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Abstract of the Dissertation

Systolic Design of MIMO Lattice Detection and

Channel Modeling for Wireless Communication

Systems

by

Ni-Chun Wang

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2012

Professor Kung Yao, Chair

Two independent but equally challenging problems in the wireless communication

systems are considered in this dissertation. First, the systolic design of the multiple-

input, multiple-output (MIMO) lattice reduction-aided detection is proposed.

Lattice-reduction-aided detection (LRAD) has been shown to be an effective low-

complexity method with near-ML performance. However, lattice reduction needs to

be performed as channel state changes. As the channel change rate is high, or a large

number of channel matrices need be processed such as in a MIMO-OFDM system,

a fast-throughput algorithm and the corresponding implementation structure are

needed for real-time applications. In this dissertation we advocate the use of

systolic array architectures for MIMO receivers, and in particular we exhibit one

of them based on LRAD. The “LLL lattice reduction algorithm” and the ensuing

linear detections or successive spatial-interference cancellations can be located

in the same array, which is hardware-efficient. Two modified LLL algorithms

suitable for parallel processing are considered here for the systolic design, LLL

algorithm with full-size reduction and all-swap lattice-reduction algorithm. In

order to simplify the systolic array design, we replace the Lovász’ condition in the

definition of LLL-reduced lattice with the looser Siegel’s condition and limit the
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range of µ value. Simulation and FPGA emulation results show that the proposed

systolic LLL is 1.6 time faster than the conventional LLL while the bit-error-rate

performance of LRAD is still maintained with these relaxations.

Second, we consider the modeling of fading channels under abrupt changes.

Fading channel is generally nonstationary in time, especially when there are moving

objects near the field of transmission. The statistics of the channel are changing

due to the temporal and spatial inhomogeneity. To characterize the temporal

variation of the channel, short-term statistics need to be estimated. Instead of

estimating the statistics over a fixed short period, we applied the Bayesian change

point detection (CPD) for five common channel models to capture the locations of

changes in time. The detected change points partition the channel into segments

that are characterized by different parameters. We also derive the MAP and MMSE

estimators for the model parameters of each segment based on the intermediate

results of CPD. Therefore, once a change is detected, the parameters are obtained

immediately. Test results on 802.11n channel simulator and channel measurement

show the effectiveness of the CPD and the proposed estimators.

We also found CPD to be useful in biological applications. A bird phrase

segmentation using entropy-based change point detection is proposed. Spectro-

grams of bird calls are usually sparse while the background noise is relatively

white. Therefore, considering the entropy of a sliding time- frequency block on

the spectrogram, the entropy dips when detecting a signal and rises back up when

the signal ends. Rather than a hard threshold on the entropy to determine the

beginning and ending of a signal, CPD is used to detect the statistical changes in

the entropy sequence. With the novel spectral whitening method as the front-end

processing, our proposed segmentation method generates more accurate time la-

bels, reduces the false alarm rate and achieves higher classification rates than the

conventional time-domain energy detection method.
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CHAPTER 1

Introduction

Two challenging and equally important problems in the wireless communication

systems are considered in this dissertation. First, we proposed a systolic array

solution for high-throughput MIMO lattice-reduction-aided detection. Second,

to characterize the temporal variation of the fading channel, we proposed a

novel channel modeling method based on Bayesian change point detection and

parameter estimation. Besides the work on wireless communication systems, we

also found change point detection to be very useful on biological problems. With

the collaboration with field biologists, we proposed an automated bird phrase

segmentation by entropy-based change point detection.

1.1 MIMO Lattice-Reduction-Aided Detection

Multiple-input, multiple-output (MIMO) technology, using several transmit and

receive antennas in a rich-scattering wireless channel, has been shown to provide

considerable improvement in spectral efficiency and channel capacity [1]. MIMO

systems yield spatial diversity gain, spatial multiplexing gain, array gain, and

interference reduction over single-input single-output (SISO) systems [2]. However,

these benefits come at the price of a computational complexity of the detector that

may be intolerably large. In fact, optimal maximum-likelihood (ML) detection in

large MIMO systems may not be feasible in real-time applications as its complexity

increases exponentially with the number of antennas. Low-complexity receivers,

employing linear detection or successive interference cancellation (SIC), are com-
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putationally less intensive, and amenable to simple hardware implementation [3–5].

However, diversity and error-rate performance of these low-complexity detectors

are not comparable to those achieved with ML detection.

Lattice-reduction-aided detection (LRAD), which combines lattice reduction

(LR) techniques with linear detections or SIC, has been shown to yield some

improvement on error-rate performance [6–9]. Lenstra-Lenstra-Lovász (LLL) algo-

rithm [10] is the most widely used lattice reduction algorithm due to its polynomial

time complexity. It was first invented to solve the polynomial factorization problem

and later found to be useful in cryptology. Research on the LLL algorithm, is still

very active [11]. In communications, complex numbers are useful to represent the

baseband channel state information and the signals and it has been shown in [12]

that LLL algorithm can be applied to complex-valued lattices. The performance

of complex LLL-aided linear detection in MIMO systems was analyzed in [13].

LLL-based LRAD was shown to achieve full receiver diversity [14]. It was also

shown that the LR-aided minimum mean-square-error decoding achieves the opti-

mal diversity-multiplexing tradeoff [18]. When applied to MIMO detection, the

average complexity of LLL algorithm is polynomial in the dimension of the channel

matrix (the worst-case complexity could be unbounded [15]). A fixed-complexity

LLL algorithm, which modifies the original version to allow more robust early

termination, has recently been proposed in [19]. An embedded LLL-based lat-

tice reduction MIMO decoding method was proposed in [20,21], which showed a

close-to-ML performance. The proximity factors, which are used to evaluate the

performance of lattice-reduction decoding incluidng LLL, were proposed in [22].

In LRAD, lattice algorithm needs be performed only when the channel state

changes. If the channel change rate is high, or a large number of channel matrices

need be processed such as in a MIMO-OFDM system, a fast-throughput algo-

rithm and the corresponding implementation structure are needed for real-time

applications. Seveal hardware implementations of the lattice reduction algorithms

2



have been proposed. In [23], the VLSI implementaion of Brun’s algorithm was

proposed for MIMO broadcast precoding. The field-programmable gate array

(FPGA) implementation of Clarkson’s algorithm was proposed in [24]. The VLSI

and FPGA implementation of LLL algorithm were considered in [16,25,26]. In this

dissertation, we consider LLL algorithm. To obtain the fast-throughput, we first

discuss two variants of LLL algorithm, suitably modified for parallel processing.

Second, we propose a novel systolic array structure implementing the two modified

LLL algorithms and the ensuing detection methods. In the next section, we will

give a brief introduction of systolic array.

1.2 Systolic Array

A systolic array [27,28] is a network of processing elements (PE) which transfer data

locally and regularly with nearby elements and work rhythmically. In Fig. 1.1(a),

a simple two-dimensional systolic array is shown as an example. In this case, the

matrix operation D = A ·B + C is calculated by the systolic array, where A, B,

C and D are 2 × 2 matrices. The operation of each PE is shown in Fig. 1.1(b).

The inputs of the systolic array, the entries of matrices A and C, are pipelined in

a slanted manner for proper timing. Since all PEs can work simultaneously, the

latency is shorter than with a single processor system, and the results of D are

outputted in parallel.

Systolic algorithms and the corresponding systolic arrays have been designed

for a number of linear algebra algorithms, such as matrix triangularization [29],

matrix inversion [30] , adaptive nulling [31], recursive least-square [32, 33], etc. An

overview of systolic designs for several computationally demanding linear algebra

algorithms for signal processing and communications applications was recently

published in [34]. While systolic arrays allow simple parallel processing and achieve

higher data rates without the demand on faster hardware capabilities, the existence
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Figure 1.1: (a) Two-dimensional systolic array performing matrix calculation

D = A ·B + C , where aij, bij, cij, dij are the (i, j) entries of the matrix A,B,C,

and D. (b) The operation of each processing element.

of multiple PEs implies a higher cost of circuit area. Thus, time efficiency is traded

off with circuit area in hardware design. For the application we are advocating

in this dissertation (MIMO detectors), systolic arrays offer an attractive solution,

as we must cope with a high computational load while requiring high throughput

and real-time operation. Systolic arrays have been previously suggested for MIMO

applications. In [35], the authors proposed a universal systolic array for adaptive

and conventional linear MIMO detectors. In [36], a reconfigurable systolic array

processor based on coordinate rotation digital computer (CORDIC) [37] is proposed

to provide efficient MIMO-OFDM baseband processing. Also, matrix factorization

and inversion are widely used in MIMO detection, with systolic arrays used to

increase the throughput [5, 38].
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1.3 Systolic Design for LLL-based LRAD

Our objective is to provide a novel systolic array design for LLL-based LRAD. The

ideas are described from a system-level perspective instead of detailed discussion

on the hardware-oriented issues. The system model and how LRAD works are

briefly described in Chapter 2. Since the original LLL algorithm [8, 10–17] is

not designed for parallel processing, and hence is not suitable for systolic design,

two modified LLL algorithms are considered in Chapter 3. Note that we are not

claiming the two algorithms works better than the original LLL in terms of the

LRAD bit-error-rate (BER) performance. First, we improve on the format of

conventional LLL algorithm by altering the flow of size-reduction process (we call

it “LLL with full size-reduction,” or FSR-LLL). FSR-LLL is more time-efficient in

parallel processing than the conventional format, and hence suitable for systolic

design. We also consider a variant of the LLL algorithm called “all-swap lattice

reduction (ASLR),” which combines the FSR with the concept of swapping all

columns within each iteration proposed by [39]. A crucial difference between ASLR

and LLL algorithm is that with ASLR all lattice basis vectors are simultaneously

processed during a single iteration. In both algorithms, in order to simplify the

systolic array operations we replace the original Lovász’ condition [10] of LLL

algorithm with the slightly weaker Siegel’s condition [40]. Surprisingly, for LR-aided

linear detections the BER performance with Siegel’s condition under the proper

parameter setting is just as good as the one using Lovász’ condition. However,

for LR-aided SIC, the performance with Lovász’ condition is still slightly better

due to less error propagation. The mapping from algorithm to systolic array is

introduced in Chapter 4. In our design, ASLR and FSR-LLL can be operated on

the same systolic-array structure, but the external logic controller is also required

to control the algorithm flow. Additionally, since ASLR was originally designed

for parallel processing, a systolic array running ASLR is on the average more

efficient than one running FSR-LLL. Simulation results also show that ASLR-based

5



LRAD has a BER performance very similar to that of LLL algorithm. After the

channel state matrix has been lattice-reduced, linear detectors or SIC can also be

implemented by the same systolic array without any extra hardware cost, which is

also discussed in Chapter 4. The FPGA emulation of the proposed systolic design

is discussed in Chapter 5. To reduce the hardware complexity, the µ values in

FSR is bounded, while the overall performance of the LLL algorithm was still

maintained. Comparison between our proposed design and the conventional LLL in

FPGA implementation shows that the systolic arrays do provide faster processing

speed with a moderate increase of hardware resources.

1.4 Temporal Variation of the Fading Channel Envelope

In wireless communications, the transmitted signal propagating through the channel

will suffer from the power attenuation due to the combination of three major effects,

path loss, shadowing and multipath propagation [41, 42]. The level of path loss

is determined by the distance between transmit and receive antenna. The larger

separation of antennas would cause the greater path loss. The shadowing effect

comes from the obstacles in field of the transmission that absorb the radio signals.

The wireless link at different locations or environments may experience significantly

different shadowing even with the same antenna separation. The multipath effect

is due to the reflection, refraction and scattering of the radio signals by the fixed or

moving objects near the field of transmission, such that the transmit signals arrive

at the receive antenna by more than one paths with different delays, amplitudes,

and phases. The multipath dispersion distorts the transmit signals and could

largely degrade the transmission quality of the communication systems.

The degree of the fading effects mentioned above may be different depending on

the environment and locations of the antennas or the settings of the communication

system. However, fading effects are inevitable and are difficult to be mitigated in
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wireless communications. Hence, it is crucial to characterize the fading channel of

the various environments of interest, in order to design the system that can match

the channel and achieve optimal performance. The fading channel amplitude is

usually characterized by probability models, such as Rayleigh, Rice, Nakagami-

m, Weibull and lognormal distributions. To fit those models with the empirical

data, the parameters of the probability models needs to be estimated accurately.

The parameters are important for the design of the system, such as optimal

reception of the signals [43], optimizing the transmitter diversity [44, 45], and

adaptive modulation and coding [46], and are equally important for the evaluation

of the system [47–51] . Estimating parameters based on a sequence of channel

measurement using maximum likelihood estimation or moment estimators has

been well-studied [45,52–54].

Research on the channel measurement over various transmission environments

shows that the channel is only stationary for a short amount of time. Generally,

the channel is nonstationary in time, especially when the transmitters/receivers

are in motion, or there are moving objects near the fixed wireless link which

changes the phases of the arriving multipath signals. Therefore, the statistics

or even the distribution model are changing due to the temporal and spatial

inhomogeneity [41]. Studying the insight of temporal variations of the channel

envelope becomes more important for wireless local area networks (WLANs) and

modern mobile communications, as their transmission power is designed to be

relatively low. Several research groups have done the modeling and the analysis on

the temporal variations of indoor and mobile channels causing by various conditions.

In [55], it is shown that for indoor channel people moving around receive antennas

causes larger variation in the signal level than the movement around the transmit

antennas. It is also shown that Weibull and Nakagami-m both fit the temporal

fading well. The human shadowing effect is also studied for fixed wireless link

under WLAN [56] and ultra-wide band (UWB) [57] indoor channels. It is shown
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that people moving in between the transmission path significantly changes the

Rician K-factor, received power, and RMS delay spreads. In [58, 59], the effects of

nearby traffic on the variations of Rician K-factor of outdoor urban channels have

been studied. It is shown that heavy traffic causes richer scattering and thus lower

K-factor. Temporal fading was also studied for the industrial indoor environment

with lots of machinery movement [60]. In [61], the first-order statistical model of

the Rician K-factor was proposed, and the variations of K with time, frequency and

location were also considered. In those analyses, the parameters of the probability

models were usually estimated over a short period of observations, varying from a

minute to 15 minutes. In other words, the channel samples of that fixed period

were assumed to stationary and share the same statistics.

1.5 Change Point Detection and Parameter Estimation of

the Channel Envelope

However, the changes in the environment, such as people movement or street traffic

are usually unpredictable, and the channel measurement within an interval of a

few minutes could contain more than one statistical states. Estimating parameters

from the whole interval may lose some insights of the true temporal variations.

Hence, to precisely study the temporal variation of the channel statistics, there

should be a mechanism that detects locations of the changes in time. These change

points naturally partition the observation into segments that are characterized by

different parameters or even different probability models. We proposed using an

online Bayesian change point detection (CPD), which is based on the work of [62],

to detect the changes in a sequence of the channel envelope samples.

Change point detection is to detect or predict sudden change in the generative

parameters of a time series. The change points may occur at random time

instants of the collected data, and split the data into a set of disjoint segments.
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Conventionally, each segment is modeled by a single model with certain parameters,

and the models and parameters are different across the segments. For example,

the signals may suffer drastic shift in mean, variance, or phase due to the source

characteristic or even the sensor errors. CPD is shown to be a key aspect of many

real world applications, such as detection of computer network attacks [63, 64],

data selection in the sensor networks [65], heart beat variability [66] and volatility

modeling for financial data [67].

In Chapter 6, the theory of CPD is briefly introduced and how we fit the theory

into those common channel probability models is discussed in details. Additionally,

we derived the maximum a posteriori (MAP) and minimum mean square error

(MMSE) estimators of the parameters of each probability model which only utilize

the intermediate results of CPD. Consequently, as the CPD detects the changes in

the sequence, the parameters of each segment can be obtained immediately. In

Chapter 7, we tested the proposed methods with random sequences, the channels

generated by 802.11n channel simulator, and the channel measurement. The

results show the effectiveness of CPD on detecting changes, and the probability

models based on the proposed estimators fit the empirical data well and pass the

Komolgorov-Smirnov goodness-of-fit test.

1.6 Bird Phrase Segmentation Using Change Point Detec-

tion

Besides fading channel, we also applied the Bayesian change point detection on

biological applications. An automated system capable of reliably segmenting

bird songs and identifying species is an indispensable tool for analyzing an audio

database, used for studying behavior of vocalizing species [68]. As more attention

is directed toward “soundscape ecology” [69] and specifically a more refined

understanding of bird communication, an automated solution becomes more
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important. Several species identification methods have been shown to be useful

in many aspects; however the automated segmentation of the bird songs has

received less attention. Manually segmented bird songs were used for bird species

identification in [70–73]. Time-domain energy detection is used in [74–76] for

segmentation. In [77], the authors used Kullback-Leibler (KL) divergence between

the audio power spectrum and the uniform distribution for segmentation. A

time-frequency segmentation by machine learning methods is proposed in [78].

We propose a time/frequency segmentation method by entropy-based change

point detection. Entropy is calculated from the sliding time-frequency blocks in

the spectrogram. Since the spectrogram of bird songs is generally sparse in the

sense that high power signals occupy a small fraction of the time and frequency

bins. This is because the call usually consists only a single frequency at any given

instant. Harmonics may be present but even so the instantaneous spectrum is

sparse. The call could be slowly modulated in amplitude or frequency [79] but still

the spectrogram is sparse, assuming there is no strong background noise occupying

a large number of frequency bins. In contrast, when there is no call present, the

spectrogram displays a random response whose statistics do not vary with time or

frequency. Therefore, the entropy drops when the sliding block is moving from

an time interval without any bird songs (“quiet period” will be used hereafter)

to the start of a song. The entropy stays low in the time interval of a bird song

(“call period” will be used hereafter) and rises up as the block is leaving the call

period. A polynomial-based spectral whitening method is also proposed to serve

as the front-end of the system. The purpose is to enlarge the difference between

the entropy levels of a call and a quiet period.

Bird songs are divided into four hierarchical levels of notes, syllables, phrases,

and song [80]. Phrases are typically the basic units of understanding the bird

communication. Our goal is to find accurate and consistent phrase labels such

that the segmentation results could be passed to a phrase classifier for reliable
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classification. A phrase usually consists of several syllables with short silence in

between, which makes phrase segmentation non-trivial. Therefore, the Bayesian

change point detection is used here to detect the statistical change in the entropy

sequence.

When applying the segmentation method to the long field recordings, the

entropy of bird calls is not always at the same level and is sometimes even higher

than the one at certain quiet periods, depending on the interference level. Taking

hard thresholding can easily miss those calls. The advantage of using CPD over

using a hard threshold is that CPD only focuses on the changes in the statistics of

the data. Therefore, it can distinguish call periods from quiet periods as long as

there are changes in the entropy level.

1.7 Notations

The following notations are used throughout the remaining chapters. Capital bold

letters denote matrices, and lower case bold letters denote column vectors or a

collection of samples of a sequence. For example, X = [x1,x2, · · · ,xm] is a matrix

with m columns of x1 to xm. The entry of a matrix X at position (i, j) is denoted by

xi,j , and the kth element of a vector x is denoted by xk. The submatrix (subvector)

formed from the ath to bth rows and mth to nth columns of X is denoted by Xa:b,m:n.

Denote the kth row of a matrix X as X[k]. The notations (·)+, (·)T , (·)H and

(·)† are used for conjugate, transpose, Hermitian transpose, and Moore-Penrose

pseudo-inverse of a matrix, respectively. ‖x‖ is the Euclidean norm of the vector x.

<(·) and =(·) are the real and imaginary parts of a complex number, respectively.

dxc indicates the closest Gaussian integer to x; namely dxc = d<(x)c+ j d=(x)c
and j =

√
−1. Im and 0m are m×m identity and null matrices, respectively. The

all one’s vector is denoted by 1. The Hadamard product between matrices A and

B is denoted by A ◦ B. The elementwise kth power of the vector x is denoted
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by xk. The notations ∩ and ∪ denote the intersection and the union in the set

theory, respectively. Gaussian probability density function (pdf) with mean µ and

variance σ2 is denoted by N (µ, σ2) and inverse-Gamma pdf with parameters α

and β is denoted by IG(α, β). Γ(·) is the Gamma function. The determinant of a

matrix X is denoted by |X|. The natural logarithm is denoted by log.
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CHAPTER 2

Background of MIMO Low Complexity

Detection Methods

2.1 MIMO System Model

We consider a MIMO system with nt transmit and nr receive antennas in a rich-

scattering flat-fading channel. Spatial multiplexing is employed, so that data are

transmitted as nt substreams of equal rate. We consider the uncoded transmission

and these substreams are mapped onto the same finite subset of Gaussian integers

M = {a+bj|a, b ∈ Z}, such as QAM constellation with proper scaling and shifting.

Let x ∈ Mnt denote the complex-valued nt × 1 transmitted signal vector with

independent and zero-mean, and y the complex-valued nr×1 received signal vector.

The baseband model for this MIMO system is

y = Hx + n, (2.1)

where H is the nr × nt channel matrix: its entries are uncorrelated, zero-mean,

unit-variance complex circularly symmetric Gaussian fading gains hij, and n

is the nr × 1 additive white complex Gaussian noise vector with zero mean and

E[nnH ] = σ2
nI. The substreams of x are assumed to be zero-mean and independent,

and the average power of each transmitted signal xi is assumed to be σ2
x. Namely,

E[xxH ] = σ2
xI. Additionally, we assume that the channel matrix entries are fixed

during each frame interval, and the receiver has perfect knowledge of the realization

of H.
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2.2 Linear Detection

In linear detection, the estimated signal x̂ is computed by first premultiplying the

received signal y by an nr×nt “weight matrix” W. The two most common design

criteria for W are zero-forcing (ZF) and minimum mean-square error (MMSE).

In zero-forcing detection, the weight matrix WZF is set to be the Moore-Penrose

pseudo-inverse H† of the channel matrix H, i.e.,

x̂ZF = WZFy = H†y = x + H†n. (2.2)

It is known that zero-forcing detection suffers from the noise enhancement problem,

as the channel matrix may be ill-conditioned. To overcome this problem, the noise

level is taking into consideration in MMSE detection. Under MMSE criterion, the

weight matrix W is chosen in such a way that the mean-squared-error between the

transmitted signal x and the estimated signal x̂ is minimized. The mean-squared-

error (MSE) is defined as MSE
∆
= E

[
‖x− x̂‖2] = E

[
(x−Wy)H(x−Wy)

]
. The

weight matrix W that minimizes the MSE is

WMMSE =

(
HHH +

σ2
n

σ2
x

I

)−1

HH , (2.3)

It is easy to see that as σ2
n/σ

2
x → 0, the weight matrix WMMSE approaches WZF .

Since WMMSE takes noise power into consideration, MMSE detection suffers less

from noise enhancement than ZF detection. In [8, 81], it is shown that MMSE is

equivalent to ZF in an extended system model, i.e.,

x̂MMSE = WMMSEy = H†y = (HHH)−1HHy, (2.4)

where

H =

 H

σn
σx

Int

 and y =

 y

0nt×1

 . (2.5)

Comparing (2.2) with (2.4), it follows that the two detection methods can share

the same structure in systolic-array implementation, which we shall elaborate upon

in Chapter 4.
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2.3 Lattice-Reduction-Aided Linear Detection

First, we define the concept of a complex lattice. Let b1,b2, · · · ,bn be linearly

independent vectors in Cm. The complex lattice L is a set of points in Cm defined

by

L =

{
n∑
i=1

xibi, xi ∈ Z + jZ

}
. (2.6)

The set of vectors b1,b2, · · · ,bn is the basis of the lattice. Let the matrix B

consist of these basis vectors as the columns, the lattice L is said to be generated

by B and is often denoted as L(B).

The idea underlying lattice reduction is the selection of a set of basis vectors

for the lattice under some goodness criterion [82]. We observe that, under the

assumption of QAM transmission, the transmitted vector x is an integer point of a

square lattice (after proper scaling and shifting of the original QAM constellation).

By interpreting the columns of the channel matrix H as a set of lattice basis

vectors, Hx forms the lattice L(H). In lattice theory, if two basis sets H and H̃

are related by H̃ = H ·T, T a unimodular matrix, they generate the same set of

lattice points. In MIMO detection, the objective of the lattice reduction algorithm

is to derive a better-conditioned channel matrix H̃. In the following discussion, we

focus on the complex-valued LLL algorithm [12,13]. More details about the LLL

algorithm will be provided in Chapter 3.

After lattice-reduction of the channel matrix, we can perform the linear detec-

tion, as described in Section 2.2, based on H̃. Consider ZF first where the weight

matrix WZF is now H̃†. The estimated signal x̂ can be written as

x̂ = WZFy

= WZF

[
(HT)(T−1x) + n

]
= T−1x + WZFn (2.7)

= x̂ + WZFn. (2.8)
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Figure 2.1: Block diagram of linear lattice-reduction-aided detection

Since H̃ is a better conditioned matrix than H, the noise enhancement problem

should be reduced. Without considering the correlated noise WZFn, a suboptimal

way to estimate x̂q is by elementwise slicing, i.e.,

(x̂q)i = arg min
zi∈M

∥∥∥W[i]
ZFy − zi

∥∥∥ , i = 1, · · · , nt. (2.9)

By ignoring the finite size of the Gaussian integer setM and the boundary effect, x̂q

is equal to dWZFyc = dx̂c. The next step is to transform x̂q back into its original

domain, which is done by multiplying x̂q by the unimodular matrix T. Since the

vector entries after the transformation could lie outside the QAM constellation

boundary, we finally quantize those points outside the boundary to the closest

constellation point, i.e., x̂LR = Q(Tx̂q). Fig. 2.1 shows the block diagram of

LR-aided ZF detection for MIMO. It is easy to see that the same structure can

also be used for MMSE detection, by simply replacing H and y with the extended

matrix H and the vector y defined in (2.5), respectively. The remaining operations

are the same as in ZF.

2.4 Lattice-Reduction-Aided Successive Interference Can-

cellation

Besides being suitable linear detection systolic design can be used to exploit

the regularity of successive spatial-interference cancellation (SIC). In [8], it is
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shown that LR-aided SIC outperforms linear detection methods, while exhibiting a

complexity comparable to linear detection. The LR-aided SIC can be conveniently

described in terms of the QR decomposition of the reduced channel matrix. Here

we summarize briefly the procedure of LR-aided ZF-SIC only, as the LR-aided

MMSE-SIC can be derived in a similar way. Let the QR decomposition of the

reduced channel matrix be H̃ = Q̃R̃. First, multiply Q̃H to y in (2.1), we obtain

v
∆
= Q̃Hy = R̃z + Q̃

H
n, where z = T−1x. (2.10)

Since R̃ is an upper triangular matrix, vnt is only associated with znt without the

interferences from other transmit substreams. That is,

v1

v2

...

vnt


=

R̃1:nt−1,1:nt−1 R̃1:nt−1,nt

0 r̃nt,nt

 ·


z1

z2

...

znt


+ Q̃Hn. (2.11)

Therefore, znt can be easily solved by dividing vnt by r̃nt,nt and then rounding

to the closest integer. Before proceeding to the second to last substream, the

interference of znt should be eliminated from the vector v using the estimated

result ẑnt , so that the updated v,

v := v − R̃1:nt,nt ẑnt , (2.12)

is no longer depending on znt assuming the estimation ẑnt is correct. By repeating

these steps, we can solve for z layer by layer starting from the bottom to the top,

i.e.

ẑi =

⌈
vi
r̃ii

⌋
(2.13)

v := v − R̃1:i,iẑi, (2.14)

where i starts from nt to 1 and ẑi is the estimate of each entry of z. It is clear

that if the decision of the first few substreams are wrong, the detection error
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will propagate through (2.14). Hence, it is desired to reorder the columns of the

channel matrix such that we could start with the layer with the highest signal-

to-noise ratio (SNR), then the layer with second highest SNR, and so on. This

is the V-BLAST detection [83]. The LR-based V-BLAST detection can achieve

close-to-ML performance; however, the computational complexity associated with

the column reordering is much higher than other low complexity methods. In [84],

the sorted QR decomposition is proposed to combine with SIC detection, which

shows a comparable results to V-BLAST while the computational complexity is

reduced.
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CHAPTER 3

Two Variants of the Lenstra-Lenstra-Lovász

Algorithm

In this chapter, we introduce two variants of Lenstra-Lenstra-Lovász (LLL) algo-

rithm which are more time-efficient than the classical LLL algorithm when using

parallel processing. Since systolic arrays yield a simple form of parallel processing,

our systolic array design for LRAD is based on these two algorithms.

3.1 Lenstra-Lenstra-Lovász Algorithm

LLL algorithm was first introduced in [10] for real-valued lattice. It is further

generalized to complex-valued lattice in [12]. The complex LLL algorithm was

shown to have lower computational complexity while maintaining the same BER

performance as the real LLL algorithm [12, 13]. Here we will only consider the

complex LLL algorithm. Let H (an nr×nt matrix) be a set of lattice basis vectors,

with QR decomposition H = QR. The basis set H is complex LLL-reduced with

parameter δ (1/2 < δ < 1), if the following two conditions are satisfied [12,13]:

(a) ∣∣∣∣<(ri,jri,i
)∣∣∣∣ ≤ 1

2
,

∣∣∣∣=(ri,jri,i
)∣∣∣∣ ≤ 1

2
, 1 ≤ i < j ≤ nt, (3.1)

(b)

δ −
∣∣∣∣ ri−1,i

ri−1,i−1

∣∣∣∣2 ≤ |ri,i|2

|ri−1,i−1|2
, 2 ≤ i ≤ nt. (3.2)
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Algorithm 3.1 Lenstra-Lenstra-Lovász algorithm

Input(Q, R)

1: Initialization T = Int , k = 2

2: while k ≤ nt do

Size Reduction

3: for i = k − 1, · · · , 1 do

4: µi,k = dri,k/ri,ic
5: R1:i,k := R1:i,k − µi,kR1:i,i

6: T1:nt,k := T1:nt,k − µi,kT1:nt,i

7: end for

8: if δ −
∣∣∣ rk−1,k

rk−1,k−1

∣∣∣2 > |rk,k|2
|rk−1,k−1|2 then

Column Swap

9: Swap columns k − 1 and k in R and T

Givens Rotation

10: η1 = rk−1,k−1/‖rk−1:k,k−1‖
11: η2 = rk,k−1/‖rk−1:k,k−1‖
12: G =

[
η+

1 η2

−η2 η1

]
13: Rk−1:k,k−1:nt := G ·Rk−1:k,k−1:nt

14: Q1:nr,k−1:k := Q1:nr,k−1:k ·GH

15: k := max{k − 1, 2}
16: else

17: k := k + 1

18: end if

19: end while

20: return Q̃ = Q, R̃ = R, T

The second condition in (3.2) is called the Lovász’ condition, and the basis set that

satisfies (3.1) is called size reduced. To achieve these two conditions, the lattice basis

vectors could be processed by LLL algorithm, which is described in Algorithm 3.1.
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The input of the algorithm is the QR decomposition of the lattice basis set. The

output Q̃ and R̃ are the QR decomposition of the reduced lattice basis set H̃,

and T is the unimodular matrix such that H ·T is LLL-reduced. As shown in

Algorithm 3.1, the algorithm consists of three parts: size reduction, column swap

and Givens rotation. Size reduction is to make the basis set satisfy (3.1). Column

swap is to make the basis set satisfy (3.2). However, once the columns are swapped,

the matrix R no longer retains the upper-triangular structure. This is why we

need Givens rotation after the column swap step. In the standard form of LLL

algorithm considered in the literature [8, 10,12–17], size reduction applies only to

one column of H during a single iteration. Now, systolic arrays, allowing simple

parallel processing, are capable of updating the whole matrix without introducing

extra delays. Hence, our proposed systolic array is first designed based on the

LLL algorithm in a different form, which we call it “LLL algorithm with full size

reduction (FSR-LLL).”

3.2 LLL algorithm with Full Size Reduction (FSR-LLL)

Algorithm 3.2 shows the LLL algorithm with full size reduction. In the following

discussion, we refer to the lines in Algorithm 3.2. There are three main differences

between FSR-LLL and the conventional complex LLL algorithm, although the

lattice reduced bases from both algorithms are still the same. First, the full size

reduction (lines 3 to 9) is executed in each iteration of the while loop (line 2),

which means that all columns of R and T are size-reduced at the beginning of

each iteration. While in LLL algorithm, only one column is size reduced in each

iteration of the while loop. The advantage here is that, once condition (3.2) is also

fulfilled after full size reduction (i.e., no k′ is found in line 10), then the FSR-LLL

can immediately end the process (line 20). For example, suppose that k equals 3

at current iteration. Since all columns in R and T are size-reduced after full size
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Algorithm 3.2 FSR-LLL algorithm

Input(QH , R)

1: Initialization T = Int , k = 2

2: while k ≤ nt do

Full Size Reduction

3: for j = nt, · · · , 2 do

4: for i = j − 1, · · · , 1 do

5: µi,j = dri,j/ri,ic
6: R1:i,j := R1:i,j − µi,jR1:i,i

7: T1:nt,j := T1:nt,j − µi,jT1:nt,i

8: end for

9: end for

10: Find the smallest k′(k ≤ k′ ≤ nt) such that δ −
∣∣∣ rk′−1,k′

rk′−1,k′−1

∣∣∣2 > |rk′,k′ |2
|rk′−1,k′−1|2

11: if k′ exists then

Givens Rotation

12: η1 = rk′−1,k′/‖rk′−1:k′,k′‖
13: η2 = rk′,k′/‖rk′−1:k′,k′‖
14: G =

[
η+

1 η2

−η2 η1

]
15: Rk′−1:k′,k′−1:nt := G ·Rk′−1:k′,k′−1:nt

16: QH
k′−1:k′,1:nr

:= G ·QH
k′−1:k′,1:nr

Column Swap

17: Swap columns k′ − 1 and k′ in R and T

18: k := max{k′ − 1, 2}
19: else

20: return Q̃H = QH , R̃ = R, T

21: end if

22: end while
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reduction, if no k′ can be found in line 10 (a search that a systolic array can make

in parallel), then no further processing is needed in FSR-LLL. However, in the

conventional LLL format, the process will end until columns 3 to nt are sequentially

size-reduced. With a systolic-array implementation, FSR-LLL is faster, and its

efficiency is especially apparent when nt is large. The second difference is that

the Givens rotation (lines 12 to 16) is executed before the column swap (line 17).

This is because the Givens rotation process can work in parallel with full size

reduction, whereas the columns swap cannot. This point will be made clear in

Section 4.1. To accommodate this change, the G matrix in line 14 is also modified

from the one in line 12 of Algorithm 3.1. Third, the QR decomposition QHH = R

is considered as the input of the algorithm, instead of H = QR. From lines 15

and 16, the Givens rotation matrix G applies to the same two rows of QH and R,

which simplifies the design of the systolic array. Additionally, after FSR-LLL, Q̃H

is ready for calculating the pseudoinverse of H̃ for linear-detection.

3.3 All-Swap Lattice Reduction (ASLR) Algorithm

The ASLR algorithm is a variant of the LLL algorithm, and was first proposed for

real number lattices only [39]. Algorithm 3.3 describes its extension to a complex

version. One significant difference between FSR-LLL and ASLR is that every pair

of columns k and k−1 with even (or odd) index k could be swapped simultaneously.

The algorithm begins with full size reduction, which is the same as FSR-LLL.

Givens-rotation and column-swap operations (same as in Algorithm 3.2, lines 12

to 16) should be executed on all possible even (odd) k that violate the condition

in (3.2), and then start another iteration with the indicator variable “order” set

to odd (even). If condition (3.2) holds for all even (odd) k, Givens rotation and

columns swap will not be executed. Meanwhile, we can immediately check for all

odd (even) k instead. Matrix R is already full-size reduced, with no need to start
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Algorithm 3.3 ASLR algorithm

Input(QH , R)

1: Initialization T = Int

2: order = EVEN

Full Size Reduction

3: Execute lines 3 to 9 in Algorithm 3.2

4: while Any swap is possible in lines 6 and 10 do

Givens Rotation and Column Swap

5: if order = EVEN and δ −
∣∣∣ rk−1,k

rk−1,k−1

∣∣∣2 > |rk,k|2
|rk−1,k−1|2 for any even k then

6: Execute lines 12 to 16 in Algorithm 3.2 for those even k such that

δ −
∣∣∣ rk−1,k

rk−1,k−1

∣∣∣2 > |rk,k|2
|rk−1,k−1|2

7: Perform FSR

8: order = ODD

9: else if order = ODD and δ −
∣∣∣ rk−1,k

rk−1,k−1

∣∣∣2 > |rk,k|2
|rk−1,k−1|2 for any odd k then

10: Execute lines 12 to 16 in Algorithm 3.2 for those odd k such that

δ −
∣∣∣ rk−1,k

rk−1,k−1

∣∣∣2 > |rk,k|2
|rk−1,k−1|2

11: Perform FSR

12: order = EVEN

13: end if

14: end while

15: return Q̃H = QH , R̃ = R, T
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the next iteration with full size reduction. If neither an even nor odd k violates

condition (3.2) after full size reduction, the ASLR process ends.

3.4 Replacing the Lovász’ condition with the Siegel’s con-

dition

From the previous discussion, it is clear that all basis vectors are size reduced within

one processing iteration of full size reduction. Additionally, according to line 10 in

Algorithm 3.2 and lines 5 and 9 in Algorithm 3.3, the lattices processed by FSR-LLL

and ASLR both satisfy the Lovász’ condition in (3.2). Therefore, we can conclude

that these two algorithms also generate LLL-reduced lattice. Consequently, like

the conventional LLL, FSR-LLL-aided and ASLR-aided detections also achieve

full receive diversity in MIMO system [13,14].

The Lovász’ condition involves two diagonal elements and one off-diagonal

element in the matrix R. In order to simplify the data communication between

processing elements in the systolic array, we relax the Lovász’ condition by replacing

it with

δ − 1

2
≤ |ri,i|2

|ri−1,i−1|2
, 2 ≤ i ≤ nt, (3.3)

where δ lies in the range (1/2, 1) , the same as for the Lovász’ condition. The

condition (3.3) is also called the Siegel’s condition [40], and it is weaker than the

Lovász’ condition because

δ − 1

2
≤ δ −

∣∣∣∣ ri−1,i

ri−1,i−1

∣∣∣∣2 ≤ |ri,i|2

|ri−1,i−1|2
, 2 ≤ i ≤ nt. (3.4)

The first inequality follows from (3.1). Similar approximation as in (3.3) can

be found in [85]. The advantage of using this new condition is that only two

neighboring diagonal elements of R are involved. We will have more discussion on

the impact of designing systolic array with this new condition in Chapter 4. Another

advantage comes from the fact that the new condition check can be done by taking
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the square-root in (3.3). In hardware implementation, it implies that we can save

precision bits by storing |ri,i|/|ri−1,i−1| rather than |ri,i|2
/
|ri−1,i−1|2. Additionally,

the condition check can be done without a division, simply by comparing the value

of |ri,i| and
√
δ − 1/2 |ri−1,i−1| , where

√
δ − 1/2 is a pre-computed constant once

δ is determined. In the balance of the discussion, when we refer to FSR-LLL and

ASLR we mean FSR-LLL and ASLR with the Siegel’s condition.

Since the Siegel’s condition is weaker than the Lovász’ condition, one might

expect the performance of the lattice reduction algorithm with condition (3.3)

to be worsened. Yet, by a proof similar to that in [13, 14] we can show that

the LLL algorithm with the Siegel’s condition also achieves maximum receive

diversity in MIMO systems. In the proof of the LLL-aided detection achieving

full diversity [13, 14], the key step and the only step involving the LLL-reduced

conditions is that the orthogonality defect κ (κ ≥ 1) of the LLL-reduced basis set

H is upper bounded by

κ
∆
=

∏nt
i=1 ‖hi‖

2

det (HHH)
≤ 2−nt

(
2

2δ − 1

)nt(nt+1)
2

, (3.5)

where hi’s are the columns of H. In particular, (3.5) also holds for the lattices

reduced by the LLL algorithm with the Siegel’s condition. This can be justified

by the same proof as in [13, Appendix B], whose details will be omitted in this

discussion. Hence, the LLL algorithm with the Lovász’ condition replaced by the

Siegel’s condition also achieves maximum diversity in MIMO system. However,

achieving maximum receive diversity does not automatically imply that the bit-

error-rate (BER) performance is as good as using the conventional LLL algorithm.

One can easily observe that if δ is very close to 1/2 , condition (3.3) is almost

always true. Thus, the Givens rotation and column swap steps in the reduction

algorithm would seldom be performed, which causes the BER performance to

be much worse than with conventional LLL. On the contrary, as δ approaches 1

one can expect the performance of the FSR-LLL and the ASLR to be closer to
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Figure 3.1: The empirical cumulative probability functions of the orthogonality

defect κ for the 4× 4 channel matrices under three different reduction algorithms.

the conventional LLL. In Fig. 3.1, we show the empirical cumulative probability

functions of the orthogonality defect κ for 4 × 4 channel matrices under three

different reduction algorithms. The results of the FSR-LLL and the ASLR overlap

for all three values of δ, which implies that the effects of these two methods on

lattice reduction are almost the same. At δ = 0.99, the FSR-LLL and the ASLR

give results close to the LLL with δ = 0.75, which is a very common setting as

documented in previous works [8, 10, 14]. For δ = 0.51 and 0.75, the gap between

the LLL and the FSR-LLL (ASLR) is much larger than for δ = 0.99. In section

4.3, we will show that for δ equal to 0.99, the BER performance of LR-aided linear

detections using the FSR-LLL and the ASLR are not worse than the one using the

conventional LLL with the same δ value. Based on these results, in our systolic

array design we choose δ = 0.99.
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CHAPTER 4

Systolic Array Design for MIMO LLL-Aided

Detection

From Fig. 2.1, the whole process of the LRAD can be viewed as taking two steps:

lattice reduction for the channel matrix and detection. In this section, we first

exhibit our systolic array design for the FSR-LLL and the ASLR, in Sections 4.1

and 4.2, respectively. The ensuing linear detection or SIC on systolic array will be

discussed in Section 4.4. The performance comparison between the FSR-LLL and

the ASLR is discussed in Section 4.3.

In the following discussion, we assume that the channel matrix has been QR

decomposed without considering QR decomposition in the proposed systolic array

design. It is known that QRD can be implemented in systolic array based on a series

of Givens rotations, since Given rotations can be executed in a parallel manner [29–

31]. Since the conventional systolic array for QRD usually contains square root

operations, which are computationally intensive in hardware implementation, a

square-root-free systolic QRD based on Squared Givens rotations (SGR) can be

used (the interested readers can refer to [38,86]). In [8], it is also shown that the

sorted QRD (SQRD) can reduce the number of column swaps in the LLL algorithm,

and hence leads to less processing time. However, it also requires higher hardware

complexity and latency to implement SQRD than the conventional QRD [87].
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4.1 Systolic Array for the FSR-LLL algorithm

In the following, we assume a 4 × 4 MIMO system (i.e., nt = 4, nr = 4) and

illustrate the proposed systolic algorithm in three parts: full size reduction, Givens

rotation, and column swap.

4.1.1 Full Size Reduction

The systolic array for the remaining parts of the LRAD is shown in Fig. 4.1(a) .

Four different kinds of PEs are used, viz., diagonal cells, off-diagonal cells, vectoring

cells, and rotation cells. For the full size reduction part, only diagonal and off-

diagonal cells are needed: the operations of these two types of PEs are shown in

detail in Fig. 4.1(b). The vectoring cell and rotation cell will be introduced with the

Givens rotation description. There is a slight difference between the off-diagonal

cells in the upper-triangle part and those in the lower-triangle part. Fig. 4.1(b)

shows only the off-diagonal cell in the upper-triangle part. Those off-diagonal cells

in the lower-triangle part have yin and cin come from the top, while cout leaves from

the bottom. Except for this minor difference in the data interface, the operations

are the same as the off-diagonal cells in the upper-triangle part. Additionally, in

Fig. 4.1(b) the dotted lines represent the logic control signals transmitted between

cells, and the solid lines represent the data transmitted. To initialize the process,

each element of the matrices R and QH (denoted as r and q, respectively, in

Fig. 4.1(b)) from QR decomposition are stored in the PE at the corresponding

position. For example, qi,i and ri,i are stored in the corresponding diagonal cell

Dii. The off-diagonal elements qi,j and ri,j are stored in the off-diagonal cell Oij.

Additionally, the elements of the unimodular matrix T (denoted as t in Fig. 4.1(b))

are also stored in the arrays, with T initially set to the identity matrix.

Fig. 4.2 shows the overall processes of the full size reduction in the systolic array.

In this stage, two major processing modes are defined in each diagonal and off-
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Figure 4.1: (a) The systolic array for the linear LRAD of an 4× 4 MIMO system.

(b) The operations of the diagonal and the off-diagonal cells in the systolic array.
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Figure 4.2: Flow chart of the full size reduction operations in the systolic array.

31



diagonal cell, the size reduction mode and the data mode as detailed in Fig. 4.1(b).

In the size reduction mode, the objective of each cell is to make condition (3.1)

valid. On the other hand, the cell only performs data propagation in the data

mode. The cell decides to work in either mode depending on the occurrence of the

logic control signal “#”. For simplicity, we assume the cells execute all operations

in the data mode or the size-reduction mode in one normalized cycle1. At T = 0,

the external controller sends in the logic control signal “#” to cell D33 through

cell D44. At T = 1, cell D33 works in the data mode due to the control signal “#”

and spreads out the “#” logic control signal to the neighboring 3 cells. Meanwhile,

D33 sends out the data (r3,3, t3,3)
(∗) to cell O34. Note that the superscript (*) is

a tag bit attached to the data, which indicates that the data are sent out by a

diagonal cell. The occurrence of a tag bit (*) will drive the off-diagonal cell to

compute µ, and use µ to update the data stored in that cell. As a result, at

T = 2, cell O34 sends out the newly computed µ to the two neighboring cells O24

and D44. At next time instant (T = 3), the µ signal generated by O34 meets the

data coming from cell O23 (O43) inside the cell O24(D44), and executes the size

reduction update. At the same time instant, data (r2,2, t2,2)(∗) enter cell O23. As

cell O34 did at T = 2, cell O23 computes µ, updates (r2,3, t2,3), and sends out µ

to the neighboring cells O13 and D33. The most important fact here is that cell

O23 also propagates the data (r2,2, t2,2)(∗) to cell O24, and thus starts the column

operations between column 2 and column 4 at T = 4. Similarly, the column

operations between column 1 and column 4 begins at T = 6 as (r2,2, t2,2)(∗) enter

cell O14. Essentially, full size reduction is a series of column operations between

column j and columns j− 1, j− 2, · · · , 1, for all 2 ≤ j ≤ nt, and we can conclude

the following facts for an nt × nt MIMO system:

Fact 1. In this systolic flow, the column operation between column j and column

i (i < j) begins at T = nt + j − 2i as (ri,i, ti,i)
(∗) enters cell Oij.

1The real hardware cycle counts could be multiples of the normalized cycle.
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Proof. Data (ri,i, ti,i)
(∗) leaves cell Dii at T = nt − i, and it takes j − i cycles to

have (ri,i, ti,i)
(∗) propagates from cell Dii to cell Oij.

Fact 2. All column operations on column j end at T = 2nt + j − 3 in cell Ontj.

Proof. In this systolic flow, the last column operation on column j is always

between column j and column 1, which starts at T = nt + j − 2 in cell O1j

according to fact 1. It takes nt − 1 more cycles to propagate µ from cell O1j to

cell Ontj and finish the column operation.

Fact 3. The full size reduction ends at T = 3nt − 3, when all updates on column

nt are done.

Proof. The full size reduction ends when column nt finish all the column operations.

Therefore, it follows the result in fact 2 that the last step is at T = 3nt − 3.

Referring back to the example mentioned in Section 3.2, we can have a more

concrete view about the advantage of the FSR-LLL over the conventional LLL

form when a systolic array is used. If the FSR-LLL is applied, the systolic array

takes a total of 3nt − 3 cycles to end the all processes. However, for non-systolic

LLL, it takes 2nt + j− 3 to process column j, and all column operations cannot be

done in parallel. So the total time to perform size reduction in non-systolic LLL

would be
∑nt

j=3 (2nt + j − 3) = 2.5n2
t − 6.5nt + 3 cycles in that example. In this

case, as nt increases beyond 3, the advantage of the FSR-LLL over the conventional

format becomes significant.

4.1.2 Givens Rotation

As mentioned in Section 3.4, we use the Siegel’s condition in the lattice reduction

algorithm, which only relates two r elements in the neighboring diagonal cells.

Hence, this condition can be checked during a full size reduction step. For example,

in Fig. 4.2 at T = 1, cell D33 sends data r3,3 to cell D22 along with the “#” signal.
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Figure 4.3: The operations of the vectoring cell and the rotation cell in the systolic

array.

At the next time instant, cell D22 will check this condition based on |r3,3|2
/
|r2,2|2,

and also generate the logic control signal “swap” (see Fig. 4.1(b)). If δ − 1/2 is

greater than |ri,i|2
/
|ri−1,i−1|2 then “swap” is “true”, and drives the vectoring cell

to work. The operations of vectoring and rotation cells are shown in Fig. 4.3. The

vectoring cell zeros out the input data β by the Givens rotation matrix G, which is

calculated based on Algorithm 3.2 lines 12 to 14. The rotation cell simply rotates

the input data with the angle Θ given by the neighboring vectoring cell. Hence,

the vectoring and rotation cells also work in a systolic way, with the rotation angle

Θ propagating between cells. As shown in Fig. 4.1(a), there are 3 rotation cells and

1 vectoring cell between every two consecutive rows of the systolic array. These

cells perform the Givens rotation to the R and QH data in those two rows. The

vectoring cell is located between cells Dii and Oi−1,i because the Givens rotation

step is executed prior to the column-swap step in the FSR-LLL, and data ri,i need

be zeroed so that the matrix R is still upper triangular after column swap.

Note that Givens rotation only applies to rows k′ and k′−1 during one iteration

of the FSR-LLL if k′ exists (lines 12 to 16 in Algorithm 3.2). However, every Dii

(i = 1, · · · , nt − 1) could generate the “swap” signal during the full size reduction

step. Therefore, we need a direct access from the external controller to each

diagonal cell in order to control the data path between the diagonal cell and the

vectoring cell. Namely, only cell Dk′k′ can pass the signal “swap” to the vectoring
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cell and perform the Givens rotation to rows k′ and k′ − 1. In Fig. 4.1(a), we

use a “switch” symbol between each pair of a diagonal cell and a vectoring cell

to represent the control by the external controller. Only one switch is turned on

during one iteration.

Additionally, a Givens rotation on rows k′ and k′ − 1 can begin right after

rk′−1,k′ is updated during the full size reduction step. For example, r3,4 is updated

at T = 2 as shown in Fig. 4.2, and Givens rotation on rows 3 and 4 could start

as early as T = 3 without any interference to the remaining operations of full

size reduction. This way, the time necessary to perform Givens rotations can be

partially hidden by the full size reduction and this is the reason why we want the

Givens rotation to occur prior to column swap in our design.

For hardware implementation, one could consider using only one rotation cell

between every two neighboring rows to reduce the hardware complexity. For

example, in Fig. 4.1(a) one rotation cell can be used between the third and the

fourth rows to connect to O31, O32, D33 and O41, O42, O43. The rotation cell still

works in a pipelining manner and deals with two cells one at a time. This will not

lead to significant increase in time if we consider performing Givens rotation and

full size reduction in parallel.

4.1.3 Column Swap

The columns k′ and k′−1 of R (and T) should be swapped, after the Givens rotation

is done. However, it is possible that the column swap be partially overlapped in

time with size reduction and Givens rotation. For example, the column swap could

begin after R being rotated but prior to QH being updated since there is no need

to swap columns of QH .

The FSR-LLL stops when there is no possible column swap, i.e., a k′ in Algo-

rithm 3.2, line 10, does not exist. The system flow (lines 2 and 18 in Algorithm 3.2)
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is controlled by the external processor. The lattice reduced matrices R̃ and Q̃H

and the unimodular matrix T stay in the PEs. The systolic array along with these

matrices will be used for linear detection, as described in Section 4.4 below.

4.2 All-Swap Lattice Reduction (ASLR) Algorithm

The ASLR algorithm can also be performed by the systolic array shown in

Fig. 4.1(a). The process of full size reduction is the same as in Fig. 4.2. During

full size reduction, the Siegel’s condition is also checked in each diagonal cell

D11 ∼ Dnt−1,nt−1. If the current value of “order” is even (odd), then the “switch”

between each cell Dk−1,k−1 with even (odd) index k and the vectoring cell is turned

on by the external controller. Consequently, for every even (odd) index k, Givens

rotation between rows k− 1 and k could be executed if needed. As for the column

swap step, more than one pair of columns could be swapped during one iteration,

but all these pairs are swapped in parallel. Hence, the time spent on columns swap

is the same as on swapping a single pair of columns. Based on this observation, we

can expect the systolic ASLR to work more efficient than the systolic FSR-LLL.

Comparisons between these two algorithms in terms of bit-error-rate performance

and of efficiency in execution time are deferred to the next subsection.

Note that in our description we limit the applications of this systolic array

only to an nt × nt MIMO system. For nt × nt MMSE-LRAD, although the matrix

QH is nt × 2nt (the extended channel model in (2.5)), we can treat the submatrix

QH
1:nt,(nt+1):2nt

as another square matrix, and store each element of QH
1:nt,(nt+1):2nt

in the PE at the corresponding position. Namely, qi,j and qi,j+nt should be stored

in the same PE, which still keeps the systolic array square.
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4.3 Comparison between the FSR-LLL and the ASLR al-

gorithms

First, we compare the two algorithms in term of bit-error-rate (BER) performance,

and also compare them with the conventional LLL algorithm. In our simulation,

4-QAM is assumed for the transmitted symbols. The constant δ is set to 0.99

in all algorithms for fair comparison. Let Eb be defined as the equivalent energy

per bit at the receiver, and thus Eb/N0 is ntσ
2
x/(σ

2
n log2M). Fig. 4.4(a) shows the

BER results of minimum mean-square-error LRAD (in 4 × 4 and 8 × 8 MIMO

systems) based on the FSR-LLL (denoted as MMSE-FSR), the ASLR algorithm

(denoted as MMSE-ASLR) and the LLL algorithm (denoted as MMSE-LLL). The

BER results for ML detection and MMSE without lattice reduction are also shown

for comparison. As δ = 0.99, the FSR-LLL and the ASLR work as well as the

LLL algorithm, and even slightly better in the case of nt = 8. It clearly shows

that using the insignificantly weaker Siegel’s condition does not deteriorate the

BER performance of linear detections in an MIMO system as compared to the

conventional LLL. In Fig. 4.4(b), the BER performance of an 4× 4 MIMO system

using the LR-aided MMSE SIC based on different lattice reduction algorithms are

shown. Unlike the linear detection case, the LLL-aided SIC works better than the

other two algorithms. Since the detection of the first layer in SIC dominates the

overall performance, it implies that due to the Siegel’s condition the FSR-LLL-

reduced or the ASLR-reduced channel provides lower SNR for the first layer in SIC

than the one given by the conventional LLL. Additionally, FSR-LLL and ASLR

lead to almost the same results in all three MIMO systems, which is consistent

with the results in Fig. 3.1. Hence, we can conclude that although the FSR-LLL

and the ASLR give different lattice reduced matrices, the LRAD based on these

two algorithms have very similar BER performances.

Next, we compare the efficiency of the systolic array for both algorithms. It
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Figure 4.4: BER performance of the FSR-LLL and the ASLR- based MMSE

LRADs. (a)Linear detection (4× 4 and 8× 8 MIMO systems) (b)SIC (an 4× 4

MIMO system)
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the LLL-aided MMSE detections in an nt × nt MIMO system with Eb/N0 fixed at

20 dB.

is known that the number of iterations of the FSR-LLL and the ASLR depends

on the condition number of the channel matrix. If H is well-conditioned, lattice

reduction takes less iterations, and thus less cycles in the systolic array. Since

both algorithms begin with full size reduction, the total execution time is fully

determined by the number of column swaps in the overall process. Less column

swapping implies less iterations. Fig. 4.5 shows the average number of column

swaps in the FSR-LLL and the ASLR-aided MMSE detections (with Eb/N0 fixed

at 20dB) in nt × nt MIMO systems (nt = 4 ∼ 16). Note that for the ASLR we

count all the even or odd columns swaps during one iteration as only one swap

since they are executed in parallel. In an 4× 4 MIMO, the difference between the

two algorithms is almost negligible. However, as the number of antennas grows, the

advantage of the ASLR becomes significant. For nt ≥ 8, the ASLR has less than

65% the column swaps compared to the FSR-LLL. Based on BER performance

and time-efficiency comparisons, the ASLR should be a better algorithm to be
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Figure 4.6: The average number of floating point operations in the FSR-LLL, the

ASLR and the LLL-aided MMSE detections in an nt × nt MIMO system with

Eb/N0 fixed at 20 dB.

applied on our systolic array, especially with a large number of antennas.

For comparison, the results of the conventional LLL with δ = 0.99 and 0.75

are also shown in Fig. 4.5. As expected, the LLL with δ = 0.99 has a higher

complexity than the LLL with δ = 0.75. Furthermore, the conventional LLL has a

much higher average number of column swaps than the FSR-LLL and the ASLR

have in the higher-dimensional MIMO system (nt ≥ 8). However, it is not fair to

conclude that the complexities of the FSR-LLL and the ASLR are much lower

than the conventional LLL; in fact, full size reductions are performed in the former

two algorithms, and full size reduction needs more computation efforts than the

conventional size reduction in the LLL. In Fig. 4.6, we compare the number of

floating point operations (flop) in the LLL, the FSR-LLL, and the ASLR using

the same settings as in Fig. 4.5. The flops are counted in terms of number of real

additions and real multiplications. One complex addition is counted as two flops
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(two real additions) and one complex multiplication is counted as six flops (four real

multiplications and two real additions). The complexity of the QR decomposition

is neglected, since this is done only once at the beginning of the three algorithms.

It is shown that the LLL with δ = 0.99 has the highest complexity among the three.

Under the same δ (= 0.99) setting, the FSR-LLL and the ASLR have a much lower

computational complexity than the LLL. On the other hand, the complexity of the

LLL with δ = 0.75 is just slightly higher than the FSR-LLL and the ASLR, even

though the average number of column swaps of the LLL with δ = 0.75 is more

than two times larger than the one of the ASLR for nt ≥ 10. This implies that

the process of full size reduction introduces some additional complexity. However,

thanks to the (insignificantly) weaker Siegel’s condition, the complexities of the

ASLR and the FSR-LLL for nt ≥ 10 are less than 50% of the complexity of the

LLL with the same δ setting.

To further explore the advantage of using systolic array, we implement our

proposed architecture for an 4× 4 MIMO system onto a FPGA. The FPGA design

and emulation results will be introduced in Chapter 5.

4.4 Systolic Array for Detection Methods

4.4.1 Linear Detection in Systolic Array

After lattice reduction, the matrices Q̃H and R̃, along with the unimodular matrix

T, are stored in the systolic array. As shown in Fig. 2.1, the first step of a linear

detection consists of premultiplying the received signal vector y by H̃†, which

yields x̂ = H̃†y = R̃−1Q̃Hy. Second, the result of a matrix–vector multiplication

needs to be rounded element-wise. The final step is to multiply the rounded results

by the unimodular matrix T and constrain all results within the constellation

boundary. If x̂q denotes the element-wise-rounded x̂, the final decision of the

LRAD is x̂LR = Q(T · x̂q), as described in Section 2.3.
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Figure 4.7: The linear detection operations in the systolic array. (a)v = Q̃Hy
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the systolic array at different stage. (a)Q̃Hy and T · x̂q (b)R̃−1v.
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In the following discussion, we again assume an 4 × 4 MIMO system, and

consider the zero-forcing detection first. The first and last steps of a linear

detection can be implemented by the same systolic array of Fig. 4.1 without using

extra cells. As for the rounding and the final constellation boundary check, they

should be done outside the systolic array (they are not shown in Fig. 4.7). To

execute x̂ = R̃−1Q̃Hy in the systolic array, we separate it into two matrix–vector

multiplications v = Q̃Hy and then x̂ = R̃−1v. Since Q̃H stays in the systolic

arrays after the lattice reduction ends, the received signal vector y can be fed to

the systolic arrays from the top in a skewed manner as shown in Fig. 4.7(a). The

vector Q̃Hy is pumped out from the rightmost column of the array. Diagonal and

off-diagonal cells are needed at this stage, and the operations of the cells are shown

in Fig. 4.8(a). Every cell performs the multiply-and-add operation. If MMSE is

chosen, the input vector should be changed to an 2nt× 1 vector y according to the

extended model (2.5). Let y =
[
y1

T y2
T
]T

and Q̃H = [Q1 Q2] , where y1, y2 are

nt × 1 vectors and Q1, Q2 are nt × nt matrices. As mentioned in Section 4.2, the

elements of Q1 and Q2 are stored in the same PEs. To compute v = Q̃Hy using

the systolic array, first we let y1 enter the array from the top and multiply it by

Q1, which is the same as shown in Fig. 4.7(a). Then y2 enters the array right after

y1, also in a skewed manner, and is multiplied by Q2. Hence, for MMSE we need

an extra operation at the output of the array, which is v = Q1y1 + Q2y2. For the

remaining operations in the systolic array, there is no difference between ZF and

MMSE detections.

The second stage consists of computing x̂ = R̃−1v. Instead of computing R̃−1

directly, the following recursive equation [88] is considered for the systolic design

x̂j =
1

r̃j,j

(
vj −

m∑
i=j+1

r̃j,ix̂i

)
, j starts from nt to 1. (4.1)

According to (4.1), it is clear that R̃−1v can be computed directly from the

components of R̃ without computing R̃−1. Additionally, it can be implemented
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Figure 4.9: The data flow and the detailed operations of the cells in the systolic

array for the interference-cancellation step of LR-aided SIC.

by the upper triangle part of the systolic array, where matrix R̃ has already been

stored. As shown in Fig. 4.7(b), the vector v = Q̃Hy enters the array from the

right, and x̂ = R̃−1v is computed by the triangular array with cell operations

shown in Fig. 4.8(b). The output vector x̂ is then rounded element-wise outside

the systolic array. The final step consists of multiplying the quantized vector x̂q

by the unimodular matrix T, which is also stored in the array. Similar to the first

step of a linear detection, it is a matrix–vector multiplication between T and x̂q.

Hence, the data flow in Fig. 4.7(c) is the same as Fig. 4.7(a). The cell operations

for T · x̂q are shown in Fig. 4.8(a), and the array output being quantized to the

closest constellation point is the final result x̂LR of the linear LRAD.

4.4.2 Spatial-Interference Cancellation in Systolic Array

The successive spatial-interference cancellation (SIC) can also be performed on

this systolic array with some modifications to the PEs. Observing the first step

of the LR-aided SIC showing in (2.10), it should be apparent that Q̃Hy can be

performed in the systolic array in the same fashion as in Fig. 4.7(a) and Fig. 4.8(a).
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The second step (2.13) of LR-aided SIC can be done in the systolic array as shown

in Fig 4.9. It is almost the same operations as the one Fig. 4.8(b), except that we

have to do a rounding in the off-diagonal cells Oij at the super-diagonal position

(j = i+ 1). The rounding operations are for the decision of each ẑi. Similar to the

linear LRAD, the final step of the LR-aided SIC is to multiply z by the unimodular

matrix T and bound all the output within the QAM constellation. It can be done

in the same way as in Fig 4.7(c) and Fig. 4.8(a), with x̂q being replaced by ẑ.

Notice that lattice reduction and linear detection (or SIC) are performed in the

same systolic array, and it can be hardware-efficient to share the adder/multiplier/

divider designed for lattice reduction processing. For instance, there is one addition,

one multiplication, and one division in each diagonal cell, and one addition and

one multiplication in each off-diagonal cell for linear detection or SIC, be it ZF

or MMSE. These operations are also contained in each cell at the LLL lattice

reduction stage. For SIC, it seems that we need extra rounding operations in those

off-diagonal cells at the superdiagonal position. Now, we need those rounding

operations in the off-diagonal cells during the full size reduction processing as well.

Hence, there need be no extra hardware cost (adders or multipliers) in each cell

for linear detection. Only extra control logic to the array is needed in order to

have each PE work correctly in different modes.
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CHAPTER 5

FPGA Emulation for Systolic MIMO Lattice

Reduction Aided Detection

In Chapter 4 we proposed a systolic design for two variants of the LLL algorithm,

the FSR-LLL and the ASLR. The proposed systolic flow and the advantage of

systolic arrays have been verified by Matlab simulations. In order to further

explore the advantage of using systolic array and the trade-off between hardware

resource and throughput, we implement our proposed systolic architecture onto

a field-programmable gate array (FPGA). As shown in the Algorithm 3.2 and

the Algorithm 3.3, the QR decomposition (QRD) should be pre-processed prior

to the lattice reduction algorithms. In our emulation, we assume QRD or sorted

QRD (SQRD) [87] has been processed, and we will focus on the implementation

of systolic array for the ASLR and the FSR-LLL. The overall design flow and the

software used are introduced in Section 5.1. The design of the diagonal cell, the

off-diagonal cell and the rotation/vectoring cell are introduced in Sections 5.2, 5.3

and 5.4, respectively. The FPGA emulation results are shown in Section 5.5.

5.1 Design Flow

First, we build our design using Xilinx System Generator 11.5 (XSG) block-set

in the Simulink design environment. Simulink provides a graphic interface for

building up the system with a set of built-in models/blocks, which is convenient and

intuitive for system designers. XSG provides a set of basic fixed-point arithmetic
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models that is readily to use in Simulink for building larger systems. Also, XSG

can automatically generates the VHSIC/Verilog Hardware Description Language

(HDL) from the models created by the users in Simulink, which is good for system

designers who are not familiar with HDL design, and for IC designers who want to

have quick and preliminary results of their design. In our case, a Verilog program

is generated by XSG and is then synthesized by Xilinx XST. The place and route

are done by Xilinx ISE 11.5. From the emulation results given by Xilinx ISE 11.5,

we will focus on the hardware working speed and the hardware resoure utilization.

5.2 Design of the Diagonal Cell

5.2.1 Siegel’s Condition Check

The operations of a diagonal cell Dii are shown in Fig. 4.1(b) again. To generate

the “swap” signal, the diagonal cell has to do the Siegel’s condition check on

|din|2/|r|2, which requires two squares and a division. In hardware implementation,

we certainly try to avoid using dividers since they require longer latency and higher

hardware complexity. Since the systolic arrays require very accurate timing in the

data communications between cells and the long latency of a divider could greatly

delay the overall process or even ruin the systolic flow. Thanks to the relaxation

by the Siegel’s condition, we can simply compare the value of |din| and
√
δ − 1

2
|r|,

where
√
δ − 1

2
is a pre-computed constant once δ is determined. In addition, there

is no need to compute the square of |ri,i| and |ri−1,i−1| , which saves even more bits

in our design. The Simulink/XSG model for the Siegel’s condition check is shown

in Figure 5.1, where the constant δ is set to 0.99, and thus a constant multiplier

“CMult(×0.7)” is in the middle path for
√
δ − 1

2
.
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Figure 2. Simulink/XSG model for Siegel’s condition check 

Figure 5.1: Simulink/XSG model for the Siegel’s condition check

 

Figure 3. Simulink/XSG model for the Size Reduction mode in diagonal cells 
Figure 5.2: Simulink/XSG model for the Size Reduction mode in diagonal cells
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5.2.2 Size Reduction with Fewer Multipliers

The size reduction mode contains one complex multiplications and one complex

subtraction, which is shown in Fig. 5.2. Since every diagonal cell and off-diagonal

cell contains size reduction operations, the total number of real multipliers could

be quite high for large systems. To reduce the number of real multipliers, we use

an efficient complex multiplication form [89]

(a+ bj)(c+ dj) = [c · (a− b) + b · (c− d)] + j [d · (a+ b) + b · (c− d)] . (5.1)

It requires three real multiplications and five real additions or subtractions. Namely,

comparing to conventional complex multiplication we reduce one multiplier while

adding three adders. Since adders are much cheaper than multipliers in terms of

hardware complexity, and it is worthwhile to trade three adders for one multiplier

especially when we have several complex multiplications in our systems. The

Simulink/XSG model for the overall diagonal cell is shown in Fig. 5.3, where

we use multiplexers and the min signal to control the cell to perform in the size

reduction or in the data mode.

5.3 Design of the Off-Diagonal Cell

5.3.1 Computing µ without Division

The operations of an off-diagonal cell Oij are shown in Fig. 4.1(b). The size

reduction mode is performed by the module similar to the one in Fig. 5.2, except

that µ has to be calculated when xin is coming from a diagonal cell (carries a “*”).

However, a division is needed to calculate µ , which is not desired in hardware

implementations. If the value of µ (i.e. dri,j/ri,ic ) always lies in a small range, we

might have the chance to avoid performing division by using a set of comparators.

For example, if |<(ri,j)| is less than |ri,i| /2 , <(µ) should be 01. On the other

1Note that ri,j is the diagonal element of R and is always a real number in this design.
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Figure 4. Simulink/XSG model for a diagonal cell 
Figure 5.3: Simulink/XSG model for the diagonal cell
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Figure 5.4: Empirical probability mass function of (a) <(µ) and (b) =(µ) under

the FSR-LLL algorithm
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Figure 5.5: Empirical probability mass function of (a) <(µ) and (b) =(µ) under

the ASLR algorithm
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X=
P (|X| > 2)

FSR-LLL ASLR

<(µ) 0.20% 0.22%

=(µ) 0.20% 0.21%

Table 5.1: The probabilities of <(µ) and =(µ) locating outside [−2, 2]

hand, if |<(ri,j)| is greater than |ri,i| /2 but less than 3 |ri,i| /2, <(µ) should be 1

or -1, depending on the sign of <(ri,j) . Therefore, we first check the distribution

of µ . The empirical probability mass function (p.m.f.) for the 4 × 4 case is

obtained through the Monte-Carlo simulation over 20,000 frequency-flat fading

channel matrices. The results are shown in Fig. 5.4 and 5.5 for the FSR-LLL and

the ASLR,respectively. It is clear that the real imaginary parts of µ are mostly

concentrated on the interval [−2, 2]. Table 5.1 lists the probabilities that the real

and imaginary parts of µ lie outside the range [−2, 2]. Almost 99.8% of µ resides

in this interval. From the observations above, we propose an simple algorithm in

Algorithm 5.1 to approximate µ without calculating ri,j/ri,i , and the accuracy of

this approximation is about 99.8% empirically. In Algorithm 5.1, we only show the

part for <(µ) . Same algorithm can easily be applied to =(µ) . Figure 5.6 shows

the Simulink/XSG model for this algorithm. Only three adders, two threshold

blocks, and several bit operators are needed in this model. Not only the cost of

hardware is lower as compared to the one of a divider, the processing latency can

be as low as one cycle. According to this algorithm, every |<(µ)| or |=(µ)| beyond

2 will be saturated to 2. However, this only happens about 0.2% of the time, which

we assume that does not affect the BER performance significantly. We will verify

this assumption by looking into the orthogonality defect of the channel matrix and

also the BER when applying this approximation in the lattice reduction algorithms.
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Algorithm 5.1 Algorithm to approach <(µ) without division

Input X = <(rij), Y = |ri,i|
1: if |X| < Y/2 then

2: <(µ) = 0

3: else if |X| ≥ 3Y/2 then

4: <(µ) = sgn(X) · 2
5: else

6: <(µ) = sgn(X)

7: end if

8: return <(µ)

 " "

 

Figure 8. Simulink/XSG model for computing "  
Figure 5.6: Simulink/XSG model for computing µ
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Figure 5.7: Orthogonality defect of the channel matrix using different lattice

reduction algorithms

5.3.2 Orthogonality Defect with Bounded µ

The orthogonality defect κ of a matrix H (κ ,
∏m
i=1‖hi‖

2

det(HHH)
≥ 1) is a measure to see

how close is a matrix H to an orthogonal matrix. If κ is 1, it means the matrix

H is orthogonal. We compare the orthogonality defect of the channel matrices

after applying the conventional LLL, the FSR-LLL, the FSR-LLL with bounded

µ (denoted as FSR-LLL-bounded), the ASLR, and the ASLR with bounded µ

(denoted as ASLR-bounded) when µ is set to 0.99. From Figure 5.7, there is almost

no difference between the FSR-LLL, the FSR-LLL-bounded, the ASLR and the

ASLR-bounded.
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Figure 10. BER performance of the LR-aided MMSE detection in 4 4!  and 8 8!  systems using 
Figure 5.8: BER performance of the LR-aided MMSE detection in an 4× 4 and

an 8× 8 systems using different lattice reduction algorithms
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Figure 11. BER performance of LR-aided MMSE-SIC detection in an 4 4!  system using different 
Figure 5.9: BER performance of the LR-aided MMSE-SIC detection in an 4× 4

system using different lattice reduction algorithms
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5.3.3 BER Performance with Bounded µ

We compare the BER performance of the MMSE and the MMSE-SIC using the

five lattice reduction algorithms as in the previous section. As shown in Figures 5.8

and 5.9, the performance of the algorithms with bounded µ is almost the same as

the one with true µ, which consequently verifies our assumption that the bounded

µ does not affect the performance significantly.

5.3.4 Simulink/XSG Model

The overall structure for an off-diagonal cell is shown in Fig. 5.10. Two modules of

computing “bounded µ” as shown in Fig. 5.6 are embedded in the size-reduction

module, one for real part of µ and one for imaginary part of µ. For data-mode

module, it simply sends out the r and t data stored in this cell. The multiplexers

select the correct output signals from either size-reduction module or data-mode

module according to the incoming signal cin . Note that for off-diagonal cells in

first column of the systolic array, only data-mode modules are needed since there

is no size-reduction operation in the first column.

5.4 Design of the Rotation and Vectoring Cells

The givens rotation matrix G for rows k − 1 and k in both the ASLR and the

FSR-LLL algorithms can be written as

η1 =
rk−1,k

‖rk−1:k,k‖
, η2 =

rk,k
‖rk−1:k,k‖

, (5.2)

G =

 η+
1 η2

−η2 η1

 . (5.3)

The vectoring cell computes the matrix G and applies it on rk−1:k,k , and the

rotation cell applies the same matrix G on the rest of the rows k − 1 and k of R
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Figure 11. Simulink/XSG model for an off-diagonal cell 

Figure 5.10: Simulink/XSG model for the off-diagonal cell
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and QH . As shown in (5.2), the vectoring cell needs to compute the inverse square

roots, 1

‖rk−1:k,k‖ . In our implementation, the Newton-Raphson algorithm [90] is

chosen to compute the inverse square roots. The Newton-Raphson algorithm is an

iterative inverse square roots algorithm as described in (5.4), which has a quadratic

convergence rate when the initial value is properly selected.

pk+1 =
pk
2
· (3−X · p2

k), lim
k→∞

pk+1 =
1√
X
. (5.4)

The Simulink/XSG model for the Newton-Raphson algorithm is shown in Fig. 5.11.

It requires 10 hardware cycles for one iteration of processing. Even though the

Givens rotation can be done in parallel with the size reduction and part of the

latency could be hidden, we still want it to end in two iterations in order to speed

up the overall process. With the initial value p0 moderately close to the true value

(25% relative error), the Newton-Raphson algorithm can converge to the result

less than 5% relative error within two iterations [91]. Several look-up table based

methods as in [92, 93] can be applied to generate fairly accurate initial values.

However, the dynamic range of X in our case (namely |rk−1,k|2 + |rk,k|2) is not

very large (mostly below 8) compared to general applications. We can simply set

up a set of comparators and tree logic to determine the initial value.

Once the inverse square root is computed, the vectoring cell will send out this

value along with rk−1,k and rk,k to the rotation cell, and the rotation cell can

start the rotation between rows k − 1 and k of R and QH . Fig. 5.12 shows the

Simulink/XSG model of the rotation cell. Note that this model is a straightforward

implementation of the Givens rotation once the matrix G is given. It requires

16 multipliers which is not a heavy load for the modern FPGA board. However,

if there is a limitation on the hardware resource, one may consider to apply the

CORDIC algorithm [94,95], which provides a hardware efficient way to perform

Givens rotation. We will not consider CORDIC in our work since our implemented

system only occupied about 10% of the total FPGA slices. More discussion on the
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Fig. 12.  Simulink/XSG model for the Newton-Raphson algorithm 

Figure 5.11: Simulink/XSG model for the Newton-Raphson algorithm

 

Fig. 13.  Simulink/XSG model for the rotation cell 

Figure 5.12: Simulink/XSG model for the rotation cell
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Figure 5.13: Comparison between the fixed-point and the floating-point lattice

reduction algorithms using the ZF-SIC detection in an 4× 4 MIMO system.

implementation results will be described in the next section.

5.5 Implementation Results

The Simulink/XSG model of the systolic array for an 4× 4 MIMO system is shown

in Fig. 5.14. The white rectangular boxes are the diagonal and off-diagonal cells,

and the gray boxes next to them are the memories that stores the entries of R

and T . The light blue box next to each memory box is the memory address

controller. The blue boxes between rows of the systolic array are the vectoring

and rotation cells. There is no off-diagonal cell in the first column since there

are only data-mode operations at those positions. The orange box is the external

controller that controls the column-swap signals. In this implementation, the

word-length of R , QH , T and µ are set to (18, 13), (14, 13), (8, 0) and (3, 0),
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Target 

Algorithm 
ASLR FSR-LLL Conventional LLL 

Device 
Virtex 5 

xc5vfx130t 

Virtex 6 

xc6vlx130t

Virtex 5 

xc5vfx130t

Virtex 6 

xc6vlx130t
Virtex 4 Virtex 5 

Slices 2322/20480 1812/20000 2335/20480 1798/20000 3617/67584 1712/17280

Max. Clock 

Frequency 
160MHz 249MHz 155MHz 247MHz 140 MHz 163 MHz 

Avg. 

cycles/time per 

channel matrix 

80 (SQRD) 84 (SQRD) 
130 (SQRD) 

500.0ns 321.3ns 541.9ns 340.1ns 

146 (QRD) 164 (QRD) 
928.6ns 797.5ns 

912.5ns 586.3ns 1058.1ns 664.0ns 

Table III. FPGA Emulation Results 

Table 5.2: FPGA emulation results

respectively. The BER performance of the fixed-point systolic implementation for

an 4 × 4 MIMO system is shown in Fig. 5.13, where 16-QAM modulation and

ZF-SIC detection are applied. It shows that even under fixed-point emulation,

the BER performance is almost identical to the floating-point simulation down to

10−4. The FPGA implementation results are shown in Table 5.2. We consider

both the QRD and the SQRD as the pre-process parts of the lattice reduction

algorithms. From the results, the ASLR is superior to the FSR-LLL in terms of

the average processing time, and this advantage is significant when QRD is applied.

The hardware complexity for the ASLR and the FSR-LLL are about the same,

since they only differ from each other in the external controllers. It is also clear

that the SQRD reduces the average processing time by over 40% compared to

using the normal QRD, at the cost of higher computation efforts on the SQRD.

In Table 5.2, a FPGA implementation result for the conventional complex LLL

(CLLL) [16] is also listed for comparison. Under Virtex 5 and with the SQRD, the

systolic ASLR operates at a slightly lower speed than the one of CLLL; however

our designs require only 61.5% average clock cycles of theirs. As a result, the

ASLR is on average faster than the CLLL by a factor of 1.6. This verifies the

high-throughput advantage of the systolic arrays. On the other hand, systolic

arrays implementation may have higher hardware complexity since it requires

several processing elements to work in parallel. The results in Table 5.2 show that
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Figure 5.14: Simulink/XSG model for the systolic array for lattice reduction

algorithms
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our designs occupied 36 ∼ 38% more FPGA slices than the one in CLLL. However,

as the advance of FPGA technology and the semiconductor processing, one may

consider to trade some areas for a faster processing speed. As shown in Table 5.2,

when using the latest Xilinx Virtex 6 FPGA device, our systolic designs could run

up to 249MHz and it only requires less than 10% of the total FPGA slices.
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CHAPTER 6

Fading Channel Modeling and Parameter

Estimation Under Abrupt Temporal Variations

In the following two chapters, we consider the modeling and parameter estimation

of the fading channel with sudden changes in the statistics. To fit the empirical data

with common probability models of the fading channel envelope, such as Rayleigh,

Nakagami-m, and Weibull distributions, maximum likelihood (ML) estimation or

the moment estimation of the model parameters are usually applied [45,52–54]. To

use these estimators, the assumption are made that the data are independent and

identically distributed. The independence can be approximated by longer sampling

intervals so that the temporal correlation between samples are low. However, it

is not trivial to see whether the data are identically distributed since the fading

channel is nonstationary over time. In the literature, researchers did the parameter

estimation using the measurement from a fixed and short period of time since it is

assume that the channel is stationary or quasi-stationary within a short period.

In this chapter, we advocate the usage of Bayesian change point detection on

detecting abrupt changes in the fading channel statistics and perform the parameter

estimation based on the change point detection results. Hence, it is a more precise

way to see whether the measurement are identically distributed. If not, we are

able to estimate the parameters for each segment and characterize the temporal

variation more accurately.
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6.1 Narrow-Band Fading Channel Formulation

We consider transmitting narrow-band signals over a wireless channel. The complex

path gain g due to multipath effect can be written as

g = gI + j · gQ =
N∑
i=1

aie
jθi , (6.1)

where gI and gQ are the real and imaginary part of g, respectively, N is the number

of multipath components, ai and θi are the random amplitude and phase of the

ith path, respectively. In this chapter, we assume the complex path gain is time

varying due to the random time-varying behavior of the amplitude and phase of

each path. Consequently, the subscript t is appended to each variable in (6.1) in

the rest of the chapter to denote the time.

For fixed wireless link, where the positions of the transmitter and the receiver

are fixed, the channel gain is static or time-invariant if there is no disturbance

or moving objects in the field of view of antennas. However, in the environment

such as office, shopping mall or the street with heavy traffic, the channel is usually

observed as quasistatic for only a short period of time since there are usually people

walking around or cars driving by that causes different signal levels [41, 56,59,61].

For mobile channel, where one end is usually fixed (such as the base station) and the

other end is usually moving (such as the handheld device), the temporal variation in

the channel gain is usually caused by the location variation. Transmission distance,

shadowing effect, line-of-sight (LOS) or non-line-of-sight (NLOS) could be different

at different location, which results in different channel gain. Hence, we assume the

channel measurement could be divided into segments. Within each segment, the

channel is stationary and all data are sampled from the same distribution with

the same parameter set. The channel data among different segments are sampled

from the same distribution but with different parameter sets. Since the channel

is quasistatic only for a short period of time, we expect the time length of each

segment to be short. The boundaries between segments are called the change
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points. In this chapter, our goals are to detect those change points and at the

meantime to estimate the parameter sets of each segment.

In the following discussions, we consider two different detection methods,

coherent detection and non-coherent detection. With coherent detection, the

instantaneous path gain gt could be estimated, and the change point detection is

performed directly on gt. More commonly seen is the noncoherent detection, where

the power level of the received signal is measured. Thus, we focus on the temporal

variation of the amplitude level of the path gain, so the change point detection

is applied on the envelope of the complex path gain |gt| =
√

(gIt )
2

+
(
gQt

)2

. For

simplicity, we will use ht to denote |gt| in the rest of the chapter.

6.2 Bayesian Change Point Detection

The change point detection technique used here is based on the work in [62]. In

this section, the methodology proposed in [62] will be briefly introduced. Denote

x1:t as the data sequence, x1, x2, · · · , xt, observed from time 1 to t. Assume all the

data are independently sampled from the same type of probability distribution,

but the parameter set of the distribution could be changing over time. Therefore,

the sequence is divided into mutually exclusive segments, and the data within each

segment are independently sampled from the distribution of the same parameter

set. A change point occurs when there is a change in the parameter set, which

is at the beginning of each segment. Define the run length rt as the time since

the last change point observed at time t, so rt = 0 indicates a change point at

time t. The principle of this method is to estimate rt based on P (rt|x1:t), the

posterior distribution of rt given the data observed so far x1:t. The run length

posterior probability is proportional to the joint probability P (rt ∩ x1:t), which
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can be recursively computed over the data and run length [62].

P (rt ∩ x1:t)

=
∑
rt−1

P (rt|rt−1)P (xt|rt−1,x
rt−1)P (rt−1 ∩ x1:t−1), (6.2)

where xrt−1 denotes the set of data associated with the run length rt−1. The

probability P (rt|rt−1) is the run length transition probability and P (xt|rt−1,x
rt−1)

is the predictive probability of xt given the past observations of the same segment.

With suitable probability models for these two terms, we are able to calculated the

joint probability P (rt ∩ x1:t) recursively. Furthermore, by normalizing this joint

probability, we can obtain the run length posterior probability P (rt|x1:t).

The run length transition probability P (rt|rt−1) could be defined by first

selecting appropriate probability model for P (rt = 0|rt−1), which is the probability

that a change point occurs at t after observing rt−1 consecutive data from the

same segment. Once this probability model is determined, P (rt 6= 0|rt−1) is simply

P (rt = r|rt−1) =


1− P (rt = 0|rt−1), r = rt−1 + 1.

0, r 6= rt−1 + 1 or 0.

(6.3)

This is because there are only two possibilities at t, a change point (rt = 0) or no

change point (rt = rt−1 + 1).

The predictive probability P (xt|rt−1,x
rt−1) in (6.2) is associated with the

probability distribution where the data are sampled from through

P (xt|rt−1,x
rt−1) =

∫
P (xt|θ)P (θ|xrt−1)dθ, (6.4)

where P (xt|θ) is the data distribution at t with parameter set θ. As previously

mentioned, P (xt|θ) is always the same type of distribution (Gaussian, for instance);

however, the parameter set underlying changes once in a while. Even with the

given data distribution, computing (6.4) is generally not trivial since evaluating

the posterior probability P (θ|xrt−1) may require a lot of computation. Under the
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assumption that the data are i.i.d. within each segment, P (θ|xrt−1) is proportional

to

∝

 t−1∏
i=t−rt−1

P (xi|θ)

P (θ) (6.5)

∝ P (xt−1|θ)P (θ|ηrt−2), (6.6)

∝ P (θ|ηrt−1), (6.7)

where ηri is the hyperparameter set [96] of the prior distribution of θ that is

updated by all the data points in the current segment up to the newly observed

xi. The hyperparameter set ηri can also be viewed as the sufficient statistics of

xri . From (6.6) and (6.7), it is clear that the integrand of (6.4) is proportional

to P (θ|xrt), which is the posterior probability of θ to be used for calculating the

predictive probability at time t+1. It is briefly mentioned in [62] and is thoroughly

discussed in [96] that if there exists a conjugate prior P (θ|ηri−1) of the sample

distribution P (xi|θ), the posterior probability P (θ|xri) will still be in the same

class of distribution as the conjugate prior. Consequently, if the conjugate prior is

applied, (6.5) to (6.7), the probability P (θ|xrt−1), and also the integrand in (6.4)

will all stay in the same class of distribution. Furthermore, if the integral of that

class of distribution has an analytical form, then (6.4) is just a function of xt and

ηrt−1 with an analytic express and the predictive probability can be evaluated

without numerical integration. The concept of conjugate prior will be made clearer

in the next section.

The estimated run length at time t is determined by the maximum a posteriori

probability (MAP) estimation

r̂t = max
rt=0,1,··· ,t

P (rt|x1:t). (6.8)

Ideally, we mark a change point at time t when r̂t = 0. However, there are cases

when the estimated run length begins a new run with r̂t = k 6= 0. This usually

occurs when the change between contiguous segments are not significant so that
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the detector does not detect the change immediately. In these cases, the change

point is marked at t− k to compensate the detection delay.

6.3 Exponential Family and Conjugate Prior

As mentioned in Section 6.2, the existence of the conjugate prior of the data

model is crucial to the change point detection algorithm, as it can greatly simplify

the computation of the predictive probability and facilitate the online processing.

Fortunately, the common models of the fading channel envelope, such as Rayleigh,

Nakagami-m, and Weibull distribution, are exponential families and it is pointed

out in [96] that the probability distributions that belong to exponential families

have natural conjugate priors. The word “natural” means not only the posterior

probability distributions are in the same class of distributions as the prior, but

also they have the same functional form as the likelihood. In other words, the

conjugate prior of the likelihood selecting from the exponential family is also in

the exponential family.

The distribution of a random variable X with parameter set θ belongs to an

exponential family if the pdf can be written as

fX(x|θ) = b(x)g(θ) exp
(
φ(θ)Tu(x)

)
, (6.9)

where b(x) and g(θ) are known functions, and φ(θ) and u(x) are vectors of the

same dimension as that of θ. The likelihood function of θ when observing a

sequence of i.i.d. observation x1:n is

P (x1:n|θ) =

[
n∏
i=1

b(xi)

]
g(θ)n exp

(
φ(θ)T

n∑
i=1

u(xi)

)
. (6.10)

If the prior of θ is specified as

P (θ) ∝ g(θ)γ0 exp
(
φ(θ)Tν0

)
, (6.11)

with hyperparameter set initiated as η0 = {γ0,ν0}, it is a conjugate prior of (6.10).
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It is easy to see that the posterior probability associate with (6.10) and (6.11) is

P (θ|x1:n) ∝ g(θ)n+γ0 exp

(
φ(θ)T

(
ν0 +

n∑
i=1

u(xi)

))
(6.12)

= g(θ)γ1 exp
(
φ(θ)Tν1

)
, (6.13)

where

γ1 = γ0 + n and ν1 = ν0 +
n∑
i=1

u(xi). (6.14)

This shows that the posterior probability is in the same parametric form as the

prior. Hence, in the following section we will use (6.11) to find the conjugate prior

of the distributions of interest. Additionally, it can be seen from (6.12) and (6.13)

that θ depends on x only through the hyperparameter set η1 = {γ1,ν1}. Hence,

η1 is the sufficient statistic for θ, and we can conclude that P (θ|x) = P (θ|η1). As

observing more data, we should update the posterior probability through updating

the sufficient statistic using the equations as shown in (6.14).

6.4 Change Point Detection and Parameter Estimation for

Various Models of the Fading Channel Envelope

In this section, we will discuss how to apply the change point detection theory

introduced in Section 6.2 on various models of fading channel envelope. As discussed

in Section 6.2, the run length transition probability can be defined by selecting

appropriate probability model for P (rt = 0|rt−1), which is generally independent

to the data distribution. Since the change points of the fading channel occurs

randomly, we simply take P (rt = 0|rt−1) = 1/λ which indicates that a change point

occurs at time t does not depend on the previous run length. The constant λ is

expected length of each segment, which should be tuned for different transmission

environments. This is also equivalent of assuming the length of each segment

follows a geometric distribution with mean λ. On the other hand, the predictive

probability is distribution-dependent. In the rest of this section, we will focus
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on deriving the predictive probability for each distribution model. Additionally,

we will derive the maximum a posteriori (MAP) and the minimum mean square

error (MMSE) estimators of the model parameters for each segment based on the

posterior probabilities P (θ|x). The MAP estimator of the parameter θ is selected

by

θMAP = arg max
θ

P (θ|x). (6.15)

The MMSE estimator is the conditional expectation of θ given x [97],

θMMSE = E[θ|x] =

∫
θ

θP (θ|x)dθ. (6.16)

The vector expression in (6.16) is equivalent to

θMMSE
i =

∫
θ

θiP (θ|x)dθ (6.17)

=

∫
θi

θiP (θi|x)dθi, i = 1, 2, · · · , dimension(θ). (6.18)

6.4.1 One-Dimensional Gaussian Distribution

First, we consider the case of coherence detection, where the complex path gain gt

is detected. By the expression in (6.1) and the central limit theorem, as N is large

enough, gIt and gQt can be approximated as Gaussian random processes. In this

section, we first discuss the case of using one-dimensional Gaussian distribution.

In the next section, we will generalize the results to multivariate Gaussian, which

is a better fit for our application. Hence, we denote the observed data xt in the

following discussion and xt can be viewed as either the I-channel realization gIt or

the Q-channel realization gQt .

Gaussian pdf has a natural conjugate prior since it belongs to the exponential

family. The conjugate prior of a Gaussian likelihood with mean µ and variance σ2
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is known to be a Gaussian-inverse-gamma distribution [96],

NIG(µ, σ2|m, τ, α, β)

=
(σ2)

−α− 3
2

Γ(α)

βα√
2πτ

exp

{
−(µ−m)2 + 2τβ

2τσ2

}
. (6.19)

Or equivalently,

P (µ|σ2) ∼ N (m, τσ2) and P (σ2) ∼ IG(α, β). (6.20)

As a result, using this conjugate prior we can obtain the posterior probability

P (µ, σ2|xrt−1) also in a Gaussian-inverse-gamma distribution, NIG(µ, σ2|ηrt−1),

where the parameter set ηrt−1 is {mrt−1 , τ rt−1 , αrt−1 , βrt−1}. Therefore, the predic-

tive probability in (6.4) is the integral of the product of a Gaussian pdf and a

Gaussian-inverse-gamma pdf, which by the derivation in Appendix A.1 can be

shown as a Student’s t-pdf,

P (xt|rt−1,x
rt−1) = T

(
xt

∣∣∣∣2αrt−1 ,
αrt−1

βrt−1(τ rt−1 + 1)
,mrt−1

)
. (6.21)

The Student’s t-pdf is a function of three parameters,

T (x|ν, λ,m) =

√
λ

πν

Γ
(
ν+1

2

)
Γ
(
ν
2

) (1 +
λ(x−m)2

ν

)− ν+1
2

. (6.22)

Similar to the case in (6.14), the hyperparameter set ηrt−1 that defines the predictive

probability (6.21) needs to be updated when observing the new data xt,

mrt =
τ rt−1xt +mrt−1

τ rt−1 + 1
, (6.23)

τ rt =
τ rt−1

τ rt−1 + 1
, (6.24)

αrt = αrt−1 +
1

2
, (6.25)

βrt = βrt−1 +
(xt −mrt−1)2

2(τ rt−1 + 1)
. (6.26)

The derivation of (6.23) to (6.26) are shown in the Appendix A.1. Using the

updated hyperparameter set ηt, we are able to obtain P (µ, σ2|ηrt) for the next

iteration.
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To estimate the parameters (µ, σ2) of the channel model at time t based on the

observations xrt associated with the current segment, we derive the MAP and the

MMSE estimators based on the posterior probability P (µ, σ2|xrt) = P (µ, σ2|ηrt),
which is still a Gaussian-inverse-gamma pdf.

MAP estimators: Let Lt be the logarithm of the posterior probability at time t,

Lt =

(
−αrt − 3

2

)
log σ2 − (µ−mrt)2 + 2τ rtβrt

2τ rtσ2
+ C, (6.27)

where C is a constant not related to µ and σ2. Using the MAP criterion in

(6.15), the MAP estimation of µ and σ2 at time t can be obtained by solving

two equations ∂Lt/∂µ = ∂Lt/∂σ
2 = 0, which yields

µMAP
t = mrt , (6.28)(

σ2
)MAP

t
=

βrt

αrt + 3
2

. (6.29)

Hence, after the estimated run length r̂t is determined by (6.8), the MAP

estimation of the parameter set can be immediately calculated by (6.28) and

(6.29) using the hyperparameters associated with r̂t.

MMSE estimators: The marginal probability P (µ|xrt) can be calculated by∫
σ2

NIG(µ, σ2|mrt , τ rt , αrt , βrt)dσ2 (6.30)

=
Γ
(
αrt + 1

2

)
Γ (αrt)

(βrt)α
rt

√
2πτ rt

(
βrt +

(µ−mrt)2

2τ rt

)−(αrt+ 1
2)
×∫

σ2

IG
(
σ2

∣∣∣∣αrt +
1

2
, βrt +

(µ−mrt)2

2τ rt

)
(6.31)

=
Γ
(
αrt + 1

2

)
Γ (αrt)

1√
2πβrtτ rt

(
1 +

(µ−mrt)2

2βrtτ rt

)−(αrt+ 1
2)

(6.32)

= T
(
µ

∣∣∣∣2αrt , αrt

βrtτ rt
,mrt

)
. (6.33)

Using (6.18), the MMSE estimator for µ associated with r̂t is the mean of

the Student-t distribution in (6.33), which is

µMMSE
t = mr̂t . (6.34)
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For the variance σ2, the marginal pdf P (σ2|xrt) can be easily found to be

an inverse-gamma distribution with parameters αrt and βrt using (6.20).

Therefore, the MMSE estimator of σ2 is the mean of the inverse-gamma

distribution, which is

(σ2)MMSE
t =

β r̂t

αr̂t − 1
. (6.35)

It is observed that, for µ, the MMSE estimator is the same as the MAP

estimator, while this is not true for σ2.

6.4.2 Multivariate Gaussian Distribution

In this section, we generalize the results in 6.4.1 to multivariate Gaussian distri-

bution, so we are able to jointly detect the changes from both gIt and gQt , and

also jointly estimate the parameters of bivariate Gaussian model. Assume the

observation xt is a N -dimensional Gaussian sequence. Hence, P (xt|θ) is now a

multivariate Gaussian pdf and θ consists of the N × 1 mean vector µ and the

N ×N covariance matrix Σ of xt. The conjugate prior of a multivariate Gaussian

likelihood is known to be a Gaussian-inverse-Wishart distribution [98],

NIW(µ,Σ|m, τ, ν,W)

= N (µ|m, τΣ)IW(Σ|ν,W), (6.36)

where IW(X|ν,W) is the inverse-Wishart distribution with parameters ν and

N ×N matrix W,

IW(X|ν,W) =
|W| ν2 |X|− ν+N+1

2

2
νN
2 ΓN

(
ν
2

) e−
1
2

Tr(WX−1), (6.37)

and ΓN(x) = πN(N−1)/4
∏N

j=1 Γ(x+ 1−j
2

) is the N -varitate gamma function. With

the conjugate prior, the posterior probability P (µ,Σ|xrt−1) is also a Gaussian-

inverse-Wishart distribution with hyperparameter set ηrt−1 consisting of mrt−1 ,

τ rt−1 , νrt−1 , and Σrt−1 . Therefore, the predictive probability can be calculated from
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the integral of the product of a multivariate Gaussian pdf and a Gaussian-inverse-

Wishart pdf. Through the similar derivation as in Appendix A.1, the predictive

probability is

P (xt|rt−1,x
rt−1) =

Γ
(
νrt−1+1

2

)
π
N
2 Γ
(
νrt−1+1−N

2

) |(τ rt−1 + 1)Wrt−1|− 1
2 ×

[
1 +

1

τ rt−1 + 1
(xt −mrt−1)T (Wrt−1)−1 (xt −mrt−1)

]− νrt−1+1

2

,

(6.38)

= T
(

xt

∣∣∣∣νrt−1 + 1−N, (τ rt−1 + 1)Wrt−1

νrt−1 + 1−N ,mrt−1

)
, (6.39)

where the T (·) here is the N -variate Student-t pdf,

T (x|ν,Λ,m) =
Γ
(
ν+N

2

)
(νπ)

N
2 Γ
(
ν
2

) |Λ|− 1
2

[
1 +

1

ν
(x−m)TΛ−1(x−m)

]− ν+N
2

. (6.40)

The updating equtions for the hyperparameter set ηrt−1 when observing the new

data vector xt can also be derived in the similar way as in Appendix A.1, which

yields

mrt =
τ rt−1xt + mrt−1

τ rt−1 + 1
, (6.41)

τ rt =
τ rt−1

τ rt−1 + 1
, (6.42)

νrt = νrt−1 + 1, (6.43)

Wrt = Wrt−1 +
(xt −mrt−1) (xt −mrt−1)T

τ rt−1 + 1
. (6.44)

MAP estimators: The posterior probability P (µ,Σ|xrt) is in a Gaussian-inverse-

Wishart form, so the logarithm of the posterior probability is

Lt = logP (µ,Σ|xrt)

= −ν
rt +N + 2

2
log |Σ|

− 1

2
(µ−mrt)T (τ rtΣ)−1(µ−mrt)− 1

2
Tr(WrtΣ−1) + C (6.45)
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where C is a constant term not related to µ and Σ. By setting ∂Lt/∂µ = 0,

it is easily shown that

−(τ rtΣ)−1µ+ (τ rtΣ)−1mrt = 0 (6.46)

Consequently, the MAP estimation of µ at time t that associated with the

estimated run length r̂t is

µMAP
t = mr̂t . (6.47)

To find the MAP estimation of Σ, we need the following identities for the

symmetric nonsingular matrix X from the matrix calculus [99],

∂ |X|
∂X

= |X|X−1, (6.48)

∂ log X

∂X
= X−1, (6.49)

∂aTX−1a

∂X
= −X−1aaTX−1, (6.50)

∂Tr(AX−1)

∂X
= −X−1AX−1, (6.51)

where A is a symmetric matrix of the same size as X and a is a column

vector. Taking the derivative of Lt with respect to Σ yields

∂Lt
∂Σ

=− νrt +N + 2

2
Σ−1

+
1

2
(τ rt)−1Σ−1(µ−mrt)(µ−mrt)TΣ−1

+
1

2
Σ−1WrtΣ−1. (6.52)

By setting ∂Lt/∂Σ = 0 and plugging in the MAP estimator of µ in (6.47),

we can solve the MAP estimator of Σ associated with r̂t as

ΣMAP
t =

Wr̂t

ν r̂t +N + 2
. (6.53)

The two MAP estimators derived here are indeed the generalization of those

of one-dimensional case. To see this, by setting N = 1 the two estimators

(6.47) and (6.53) are reduced to (6.28) and (6.29), respectively.
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MMSE estimators: Using the similar derivations for the MMSE estimators of

one-dimensional Gaussian, we can derive the marginal pdf of µ as

P (µ|xrt) = T
(
µ

∣∣∣∣νrt + 1−N, τ rtWrt

νrt + 1−N ,mrt

)
. (6.54)

And the marginal pdf of Σ is

P (Σ|xrt) = IW (Σ |νrt ,Wrt ) . (6.55)

Hence the MMSE estimators are the conditional mean of (6.54) and (6.55),

respectively,

µMMSE
t = mr̂t , (6.56)

ΣMMSE
t =

Wr̂t

ν r̂t −N − 1
. (6.57)

6.4.3 Rayleigh Distribution

For noncoherent detection, we measure the amplitude or envelope of the complex

path gain, ht =
∣∣∣gIt + jgQt

∣∣∣. Rayleigh distribution is widely used to model the chan-

nel envelop for narrow-band signals under non line-of-sight (NLOS) transmission.

The physical interpretation of the Rayleigh fading envelope is that the received

signal is the superposition of many independent reflections of the original radio

wave from the random objects as expressed in (6.1). Assuming the amplitude of

each reflection path is about the same level, by central limit theorem the channel

path gain can be viewed as a circularly symmetric complex Gaussian random

variable with zero mean [100]. The envelope of this complex Gaussian is Rayleigh

distributed. On the other hand, if there is line-of-sight (LOS) between the trans-

mitter and the receiver, the complex Gaussian is circularly symmetric around a

nonzero mean. In that case, the envelop is Rice distributed.

For Rayleigh fading envelope ht, the pdf is

f(ht) =
ht
σ2
e−

h2
t

2σ2 , ht ≥ 0, (6.58)
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where σ2 is the variance of Gaussian xI and xQ. In order to find the conjugate

prior of (6.58), the Rayleigh pdf is decomposed into the form of (6.10),

b(ht) = ht, g(σ2) =
1

σ2
, φ(σ2) = − 1

σ2
, u(ht) =

h2
t

2
. (6.59)

Using (6.11), the conjugate prior of Rayleigh likelihood should be proportional to

P (σ2) ∝ g(σ2)α exp
(
φ(σ2)β

)
(6.60)

∝
(
σ2
)−α

exp

(
− β

σ2

)
. (6.61)

for some parameter α and β. From (6.61), it is clear that the conjugate prior

should be a inverse-gamma distribution

P (σ2) =
1

Γ(α)
βα(σ2)−α−1 exp

(
− β

σ2

)
, σ2 ≥ 0 (6.62)

Using this conjugate prior, we can derive the predictive probability

P (ht|rt−1,h
rt−1)

=

∫
σ2

P (ht|σ2)P (σ2|αrt−1 , βrt−1)dσ2

=
htα

rt−1 (βrt−1)α
rt−1(

h2
t

2
+ βrt−1

)αrt−1+1
. (6.63)

Also the updating equations of the hyperparameter set {α, β} are

αrt = αrt−1 + 1, and (6.64)

βrt = βrt−1 +
h2
t

2
. (6.65)

The derivation of (6.63), (6.64) and (6.65) are shown in Appendix A.2.

MAP estimator: To estimate σ2, the only parameter of the Rayleigh pdf, we

find the one that maximizes the current posterior probability P (σ2|hrt),
which is also the form of inverse-gamma pdf

P (σ2|hrt) = P (σ2|αrt , βrt) =
1

Γ(αt)
(βrt)α

rt (
σ2
)−αrt−1

exp−
βrt

σ2 . (6.66)
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Taking the derivative of the logarithm of P (σ2|hrt) with respect to σ2, we

obtain
∂ logP (σ2|hrt)

∂σ2
= −(αrt + 1)(σ2)−1 + βrt(σ2)−2. (6.67)

By setting the derivative to 0, the MAP estimator of σ2 at time t correspond-

ing to the run length r̂t can be found as(
σ2
)MAP

t
=

β r̂t

αr̂t + 1
. (6.68)

MMSE estimator: Since the posterior probability P (σ2|hrt) is an inverse-gamma

pdf with parameters αrt and βrt , the MMSE estimator for σ2, which is the

conditional mean, can easily be found as(
σ2
)MMSE

t
=

β r̂t

αr̂t − 1
. (6.69)

Since σ2 is directly related to the power of the channel envelope, detecting

the abrupt changes in the Rayleigh fading channel is equivalent to detecting the

changes in the power of the envelope, which could be caused by the movement of

the surrounding objects or the movement of the transmitter/receiver. However,

Rayleigh fading model is only suitable for the NLOS scenario. If the transmission

is changing from NLOS to LOS, change point detection using Rayleigh model may

not perform properly. In the next section, we will discuss using Nakagami-m model

to solve this problem.

6.4.4 Nakagami-m Distribution

Nakagami-m distribution [101] was developed to model the empirical channel

envelope and was found to be a good fit in a variety of fading environments. The

distribution is very versatile and simple in the way that it can be used to model the

severe and weak fading channels under either NLOS or LOS scenario through the

fading parameter m. Also, it leads to analytical expressions for the performance

analysis of many communication systems [48,50,51].
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The pdf of Nakagami-m distribution is written as

f(ht) =
2

Γ(m)

(m
Ω

)m
h

(2m−1)
t e−

mh2
t

Ω , ht ≥ 0, m ≥ 1

2
, (6.70)

where Ω is the expected second moment of ht. The parameter m indicates the

level of fading. The smaller m is, the severer the fading. Nakagami-m is equivalent

to several known distributions. For example, it is half-Gaussian when m = 0.5,

and is Rayleigh when m = 1. It can also approximate the Rice distribution

f(ht) =
ht
σ2

exp

(
−h

2
t + ν2

σ2

)
I0

(
htν

σ2

)
(6.71)

= 2
ht(k + 1)

ν2 + 2σ2
exp

{
−(1 + k)h2

t

ν2 + 2σ2
− k
}
I0

(
2ht

√
k(1 + k)

ν2 + 2σ2

)
, (6.72)

where k = ν2/2σ2 is the Rician K-factor which is the ratio between the power of

the direct transmission path (the dominant path whose amplitude is not random)

and the power of scatters (the random part of the channel gain). Rice pdf

(6.72) with parameters k and σ is well-approximated by Nakagami-m through the

conversions [100]

m =
(1 + k)2

1 + 2k
, (6.73)

Ω = 2σ2(1 + k). (6.74)

Nakagami-m accounts for various fading environments and lends itself to an

appealing model for channel envelope.

To apply Nakagami-m to the Bayesian change point detection algorithm, the

conjugate prior needs to be found. First, we replace the parameter 1/Ω with γ for

the convenience of the future derivations and rewrite the Nakagami-m pdf into,

f(ht) =
2

Γ(m)
(mγ)m exp

{
−mγh2

t + (2m− 1) log ht
}
. (6.75)

Then decompose the pdf into the form of (6.10) and yields

b(ht) = 2, g(m, γ) =
1

Γ(m)
(mγ)m , (6.76)

φ(m, γ) = [−mγ 2m− 1]T , u(ht) =
[
h2
t log ht

]T
. (6.77)
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The form of conjugate prior can be derived using (6.11),

P (m, γ|n, ν, s, p) ∝ 1

Γn(m)
(mγ)νm exp {− (mγ) s+ (2m− 1) log p} , (6.78)

with hyperparameter set η = {n, ν, s, p}. There is no known distribution in the

exponential family with pdf in the form of (6.78). However, it is not difficult to

find the normalization constant of (6.78) by numerical integral. Let K be the

normalization constant such that 1
KΓn(m)

(mγ)νm exp {− (mγ) s+ (2m− 1) log p}
is a eligible pdf. Namely,

K(η) =

∫
m

∫
γ

1

Γn(m)
(mγ)νm p2m−1 exp {−msγ} dγdm. (6.79)

From (6.11) we can observe that the conditional pdf f(γ|m) can be written into a

gamma distribution, so K can be simplified as

K(η) =

∫
m

∫
γ

(ms)νm+1

Γ(νm+ 1)
γ(νm+1)−1e−msγ︸ ︷︷ ︸
f(γ|m)

dγ
Γ(νm+ 1)

msνm+1

p2m−1

Γn(m)
dm (6.80)

=

∞∫
1/2

Γ(νm+ 1)

Γn(m)

p2m−1

msνm+1
dm. (6.81)

To find K, we applied the Laplace’s method [102], in which the integrand is

approximated by a Gaussian pdf. Suppose we would like to find
∫
x
f(x)dx for

some given function f(x) and it is equivalent as finding
∫
x

exp {log f(x)} dx. Let

q(x) = log f(x) and x∗ = max
x

q(x). The second order Taylor’s approximation of

q(x) around x∗ is q̂(x) = q(x∗) + q′′(x∗)
2

(x− x∗)2, since q′(x∗) = 0. The idea of the

Laplace’s method is to approximate f(x) by exp{q̂(x)}, which gives∫
x

f(x)dx ≈
∫
x

exp {q̂(x)} dx

= exp {q(x∗)}
√

2π

|q′′(x∗)|

∫
x

1
√

2π
√

1
|q′′(x∗)|

exp

{
−(x− x∗)2

2 1
|q′′(x∗)|

}
dx

(6.82)

= f(x∗)

√
2π

|q′′(x∗)|

∫
x

N
(
x;x∗,

1

|q′′(x∗)|

)
dx. (6.83)
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The integral of a Gaussian pdf in (6.83) can be expressed by the Q-function, which

is defined as Q(x) =
∫∞
x

1/
√

2π exp (−t2/2) dt. The Q-function is widely used in

statistics and the performance analysis of communication systems and can be

easily approached by numerical approximation. Hence, to apply the Laplace’s

method, one only needs to find q′′(x) and x∗.

Using Laplace’s method to find K in (6.81), first we define

q(m) = log
Γ(νm+ 1)

Γn(m)

p2m−1

msνm+1
. (6.84)

The second derivative of q(m) is

q′′(m) = ν2ψ(1)(νm+ 1)− nψ(1)(m) +m−2, (6.85)

where ψ(k)(m) is the polygamma function defined as the (k+ 1)th derivative of the

logarithm of the gamma function. From (6.83) and (6.85),

K(η) ≈ Γ(νm∗ + 1)

Γn(m∗)

p2m∗−1

msνm∗+1

√
2π

|q′′(m∗)|Q
(

1
2
−m∗√

1/|q′′(m∗)|

)
. (6.86)

Therefore, m∗, the m that maximizes q(m), is the only thing left we need to solve.

To find m∗, we set q′(m) to zero; namely

q′(m∗) = νψ(0)(νm∗ + 1)− nψ(0)(m∗)− 1

m∗
+ log

p2

sν
= 0. (6.87)

From [103], it is shown that ψ(0)(m) can be approximated by

ψ(0)(m) = log(m)− 1

2m
− 1

12m2
+

1

120m4
− 1

252m6
+O

(
1

m8

)
. (6.88)

By only taking the first term in the series above and ignoring 1/m∗ in (6.87), we

can find a crude estimate of m∗

m∗ ≈
(

s

νp2/ν

) ν
ν−n

. (6.89)

Take this estimate as a initial point and perform Newton’s method, we can find

a more accurate m∗. In Fig. 6.1, an example of using Laplace’s approximation
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Figure 6.1: An example of using Laplace’s approximation for exp{q(m)}. In this

example, n = 10, ν = 7, s = 5, and p = 3. The results of each iteration of the

Newton’s method for searching m∗ are also shown, where m(k) is the result of kth

iteration and m(0) is the initial value.
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for the original integrand exp{q(m)} is shown. In this example, the parameters

of q(m) are set to n = 10, ν = 7, s = 5, and p = 3. The original integrand

exp{q(m)} is fairly close to a Gaussian bell shape, so exp{q̂(m)} leads a good

approximation. The results of the Newton’s method for searching m∗ are also

shown in the figure,where m(k) is the result of kth iteration and m(0) is the initial

value. In this example, the Newton’s method converges in only two iterations since

the initial estimate is close to the true m∗.

With K(η) and the conjugate prior form in (6.78), we are able to derive the

predictive probability

P (ht|rt−1,h
rt−1) =

2K(ηrt)

K(ηrt−1)
, (6.90)

and the updating equations for the hyperparameter set ηrt ,

nrt = nrt−1 + 1, (6.91)

νrt = νrt−1 + 1, (6.92)

prt = prt−1 · ht, (6.93)

srt = srt−1 + h2
t . (6.94)

Equations (6.90) and (6.91)–(6.94) are derived in Appendix A.3.

MAP estimators: To estimate the parameters of the Nakagami-m pdf based on

the observations in the current segment hrt by MAP criterion, we select the

ones that maximize the posterior probability P (m, γ|hrt) which is also in

the same form as in (6.78),

P (m, γ|hrt) = P (m, γ|ηrt) =
(mγ)ν

rtm (prt)2m−1

K(ηrt)Γnrt (m)
exp {−srtmγ} . (6.95)

First we take the partial derivative of the logarithm of P (m, γ|hrt) with

repsect to γ and set to 0,

∂ logP (m, γ|hrt)
∂γ

=
νrtm

γ
− srtm = 0. (6.96)
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The MAP estimator of γ at time t corresponding to r̂t can be easily solved,

γMAP
t =

ν r̂t

sr̂t
. (6.97)

Note that the MAP estimator of Ω is not 1/γMAP
t since the MAP estimator

does not commute over nonlinear transformations [97].

On the other hand, by setting ∂ logP (m, γ|hrt)/∂m = 0, we obtain

logm− nrt

νrt
ψ(0)(m) =

srtγ

νrt
− 2 log prt

νrt
− log γ − 1. (6.98)

Plugging in the MAP estimator of γ, (6.98) becomes

logm− nrt

νrt
ψ(0)(m) = log

srt

νrt (prt)2/νrt
. (6.99)

Apply the approximation in (6.88) and preserve the first three terms of the

series, the MAP estimator for m can be approximated by the solution of(
1− nrt

νrt

)
logm+

1

2m
+

1

12m2
= log

srt

νrt (prt)2/νrt
. (6.100)

mMAP
t can be solved from (6.100) by numerical methods. A faster but less

accurate way to approach mMAP
t is by observing from (6.91) and (6.92) that

limrt→∞
nrt

vrt
= 1, so that (6.100) can be simplified to a quadratic equation

12 log
srt

νrt (prt)2/νrt
m2 − 6m− 1 = 0. (6.101)

Consequently, the MAP estimator at time t corresponding to r̂t has a closed-

form expression

m̂MAP
t =

6 +
√

36 + 48C r̂t

24C r̂t
, where C r̂t = log

sr̂t

ν r̂t (pr̂t)2/ν r̂t
. (6.102)

Note that the other root of (6.101) is not considered since it is never positive.

The estimator in (6.102) is accurate as we collect more data from the same

segment such that nrt

vrt
is close to 1. Also, it is known from the estimation

theory that the MAP estimator converges to maximum likelihood (ML)

estimator as the number of observations grows large [97]. Our MAP result

in (6.102) indeed converges to the ML estimator derived in [52].
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MMSE estimators: To derive the MMSE estimators, we make use of the integral

in (6.17). For estimating m,

mMMSE
t =

∫
m

∫
γ

m · P (m, γ|ηrt)dγdm (6.103)

=

∫
m

∫
γ

mνrtm+1

K(ηrt)Γnrt (m)
(γ)ν

rtm (prt)2m−1 exp {−srtmγ} dγdm

(6.104)

=

∫
m

mνrtm+1

K(ηrt)Γnrt (m)
(prt)2m−1

∫
γ

(γ)ν
rtm exp {−srtmγ} dγdm

(6.105)

=

∫
m

Γ (νrtm+ 1)

K(ηrt)Γnrt (m)

(prt)2m−1

(srt)ν
rtm+1dm (6.106)

By the expression of K(η) in (6.81), the MMSE estimator of m can also be

written as

mMMSE
t =

∫
m

Γ(νrtm+1)

Γn
rt (m)

(prt )2m−1

(srt )ν
rtm+1dm∫

m
Γ(νrtm+1)

Γn
rt (m)

(prt )2m−1

m(srt )ν
rtm+1dm

. (6.107)

As for γ, the MMSE estimator can also be derived as

γMMSE
t =

∫
m

∫
γ

γ · P (m, γ|ηrt)dγdm (6.108)

=

∫
m

∫
γ

mνrtm

K(ηrt)Γnrt (m)
(γ)ν

rtm+1 (prt)2m−1 exp {−srtmγ} dγdm

(6.109)

=

∫
m

mνrtm

K(ηrt)Γnrt (m)
(prt)2m−1

∫
γ

(γ)ν
rtm+1 exp {−srtmγ} dγdm

(6.110)

=

∫
m

Γ (νrtm+ 2)

K(ηrt)Γnrt (m)

(prt)2m−1

m2 (srt)ν
rtm+2dm. (6.111)

Replace K(ηrt) by its integral form, the MMSE estimator of γ can be written

as

mMMSE
t =

∫
m

Γ(νrtm+2)

Γn
rt (m)

(prt )2m−1

m2(srt )ν
rtm+2dm∫

m
Γ(νrtm+1)

Γn
rt (m)

(prt )2m−1

m(srt )ν
rtm+1dm

, (6.112)
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Both integrals in the numerators of (6.107) and (6.112) can be computed

by Laplace’s method in the same way as it was done for K(ηrt) in the

denominators.

6.4.5 Weibull Distribution

Weibull distribution [104] has been used to model the multipath fading channels

for a wide range of propagation environments, including both indoor and outdoor

transmission. [41,105–107]. The Weibull fading channel model is also applied for

performance analysis ofr various digital communication systems [47,49,108].

The Weibull pdf is written as

f(ht) =
α

β
hα−1
t e−

hαt
β , ht ≥ 0, (6.113)

where α > 0 is the shape parameter and β > 0 is the scale parameter. It is

equivalent to an exponential pdf with α = 1, and is equivalent to a Rayleigh pdf

with α = 2. While the shape parameter α is varying, Weibull pdf does not belong

to exponential family since it does not have the form in (6.9). Besides, it does not

have a conjugate prior for the likelihood of α, since there is no sufficient statistics

of fixed dimension [109]. On the other hand, if α is fixed, Weibull is an exponential

family and the conjugate prior for likelihood of the scale parameter β can easily

be found as a inverse-gamma distribution [109]

p(β) =
1

Γ(p)
qpβ−p−1 exp

(
− q
β

)
, (6.114)

where the hyperparameter set η consists of p > 0 and q > 0. In the remaining of

this chapter, we will only discuss the case when α is fixed and β is varying.

With the conjugate prior in (6.114), we can derive the predictive probability
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for the Weibull fading channel envelope ht

p(ht|rt−1,h
rt−1)

=

∫
β

p(ht|β)p(β|prt−1 , qrt−1)dβ

=
αhα−1

t prt−1 (qrt−1)p
rt−1

(hαt + qrt−1)p
rt−1+1

. (6.115)

The updating equations for prt and qrt when observing the new data ht are

prt = prt−1 + 1, (6.116)

qrt = qrt−1 + hαt . (6.117)

The derivations of (6.115), (6.116) and (6.117) are shown in Appendix A.4. As

previously mentioned, Rayleigh distribution is a special case of Weibull distribution

when α = 2. The results in (6.63)–(6.65) are also the special cases of (6.115)–(6.117)

repectively as α = 2.

Next, we derive the MAP and MMSE estimators for the unknown parameter β

with fixed α.

MAP estimator: Using the fact that the posterior probability of β is still an

inverse-gamma distribution, we are able to find the derivative of logP (β|hrt),

∂ logP (β|hrt)
∂β

=
∂ logP (β|prt , qrt)

∂β
= −p

rt + 1

β
+
qrt

β2
. (6.118)

Set the derivative to 0 and the MAP estimator of β at time t corresponding

to the run length r̂t can be solved as

βMAP
t =

qr̂t

pr̂t + 1
. (6.119)

As rt approaches to ∞, this MAP estimator converges to the ML estimator

as shown in [54]. Not surprisingly, the MAP estimator for the Rayleigh

parameter σ2 in (6.68) is also the special case of (6.119) as α = 2.
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MMSE estimator: Since the posterior probability P (β|hrt) is an inverse-gamma

pdf with parameters prt and qrt , the MMSE estimator of β is

βMMSE
t = E[β|hr̂t ] =

qr̂t

pr̂t − 1
. (6.120)

6.4.6 Lognormal Distribution

Lognormal distribution has been used to characterize the path loss and shadowing

effect of the signal amplitudes in a multipath fading environment [41,110]. It is also

shown in [60,61] that the temporal variation of the Rician K-factor due to moving

objects in the environment can be modeled as lognormal distribution. Unlike

Rayleigh or Nakagami-m distribution, there are no strong physical interpretation

of using lognormal to characterize the small-scale variation of the fading channel.

Nevertheless, it has been shown in literatures that lognormal provides good fit for

the empirical data in either wideband or narrow band transmission [57,111,112].

ht is lognormal distributed if log(ht) is Gaussian distributed. Consequently,

the lognormal pdf can be written as

f(ht) =
1

htσ
√

2π
e−

(log ht−µ)2

2σ2 , ht > 0 (6.121)

where µ and σ2 are the mean and variance of log ht, respectively. Since the

logarithm of ht is Gaussian distributed and the changing parameters are the mean

and variance of this Gaussian, one can simply perform the Gaussian change point

detection on log ht. Nevertheless, change point detection also works directly on

lognormal ht, since it is exponential family and the conjugate prior can easily

be found. Decomposing the lognormal pdf into the form of (6.9), we obtain the

same g(σ2) and φ(µ, σ2) as the ones of Gaussian distribution. As a result, the

conjugate prior of lognormal likelihood of µ and σ2 is also Gaussian-inverse-gamma

distribution as in 6.19. The predictive probability and the updating equations of

the hyperparameter set ηt can also be derived in the similar way as in Section 6.4.1.
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The predictive probability is

p(hrt |rt−1,h
rt−1)

=

∫
µ

∫
σ2

p(hrt |µ, σ2)p(µ, σ2|mrt−1 , τ rt−1 , αrt−1 , βrt−1)dσ2dµ (6.122)

=
1

hrt
√

2πβrt−1(1 + τ rt−1)

Γ(αrt−1 + 1
2
)

Γ(αrt−1)

{
1 +

(log hrt −mrt−1)2

2βrt−1(1 + τ rt−1)

}−(αrt−1+1/2)

(6.123)

=
1

ht
T
(

log hrt
∣∣∣∣2αrt−1 ,

αrt−1

βrt−1(τ rt−1 + 1)
,mrt−1

)
, (6.124)

which can be expressed by a Student-t distribution scaled by 1/ht or a log Student-t

distribution. The scaling factor is due to the variable conversion. The updating

equations of the hyperparameter set are

mrt =
mrt−1 + τ rt−1 log hrt

1 + τ rt−1
, (6.125)

τ rt =
τ rt−1

1 + τ rt−1
, (6.126)

αrt = αrt−1 +
1

2
, (6.127)

βrt = βrt−1 +
(log hrt −mrt−1)2

2(1 + τ rt−1)
. (6.128)

These equations are almost the same as the ones of one-dimensional Gaussian,

except that ht is replaced by log ht.

Since the conjugate prior of lognormal likelihood is the same as the one of

one-dimensional Gaussian, that implies the posterior probabilities P (µ, σ2|hrt) are

in the same form. Consequently, the MAP and the MMSE estimators of µ and σ2

are also in the same forms as the ones of Gaussian.

MAP estimators: The MAP estimators of µ and σ2 at time t corresponding to

the estimated run length r̂t are,

µMAP
t = mr̂t , (6.129)(

σ2
)MAP

t
=

β r̂t

αr̂t + 3
2

. (6.130)
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MMSE estimators: The MMSE estimators of µ and σ2 are

µMMSE
t = mr̂t , (σ2)MMSE

t =
β r̂t

αr̂t − 1
. (6.131)

The derivations of (6.124)–(6.131) are omitted since they are very similar to

the ones for one-dimensional Gaussian.

91



CHAPTER 7

Evaluation of the Fading Channel Modeling and

Parameter Estimation Based on Change Point

Detection

7.1 Test on Random Sequences

To validate the change point detection (CPD) methods and parameter estimators

for the 5 distributions discussed in Chapter 6, we first test with the pseudo random

sequences of the corresponding distribution generated by Matlab. The data are

independent and identically distributed. Each sequence is manually partitioned

into 4 non-overlapped segments. The parameters for each segment are also chosen

manually. After the change points are detected, the sequential MAP and MMSE

estimators are also shown for each segment (between detected change points).

One-dimensional Gaussian Distribution: The results of the CPD on a

Gaussian random sequence are shown in Fig. 7.1. The parameters for the segments

are µ = {0.3, 0, 0, 0.15} and σ = {0.35, 0.5, 0.3, 0.3}. To see the capability of

the CPD algorithm under the scenario that only one of the parameters changes

slightly, we purposely let the second and the third segment have the same mean but

different variances, and let the third and the fourth segments have different means

but the same variances. The true change point locations are t = {301, 451, 651}
and the detected change point locations are t = {302, 451, 636} which are fairly

close to the true ones. The detected change points sometime locate even earlier
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Figure 7.1: Results of the Gaussian change point detection on a Gaussian random

sequence with 4 segments. The parameters of the segments are µ = {0.3, 0, 0, 0.15}
and σ = {0.35, 0.5, 0.3, 0.3}. The MAP and the MMSE estimations of µ and σ2

are shown in the second and third subplots, respectively.

than the true ones. This happens when the parameters are not substantially

different between segments, and the detectors may regard the last few samples of

the previous segment as part of the next segment. On the other hand, the detector

marked the change point later than the true ones because the first few samples

of the current segment may also have high probability to be sampled from the

distribution of the previous segment.

The sequential MAP and the MMSE estimators for µ and σ2 are also shown

in Fig. 7.1. The difference between the MAP and the MMSE estimators are only

noticeable at the beginning of each segment. As observing more data of the same

segment, both estimators are close to the true value and the difference between

them are very small. For comparison, we also show the sequential ML estimator
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Figure 7.2: Results of the 2-D Gaussian change point detection on a bivariate

Gaussian random sequence with 4 segments. The detection is performed jointly

on both dimensions.

in the same figure. Note that this sequential ML estimator is computed based on

the full knowledge of the change point locations and thus can be viewed as one of

the best statistical estimators if the change point locations are provided. It can be

seen from the figure, our MAP and MMSE estimators work almost as well as the

sequential ML estimator in this example. Also, they converge to the ML estimator

as the number of observations increases. For off-line processings, one does not

need sequential estimators. We can simply use the MAP or the MMSE estimator

from the last time instant of the segment, which in this example we showed that

the results are fairly close to the true values even with only 150 to 300 samples.

Multivariate Gaussian Distribution: A bivariate Gaussian random vector

sequence is generated. The sequence is partitioned into 4 segments with mean

vectors

µ = {[1 0.5]T , [0.8 0.6]T , [1.1 0.7]T , [0.8 1]T}, (7.1)
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Figure 7.3: Normalized squared errors of the MAP and the MMSE estimators for

µ and Σ of a bivariate Gaussian pdf. The sequential ML estimators with the full

knowledge of the change point locations are also shown for reference.

and covariance matrices Σ,

Σ =


1 0

0 1

 ,
 1 0.5

0.5 1

 ,
1.5 0.7

0.7 0.4

 ,
0.8 0.2

0.2 1.1

 . (7.2)

The covariance matrices cover the cases of independence, weak correlation, and

strong correlation between two dimensions. The CPD results are shown in Fig. 7.2,

where the Gaussian sequence of each dimension is shown in one subplot. Note that

even though we marked the estimated change points on each dimension, they are

in fact jointly estimated and share the same outcome. To picturize the sequential

estimation results of µ and Σ, the normalized squared errors of the MAP and

MMSE estimators for µ and Σ are shown in Fig. 7.3. The normalized squared

errors are defined as

(ε2t )µ =

∥∥µt − µESTt

∥∥2

2

‖µt‖2
2

, (7.3)

(ε2t )Σ =

∥∥Σt −ΣEST
t

∥∥2

F

‖Σt‖2
F

, (7.4)
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Figure 7.4: 1-D Gaussian change point detection individually on each dimension

of the same bivariate Gaussian random sequence as in Fig. 7.2.

where ‖·‖F is the matrix Frobenius norm and ‖·‖2 is the vector Euclidean norm.

The sequential ML estimation based on the full knowledge of the true change point

locations is also shown for reference. For the mean vector estimation, both the

MAP and the MMSE estimation have almost the same performance as the ML

estimation. For the covariance matrix, the MMSE estimator is still close to the

ML, while the MAP estimator in the last two segments are slightly better than the

other two. The length of the second segment is relatively short compared to the

other three, so the normalized estimation error of the covariance matrix at the end

of the segment is over 5%, which indicates that the estimator has not converged.

To see the difference between multivariate and 1-D Gaussian CPD, we perform

the 1-D Gaussian CPD on each dimension of the same bivariate Gaussian random

sequence. The results are shown in Fig 7.4. The main change between the first two

segments are the cross-correlation of two dimensions, while the variance of each
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Figure 7.5: Results of the Rayleigh change point detection on a Rayleigh

random sequence with 4 segments. The parameters σ2 of the segments are

{0.09, 0.16, 0.0625, 0.1225}, respectively. The MAP and the MMSE estimations of

σ2 are shown in the second subplot.

dimension is unchanged. Performing detection separately on each dimension was

not able to detect the change. Besides, the accuracy of the change point locations

are not as good as performing joint detection. This shows the advantage of joint

detection on multiple dimensions.

Rayleigh Distribution: The four segments of the Rayleigh random sequence

are generated with parameters σ2 = {0.09, 0.16, 0.0625, 0.1225}, respectively. The

CPD results are shown in Fig. 7.5. The true change point locations are t =

{101, 401, 551} and the detected change point locations are t = {111, 396, 553}.
This random sequence simulates the scenario of an NLOS transmission with

different levels of shadowing, which could be caused by people walking in between

the path. Therefore, the amplitude of the channel gain varies over a short period

of time.
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The parameter estimation results are also shown in Fig. 7.5, where the sequential

ML estimation with full knowledge of the change point locations are also shown for

comparison. It is worth-noting that although all the estimators did not perform

well in the first segment due to small number of observations, the MAP and the

MMSE estimation yield closer-to-true-value results. This is because the proper

initial hyperparameters of the conjugate prior could lead to better estimation at

the early stage of the estimation. As the number of observations increases to

infinity, all these estimators will converge to the same value, which are the cases of

the second and the fourth segments. For fading channel measurement, the envelope

level is usually within a limited range. Therefore, the initial hyperparameters of

the conjugate prior could be properly set to match the range of interest for a better

performance.

Nakagami-m Distribution: The power of the Nakagami envelope is known

to be a gamma distribution [100]. Therefore, to generate the Nakagami-m random

sequence, we make use of the gamma random number generator in Matlab Statistics

Toolbox and take the square root of it. The parameters of the 4 segments

are m = {1, 2, 4, 3} and γ = {1, 1.42, 0.83, 1.33}. As mentioned in Chapter 6,

Nakagami-m distribution covers wide range of fading scenarios, including the

common Rayleigh and Rician fading. For m = 1, a Nakagami-m random variable

is equivalent to a Rayleigh random variable, while m > 1 it can well approximate

Rice distribution. Hence, the random sequence we generated covers these two

different fading channels, which simulates the situation when the transmission is

turning from NLOS to LOS.

Fig. 7.6 shows the CPD and parameter estimation results. The true change

point locations are t = {251, 551, 751} and the estimated change point locations

are t = {262, 551, 751}. The ML estimator for m and γ are from [52]. For the

γ estimation, all the estimators have similar behavior and approach to the true

values, except for the second segment. However, for the m estimation, the MMSE
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Figure 7.6: Results of the Nakagami-m change point detection on a Nakagami-m ran-

dom sequence with 4 segments. The parameters of the segments are m = {1, 2, 4, 3}
and γ = {1, 1.42, 0.83, 1.33}. The MAP and the MMSE estimations of m and σ2

are shown in the second and third subplots, respectively.

estimator is no longer close to MAP estimator, and does not perform well for the

third and the fourth segments. This may be caused by the numerical inaccuracies

of the two numerical integrals, as shown in (6.107), in the simulation. The error

could be further amplified especially division is involved. Using the MAP estimator

of m does not require numerical integrals or other numerical methods, which is

much more computationally efficient. Therefore, we will only consider the MAP

estimators for m and γ in the remaining of this chapter.

Weibull Distribution: We use two Weibull sequences with the same β =

{0.45, 0.25, 0.4, 0.2} for each segment but α is fixed at 1 or 3 for each sequence,

respectively. The fixed α is known to detector, so we are only detecting and

estimating the change of β. The CPD and the parameter estimation results for
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Figure 7.7: Results of the Weibull change point detection on a Weibull

random sequence with 4 segments. The parameters of the segments are

β = {0.45, 0.25, 0.4, 0.2} and α is fixed at 1. The MAP and the MMSE esti-

mations of β are shown in the second subplot.
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Figure 7.8: Results of the Weibull change point detection on a Weibull

random sequence with 4 segments. The parameters of the segments are

β = {0.45, 0.25, 0.4, 0.2} and α is fixed at 3. The MAP and the MMSE esti-

mations of β are shown in the second subplot.
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Figure 7.9: Results of the lognormal change point detection results on a log-

normal random sequence with 4 segments. The parameters of the segments are

µ = {0.22, 0.1, 0, 0.15} and σ = {0.35, 0.45, 0.3, 0.38}. The MAP and the MMSE

estimations of µ and σ2 are shown in the second and third subplots, respectively.

the sequence with α = 1 are shown in Fig. 7.7. Note this random sequence is

equivalent to an exponential random sequence. As we change α from 1 to 3, the

CPD works equally well as the case when α = 1. The estimators also behave

similarly in these two examples. Fig. 7.8 shows the CPD and β estimation results

for the Weibull sequence with α = 3.

Lognormal Distribution: The change point locations are set to be t =

{201, 501, 851}, and the parameters of the 4 segments of the lognormal random

sequence are µ = {0.22, 0.1, 0, 0.15} and σ = {0.35, 0.45, 0.3, 0.38}. The CPD and

parameter estimation results are shown in Fig. 7.9. The estimated change point

locations are t = {212, 496, 905}. The reason that the third estimated change point
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is way behind the true one can be seen from the estimation result of σ2. It can

be observed from (σ2)ML
t between t = 851 to 905 that the variance of that short

period is very close to the true variance value of the previous segment. Therefore,

the detector classified that period to the wrong segment. After t = 905, the MAP

and the MMSE estimators for σ2 quickly converge toward the true value. However,

the ML estimator using the full knowledge of the change point locations does not

react that fast because the time average is being “pulled down” by the data in the

period t = 851 ∼ 905.

7.2 Test on 802.11n WLAN Channel Simulator

In this section, we test the CPD algorithm and the parameter estimators on the

simulated channels generated using the model proposed by the IEEE 802.11 TGn

channel model special committee [113,114]. The channel simulator is part of the

IST project (IST-2000-30148 I-METRA) and is available at [115]. Six different

MIMO wireless local area network (WLAN) channel models (Models A–F) are

considered in the simulator, which cover from the smaller environments, such

as typical residential homes, to large open space, such as big offices or outdoor

environments. The distance between the transmitter and the receiver, the number

of antennas at each end, the carrier frequency and the channel sampling frequency

can be user-defined. For our applications, we always choose single transmit and

single receive antenna and fix the carrier frequency at 2.4 GHz. The transmission

distance varies between different channel segment in order to obtain different signal

levels. The channel generated is time correlated, which is against the independence

assumption in the CPD and parameter estimation algorithm. As pointed out

in [55, 58, 59], as the channel sampling interval increases, the time correlation

between samples drops rapidly and can be viewed as “approximately independent”.

In Fig. 7.10, we show the autocorrelation function of channel model B and model
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Figure 7.10: Autocorrelation function of the simulated channel operating at 2.4

GHz using (a) Model B (b) Model E.

E, which are the two channel models we will consider in the following discussion.

Model B simulates the typical residential environment with 15 ns rms delay spread

and model E is for typical large open space and office environments with 100 ns

rms delay spread. As we can see from the figure, the autocorrelation drops below

0.4 after 0.15 second separation. Consequently, we set the sampling interval to be

0.2 second in all the simulation.

First, we test on the channel generated by model B, with 4 different transmission

distances, 3, 4, 5 and 6 meters. The lengths of the channels are 40, 50, 36 and 48

seconds, respectively. We concatenate the 4 segments in order into a long channel

sequence, and thus 3 artificial change points. There are 9 channel taps in model

B. Since we assume narrow band transmission, which implies that the received

signal is a summation of all taps. It is known the channel is generated based on

Rayleigh assumption, so we will only perform Rayleigh and Nakagami-m CPDs on

the channel envelope. The channel sequence has been normalized to have average

power equal to 1. The results of a Rayleigh CPD are shown in Fig. 7.11. Despite

the third estimated change points is about 3.4 seconds early, it seems that the

Rayleigh CPD is able to detect all the power changes in the channel envelope. From
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Figure 7.11: Results of the Rayleigh change point detection on model B channel

and the MAP and the MMSE estimations of the Rayliegh parameter σ2.

the parameter estimation results, the MAP and the MMSE estimators both reach

to a steady value after collecting data of about 20 seconds (100 samples). They

also stay very close to the ML estimator using full knowledge of the true change

point locations. To further verify the simulated channel is Rayleigh distributed,

we perform the Nakagami-m CPD. The Nakagami-m CPD results are shown in

Fig. 7.12. The CPD results are very similar to the one of Rayleigh CPD. From

the parameter estimation results, it shows that the channel envelop is indeed a

Rayleigh distribution since the estimated m values of each segment are all around 1.

To be precise, the estimated m at the last time instant of each estimated segment

are {1.033, 1.0342, 0.9396, 0.9958}. So the changing parameter is only γ, which is

directly related to the signal power level.

Next, we test the Nakagami-m CPD on the channel changing between NLOS

and LOS. Hence, not only the power level changes but envelope distribution is

changing between the Rayleigh and the Rice as well. In the simulator, a strong

LOS component is added to the first tap of model E if the transmission distance is
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Figure 7.12: Results of the Nakagami-m change point detection on model B channel

and the MAP and the MMSE estimations of the Nakagami parameter m and γ

below 20 meters. Hence, we test our Nakagami-m CPD on the first tap of model

E channel, with distances set to {19, 20, 21, 18} and the corresponding length

{40, 50, 36, 42} seconds. The results are shown in Fig. 7.13. It shows that the

Nakagami-m CPD not only detect the power level changes within Rayleigh fading

(at 90 seconds), but can detect the change from LOS to NLOS (at 40 seconds)

and from NLOS to LOS (at 126 seconds) as well. The MAP estimated m and γ of

the first segment is 2.7423 and 0.5812 repectively, which are equivalent to Rice-K

factor 3.9281 and Rice parameter σ2 = 0.1746 using the conversion in (6.73) and

(6.74). To see the performance of the parameter estimators, we compare between

the empirical CDF of the first segment and the Rice CDF with the estimated

parameters, which is shown in Fig 7.14. The results show a very good fit using the

estimated parameters.

The I- and Q- component of the complex channel path follows the Gaussian
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Figure 7.13: Results of the Nakagami-m change point detection on model E

channel, including the LOS and the NLOS transmissions. The MAP and the

MMSE estimations of the Nakagami-m parameters m and γ are shown in the

second subplot.
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Figure 7.14: Comparison between the empirical CDF of the first segment of the

model E channel with the Rice CDF with estimated parameters k = 3.9281 and

σ2 = 0.1746.
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Figure 7.15: Performing the 2-D Gaussian change point detection on the I- and Q-

component of the complex channel gain.

distribution in the simulator. Using the same model E channel, we test the 2-D

Gaussian CPD on the complex channel gain. The CPD results are in Fig. 7.15.

It shows the effectiveness of 2D Gaussian CPD, if the coherent complex channel

gain is available. The covariance estimation results of each segment, which the

numbers are not shown, indicate weak correlation between I- and Q- channel.

7.3 Test on Channel Measurement

The channel measurement was conducted in the Public Safety Network Systems

(PSNS) lab of UCLA. The room was surrounded by wooden walls and glasses

windows. Both transmitter and receiver are the radio module SC2000 by Silvus

Technologies. The carrier frequency is set to 2.49 GHz. In each experiment, 4000

channel measurement were captured over an 8 minutes period. To reduce the

correlation between contiguous samples, the measurement is downsampled by 4.
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Namely, the channel sampling interval is roughly 0.48 second. The transmitter

and the receiver were fixed at all time during the measurement, so the temporal

variation of the channel was caused by the moving objects in the environment,

such as people walking or cars driving by in the field of transmission. The time

average power of the channel envelope in each experiment was normalized to 1.

In the first lab room measurement, the distance between the transmitter and

the receiver is 3.2 meters and the there is a no object in between the transmission

path. 4 prearranged people were walking nearby the receiver. As reported in [55],

people moving around the receiver would cause larger variation in the Rician

K-factor than people moving around the transmitter. Since there is a clear LOS

in this experiment, we presume the envelope distribution is Rician-like. Therefore,

we applied the Nakagami-m CPD on the channel envelope and the results are

shown in Fig. 7.16. There are 4 detected segments and 3 change points at

t = {300.96, 445.92, 461.28} seconds respectively. For each segment, the MAP

estimation of m and γ are obtained from all the data of that estimated segment, so

we are able to check the goodness of fit of our estimated Nakagami-m model on the

empirical data. The number of sample points in the last two estimated segments

are too small, so we will only consider the first two. The MAP estimated m and γ

of the first segment are 19.9613 and 0.8864 respectively. The MAP estimated m

and γ of the second segment are 17.7114 and 1.2319 respectively. The empirical

CDFs of the two segments and the two estimated Nakagami-m CDF are plotted in

Fig. 7.17. It is clear that the distributions of the two segments are significantly

different. By visualing from the figure, the two Nakagami-m distributions with

the MAP estimated parameters seem fit well for the empirical data. Using the

Komolgorov-Smirnov goodness-of-fit test (KS test) [116], both cases pass the test

under the significance level α = 1%. Also, from the estimated m values the

equivalent Rician K-factor are over 30, which implies a strong LOS component

exists and matches to our assumption.
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Figure 7.16: Performing the Nakagami-m change point detection on the channel

envelope measured in the lab room with people walking near by the receiver.
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Figure 7.17: Comparison between the empirical CDFs of the detected segments

from the first lab room measurement and the corresponding Nakagami-m CDFs

using the MAP estimated parameters.
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Figure 7.18: Performing the Nakagami-m change point detection on the channel

envelope measured in the lab room with people walking or standing still in between

the transmit and the receive antennas.
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Figure 7.19: Comparison between the empirical CDFs of the detected segments

from the second lab room measurement and the correponding Nakagami-m CDFs

using the MAP estimated parameters.
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In the second lab room measurement, the physical settings are the same as the

first measurement except that people were consistently walking or standing still

in between the transmit and receive antennas. Therefore, there is no direct sight

between antennas at most of the time. Again, we first applied the Nakagami-m

CPD since it covers a wide range of fading conditions. The results of the CPD

are shown in Fig. 7.18. One change point is detected at 364.8 second. The MAP

estimated m and γ of the first segment are 1.0021 and 0.8821 respectively. The

MAP estimated m and γ of the second segment are 1.1377 and 1.7724 respectively.

Using the estimated parameters, the comparison between the empirical CDF of

the segments and its corresponding Nakagami-m CDF are shown in Fig. 7.19, and

it shows a good fit in both segments. The two Nakagami-m distributions also pass

the KS test with a significance level α = 1%. The estimated m of both segment

are very close to 1 which implies there is a strong multipath fading effect and

the envelope distribution is also close to a Rayleigh. Applying the Rayleigh CPD

on the same channel measurement, we obtain one change point at 354.24 second,

which is not far from the result of Nakagami-m CPD. The MAP estimated σ2 for

the two segments are 0.5730 and 0.3004, respectively. The MMSE estimated σ2

are very close to the MAP results, so we will discuss only the MAP estimation.

The Rayleigh with MAP estimated σ2 for both segment both pass the KS test

with a significance level α = 1%. The empirical CDF of the two detected segments

and the corresponding Rayleigh models are shown in Fig. 7.20.

In the first experiment, Weibull CPD with various selections of α has also been

tested. For α at 3 and 4, CPD was able to detect changes around 300 seconds.

However, the models using the MAP and MMSE estimated parameter β do not

show reasonable fit. For the second experiment, since it has been verified by

Rayleigh and Nakagami-m CPD that the channel envelope is close to a Rayleigh

distribution and Weibull pdf at α = 1 is the same as a Rayleigh, so there is no

need to perform Weibull CPD on the second channel measurement.

111



0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

P
(e

nv
el

op
e<

=
x)

 

 

Rayleigh (σ2=0.5730)

Rayleigh (σ2=0.3004)
Empirical CDF (1st segment)
Empirical CDF (2nd segment)

Figure 7.20: Comparison between the empirical CDFs of the detected segments

from the second lab room measurement and the correponding Rayleigh CDFs

using the MAP estimated parameters.

In sum, Nakagami-m CPD seems to be the most useful tool for modeling our

indoor channel measurement since the pdf is very flexible to cover wide range of

fading conditions. By performing Nakagami-m CPD can provide us the fading

condition and the power variation of the channel envelope. The MAP or MMSE

parameter estimator can be viewed as the “by-product” when performing CPD

since the estimators are derived directly from the hyperparameter sets of the

conjugate prior. CPD combining with parameter estimation can give us a more

accurate view of modeling the empirical channel data. This is useful especially for

the indoor measurement as in our experiment, since the channel envelope usually

suffers from human shadowing and has larger temporal variations.
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CHAPTER 8

Bird Phrase Segmentation Using Entropy-Based

Change Point Detection

Similar to the temporal variation of the fading channel, bird calls cause the

temporal (and also frequency domain) variation of the spectrogram. Hence, with

suitable front-end processing on the spectrogram, we are able to segment the

bird phrases by applying Bayesian change point detection. With the reliable

automated bird phrase segmentation method, it can save a large amount of time

for biologists and linguists analysing the long field recordings. In Section 8.1, the

two types of front-end processing on the spectrogram, and the efficient way of

calculating entropy are introduced. In Section 8.2, the way of fitting the change

point detection method into the phrase segmentation is discussed. Experimental

results and discussions are shown in Section 8.3.

8.1 Front-End Processing

Our proposed segmentation method begins with the calculation of the entropy

sequence from the spectrogram or short term Fourier transform (STFT). The

time-frequency blocks over the spectrogram are characterized by its entropy, the

level of the entropy sequence should drop or rise (i.e. a change point) at the instant

when a call appears or ends, respectively.

In the following, we will describe how we characterize each time-frequency

block in the spectrogram by its entropy in an efficient way. Additionally, two
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Figure 8.1: Spectrogram of a sampled bird sound recording and the corresponding

entropy sequence calculated from the sliding time-frequency block.

types of front-end processing are introduced. Spectral whitening is applied to the

spectrogram before calculating entropy in order to further distinguish the entropy

level between a call period and a quiet period. Spectral subtraction can also be

used as a front-end processing to mitigate the interference and background noise.

8.1.1 Entropy Calculation

A time-frequency block of time length tw and containing F frequency bins from f1

to fF is sliding horizontally from the beginning of the spectrogram, as shown in

Fig. 8.1. The selection of the block length and the frequency range depends on the

targeted bird species. The frequency limits f1 and fF should be properly selected

to cover only the frequency band of interest so that the background noise outside

the band will not be recognized as bird calls. As in Fig. 8.1, the frequency range

is selected to prevent the low frequency noise. The block length tw should be no
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longer than the length of the shortest quiet period between two phrases.

Entropy is calculated from each time-frequency block. Denote p(n, f) as the

power spectrum at time n and frequency bin f calculated by STFT. The entropy

Ht at time t is obtained by

Ht = −
t∑

n=t−tw+1

fF∑
f=f1

z(n, f) log z(n, f), (8.1)

where z(n, f) is the normalized power spectrum within the block, namely

z(n, f) =
p(n, f)∑t

n=t−tw
∑fF

f=f1
p(n, f)

. (8.2)

As shown in (8.1), the entropy time index t is chosen to be the right edge of the

block. So the entropy level should drop immediately as the sliding block transits

from the quiet period to the beginning of a bird call. On the other hand, there

would be a tw delay in the entropy level at the end of the call. The end time

labels will be adjusted, which is discussed in Section 8.2.3. There are two main

reasons why we calculate the entropy from a time-frequency block instead of at

every time instant: 1) The entropy sequence is smoothed to prevent the “border

effect” [74,117,118], which usually causes segmentation errors at the beginning and

toward the end of a call. 2) The entropy given by a block is more representative

and suffers less from the bursty background noise.

However, when the block rate is high and the blocks are highly overlapped,

calculating entropy purely by (8.1) and (8.2) is expensive in terms of memory

consumption and computational load. To this end, an alternative expression of Ht

is developed;

Ht = −
∑
n

∑
f

p(n, f)∑
n

∑
f p(n, f)

(
log p(n, f)− log

∑
n

∑
f

p(n, f)

)
(8.3)

= −
∑

n

∑
f p(n, f) log p(n, f)∑
n

∑
f p(n, f)

+ log
∑
n

∑
f

p(n, f). (8.4)

The lower and upper limits of the summations above are the same as in (8.1)

but they are not listed here for simplicity. Define At =
∑

n

∑
f p(n, f) and
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Bt =
∑

n

∑
f p(n, f) log p(n, f). By (8.4) the entropy of a block of spectrogram

can be computed as

Ht = −Bt

At
+ logAt. (8.5)

This calculation can be significantly reduced by saving two partial sums an and bn

over frequencies of interest, where an
def
=
∑

f p(n, f) and bn
def
=
∑

f p(n, f) log p(n, f),

at the completion of each STFT. Then At and Bt can be obtained by accumulating

the partial sums over the current block time to get inputs to the entropy calculation;

i.e.

At+τ = −
t−tw+τ∑

n=t−tw+1

an + At +
t+τ∑

n=t+1

an, (8.6)

Bt+τ = −
t−tw+τ∑

n=t−tw+1

bn +Bt +
t+τ∑

n=t+1

bn, (8.7)

where τ is the block shift. For the notation simplicity, we define hk as Htw+kτ ,

where k = 0, 1, 2, · · · . Consequently, the entropy sequence calculated from the

sliding time-frequency blocks now becomes h0, h1, h2, · · · .

8.1.2 Spectral Cleaning and Whitening

It is known that the entropy defined in (8.1) is maximized if z(n, f) in a block is

uniformly distributed. Consequently, the entropy of a block with white background

noise is higher than the one with color background noise. In contrast, the entropy is

low as there are only few strong power components that dominate others within the

block. This implies that we can get a lower entropy if we are able to mitigate the

noise within a block. From the above observations, one can enlarge the difference

of the entropy levels between a quiet period block and a block containing bird calls

by applying either a spectral cleaning or a spectral whitening method.
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8.1.2.1 Spectral Subtraction

Spectral subtraction is a well-known noise reduction technique in speech process-

ing [119–121]. It is shown to be effective to improve the speech quality under

additive noise. The basic idea is to subtract the short-term estimated noise from

the noisy speech in the power spectrum domain. Since we compute the entropy

also from the power spectrum, spectral subtraction can be easily integrated to our

system. The processed power spectrum p̂(n, f) is obtained by

p̂(n, f) = p(n, f)− α · p̂N(n, f), (8.8)

where p̂N(n, f) is the noise estimate from the quiet period and α is a factor

depending on the SNR estimate at each frequency band [121]. To prevent negative

power spectrum, p̂(n, f) is set to be ε · p(n, f) if p(n, f) is less than α · p̂N(n, f),

and ε is selected to be a small positive number.

8.1.2.2 Polynomial-based Whitening Filter

We proposed a simple polynomial-based whitening method which is computationally

efficient. The basic principle is to multiply the power spectrum at time t, pt =[
p(t, f1) · · · p(t, fF )

]T
, by a cth degree polynomial over the frequency bins of

interest. The coefficients of this polynomial have to be adaptively adjusted along

the time. Let the whitening filter at time t and over frequency bins f1 to fF be

written as

Q · gt, (8.9)

where gt is a (c+ 1)× 1 vector representing the polynomial coefficients varying

with time, and Q is a F × (c+ 1) matrix with orthonormal columns. The degree of

the approximation polynomial c need not to be large because the background noise

is usually not rapidly changing. A quadratic polynomial to capture the dynamic

of the spectrum is used in this work. For quadratic polynomial the three basis

columns of Q are, a constant vector, a vector linear in frequency, and a vector
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quadratic in frequency. With proper shift and scale in the frequency, Q can easily

be chosen as an orthonormal matrix. For example, the following matrix consists of

three orthogonal columns.

Q =
[
1 f f2 − 1T f2

F

]
, (8.10)

where f is the centralized frequency vector,
[
f1 · · · fF

]T
−µf1 and µf =

∑F
k=1 fk/F .

With further normalization on each column, we can obtain an orthonormal matrix.

Ideally, the whitening filter gain of the power spectrum at a fixed time instant

t is the reciprocal of p(t, f), for all the frequency bins f of interest. With the

proposed whitening filter representation (8.9), it should achieve

pt ◦ [Q · gt] = 1. (8.11)

However, it is not desired to whiten the bird call power spectrum along with the

background noise power spectrum. To reduce the sensitivity to the sparse and

high energy bird calls when present, the whitening polynomial captures the power

spectrum variation in the log domain. Namely, the whitening processing can be

rewritten as

pt ◦ exp {Q · gt} = 1. (8.12)

Consequently, the polynomial coefficients gt is

gt = −QT log pt. (8.13)

Additionally, to further mitigate the effect of bird calls, our proposed whitening

filter is set to be the reciprocal of the long term time-averaged power spectrum,

lt =

∑t
n=t−M+1 log pn

M
, (8.14)

where M should be much larger than the number of STFT in a single bird phrase.

Similar to (8.13), the polynomial coefficients now becomes

gt = −QT log lt. (8.15)
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Figure 8.2: The upper figure is the spectrogram of the same recording as in Fig. 8.1

after whitening. The lower figure is the corresponding entropy sequence compared

to the the one without whitening.

From (8.14) and (8.15), it can be easily shown that the polynomial coefficients gt

can be updated in a recursive manner as the new STFT output pt+1 is available,

gt+1 = gt +
−QT log pt+1 − gt

M
, (8.16)

In Fig. 8.2, we show the spectrogram and the entropy sequence of the same

recording as in Fig. 8.1 after processing by the proposed whitening method. It is

clear that the background noise is much closer to a white noise compared to Fig. 8.1.

Also, the entropy level of the quiet period becomes higher while the entropy of

the bird call period is about the same level, which verifies the effectiveness of the

proposed whitening filter.
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8.2 Change Point Detection and Post-Processing

Given the entropy sequence computed by the method described in Section 8.1, we

need to distinguish the bird calls from the quiet periods by its level. Instead of

applying an adaptive hard threshold which is usually used in the energy-based

segmentation [74–76] and KL divergence segmentation methods [77], a Bayesian

change point detection method is used to judge the starting and end points of a

bird phrase.

8.2.1 Bayesian Change Point Detection for Entropy

The CPD algorithm used here is the same one introduced in Section 6.2. For bird

phrase segmentation, the input data to the change point detection is the entropy

sequence ht from (8.5), which we assume is a Gaussian sequence. Hence, CPD is

performed by using the methodology in Section 6.4.1.

The run length transition probability P (rt|rt−1) in (6.2) can be modeled if

there is a prior knowledge on the statistic distribution of the time between change

points. Let T be a random variable defined as the time between contiguous two

change points, and FT (t) be the corresponding cumulative distribution function

(CDF). The probability that there is a change point at time t given the previous

run length can be obtained by

p(rt = 0|rt−1)

=
p(T ≤ t ∩ T > t− 1)

p(T > t− 1)

=
FT (t)− FT (t− 1)

1− FT (t− 1)
. (8.17)

In the bird phrase segmentation, T means the length of a call period or the quiet

time between calls. Therefore, FT (t) should depend on the bird species. Also,

given the previous run length rt−1 there are only two possibilities in rt, which are

0 and rt−1 + 1. Hence, P (rt = rt−1 + 1|rt−1) is simply 1− p(rt = 0|rt−1).
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With run length transition probability (8.17) and the predictive probability

(6.21) plugging back into (6.2), we are able find the run length posterior probability

P (rt|h1:t). For the long-term field recordings, t can be too large to save the

posterior probability of all possible run lengths at time t. An upper limit of the run

length, Rmax, is set so that no posterior probability of the run length beyond Rmax

would be evaluated and saved. The estimated run length at time t is determined

by the maximum a posteriori probability (MAP) estimation

r̂t = max
rt=0,1,··· ,min(t,Rmax)

P (rt|h1:t). (8.18)

8.2.2 Bird Phrase Segmentation

After the change points are marked, we need to determine if the segment between

change points is a call period or a quiet period. The idea is to compare the

time-averaged entropy of the segment with a threshold γh. If it is lower than γh,

the segment is determined to be a call period; otherwise, it is a quiet period. The

threshold γh should be adaptively adjusted over time, in the way similar to the

one used in the energy detection [74]. The main difference between the proposed

method with the thresholding method in energy detection is that our threshold is

less sensitive to the short-term variation in the entropy due to the bursty noise,

since it is updated based on the time-averaged entropy of predefined segments

thanks to the change point detection.

In fact, there is no extra computation needed for the time-averaged entropy of a

segment. From section 6.4.1, we know the MAP and MMSE estimator of the mean

µ of a Gaussian segment is the hyperparameter m, which is the mean of the prior

probability of µ. Therefore, we can simply substitute the time-averaged entropy of

a segment by the m that is updated by all the data points in the segment using

(6.23). They are not exactly equal due to the initial value of m, but they are very

close when the number of data points in a segment is large.
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Figure 8.3: The spectrogram of a bird phrase with lower energy smear at the

tail part. The black dashed lines are the boundaries of the phrase labeled by

experts. The entropy, estimated run length and the change points before and after

adjustment are shown in the lower figure.

8.2.3 End Label Adjustment

In the experiment, we observed that the spectrogram of a bird phrase usually

contains a high energy part and a low energy smear at the tail. The spectrogram of

a bird phrase is shown in Fig. 8.3, where the dark red area and the light yellow are

at the tail are the high energy part and low energy part of a phrase, respectively.

The black dashed line in the spectrogram represents the start and the end of the

phrase labeled by experts. The low energy part is not counted as part of the

phrase since the energy is too low to be heard by human. However, if the energy

of that tail part is still higher than the background noise level, the entropy of

that tail part is still low enough for CPD to take that as part of the call. In

other words, the entropy “hears” more than we do. As shown in Fig. 8.3, the
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entropy sequence is still low even after the human end label. Consequently, the

marked change point by the estimated run length falls behind the human label.

For phrase classification and other biology research purposes, it is desired to have

the automated segmentation results to be as close to the human labels as possible.

To resolve this problem, an energy thresholding method is applied to exclude the

tail lower energy part from the segment.

Assume the data from time t1, · · · , tk have been marked as a call period by the

detector, and E(ti) denotes as the energy at ti (which is a direct result from an in

Section 8.1.1). After adjustment, data from time tcut to the end of the segment

are excluded from the segment, where

tcut = arg max
t=t1,··· ,tk

{
E(t) ≥ ε

k∑
i=1

E(ti)

}
, (8.19)

and ε should be a carefully chosen so it won’t discard too much tail area. In

Fig. 8.3, we also show the change point after the adjustment using ε = 0.005. It

can be seen that the new end label stays much closer to the human label compared

to the original one.

8.3 Evaluation

8.3.1 Field Recordings

We evaluate the proposed segmentation method on recordings of Cassin’s Vireo

(Vireo cassinii). Thirteen separate recordings were obtained between 23 April

and 8 June, 2010 near Fort Ann Mine, Amador county, California (38◦29’0”N,

120◦38’04”W) in a mixed conifer-oak forest at approximately 800 meters elevation.

The length of each recording varies from 72 seconds to 551 seconds, and the total

length is over 50 minutes. Two males on two different territories (approximately

200 meters apart) were recorded. Phrase repertoires of the two males were similar,

though not identical. Songs were recorded in WAV format (16-bit, mono) at a
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sampling rate of 44.1 kHz, using a Marantz PMD 670 with a Telinga parabolic

reflector and a Sennheiser omni-directional microphone. Manual annotation was

performed using software “Praat” [122] to note the phrase class, and the start

and end time of each phrase in the song. The phrases are categorized into one of

the 65 phrase classes based on both visual examination of their spectrograms and

auditory recognition. There are total 852 phases of Cassin’s Vireo annotated in

the recordings that are not severely overlapped with other species’ calls. For the

notable calls from other species, the start and end time are labeled and are all

classified as “others”.

8.3.2 Experimental Results

The spectrogram of the recordings are obtained by performing STFT with a

Hamming window applied, FFT size 512, and the frame hop size 102 (20% of the

FFT frame size). The time length tw of the time-frequency block for calculating

entropy is set to 138.8ms. The frequency range of the block is from f1 = 1.5kHz

to fF = 7kHz. The block rate is 144Hz.

To improve the accuracy of the change point detection, the knowledge of FT (t),

the distribution of the length between change points, that defines the run length

transition probability as shown in (8.17) is needed. To this end, we record the

lengths of each human-labeled phrase and quiet period in the recordings and find

the empirical CDF by Kaplan-Meier estimator [123]. The empirical CDF and

the empirical pdf computed by the kernel density estimation [124] are shown in

Fig. 8.4. Note that the time is in log scale. It can be seen that the distribution is

bimodal. This is because the phrase length of Cassin’s Vireo is generally much

shorter than the time length between calls. With the distribution information and

(8.17), we can obtain the run length transition probability by a look-up table.

First, we evaluate the proposed method by the effectiveness of capturing bird
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Figure 8.4: (a) The empirical CDF by Kaplan-Meier estimator and (b) the empirical

pdf by kernel density estimation of the time T between change points.
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Figure 8.5: ROC curves of the entropy-based CPD segmentation (SS+ECPD,

Whitening+EPD), the entropy-based segmentation without CPD (SS+ESeg,

Whitening+ESeg), energy detection and KL divergence segmentation.

calls. Let L(·) be the length of a given time interval, and denote Im and Ia as the

bird phrase intervals (including the class “other”) labeled by human and by the

proposed method, respectively. Also, let ICm be those time intervals without any

human labels. Define the detection rate PD and the false alarm rate PFA as

PD =
L(Im ∩ Ia)
L(Im)

and PFA =
L(ICm ∩ Ia)
L(ICm)

. (8.20)

The intersection here means the overlap between two intervals. Based on (8.20),

the receiver operating characteristic (ROC curve)1 of the proposed method is

plotted in Fig. 8.5. The “SS+ECPD” and “Whitening+ECPD” represent the

entropy-based CPD segmentation with spectral subtraction and spectral whitening

filter as the front-end processing, respectively. Using whitening filter as the front-

end detects calls better than using spectral subtraction. This is because spectral

1Note that to obtain each point in the ROC curve of every method, the threshold is fixed at
all time without adaptively changing, while the thresholds used to obtain different operating
points are different.
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Figure 8.6: The cumulative distribution of relative error of the “matched” phrases

by different automated segmentation methods.

subtracting is a spectral cleaning technique and it tends to remove those relatively

low-energy background noise. Some weak bird calls may also being removed from

the spectrogram. In order to verify the advantage of using CPD over using a hard

threshold to detect the change of the entropy sequence, the results without CPD

are also shown as “SS+ESeg” and “Whitening+ESeg.” It is clear that at the fixed

PFA (below 0.4 for the whitening filter front-end and below 0.25 for the spectral

subtraction front-end), the detection rate of using CPD is significantly higher than

using a hard threshold. For high false alarm rate and high detection rate region

which is usually not the desired operating region, there is almost no difference

between using CPD or a hard threshold. This shows that by using CPD the system

is able to detect more bird calls. The time-domain energy detection and the KL

divergence method [77] are also shown for comparison. Both entropy-based CPD

segmentation results outperform these two methods in every region of the ROC

curves.
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Table 8.1: The number of detected phrases of Cassin’s Vireo and the average

relative errors.

In the following experiments, we focus on the phrases of Cassin’s Vireo only.

Take the 852 human-labeled phrases as the ground true, the relative error (RE) of

a segmented phrase can be defined as

RE =
|tstart,seg − tstart,true|+ |tend,seg − tend,true|

tend,true − tstart,true

, (8.21)

where tstart,seg and tend,seg are the start and end labels by the automated seg-

mentation methods, and tstart,true and tend,true are the start and end time of the

human-labeled phrase that is closest to the segmented phrase. Not every segmented

phrase matches to the true phrase of Cassin’s Vireo, so we define that a segmented

phrase is “matched” to a true phrase if the relative error is less than 25%. For

those matched phrases, the accuracy of the start and end time labeled by the

proposed method are evaluated. The number of matched phrases and the average

RE are shown in Table 8.1. The cumulative distribution of RE is also shown in

Fig. 8.6. The proposed methods not only have over twice of the matched phrases

than the energy detection and the KL divergence segmentation, the average REs

among those matched phrases are also lower. Since in energy detection and KL

divergence detection, they are more sensitive to the instantaneous energy variation

so they sometimes capture the bird vocalization in the syllable level not in the

phrase level. Additionally, the proposed method is more robust to the border

effect [74, 117, 118], which usually causes troubles for the other two methods on

determine the start and end time. The ECPD with spectral whitening has a better
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accuracy than the one with spectral subtraction. This may because the low-energy

noise around the beginning and the end of a phrase in the spectrogram has been

removed or mitigated by spectral subtraction, so the segmentation time labels are

more accurate.

The segmented phrases by the proposed method are also tested on the bird

phrase classifier. The sparse representation-based (SR) classifier [125] and the

support vector machine (SVM) classifer [126] are considered in the experiment.

SR classifier performs phrase classification through representing the test feature

vector by a sparse linear combination of feature vectors in the training set. The

sparse linear combination can be found by solving for a sparse vector via the l1

minimization convex optimization problem. The advantage of SR classifier is that

it only requires a small training set. In our experiment, we choose 7 training tokens

per phrase. The training set and the testing set are all chosen from the matched

phrases generated by the proposed method. Since not every phrase class has

enough tokens for training and testing, 27 out of 65 classes are considered in the

classification experiment. The 7 testing tokens for each phrase class are randomly

chosen from the matched phrases set, while all the remaining tokens are used for

testing. The dimension of the feature vector is set to 128. The multi-class SVM

classifier is implemented using the LibSVM [127], which uses a one-against-one

decomposition strategy. The selected kernel function is the Gaussian radial basis

function (RBF). The classifier for each training set is trained using a five-fold

cross-validation to search for an optimal pair of regularization factor and the RBF

parameter.

In each classifier, two different training scenarios were considered. The first

training set is chosen from the phrases segmented by the proposed ECPD method,

and the other training set is chosen from the human-labeled phrases. The testing

set is always selected from the phrases generated by ECPD. The classification

results are listed in Table 8.2. As expected, the classification rates of the experiment
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Trained by ECPD Trained by HA

Testing set SR SVM SR SVM

SS+ECPD 84.76% 79.74% 80.67% 79.93%

Whitening+ECPD 80.23% 77.91% 77.33% 75.58%

Table 8.2: Phrase classification rates of the sparse representation-based (SR) and

the support vector machine (SVM) classifiers training by ECPD and human-anno-

tated phrases (HA)

using ECPD training set is generally higher than the ones using human-annotated

training set, since there are less mismatches between and training and testing data.

However, the differences between the results of these two scenarios are no more

than 5%, which implies that the ECPD phrases stay fairly close to the human

annotated phrases. The rates of “SS+ECPD” are higher than “Whitening+ECPD”

in all cases by 1.8∼4.5%. This matches to the results in Table 8.1 where the

“SS+ECPD” has the lowest relative errors. The classification rate in Table 8.2 is

up to 84.76% which shows that the combining the proposed method with phrase

classifiers is promising in providing a automated solution to segment and classify

phrases reliably.
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CHAPTER 9

Conclusion

In this dissertation, we covered wide range of issues in the wireless communication

systems. We also applied our solution used on wireless fading channel to biological

applications and obtained numerous satisfying results. In the following sections,

we conclude our work and summarize the contributions of this dissertation.

9.1 Summary and Contribution

First, we advocate the use of systolic array in MIMO receiver in order to achieve

higher processing speed. Systolic array is a network of processing elements, working

in parallel, communicating with only neighboring elements, and repeating the

same operations. Due to its parallel processing behavior, the overall processing

time can be greatly reduced and higher throughput is achieved. In Chapters 3

to 5, we described a systolic array performing LLL-based lattice-reduction-aided

detection for MIMO receivers. Lattice reduction and the ensuing linear detection or

successive spatial-interference cancellation can be executed by the same array, with

minimum global access to each processing element. The classical LLL algorithm

was not originally designed for parallel processing. Therefore, we introduced two

variants algorithms to facilitate the design of systolic array. The proposed systolic

array with external logic controller can work with two different lattice-reduction

algorithms. One is the LLL algorithm with full size reduction, in which we alter

the way of size reduction and make it more suitable for parallel processing. The

second one is an all-swap complex lattice-reduction algorithm, which not only uses
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full size reduction, but swaps all columns within single iteration. Compared to the

FSR-LLL, the ASLR operates on a whole matrix, rather than on its single columns,

during the column-swap and Givens-rotation steps. To reduce the complexity of

data communications between processing elements in the systolic array and the

complexity of hardware, we replace the Lovász’ condition in the LLL algorithm by

the Siegel’s condition. Even though the Siegel’s condition is a relaxation of the

Lovász’ condition, the BER performance of LR-aided linear detections based on

our two algorithm versions appears to be as good as using the conventional LLL,

and the computational complexity is reduced by the relaxation. Based on the BER

performance and time-efficiency comparisons, the ASLR should be preferred to

the FSR-LLL, especially for an MIMO system with a large number of antennas.

In FPGA implementation, we limit the µ value in order to simplify the hardware

design. The LRAD performance and the orthogonality defect of the reduced

channel matrix is still maintained under this approximation. The FPGA emulation

results show that our proposed systolic architecture for lattice reduction algorithms

run about 1.6× faster than the conventional LLL, at the cost of moderate increases

of hardware complexity. Additionally, due to the high- throughput property of

systolic arrays, our design appears very promising for high-data-rate systems, such

as in a MIMO-OFDM system.

Second, we proposed a precise way to characterize the abrupt temporal varia-

tions in the wireless fading channel. The fading channel is usually stationary only

for a short period of time. In order to relate the variation of the channel statistics

with the changes in the transmission environment, the channel model and the

corresponding statistics for each short stationary interval need to be obtained.

Conventionally, the channel measurement were partitioned into short intervals of

a the same length. The channel model and statistics were estimated from those

intervals. However, the variation in the environment, such as moving pedestrians,

street traffic and even when users alter their ways of holding the hand-held devices,
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are random, so that a better approach to determine the true location of changes is

needed. We proposed using a Bayesian change point detection method to detect

the statistical changes in the fading channel gain and envelope. In the CPD

algorithm, the key part is the recursive computation for the joint probability of

the run length and the observations, which requires the models for run length

transition probability and the data predictive probability. The data predictive

probability is obtained using Bayesian inference and the computational complexity

can be greatly reduced by using conjugate priors of the postulated data model.

The common fading channel models are mostly exponential families, for which the

conjugate priors always exist. In Chapter 6, we derive the conjugate priors, the

updating equations of the hyperparameter sets of the conjugate priors, and the

predictive probabilities for the common fading channel envelope models, Rayleigh,

Nakagami-m, Weibull and lognormal, and the fading channel gain models, Gaus-

sian and multivariate Gaussian distributions. Another main contribution of this

work is performing parameter estimation along with change point detection. Since

the posterior probability of the channel model parameters are obtained during

the computation of the predictive probability, the MAP and MMSE estimators

for the channel parameters are derived accordingly. In Chapter 7, the change

point detection based on the derived predictive probabilities and the accuracy of

the parameter estimators are first verified using the computer-generated random

sequences of different channel models. We also tested the proposed method using

the 802.11n channel simulator and the channel measurement conducted in an

indoor lab environment. The results show that the change point detection based on

Nakagami-m distribution provides the most general solution as it covers wide range

of fading conditions including LOS and NLOS scenarios. Based on the detected

change points, the empirical distributions of different segments are significantly

different, and by the results of Komolgorov-Smirnov goodness-of-fit test shows the

accuracy of the estimated parameters based on the proposed methods.
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Last but not least, we contribute the usage of the change point method on bird

phrase segmentation and propose a bird phrase segmentation method by entropy-

based change point detection. Since the spectrogram of the bird vocalization is

usually sparse, the entropy calculated from sliding time-frequency block of the

spectrogram is relatively low when there is a bird call in the block and is relatively

high when there is no call in the block. To enlarge the difference between the

entropy of a call period and the one of a quiet period, a polynomial-based whitening

filter is proposed as the front-end of the segmentation to whiten the spectrogram

of the background noise. Alternatively, spectral subtraction which reduce the

noise interferences can also be applied to the spectrogram prior to calculating the

entropy. Change point detection is used to monitor the statistical change in the

entropy sequence. The detected change points are the starting and end points of a

bird phrase. Comparing to using a hard threshold for detecting the change in the

entropy level, change point detection is more robust to the noise interference and

the border effect. Experimental results also shows that the segmented phrases by

our proposed methods achieved a better similarity to the human-labeled phrases.

It is also shown to be practical to combine the proposed segmentation method

with sparse representation-based classifier. This automated system would facilitate

the analysis of long field recordings.

134



Appendix A

Derivations of Predictive Probabilities and

Updating Equations of the Conjugate Prior

Hyperparameter sets for Various Distributions

A.1 One-Dimensional Gaussian Distribution

As shown in (6.6) and (6.7), the parameter set ηrt relates to ηrt−1 through

P (xt|µ, σ2). Since the Gaussian-inverse-Gamma conjugate prior is used for the

Gaussian likelihood P (xt|µ, σ2), the posterior probability P (µ, σ2|mrt , τ rt , αrt , βrt),

which is proportional to

P (xt|µ, σ2)P (µ, σ2|mrt−1 , τ rt−1 , αrt−1 , βrt−1), (A.1)

should still be in the Gaussian-inverse-Gamma family. To show this, (A.1) can be

written as[
1√

2πσ2
exp

{
−(xt − µ)2

2σ2

}]

×
[

(σ2)
−αrt−1− 3

2 (βrt−1)α
rt−1

Γ(αrt−1)
√

2πτ rt−1
exp

{
−(µ−mrt−1)2 + 2τ rt−1βrt−1

2τ rt−1σ2

}]
, (A.2)
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where inside the first brackets is the Gaussian form and inside the second brackets

is the Gaussian-inverse-Gamma form. It can be rearranged as

K ·

 1√
2π τrt−1

τrt−1+1
σ2

exp

{
−

(τ rt−1 + 1)
(
µ− τrt−1xt+m

rt−1

τrt−1+1

)2

2τ rt−1σ2

}

×

(σ2)
−(αrt−1+ 1

2)−1
[
βrt−1 + (xt−mrt−1 )2

2(τrt−1+1)

]αrt−1+ 1
2

Γ(αrt−1 + 1
2
)

exp

−
[
βrt−1 + (xt−mrt−1 )2

2(τrt−1+1)

]
σ2




(A.3)

where

K =

√
1

2πβrt−1(τ rt−1 + 1)

Γ(αrt−1 + 1
2
)

Γ(αrt−1)

(
1 +

(xt −mrt−1)2

2βrt−1 (τ rt−1 + 1)

)
(A.4)

It can be easily seen that (A.3) is

K ·N
(
µ

∣∣∣∣τ rt−1xt +mrt−1

τ rt−1 + 1
,

τ rt−1

τ rt−1 + 1

)
IG
(
σ2

∣∣∣∣∣αrt−1 +
1

2
, βrt−1 +

(xt −mrt−1)2

2 (τ rt−1 + 1)

)
,

(A.5)

which is also a Gaussian-inverse-gamma distribution in the form of (6.20). Hence,

from (A.5) we can conclude the updating equations of the parameter set as shown

in (6.23) to (6.26). Additionally, the predictive probability P (xt|xrt−1) is∫
µ

∫
σ2

P (xt|µ, σ2)P (µ, σ2|mrt−1 , τ rt−1 , αrt−1 , βrt−1)dσ2dµ. (A.6)

From (A.5), P (xt|xrt−1) = K and K is in the form of a Student-t distribution as

shown in (6.21).
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A.2 Rayleigh Distribution

The predictive probability calculated from Rayleigh likelihood and its conjugate

prior is

P (ht|rt−1,h
rt−1)

=

∫
σ2

P (ht|σ2)P (σ2|αrt−1 , βrt−1)dσ2 (A.7)

=

∫
σ2

{
ht
σ2

exp

(
− h2

t

2σ2

)}{
(βrt−1)α

rt−1

Γ(αrt−1)
(σ2)−α

rt−1−1 exp

(
−β

rt−1

σ2

)}
dσ2 (A.8)

=
Γ(αrt−1 + 1)

Γ(αrt−1)

ht (βrt−1)α
rt−1(

h2
t

2
+ βrt−1

)αrt−1+1

×
∫
σ2

(
h2
t

2
+ βrt−1

)αrt−1+1

Γ(αrt−1 + 1)
(σ2)−(αrt−1+1)−1 exp

(
−

h2
t

2
+ βrt−1

σ2

)
dσ2 (A.9)

The integrand in (A.9) is an inverse-gamma pdf of σ2 with parameter set {αrt−1 +

1, h2
t/2 + βrt−1}. This inverse-gamma pdf is in fact the posterior probability

P (σ2|hrt) = P (σ2|αrt , βrt). Therefore, we can conclude that

αrt = αrt−1 + 1, and βrt = βrt−1 +
h2
t

2
. (A.10)

Additionally, the integral in (A.9) becomes 1 since it is integrated over all possible

σ2. Hence, the predictive probability becomes

Γ(αrt−1 + 1)

Γ(αrt−1)

ht (βrt−1)α
rt−1(

h2
t

2
+ βrt−1

)αrt−1+1
. (A.11)

Using the property of gamma function, Γ(x+ 1) = xΓ(x) for positive x, (A.11) is

equal to
htα

rt−1 (βrt−1)α
rt−1(

h2
t

2
+ βrt−1

)αrt−1+1
. (A.12)
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A.3 Nakagami-m Distribution

The predictive probability calculated from the Nakagami-m likelihood and its

conjugate prior is

P (ht|rt−1,h
rt−1)

=

∫
m

∫
γ

P (ht|m, γ)P (m, γ|nrt−1 , νrt−1 , srt−1 , prt−1)dγdm (A.13)

=

∫
m

∫
γ

{
2

Γ(m)
(mγ)m h

(2m−1)
t exp

{
−mγh2

t

}}
×
{

(mγ)ν
rt−1m

K(ηrt−1)Γn
rt−1 (m)

(prt−1)2m−1 exp {−srt−1mγ}
}
dγdm, (A.14)

where K is defined in (6.81) and η = {n, ν, s, p}. By rearranging the integrand,

(A.14) can be written as

2

K(ηrt−1)

∫
m

∫
γ

(mγ)(νrt−1+1)m

Γn
rt−1+1(m)

(htp
rt−1)2m−1 exp

{
−
(
srt−1 + h2

t

)
mγ
}
dγdm.

(A.15)

Compare (A.15) with (A.14), we can obtain the updating equation of the hyperpa-

rameter set ηrt ,

nrt = nrt−1 + 1, νrt = νrt−1 + 1, (A.16)

prt = prt−1 · ht, srt = srt−1 + h2
t . (A.17)

By the definition of K, it is clear that (A.15) is equal to

2K(ηrt)

K(ηrt−1)
. (A.18)
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A.4 Weibull Distribution

The predictive probability calculated from Weibull likelihood (with fixed α) and

its conjugate prior is

P (ht|rt−1,h
rt−1)

=

∫
β

P (ht|β)P (β|prt−1 , qrt−1)dβ (A.19)

=

∫
β

{
α

β
hα−1
t e−

hαt
β

}{
(qrt−1)p

rt−1

Γ(prt−1)
β−p

rt−1−1e−
q
rt−1

β

}
dβ (A.20)

Rearranging the integrand in (A.20), we can form an inverse-gamma pdf multiplied

by a scaling factor,

Γ(prt−1 + 1)

Γ(prt−1)

αhα−1
t (qrt−1)p

rt−1

(hαt + qrt−1)p
rt−1+1

×∫
β

(hαt + qrt−1)p
rt−1+1

Γ(prt−1 + 1)
β−(prt−1+1)−1 exp

(
−h

α
t + qrt−1

β

)
dβ (A.21)

The integrand in (A.21) is an inverse-gamma pdf of β with parameter set {prt−1 +

1, hαt + qrt−1}. Therefore, we can conclude that the updating equations of {prt , qrt}
are

prt = prt−1 + 1, and qrt = hαt + qrt−1 . (A.22)

Additionally, (A.21) can be simplified to

αhα−1
t prt−1 (qrt−1)p

rt−1

(hαt + qrt−1)p
rt−1+1

, (A.23)

since integrating the inverse-gamma distribution over all possible β is equal to 1

and Γ(x+ 1) = xΓ(x) for positive x.
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