materials

5.1 High-Temperature Superconductivity

The Bardeen-Cooper-Schrieffer (BCS) theory [86] forms the basis of our understand-
ing of conventional superconductors. In BCS theory, electrons bind together to form
bosonic Cooper pairs which condense to form the superconducting state. In general,
the order parameter has s-wave symmetry and gapped excitations. The pairing is due
to an effective attractive interaction mediated by the exchange of virtual phonons.
The typical energy scales are small compared to the Fermi energy, and we can de-
scribe superconductivity in the BCS picture as an instability of a Fermi liquid at low
temperatures.

Since the 1970s, a number of different classes of materials have been synthesized
which fall outside of the BCS paradigm. The most famous of these is the family
of the copper based superconductors (cuprates), first discovered in 1986 [87]. While
superconductivity still arises from the formation of Cooper pairs, the nature of su-
perconductivity is quite different: it does not arise of a Fermi-liquid normal state, the
transition temperature is large, the order parameter is typically d-wave, and supercon-
ductivity is only one phase in a complex phase diagram with many proximate phases.
The cuprates are materials were very strong electron correlations dominate. In par-
ticular, the superconducting paring is not mediated by electron-phonon interactions
but through complicated mechanisms originating from the repulsive electron-electron
interaction [88–90].

Despite three decades of experiment and theoretical progress and a detailed phe-
nomenological understanding of many materials, fundamental questions and disagree-
ments about theoretical interpretations persist. This is especially true about the na-
ture of the normal state above the superconductor – both the pseudo-gap and the
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Figure 5.1: Schematic of a phase diagram of a typical iron-pnictide superconductor
such as Ba(Fe1−δCoδ)2As2 as a function of temperature T and electron doping δ,
showing the three different regimes – pure nematic (vertical hatching), stripe spin-
density waves (diagonal hatching) and superconductivity (solid gray). Adapted from
[95].

strange metal regime. As discussed in the introduction and illustrated by Part I of
this thesis, there are many challenges in describing gapless non-Fermi-liquid states.
This is exacerbated in many models of the cuprates, where techniques like a usual
1/N expansion fail to provide analytic control of the strong interactions of interest
[91].

In 2008, the discovery of unconventional superconductors in iron based materials
[92, 93] was a dramatic development. It provided a fundamentally new class of high-
temperature superconductors, which can be compared to the cuprates and where
questions about the nature of the superconductivity and non-Fermi liquid states can
be explored. Additionally, the iron-based superconductors are generally believed to
have slightly weaker electron-electron interactions and a simpler phase structure then
the cuprates [94]. This raises the hope that they are better suited to resolve questions
of principle. Nonetheless, the iron-based superconductors have also shown many
interesting and novel features.
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5.2 Phase Structure of Iron-Based

Superconductors

We briefly outline common experimental behavior found in most iron based super-
conductors; for a more comprehensive review see [96–99] and references therein. The
common feature that unites iron based superconductor are layers of iron atoms ar-
ranged on a square lattice with pnictogen or chalcogen atoms staggered above and
below the plaquettes of the iron lattice. The simplest structure is that of the so-
called 11 compounds, for example iron selenide FeSe (Figure 5.2a). More complicated
iron-based superconductors have additional structure in blocking layers between the
iron planes. The physics is dominated by the electrons in the iron planes; the iron
dxz, dyz, dxy orbitals contribute dominantly to electronic states close to the Fermi sur-
face and gives rise to both electron and hole pockets.

In most iron based superconductors, there are three phases which emerge with
changing pressure and doping – a magnetic spin-density wave state (SDW), a nematic
state and the superconducting state; a schematic phase diagram is shown in Figure
5.1. The spin-density order is typically either (0, π) or (π, 0) along the iron atoms
and therefore also breaks the C4 rotational symmetry of the lattice in addition to
spin rotation and time-reversal. Slightly preceding or sometimes merged with the
SDW is a pure nematic transition that only breaks the C4 symmetry, but not time-
reversal. Due to the coupling between electrons and the lattice, the nematic symmetry
breaking is the same as a tetragonal to orthorhombic distortion of the lattice [100,
101]. Although there has been much debate about the exact origins of the nematic
phases and the interplay between spin, orbital and lattice degrees of freedom, there
is much evidence that this transition is primarily determined by the behavior of
electronic degrees of freedom [102–104]. The superconducting order in most iron
based superconductors is widely believed to be s+−; such a state is possible because
of the more complicated, multi-band nature of the pnictides. Nonetheless, proposals
for other pairing symmetries such as s++ or d-wave have not been excluded [105].

5.3 Phenomenology of FeSe

A notable exception in the general pattern outlined in the previous section is iron
selenide FeSe. In undoped bulk FeSe at ambient pressure, there is a high-temperature
nematic transition at TN ∼ 90 K and a superconducting transition at Tc ∼ 8 K
[106]. Unlike most iron based superconductors, there is no magnetic ordering at
ambient pressures. Nonetheless, magnetic fluctuations have been observed [110, 111],
although these are only weakly temperature dependent above the nematic transition
[112]. An important development was the growth of FeSe monolayers on strontium
titanate SrTiO3 (STO), where superconductivity was reported with Tc ∼ 65 K from
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(a) (b)

Figure 5.2: (a) Schematic showing two layers of the crystal structure of the iron
chalcogenide FeSe. The iron atoms (dark blue) form a square lattice in the central
plane of each layer. The chalcogen atoms (light yellow) are staggered above and below
the plaquettes of the iron lattice. Adapted from [106, 107].
(b) Proposed phase diagram for FeSe as a function of electron doping δ, for example by
dosing the surface with potassium K. The bulk superconductivity initially decreases
with doping (SCI). At larger doping, superconductivity reappears and is enhanced
to Tc ∼ 40 K (SCII). Nematic symmetry breaking (from band splitting) decreases
with doping; nematic fluctuations are observed in a wide range of the phase diagram.
Adapted from [108, 109].

measurements of the Meissner effect [113]. An even higher Tc was reported in an
unconventional transport measurement [114] and in an STM study [115]. This has
led to an intense effort to study FeSe under different conditions of geometry, doping,
pressure and substrate type.

Although no complete picture has emerged, it has become clear that the bulk
superconductivity of FeSe can be enhanced to temperatures of Tc ∼ 40 K in a variety
of ways; for example by high electron doping [109, 116, 117] or through the application
of pressure [111]. In both these cases, the nematic order is suppressed and disappears
as superconductivity reaches a maximum. Nonetheless, the interplay between the two
orders remains an open question. In FeSe1−xSx, the nematic order is also suppressed
with increased chemical pressure from the sulfur, but with little effect on Tc [118]. A
schematic phase diagram is shown in Figure 5.2b; for the case of potassium dosing two
distinct superconducting domes are reported, while for pressure enhancement only a
single dome is seen.

For thin layers of FeSe grown on a verity of substrates, such as MgO [119], sim-
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ilar enhancements of Tc up to ∼ 40 K are observed. From the growth process, it is
expected that these monolayers are doped as compared to the bulk. A similar Tc is
achieved in the layered bulk material (Li0.8Fe0.2)OHFeSe where electrons are trans-
fered to the FeSe layer [117]; although this compound also has a Tm ∼ 8.5 K transition
to a canted antiferromagnet. This supports the picture that some enhancement of
superconductivity is an intrinsic effect.

Because of the high doping effect, the central hole pocket present in the band-
structure of the undoped system is pushed below the Fermi surface [120]. This pre-
cludes the s+− pairing symmetry favored to explain the other iron pnictides. Plain
s-wave was reported in a scanning tunneling microscopy (STM) study [121]; an angle-
resolved photoemission spectroscopy (ARPES) study concluded the gap dependence
to be inconsistent with both extended s-wave and d-wave [122].

The additional enhancement to Tc seen in FeSe grown on STO are believed to arise
from electron-phonon interactions between the two substrates [123]. Strong evidence
for this idea comes from shadow bands seen in ARPES experiments [124], which
are due to optical phonons of the surface STO oxygens. Additionally, the strong
superconducting enhancement is not seen in two or higher unit cell layers of FeSe on
STO [115].

5.4 Electron Nematic Criticality

Electronic nematic criticality has formed the basis of a set of theoretical proposals
that have garnered much attention as a possible route for explaining features of high-
temperature superconductors. Although probably not applicable in its simplest form,
the basic picture is that the superconducting dome seen is covering a nematic quantum
critical point, the strange metal phase can be identified in part as the incoherent
quantum critical regime and the pseudo-gap phase seen in the cuprates is a signature
of the nematic state [125].

In a metal, the nematic transition breaks the rotational symmetry of the Fermi
surface down to a lower symmetry, without breaking translational symmetry. In the
simple case of an Ising-nematic the C4 symmetry of electrons on a square lattice is
broken down to C2. When this happens, the entire Fermi surface distorts to align
along one of the two broken symmetry axes. The system remains a Fermi liquid
on both sides of the transition. Since only a point group symmetry is broken and
not a translational symmetry, the order parameter couples to electrons at the same
momentum

ϕN ∼
∑
k

f(k)c†kck (5.1)
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where f(k) = cos kx − cos ky is the dx2−y2 form factor. Critical fluctuations of the
nematic order parameter couple strongly to the entire Fermi surface and give rise to
a non-Fermi-liquid state.

Constructing an analytical description of the critical point has proved challeng-
ing, as no entirely controlled way has been found to access the critical point. The
traditional Hertz-Millis approach [126, 127] proceeds by integrating out the fermions
to obtain an effective action of the order parameter and then truncates the effective
action at quadratic order. Since fermions are gapless degrees of freedom, the effec-
tive bosonic theory has a complicated non-analytic structure and the truncation is
unjustified. The most promising analytical methods [128] rely on double ε and 1/N
expansions in a Fermi-surface patch construction.

Additionally, the non-Fermi-liquid state may itself be unstable towards the forma-
tion of a superconductor at low temperatures. The critical fluctuations act to enhance
the Cooper pairing in all angular momentum channels [129, 39] and we expect the
critical point to be covered by a superconducting dome. This presents a complicated
situation as the pairing destroys the very fluctuations and excitations that give rise
to it. Recently it was shown in a double expansion calculation [39], that the critical
region of the Ising-nematic case is never realized, but preempted by the formation
of a superconductor. This casts doubt on the interpretation of the strange metal as
arising from the critical fan.
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Chapter 6

Determinant Quantum Monte
Carlo

The analytical challenges in addressing both fundamental questions about the metal-
lic quantum criticality as well as their application to actual materials, has led to
an effort to simulate models numerically. In particular, there has been a renewed
interest in recent years [130–134] of using unbiased Determinant Quantum Monte
Carlo (DQMC) to study quantum criticality in metals. In this chapter, we review the
DQMC algorithm as well as several technical improvements that allow us to simulate
the low temperature, strong coupling regime of interacting fermions. We will apply
DQMC to study superconductivity in monolayer FeSe in Chapter 7.

6.1 Basic Algorithm

We briefly review the basic DQMC algorithm with discretized time-steps as described
in [135–137]. The idea is to directly sample the full partition function in imaginary
time. Consider for concreteness a fermion problem discretized on a lattice with on-site
four-fermion interactions

Z = Tr e−βH =

∫
D [c∗, c]e−S, (6.1)

where

S =

∫
dτ

{∑
i,j

c∗j,τ [δij∂τ − tij + δijµ] ci,τ + α
∑
i

Oi,τOi,τ

}
. (6.2)

Here tij are hopping coefficients and Oi,τ is an on-site bilinear of fermions. The fermion
path integral is formally written in terms of Grassmann variables. We introduce an
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auxiliary bosonic Hubbard-Stratonovich field ϕ at each space-time site i, and reduce
all interaction terms to be quadratic in fermions. One possible decoupling is

eαO
2
i ∼

∫
dϕi e

−ϕ2
i−2
√
αϕiOi (6.3)

We eliminate all Grassmann variables by integrating out the fermions to obtain

Z =

∫
Dϕ DetG−1(ϕ)e−Sb(ϕ). (6.4)

Here Sb(ϕ) is the bosonic action of the Hubbard-Stratonovich fields and G−1(ϕ) the
inverse of the single particle fermion Green function for a given configuration of ϕ.
This integral can be sampled using usual Monte Carlo methods [138–140]. Updates of
the Hubbard-Stratonovich field are proposed ϕ→ ϕ′ and accepted with probability

min

[
1,

DetG−1(ϕ′)e−Sb(ϕ
′)

DetG−1(ϕ)e−Sb(ϕ)

]
(6.5)

Despite the simplicity of the above procedure, there are challenges in practically im-
plementing it for the case of strongly correlated systems. These difficulties will man-
ifest themselves as restrictions on the range of parameters (temperature, interaction
strength, lattice size), where accurate simulations may be performed.

A central problem in simulating fermion systems using Monte Carlo methods is the
so-called sign problem, which arises due to the anti-commuting nature of the fermions.
In the context of DQMC, the individual terms of the partition function (6.4) need
not be positive. In general the signs of observables generated by the sampling are
highly oscillatory. Large numbers are subtracted from each other in order to obtain an
estimate for the average result. This leads to an unbounded growth of the statistical
errors and renders sampling unreliable. Although models with sign problems can still
be simulated, one is mostly limited to the case of very high temperature.

There has been much effort in understanding the detailed sign structure of the
partition function Z and finding ways to avoid the sign problem; see [141–146]. Typ-
ically, this requires a symmetry, for example time-reversal, which guarantees that
each term in the partition function is positive. This has led to the notion of so called
‘designer’ models – models chosen to be sign problem free while still capturing the
essential physics of the problem [147]. We will follow this philosophy in Chapter 7.

6.2 Numerical Instability of the Green Function

The central object in the numerical calculation is G(ϕ), which determines both the
update probability (6.5) and is also the basis for calculating other physical observ-
ables via Wick’s theorem. However, accurately and efficiently calculating the Green
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function on a finite precision machine is challenging. The discretized form of the
equal time correlation function is

Gϕ(τ) = [1 +Bϕ(τ, 0)Bϕ(β, τ)]−1 . (6.6)

Here

Bϕ(τ, 0) = B(τ, τ −∆τ) . . . B(2∆τ,∆τ)B(∆τ, 0) (6.7)

is the propagator discretized in time; for a single time-slice

Bϕ(∆τ + τ, τ) = e−∆τHint[ϕ(τ)]e−∆τH0 . (6.8)

The multiplication of the string of B matrices introduces large numerical errors on a
computer, due to the mixing of finite precision numbers of vastly different scales – the
real space basis of the lattice does not take into account any hierarchy of the energies
of the problem. One solution [136, 148] is to multiply the matrices consecutively and
separate out the scale of the numbers using a rank-revealing factorization such as
QR decomposition (with pivoting) or singular value decomposition (SVD). However,
naive applications of such methods may fail. For example, the usual SVD algorithm
via reduction to a bi-diagonal matrix becomes unstable for large condition numbers
and another algorithm such as a Jacobi SVD algorithm must be used [149–151].

When calculating the full determinant, all singular values will enter and so high
accuracy is needed. To ensure that rounding errors will not enter the final determinant
expression one needs to be careful when performing the inversion (6.6). One method
is to perform additional singular value decompositions before inverting [149, 148]

G−1 = I +Bs(β, 0) = I + UDV T (6.9)

We then split D into singular values larger and smaller than 1 (‘big’ and ‘small’)

D = DbDs (6.10)

and write

G−1 = I + UDV = UDb(D
−1
b U−1 +DsV

T ) (6.11)

the term (D−1
b U−1 +DsV

T ) now only contains small numbers. Multiplying U−1 and
V T with the appropriate D cancels out numerical errors that were introduced in
the original singular value decompositionn. We perform an additional decomposition
(D−1

b U−1 +DsV
T ) = ŨD̃Ṽ T to obtain the stable formulae

G = Ṽ D̃−1ŨT (UDb)
−1 (6.12)

detG−1 = det[Db] det[D̃] (6.13)
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6.3 Parallel Tempering for DQMC

A challenge of performing any Monte Carlo sampling is to propose new configurations
that will quickly explore the space of the variables being sampled and give an accurate
estimate of the desired distribution. For DQMC, this means generating statistically
independent configurations of ϕ. However, proposing dramatic changes to ϕ will
generally lead to a rejection in the acceptance step (6.5).

The vast majority of DQMC codes still rely dominantly on local updates due to
the computation cost of global updates. In a local updating scheme, sites of the lattice
are swept through and changes to the field on each space-time site ϕi proposed. This
procedure works well at temperatures high or comparable to the band-width of the
fermions. At low temperatures or strong interactions and also anytime we enter into a
broken symmetry phase we expect to see ergodicity problems, where the simulations
fail to sample over the configuration space and gets confined to some local region.
Practically, this is associated with some physical observables being stuck at certain
values with unreasonably small error bars [152]. This may present a major limitation
as auto-correlation times of the simulation may become so large that the system
becomes impossible to simulate.

There has been a long history of developing high acceptance global updates [140].
The existence of these typically rely on a special aspect or symmetry of the model
under consideration, such as is the case for the Swenson-Wang or Wolff updates for
Potts models [140]. In DQMC, the complex form of the fermion determinant with a
Hubbard-Stratonovich field (6.4) means that hardly any global updating schemes are
known.

One commonly used update in the Hubbard model is to change the sign of
Hubbard-Stratonovich fields on all time-slices of a site. If the interaction is purely
on-site and in the limit where there is no-hopping the acceptance probability is 1. To
see this, consider the Hubbard model with an Ising decoupling s = ±1

eλssi(ni,↑−ni,↓) (6.14)

where λs is some coefficient. When we set si,τ → −si,τ this will leave the Green
function invariant, but will change the ↑, ↓ occupation for the spatial site i. The hope
is that for sufficiently weak hopping, this update would still be accepted with a high
probability.

An approach that has been developed for general Monte Carlo simulations is
parallel tempering. To our knowledge, the work presented here [2], along with [132],
was among the very first to apply it to a DQMC problem.

The idea of parallel tempering [153] is the set up Nparallel number of runs with dif-
ferent values of the interaction g = {gmin, . . . , gmax} and allow Hubbard-Stratonovich
configurations to be exchanged between them. At the weakest interactions, we ex-
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pect the system to have short auto-correlation times and the Hubbard-Stratonovich
configurations equilibrate very quickly. At strong interactions the system has long
auto-correlation times and this is where ergodicity problems arise. The parallel tem-
pering effectively allows configurations to be swapped from strong to weak coupling
and back – the strong coupling systems continue to get a new input of de-correlated
configurations.

One can view the set of all Nparallel simulations as one ‘super’ Monte-Carlo simu-
lation and the exchange of configurations as a generalized type of update. Provided
that the spacing between neighboring interactions is not too large, the typical con-
figurations should be similar and the chance the update is accepted is high. While
parallel tempering is typically done with different temperature parameters, any en-
ergy parameter can be used. For DQMC simulations, higher temperatures typically
use fewer time-slices which helps the system equilibrate faster and so tempering in
the interaction is more convenient.

The generalization of the ratio of probabilities in (6.5) for a swap between two
simulations is

detG−1({ϕ1}, g2) detG−1({ϕ1}, g1)

detG−1({ϕ1}, g1) detG−1({ϕ1}, g2)
· e
−Sb(ϕ1)−Sb(ϕ2)

e−Sb(ϕ1)−Sb(ϕ2)
(6.15)

where g1, g2 are the interactions of the simulations. The ratio of the bosonic actions
is written for completeness, but cancels out.

There is an interesting alternative to the swap proposed by (6.15); we could at-
tempt a swap in such a way that the ratio of the determinants cancel each other out
and only the ratio of the bosonic actions remain. This avoids both the numerical
problems and computation effort of calculating the Green function determinant. Be-
cause the only combination that enters the determinant is ϕ

√
|g|, we could scale the

fields by this factor and then swap. Therefore, we propose

ϕnew1 = ϕ2

√
|g2/g1| (6.16)

ϕnew2 = ϕ1

√
|g1/g2| (6.17)

For simplicity consider the simplest bosonic action Sb(ϕ) =
∑

i ϕ
2
i , so that the ratio

of probabilities becomes∏
i

exp

[
−ϕ2

i,1

(
−1 +

|g1|
|g2|

)]
exp

[
−ϕ2

i,2

(
−1 +

|g2|
|g1|

)]
(6.18)

We note, however, that in test cases on a lattice with 512 space-time sites, this
rescaling resulted in very low acceptance rates (∼ 10−4 for interactions g ∼ 1.0).
Nonetheless, this method can be appropriate in other circumstances.
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Chapter 7

Quantum Monte Carlo Simulation
of FeSe Monolayers with Effective
Nematic Interactions

In contrast to bulk FeSe, which exhibits nematic order and low temperature super-
conductivity, atomic layers of FeSe reverse the situation, having high temperature
superconductivity appearing alongside a suppression of nematic order. To investigate
this phenomenon, we study a minimal electronic model of FeSe, with interactions that
enhance nematic fluctuations. This model is sign problem free, and is simulated using
determinant quantum Monte Carlo (DQMC). We developed a DQMC algorithm with
parallel tempering, which proves to be an efficient source of global updates and al-
lows us to access the region of strong interactions. Over a wide range of intermediate
couplings, we observe superconductivity with an extended s-wave order parameter,
along with enhanced, but short ranged, q = (0, 0) ferro-orbital (nematic) order. These
results are consistent with approximate weak coupling treatments that predict that
nematic fluctuations lead to superconducting pairing. Surprisingly, in the parameter
range under study, we do not observe nematic long range order. Instead, at stronger
coupling an unusual insulating phase with q = (π, π) antiferro-orbital order appears,
which is missed by weak coupling approximations.

7.1 Introduction

A remarkable recent development in materials science has been the observation of
enhanced superconductivity in single layers of FeSe, grown initially on SrTiO3 (STO)
substrates [115, 154]. In contrast to bulk FeSe which undergoes a superconducting
transition at a relatively low temperature Tc ∼ 6 K [106], Tc in monolayers is at
least an order of magnitude larger, in excess of 60 K [113] with even higher transition
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temperatures reported by an unconventional transport measurement [114]. Initial
studies attributed the enhancement of superconductivity to coupling between elec-
trons in the FeSe layer and an STO phonon, which was also implicated in creating
shadow electron bands observed in angle resolved photoemission experiments [124,
155]. However, such shadow bands are also observed for electrons on the surface
of STO itself, which does not superconduct [156]. Furthermore, recent studies have
observed enhancement of Tc ∼ 40 K in FeSe in the absence of STO substrate – for
example by surface electron doping by depositing potassium [108, 157, 158], or in
the layered material (Li0.8Fe0.2)OHFeSe [117, 159]. Since the phonon spectra of these
materials are entirely different from STO, an alternate mechanism must be at play,
which is intrinsic to the FeSe layers. The common element between these and the
original FeSe on STO studies is that heavy electron doping leads to a pair of electron
like Fermi surfaces [157, 158, 120, 160, 109, 116]. Hence we seek a mechanism for
superconductivity that is intrinsic to the FeSe layers, that is controlled by electron
doping. It has been speculated that the even higher Tc of FeSe on STO is due to
a pairing boost arising from the STO phonon [161, 116], in addition to the intrinsic
mechanism.

What is the origin of this intrinsic Tc enhancement? Nematic fluctuations present
an appealing possibility for the following reasons: (i) Bulk FeSe undergoes a nematic
transition at 100 K, and is unique in the family of iron pnictides/chalcogenides in not
having a proximate magnetic transition. In fact, no magnetic order is observed down
to the lowest temperatures [162, 163] (ii) Electron doping has been shown to suppress
nematic order [116] in potassium-doped FeSe, following which superconductivity ap-
pears. (iii) Theoretically, fluctuations of nematic order in the vicinity of a nematic
quantum critical point are expected to enhance superconductivity, and this effect is
particularly pronounced in 2D [39, 164, 129]. However, existing analytical theories
have focused on universal aspects of the physics and do not capture non-universal
aspects that are relevant to experiments. On the other hand, treatments that incor-
porate details of FeSe band structure and interactions, often use weak coupling or
uncontrolled approximations [165, 166, 161, 167], and may not correctly capture the
true phase structure of the system.

In this paper we investigate the role of nematic fluctuations in enhancing super-
conductivity, by studying a sign problem free model of the FeSe monolayer, using
determinant quantum Monte Carlo (DQMC). The phase diagram obtained differs
substantially from that predicted by the Random Phase Approximation (RPA) [166],
particularly in the strong coupling limit. At intermediate couplings, we find a region
with substantially enhanced nematic fluctuations and superconductivity. Although
there is no long range ordered nematic, a notable feature is that the maximum en-
hancement of uniform nematic fluctuations coincides with peak in a superconducting
dome. Moreover, we find that superconductivity responds to doping in an essentially
asymmetric way – electron doping enhances, while hole doping suppresses super-
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conductivity. All these findings link the emergence of superconductivity to nematic
fluctuations, and are potentially relevant for the physics of FeSe films.

Other models, which were recently studied using DQMC [130, 131], introduce
the order parameter – such as antiferro-magnetic or nematic order – as a separate,
dynamic bosonic degree of freedom. Moreover, superconductivity was not observed
in the effective model considered by [131]. While such an approach is appropriate to
studying universal aspects of quantum phase transitions, here we will be interested
in more microscopic questions. We emphasize that our model defined below includes
only electronic degrees of freedom, with properly chosen interactions that are sign
problem free. Similar techniques can be used to study many other multi-orbital
models, for which the presence of two spin species removes the sign problem at any
doping.

7.2 Model

We consider a two-band tight binding model, where electrons occupy the dxz, dyz
orbitals of iron atoms on a square lattice. This simplified model captures basic features
of the iron pnictide bandstructure [168] and allows for nematic symmetry breaking.
We take the Hamiltonian

H = −
∑
ij,ab,σ

(tabij c
†
iaσcjbσ + h.c.)− µ

∑
i,a

ni,a −
g

2

∑
i

(ni,xz − ni,yz)
2 (7.1)

where a, b = xz, yz are orbital indices, σ =↑, ↓ is the spin index and ni,a =
∑

σ c
†
iaσciaσ

is the occupation of orbital a on lattice site i.
Allowed hopping coefficients tabij are dictated by the symmetry of the dxz,yz orbitals

and we include hopping between nearest-neighbor (t1, t2) and next-nearest-neighbor
sites (t3, t4), as shown in Fig. 7.1(a). The values of t1,...,4 coincide with those used
in Ref. [166]; we will measure energy in units of t1. The Fermi surface in the non-
interacting limit (g = 0) with chemical potential µ = 0.6 consists of two electron
pockets at X, Y and two hole pockets at Γ,M [Fig. 7.1(b)]. Upon increasing µ the
hole pocket at M disappears, while the electron pockets grow.

The attractive interaction term (g > 0) in the second line of Eq. (7.1) favors an
on-site nematic symmetry by splitting the two orbitals and breaking C4 rotational
symmetry. This is characterized by a non-zero order parameter δni = ni,xz − ni,yz.
Since the interaction is strictly on-site, the pattern of any orbital ordering is not
specified a priori.

The weak coupling Random Phase Approximation (RPA) considers the leading
instability of the system from the free fermion susceptibility and predicts a variety of
orders for Eq. (7.1), depending on the value of µ. In the range 0.2 . µ . 2.5, including
the original parameters considered in [166], the RPA predicts onset of uniform nematic
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Figure 7.1: (a) Definitions of hopping coefficients tabij , where dxz and dyz are schemat-
ically shown in red/blue color. All hoppings except for t4 conserve orbital index. (b)
Fermi surface for chemical potential µ = 0.6 (solid lines) and µ = 2 (dashed lines)
at g = 0, showing two hole pockets at Γ,M and two electron pockets at X, Y . The
hopping values are t1 = −1.0, t2 = 1.5, t3 = −1.2, t4 = −0.95. The filling fractions
are f = 0.43, 0.58 at µ = 0.6, 2 respectively.

order for gc ≈ 1.7. For µ & 2.5, the susceptibility peaks at wave-vector (0, π) and
(π, 0) predicting stripe order, while for µ . 0.2 the susceptibility peaks at wave-vector
(π, π) predicting antiferro-orbital (AFO) [antiferro-quadrupole (AFQ)] order.

When interactions dominate g � t, µ, we can get intuition from a strong coupling
expansion in t/g. At zeroth order, the ground state is doubly degenerate – either
orbital xz or yz is fully occupied on each site. This degeneracy is split by second
order processes, leading to nearest- and next-nearest-neighbor Ising-type interactions
of order ∼ t2/g. For our hopping parameters, the ground state of the resulting Ising
model is a checkerboard pattern [169, 170] – this corresponds to AFO order at half-
filling (f = 0.5 electrons per site per orbital per spin). On the other hand, intuition
from anti-ferromagnetic order in the half-filled Hubbard model [171] suggests that
doping will quickly destroy this checkerboard order.

The sensitivity of the weak coupling instability to µ, along with the instability
of AFO order with respect to doping away from half filling suggest a number of
competing orders and we proceed to study the phase diagram of Eq. (7.1) numerically.
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7.3 Sign-problem-free DQMC

We simulate the model in an unbiased fashion using Determinant Quantum Monte
Carlo with discretized time-steps as described in [135–137]. In order to sample the
full imaginary time partition function Z = Tr e−βH , we decouple the interactions in
the nematic channel using an onsite, continuous Hubbard-Stratonovich field ϕ; the
interaction term is∼∑i ϕiδni. Integrating out the fermions analytically, the partition
function becomes a path integral of the auxiliary field, Z =

∫
Dϕ e−Sb(ϕ) DetG−1(ϕ),

and can be sampled using the Monte Carlo algorithm. The fermion determinant
DetG−1(ϕ) decouples into spin sectors since the kinetic energy does not mix spins and
ϕi couples equally to ↑, ↓ through δni. The spin sectors are equal by time reversal for
any field configuration ϕ, DetG−1(ϕ) = DetG−1

↑ (ϕ) DetG−1
↓ (ϕ) = |DetG−1

↑ (ϕ)|2 > 0,
which guarantees that the partition function can be sampled in a sign-problem-free
manner at any filling.

We perform sweeps through the space-time lattice and update the Hubbard-
Stratonovich field ϕ on each site. As ϕ couples different orbitals, we perform rank-
two Woodbury updates [172] when calculating G↑ on a given time-slice. We use the
one-sided Jacobi Singular-Value Decomposition algorithm [149] for numerical stabi-
lization [148] on every second time-slice. In order to reduce ergodicity problems at
strong interactions, we run the DQMC simulation in parallel for various interaction
strengths g and use a parallel-tempering algorithm [153], which proposes to exchange
ϕ configurations between simulations at different g after each sweep. For the data
presented here, we have simulated systems with periodic boundary conditions up to
L2 = 10× 10 in spatial size (200 orbitals) with an inverse temperature of up to β = 8
(βEF ∼ 40); the imaginary time step is ∆τ = 1/16.

7.4 Phase Diagram

We swept the phase diagram of the model described by Eq. (7.1) as a function of
interaction strength g and filling fraction f (Fig. 7.2), showing regions of supercon-
ducting and antiferro-orbital order. Since we are considering a finite temperature
system in two spatial dimensions, only quasi-long-range order exists. Our simula-
tions are on lattice sizes smaller than the scale of these fluctuations and our finite
size extrapolations indicate long range order of the T = 0 ground state.

We first discuss the phase diagram in vicinity of half-filling f = 0.5, which cor-
responds to two electrons per site. In the limit of strong coupling g & 3.7 we see
development of long-range antiferro-orbital order. This is fully consistent with the
intuition from the strong coupling expansion of a fully polarized state in the orbital
basis with a checkerboard ordering pattern (Fig. 7.3 inset). The onset of order is
confirmed by considering the equal time nematic correlation function
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Figure 7.2: Phase diagram of the model Eq. (7.1) as a function of interaction g and
filling fraction f at inverse temperature β = 8. The red dashed line indicates the
boundary of the region where the superconducting order parameter extrapolates to a
finite value in the thermodynamic limit. The blue dashed line marks the boundary of
phase with antiferro-orbital order. The red / blue coloring is the interpolated equal
time correlation function of the s-wave superconductivity / antiferro-orbital order on a
10×10 lattice; white space is outside of range sampled. Dots indicate simulated points
along 9 values of the chemical potentials µ = −1.0,−0.5, 0.0, 0.6, 1.6, 1.8, 3.0, 3.5, 4.0;
the dots joined by a grey dotted line correspond to µ = 0.6. The black dashed line
marks half filling.

Cτ=0(q) =
1

L2

∑
i,j

eiq·(i−j)〈δniδnj〉. (7.2)

The behavior of Cτ=0(q) at q = (π, π) is shown in Fig. 7.3. To reduce finite size effects,
we show Cτ=0(q) averaged over three neighboring points q,q + 2πx̂/L,q + 2πŷ/L
which coincide in the thermodynamic limit. We also can confirm the onset of order
via the Binder ratio [173] for the boson field ϕ conjugate to δn at zero frequency.

The AFO order rapidly disappears when the system is doped away from half-
filling, or the interaction strength is decreased. In contrast to the expectations from
weak coupling RPA, we do not observe any nematic ordering at other wave-vectors.
Instead, when the long range AFO disappears, we observe a large region with non-zero
superconducting order. To probe the superconducting order, we study the equal-time
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Figure 7.3: Equal time nematic correlation function averaged around q = (π, π) rises
rapidly, signaling onset of the long-range order. The left inset shows a cartoon of
the antiferro-orbital ordering pattern. The second inset indicates the convergence of
the correlation function, when normalized by L2, as expected from long-range order.
Note the even-odd effect due to periodic boundary conditions.

pair correlation function ∼ 〈∆ab(i)∆
†
cd(j)〉, where the specific form of the ∆ab(i) de-

pends on the symmetry of pairing. We consider all possible irreducible representations
of lattice point group D4 involving on-site, nearest neighbor and next nearest neigh-
bor sites and found non-vanishing pair correlation function for the order parameter
with s-wave (A1) symmetry. The dominant response is the on-site pairing, where
the only non-vanishing pairing is within the same orbitals with equal sign (A1 × A1

representation),

∆s(i) =
1

2
ciaα(iσyαβ)(τ 0

ab)cibβ. (7.3)

Here σ and τ are the Pauli matrices acting in the spin and orbital basis, and τ 0 is an
identity matrix. The order parameter ∆s(i) coexists with the extended s-wave pairing
between nearest neighbors, ∆s-ex(i), where the gap changes sign between orbitals
(B1 ×B1 representation),



65

0.00 0.01 0.02 0.03 0.04 0.05

1/L2

0.00

0.05

0.10

0.15

0.20
Pq=(0,0)

Pr=(L/2,L/2)

0.00 0.01 0.02 0.03 0.04 0.05

1/L2

0.00

0.05

0.10

0.15

0.20
Pq=(0,0)

Pr=(L/2,L/2)

(a) (b)

P
s q
,r

P
s q
,r

Figure 7.4: Finite size scaling of the on-site s-wave equal time pair correlation at
maximal-distance P s

r=(L/2,L/2) and zero-momentum P s
q=0. (a) In the region which we

identify as a superconductor (µ = 0.6, g = 3.59) Pr, Pq extrapolate to a finite value
in the thermodynamic limit. (b) In the region of the AFO phase (µ = 0.6, g = 3.91),
both pair correlation functions scale to zero in the thermodynamic limit.

∆s-ex(i) =
1

2

∑
ê

d(ê) ci+ê,aα(σyαβ)(τ zab)cibβ, (7.4)

as is reflected by τ z matrix. Here, the vector ê runs over nearest neighbors and
d(ê) denotes the dx2−y2-wave symmetry form-factor, d(±x̂) = 1, and d(±ŷ) = −1.
For µ ≥ 2, the s-wave pairing also extends to next-nearest neighbor sites, along the
diagonals of the square lattice. It has a dxy-wave form factor along with the τx pairing
in the orbital basis (B2 ×B2 representation).

The equal time (τ = 0) pair correlation function for the on-site s-wave is defined
as

P s
r =

1

L2

∑
i

〈∆s(i + r)∆s(i)〉, P s
q =

1

L2

∑
r

eiq·rP s
r (7.5)

in the coordinate and Fourier space respectively, where both sums are performed over
all lattice points. In the thermodynamic limit, the value of P s

q at q = 0 must converge
to the value of P s

r at maximum separation r = (L/2, L/2), if there is long-range su-
perconducting order. At small L, P s

q=0 includes mostly short range contributions and
overestimates the order parameter [174]. Fig. 7.4(a) shows data from the supercon-
ducting phase where both quantities extrapolate to finite value as 1/L→ 0, moreover
these quantities become closer to each other for larger system sizes. In contrast,
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Figure 7.5: The uniform nematic correlation function; the inset shows the unnor-
malized nematic susceptibility Cω=0(0, 0) = 〈δnδn〉 at q = 0, ω = 0 – here we derive
this data from the correlation function of the Hubbard-Stratonovich fields, since ϕ is
conjugate to δn.

Fig. 7.4(b) shows data from the AFO phase, where the pair correlation functions are
non-zero only due to finite size effects and extrapolate to zero in the thermodynamic
limit.

In order to confirm the above picture of the ordered phases, we consider the
pseudo-density of states [175]

Ñ =
1

TL2

∑
q

G

(
τ =

β

2
,q

)
=
∑
q

∞∫
−∞

N(ω,q)dω

2T cosh(ω/2T )
(7.6)

where G(τ,q) is the imaginary time Green function summed over orbitals and N(ω,q)

is the single-particle density of states at momentum q. Ñ gives us a measure of the
single-particle states at the Fermi energy without numerically challenging analytic
continuation; in the limit where the temperature is far below any other energy scale
Ñ ' πN(ω = 0). Fig. 7.7 shows Ñ for the chemical potentials µ = 0.6 (a) and
µ = 4.0 (b). At weak interactions, there is a finite density of states corresponding
to the metallic phase with larger finite size effects due to the discrete sampling of
the Fermi surface. Once the system enters the superconducting phase, Ñ drops to
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Figure 7.6: The (a) on-site s-wave pair correlation function, and (b) nearest neighbor
extended s-wave. They have a very similar dependence on the interaction strength
for fixed value of µ = 0.6 as the uniform nematic correlation functions (Figure 7.5).
The onset and termination of the on-site superconducting order coincides with similar
trends in the nematic susceptibility.
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zero which is consistent with the fully gapped s-wave pairing symmetry. For (a) the
system is in the AFO phase at g & 3.7, which we see is Mott insulating.

7.5 Origin of Superconductivity

We observed an extended s-wave superconducting order in a large portion of the
phase diagram. One may worry that this superconducting order arises only from
the attractive parts of the interaction in the model defined by Eq. (7.1). However,
decoupling the interaction in the pairing channel within a mean field calculation only
leads to significant superconducting pairing for much stronger interactions, g ≥ 6
at β = 8. Since the mean field approximation tends to overestimate the ordering
tendency, this suggests that this scenario in isolation is improbable.

A number of recent works [129, 39] addressed enhancement of superconductivity
in a vicinity of a uniform nematic transition by nematic fluctuations. While we do
not find long-range uniform nematic order in the considered range of doping and
interactions, the intuition from weak-coupling RPA suggests possible competition
between various ordering tendencies for this model. Then, upon approaching the
AFO transition, we expect to have enhancement of fluctuations in various channels,
including uniform nematic fluctuations.

To check if the uniform nematic fluctuations play a role in the superconducting
phase, we compare the evolution of equal time nematic and pair correlation functions
with interactions, Fig. 7.5 and Fig. 7.6. The uniform nematic correlation function
has a maximum around g ≈ 3.5, exactly where P s

r peaks. For larger interaction, the
onset of the AFO phase signaled by a rapid increase in AFO correlations for g ≥
3.7 (see Fig. 7.3) coincides with the destruction of superconductivity and suppression
of uniform nematic correlations.

To further explore the relationship between uniform nematic fluctuations and su-
perconductivity, we consider adding an explicit symmetry breaking term ∆µ

∑
i δni/2

to the Hamiltonian. This suppresses the uniform nematic fluctuations by causing the
system to order in one of the orbitals; the superconducting order (Fig. 7.8) is strongly
suppressed with increase symmetry breaking. However, the symmetry breaking term
also causes a change in the band-structure and pushes the filling dependence to higher
electron doping (at a fixed chemical potential µ), which we also expect to modify the
superconducting response. While it is hard to isolate the impact of these different
effects, the following comparison may be worthwhile – an orbital splitting of ∆µ = 0.6
leads to a 65% suppression of superconductivity at g = 3.0. However, a uniform chem-
ical potential change of the same magnitude at the same filling leads to a suppression
of 67% for hole doping and a 60% enhancement for electron doping. Thus orbital
splitting appears to have a more significant impact on superconducting pairing.
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Figure 7.7: The pseudo-density of states Ñ along lines of constant chemical potential
(a) µ = 0.6 and (b) µ = 4.0 shows large finite size variation in the metallic state and
starts deceasing once the system enters a gapped state. From correlation function
measurements the system in (a) enters the superconducting state at g ∼ 2.5 and the
AFO state at g ∼ 3.7; we see here that the AFO state is gapped. The system in
(b) is strongly electron doped and always far away from the AFO state; the drop

to zero of Ñ suggest the superconductor is fully gapped, as expected from a s-wave
superconductor. The three bottom panels (c) show the q space resolved pseudo-
density of states of the 10× 10 lattice at µ = 0.6; one quater of the Brillouin zone is
shown. As the interaction increase, the states close to the Fermi surface are gapped
out.
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Figure 7.8: On-site s-wave correlation is suppressed in simulations which have an
explicit orbital symmetry breaking term ∆µ

∑
i δni/2. The simulations are performed

at constant chemical potential µ = 0.6, so the dependence of filling on g is different
from the case ∆µ = 0. Note for ∆µ & 0.4, pairing persists to higher values of the
interaction strength g. This is understandable since the filling is shifted to higher
electron doping where the insulating phase is suppressed.

7.6 Discussion and Implications for FeSe

Motivated by the idea of a nematic instability driven by electron-electron interac-
tions [104], we considered a purely electronic model with interactions in the nematic
channel. Our studies revealed a phase diagram with a large superconducting region.
While our two-band model is oversimplified, it roughly captures the behavior of the
FeSe Fermi surface with doping: electron pockets increase in size upon doping, while
hole pockets shrink. Moreover, we use a local on-site interaction that favors imbal-
ance in orbital occupancy. We consider our interaction term as an approximation
after one integrates out high energy bosonic modes; similar interaction terms were
shown to arise from the Fe-ion oscillations [176]. The on-site Coulomb repulsion,
which is absent in our model, will presumably suppress on site pairing, but the ex-
tended parts of the superconducting pairing, which we find share the same trends as
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the onsite pairing, will presumably be less affected, and may be directly relevant for
the observed superconductivity in FeSe films.

Our model in Eq. (7.1) was found to have a long-range antiferro-orbital order
at strong coupling, whereas the bulk FeSe is believed to have a uniform nematic
order. Nevertheless, the model considered here has enhanced uniform nematic fluc-
tuations as a precursor to the onset of uniform order. We found that these nematic
fluctuations are correlated with enhancement of superconductivity. Moreover, we ob-
served an essential asymmetry of the superconducting phase, doping with electrons
enhances superconducting order, while hole doping destroys it. This is consistent
with the phenomenology of FeSe, where SC emerges upon strong electron doping.
One can potentially try to connect the nematic fluctuation mechanism more closely
with the observed superconductivity by looking for anisotropy of the gaps in momen-
tum space [129], which is left for future work on larger system sizes. Beyond con-
siderations of FeSe, many systems, such as intermetallic rare earth compounds, show
ferro-quadrupole or antiferro-quadrupole order without any magnetic phase transi-
tions [58]. They have recently received renewed attention [177] and our results might
be relevant to the physics of these materials.

To conclude, we proposed a two band model with interactions which enhance ne-
matic fluctuations and studied this model using DQMC. We find that robust high
temperature superconductivity appears that is accompanied by ferro-nematic fluctu-
ations, although the ferro-nematic ordered phase itself does not appear in the range
that was studied. Our findings can be relevant to enhanced superconductivity in FeSe
films, as well as other situations where a fluctuating order may be responsible for su-
perconductivity. Our methods are readily extendible to a wide class of multi-orbital
models.
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