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Abstract

We introduce a method for encoding co-occurrence of features
in the HMAX model of visual recognition, and conduct a series
of experiments to investigate the contribution of co-occurrence
towards better recognition performance. We show that classi-
fication accuracy is increased by adding a higher-order layer
to the HMAX processing hierarchy, whereby co-occurrence
of features is encoded as a new dictionary of features. We
show that concatenation of mean pooling, max pooling and
co-occurrence information results in better classification re-
sults on three datasets (Caltech101, a subset of Caltech256,
and TMSI Underwater Images). Overall, we show that incor-
porating co-occurrence statistics into a biologically-inspired
model of visual recognition provides a boost in classification
performance above that produced by incorporating occurrence
statistics alone.
Keywords: computer vision; HMAX; biologically inspired;
co-occurrence statistics; visual cortex; image classification.

Introduction
Certain categories of visual stimuli can be characterized by
the co-occurrence of multiple features. For example, images
of cars frequently contain wheels, doors and windows. These
co-occurring features do not occur in rigid configurations.
Even for a rigid object, 3D rotations can result in inter-feature
distances changing when projected as 2D images. However,
co-occurring features are generally found close to each other.
Using faces as an example, the exact distances between facial
features (e.g. eyes, nose, mouth) vary from person to person,
but these features are always relatively near to each other.

Can this particular property be exploited to achieve bet-
ter visual recognition performance? This question cannot
be cleanly answered through behavioral experiments unless
brain cells encoding co-occurrence can somehow be “turned
off”; computational modeling may be a better approach. In
this paper, as a proof-of-concept, we modify the biologically-
inspired HMAX model of visual recognition (Riesenhuber
& Poggio, 1999) to encode co-occurrence statistics that are
learnt from a training set of images, and we show that recog-
nition performance does indeed improve.

Background
There is evidence for Max spatial pooling (finding the max-
imum among a set of inputs from a local spatial region) oc-
curring at multiple levels in the visual system in the primary

visual cortex of cats (Finn & Ferster, 2007; Lampl, Ferster,
Poggio, & Riesenhuber, 2004), as well as in the higher vi-
sual areas of monkeys, such as areas V 4 (Gawne & Martin,
2002) and IT (Sato, 1989). Importantly, however, each of
these studies also showed evidence for “Average” pooling oc-
curring, which can be interpreted as encoding the mean oc-
currence frequency of features.

Beyond just being tuned to the statistics of feature occur-
rences, there is strong evidence that the primate visual sys-
tem is also tuned to co-occurrence statistics. This refers to
either the joint or conditional probabilities of two (or more)
features occurring together within images belonging to a cer-
tain object category or across categories. Since a “feature”
is not always a precisely defined concept, how can the co-
occurrence of two features be distinguished from the occur-
rence of a single feature that happens to be comprised of two
simpler features? To make this distinction unambiguous, ex-
periments were designed such that the elementary features are
visually distinct, due to explicit segmentation, due to spatial
separation, or from the task context. We term such features,
which are the result of sensitivity to co-occurrence, as “co-
occurrence features”.

In some sense, mid-level features themselves can be con-
sidered as co-occurrence features, with their elementary fea-
tures being simple orientation-sensitive filters (corresponding
to orientation-sensitive neurons in the primary visual cortex).
Since lines, curves and contours are ubiquitous in images,
the presence of a short line segment of a certain orientation
strongly predicts that the orientation of a neighboring line
segment will be similar. This is particularly so if the rela-
tive position of that neighboring line segment is such that the
two line segments have the possibility of being collinear.

Our focus here is on high-level features whose elemen-
tary features are more complex than simple oriented filters.
These high-level features approach the level of semantic ob-
ject parts or possibly even objects themselves. In the rest of
this section, we will review the experimental evidence that the
primate visual system develops sensitivity to such high-level
co-occurrence features.

In the field known as visual statistical learning (VSL), it
has clearly been shown that adult humans develop sensitiv-
ity to co-occurrence statistics in images (Fiser & Aslin, 2001;

2644



Aslin & Newport, 2012). In a ground-breaking study by Fiser
and Aslin (2002) it was shown that 9-month-old infants al-
ready developed sensitivity to visual co-occurrence statistics.

There is also an abundance of evidence from monkeys
that their visual systems develop sensitivity to co-occurrence
statistics. Miyashita (1988) and Sakai and Miyashita (1991),
monkeys were trained to recognize pairs of stimuli, in a
paradigm known as paired-associate learning. Neurons were
found that were sensitive to such trained stimulus pairs, but
not other stimulus pairs. The pairings were arbitrary, making
the likelihood that such neurons had already possessed such
sensitivity vanishingly small. More recently, Hirabayashi and
Miyashita (2005) found that populations of IT neurons are
sensitive to feature configuration within objects.

Direct evidence for sensitivity to co-occurrence (over
and above sensitivity to occurrence) was found by Baker,
Behrmann, and Olson (2002). Monkeys were trained to dis-
criminate between objects that were each composed of two
distinct parts linked by a line, forming “baton” objects. Com-
pared to untrained objects, selectivity for trained objects was
enhanced. This was for both the individual parts, as well as
the combined “baton” objects. Crucially, selectivity for the
two parts together (i.e. the whole object) was greater than the
combined (summed) selectivity for each individual part.

Under what conditions does sensitivity to co-occurrence
develop? In human adults, this is an implicit process that
develops without awareness of the co-occurrence statistics,
using a “cover task” or even through mere exposure (Turk-
Browne, Jungé, & Scholl, 2005; Turk-Browne, Scholl, Chun,
& Johnson, 2009; Aslin & Newport, 2012). This is also true
for human infants (Fiser & Aslin, 2002; Aslin & Newport,
2012). In monkeys, most work has been done using active
task learning. This is so that the neural selectivity for trained
objects can be compared to the control set of untrained ob-
jects. Since neural selectivity is enhanced for features that
are diagnostic for active task learning (Sigala & Logothetis,
2002), passive viewing may not be sufficient to produce selec-
tivity that is large enough to be statistically significant when
measured from electrode recordings.

How has sensitivity to co-occurrence been measured ex-
perimentally? The methods have generally been constrained
by the nature of the subjects. Adult human subjects have gen-
erally been tested behaviorally, i.e. through their explicit re-
sponses (usually simple ‘yes/no’ tests). More recently, fMRI
has been shown to be able to detect co-occurrence sensitiv-
ity (Turk-Browne et al., 2009). In human infants, due to
their inability to understand or respond explicitly to verbal
instruction, experiments have been constrained to using tests
for novelty detection that are ubiquitous for infants. In mon-
keys, due to the ability to conduct invasive experiments that
are not possible with humans, scientists have conducted elec-
trophysiological experiments (i.e. using electrodes to record
the responses of individual neurons). Such experiments al-
low for a detailed, “close-up” analysis of the effects of co-
occurrence at the level of individual neurons e.g. Baker et al.

(2002); Sakai and Miyashita (1991). However, there are limi-
tations, such as the presence of noise, limited recording time,
and the ability to record from at most a few hundred neurons.

Beyond just “being sensitive” to co-occurrence statistics,
what are the characteristics of such sensitivity? It is specific
to spatial configuration, such as the relative position of the
elementary features (Hirabayashi & Miyashita, 2005). In ad-
dition, this sensitivity is reflected not in strength of neural
responses per se, but rather in the selectivity for co-occurring
features relative to non-co-occurring features (Baker et al.,
2002).

One special case of sensitivity to co-occurrence of fea-
tures is that of faces. The elementary features are seman-
tic face parts such as the eyes, nose and mouth. It is very
well-established that humans and monkeys are sensitive to the
combination and relative configuration of face parts. Specif-
ically, any change to the normal configuration of the face
leads to reduced neural responses and poorer recognition ac-
curacy. One manifestation of this is the Face Inversion Effect
(FIE), whereby inverted faces are much more poorly recog-
nized than upright faces (Yin, 1969). Faces with the parts
in scrambled configurations are also poorly recognized. Fur-
thermore, the sensitivity to co-occurrence seems to be un-
avoidable. In what is known as the Composite Face Effect,
people are sensitive to the bottom halves of faces, even when
they are explicitly instructed to ignore them during a discrim-
ination task (Young, Hellawell, & Hay, 1987).

Generally, such sensitivity requires normal visual experi-
ence during infancy in order to develop (Le Grand, Mond-
loch, Maurer, & Brent, 2004). It also develops quickly, reach-
ing adults levels (at least qualitatively) by age 4 (Heering,
Houthuys, & Rossion, 2007); this is consistent with the no-
tion that passive exposure is sufficient for co-occurrence sen-
sitivity to develop (see above). Evidence for sensitivity to
co-occurrence for face parts has also been found at the level
of single neurons. Freiwald, Tsao, and Livingstone (2009)
found that in one of the brain regions that respond selectiv-
ity to faces, neurons on average responded to combinations
of two to three face parts, rather than individual parts. Co-
occurrences have been studied in a series of experiments such
as Edelman, Yang, Hiles, and Intrator (2002).

Use of co-occurrences of features for creating more com-
plex features in Fidler, Boben, and Leonardis (2008) shows an
improvement in classification accuracy, and bag-of-features
approaches show improvements in classification results us-
ing frequency of patches in the images in (Fei-Fei & Perona,
2005). Co-occurrence information can be used to find part-
part and part-whole relations of features of different recep-
tive field sizes. If a feature is occurring too often in a class
(and not likewise in other classes), it is more likely to be a
discriminant feature in that class and if two features are co-
occurring in a class often in a neighborhood, they may be part
of a more complex feature and can have a part-part relation-
ship and they might be more related to the object rather than
the background (unless the background is also repetitive, e.g.
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sky in airplane images). Also, if there exist features of differ-
ent sizes and they co-occur in the same position on different
scales they are likely to have a part-whole relationship.

HMAX Model
The HMAX model (Riesenhuber & Poggio, 1999) simulates
the feed-forward path of the visual cortex. This model is used
to find a good trade-off between invariance and selectivity.
S1 cells provide selectivity by responding to oriented filters
and C1 cells provide invariance by pooling over neighboring
scales and positions. We use the HMAX model presented in
Mutch and Lowe (2008) in the first three layers (S1, C1 and
S2). Here we have a brief review on this model and show our
modifications to it.

In this implementation, an image is fed into the structure
and 10 different scales of the image are created as inputs to
S1 layer. Gabor filters in 12 orientations are created as S1
layer filters:

G(x,y) = exp
(
− (X2 + γ2Y 2)

2σ2

)
cos
(

2π

λ
X
)
. (1)

where X = xcosθ− ysinθ and Y = xsinθ+ ycosθ. The
values of x and y vary between -5 and 5, and θ varies between
0 and π. The parameters γ (aspect ratio), σ (effective width),
and λ (wavelength) are all taken from Serre, Wolf, and Poggio
(2005) and are set to 0.3, 4.5, and 5.6 respectively.

A fixed size of Gabor filters is implemented on different
scales of the images where the smaller edge of the biggest
image is set to 140 pixels while maintaining the aspect ratio
(the image pyramid of 10 scales created each layer by a factor
of 21/4 smaller than the last using bicubic interpolation). The
response of a patch of pixels X to a particular S1 filter G is
given by:

R(x,y) =

∣∣∣∣∣∣ ∑XiGi√
∑X2

i

∣∣∣∣∣∣ (2)

These outputs are sent to the C1 layer, which performs a lo-
cal 3D max operation on both scale (±1) and position (3×3
neighborhood) of the filter responses. The output of this layer
is a pyramid consisted of between 500-2000 different patches
of size 4×4, 8×8, 12×12 and 16×16 in 8 scales depending
on the size of the input image. In this level one or two sam-
ples are randomly sampled from each training image (from
random scales and positions) and a dictionary of features of
size 4096 is created. This dictionary is then made sparse by
selecting the highest response from each orientation and set-
ting the rest to 0.

The response of a patch of C1 units X to a particular S2
feature/prototype P (a dictionary feature), of size n× n, is
given by a Gaussian radial basis function:

R(X ,P) = exp
(
−‖ X−P ‖2

σ2

)
(3)

Figure 1: In HMAX, the max on the columns is taken as the
response for creating C2 output vector. In contrast, histogram
approaches based on SIFT methods use the frequency of fea-
ture occurrence, i.e. the normalized sum of the max values on
the rows.

The values of R are stored as S2 layer. The distance of
each sample from each training image with each entry on the
dictionary is calculated and a local max is taken in C2 layer
in ±1scale and ±10% spatial neighborhood (despite a global
max in Serre et al. (Serre et al., 2005)). These C2 features
are sent to the SVM for training. For testing images the same
hierarchical procedure is repeated. In (Mutch & Lowe, 2008)
sparse prototypes are calculated and the maximum response
from all directions for each window is taken and SVM nor-
mals method (Mladenić, Brank, Grobelnik, & Milic-Frayling,
2004) is used to select the features with higher weights. In
this approach, SVM is run a few times, and each time fea-
tures with lower weights are dropped. In this HMAX imple-
mentation, once S2 features are calculated, the C2 layer is
calculated as:

C2(n) = max(V n
k ) for ∀k ∈M

for n = 1, ...,N (4)

As can be seen in Figure 1 in conventional HMAX ap-
proaches, the max on the columns is taken as the value for
C2 either in a local neighborhood of each feature or globally.
Since taking the max in a local neighborhood (in±1 scale and
±10%spatial neighborhood) is shown to improve the perfor-
mance by about 5% in Caltech101 dataset in Mutch and Lowe
(2008), in our experiments we also use a local neighborhood
for calculating the responses. We also eliminate the local in-
hibition in S2 level proposed in Mutch and Lowe (2008) as
it increased the performance. Once a feature belongs to the
first or last scale in the pyramid, we extend the neighborhood
to two neighboring scales. Same method is used for features
which fall in the borders of each scale, and +20% or −20%
of their neighborhood is used for comparisons.

If we take the sum of the values on rows in Figure 1 and
normalize them, these are “HMean” features, which are also
biologically-inspired, and significantly improve classification
results when concatenated with HMAX features (Jalali, Lim,
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Tham, & Ong, 2012). HMean is equivalent to the feature
occurrence frequency in “bag-of-features” methods.

Encoding Co-occurrence of Features
For each class, we first find the value and index of the most-
frequently occurring features (MOF). The next step is to en-
code the co-occurrence of these features as can be seen in
Figure 1. For every class, we calculate the co-occurrence of
the most frequent features and store it as a S3 dictionary fea-
ture. Hence a new dictionary of features is added to the model
which is composed of #MOF × #MOF entries for each class,
where #MOF was set as 20. In this dictionary of features, the
value of each dictionary feature is calculated as:

C3(i, j) =C2(i)C2( j)exp
(
−
‖ Si−S j ‖2

σ2

)
(5)

where Sn represents the spatial position of the C2 feature and
σ = 0.5.

This dictionary encodes the value of co-occurrence of ev-
ery pair of features selected for each class. Hence we will
have NN dictionaries where NN stands for the number of cat-
egories in the classification task. These dictionaries are con-
catenated to create the C2 dictionary of features. In the train-
ing and test phases, the respective feature to each dictionary
feature is found (the most similar feature in every image) and
the similarity of the values in dictionary of features are cal-
culated for every image. This results in a #MOF × #MOF×
NN feature as the C3 feature and it is concatenated to C2 fea-
ture vector and sent to the classifier for classification. The
extended model for encoding the co-occurrence of features is
shown in Figure 2.

Experimental Results
We evaluated our co-occurrence model on the Caltech101
dataset (Fei-Fei, Fergus, & Perona, 2004). The model was
trained on 30 images per category (standard for this dataset;
see Mutch and Lowe (2008)), and tested on all the other im-
ages. We also used the Caltech256 dataset (Griffin, Holub,
& Perona, 2007), because it allows for more images per cat-
egory than Caltech101. In particular, we considered only the
14 (out of 256) categories which had 200 or more images.
We trained the model on 150 images (so that there would be
at least 50 images for testing), and tested on the rest. We also
examined classification accuracy as a function of number of
training images for Caltech256. This was motivated by the
concern that co-occurrence features could require more data
for reliable co-occurrence statistics to be extracted, before the
advantage of co-occurrence could be properly manifested.

We also evaluated the performance of our model on a new
dataset consisting of images of underwater targets. The main
challenge with underwater images is the existence of particles
that limit the visibility in unclear waters and results in scatter-
ing, reflection and absorption of light, and the differential ab-
sorption of light of different wavelengths by water itself. This
dataset consists of 1664 images (roughly 740×420 pixels in

Figure 2: Diagram of model processing hierarchy.

size) from 13 categories. Example images from this dataset
are shown in Figure 3. We used 30 images per category for
training, and the rest for testing.

Results are shown in Table 1. For all images, only intensity
(luminance) information was used. All results were derived
using 8 random train/test splits. For all three datasets, the
combination of HMAX and co-occurrence features gave bet-
ter results (classification accuracy) than either type of feature
alone (Caltech101: 59.3% vs. 54.7% vs. 57.7%; Caltech256:
64.4% vs. 60.2% vs. 48.6%; Underwater Images: 98.7%
vs. 92.9% vs. 92.2%). Since co-occurrence features were
derived from the co-occurrence of HMean features, we also
compared which of these two feature types (co-occurrence
vs. HMean) gave better results when combined with HMAX.
Again, for all three datasets, combining co-occurrence fea-
tures with HMAX produced better results than combining
HMean with HMAX (Caltech101: 59.3% vs. 58.9%; Cal-
tech256: 64.4% vs. 61.3%; Underwater Images: 98.7% vs.
98.3%). Furthermore, for all datasets, the combination of all
three feature types was better than just HMAX and HMean
together (Caltech101: 60.1% vs. 58.9%; Caltech256: 64.1%
vs. 61.3%; Underwater Images: 99.0% vs. 98.3%).

We also examined the effect of disregarding spatial dis-
tance (i.e. the exponential in Eq. 5). As seen in Table 1, for all
datasets, results were better when spatial distance was taken
into account (Caltech101: 57.7% vs. 55.1%; Caltech256:
48.6% vs. 44.2%; Underwater Images: 92.2% vs. 83.3%).
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Figure 3: Examples from TMSI Underwater Images dataset.

Table 1: Classification performance on the Caltech101, Cal-
tech256 (subset – see text for details), and TMSI Underwater Images
datasets.

Method Caltech101 Caltech256
(subset)

Underwater
Images

HMAX 54.7 60.2 92.9
Co-occurrence
(no distance)

55.1 44.2 83.3

Co-occurrence 57.7 48.6 92.2
HMAX +
Co-occurrence

59.3 64.4 98.7

HMAX + HMean 58.9 61.3 98.3
HMAX + HMean
+ Co-occurrence

60.1 64.1 99.0

In order to evaluate the effect of number of training im-
ages for the creation of co-occurrence features, we trained
the model with varying numbers of training images per cat-
egory. As shown in Figure 4, the performance boost when
adding co-occurrence features was greatest when using 150
training images. However, for fewer than 150 training im-
ages, the boost from adding co-occurrence features is unreli-
able. Nonetheless, looking at just HMAX alone, performance
seems to asymptote at 150 training images, but for the com-
bination of HMAX and co-occurrence features, performance
seems to increase roughly linearly with the number of train-
ing images. While empirically, co-occurrence may help per-
formance in all datasets, similar analyses (i.e. performance
boost as a function of number of training images) for the other
2 datasets may not be meaningful, since the maximum num-
ber of training images is only 30 per category.

Figure 4: Classification accuracy on Caltech256 as a function
of number of training images.

Discussion
In this paper, we showed that combining co-occurrence fea-
tures with regular HMAX features leads to better classifica-
tion performance than using either feature type alone. Fur-
thermore, adding co-occurrence features to HMAX increases
performance more than adding occurrence features. The three
types of features encode different information, and therefore
the combination of all three feature types gave the best overall
performance. For co-occurrence, the spatial distance between
the two co-occurring features also contributes to better perfor-
mance. In this work, we focused solely on HMAX. However,
in future work, our co-occurrence method can be applied to
other vision algorithms.

In preliminary experiments not reported here, we exper-
imented with creating co-occurrence features from HMAX
features (rather than HMean features, as done in this paper).
However, this resulted in either a drop in performance or no
change. This will be investigated further in future work.

Fig. 4 suggests that the performance boost from using co-
occurrence may be limited by the number of training images.
More detailed investigation is limited by the relatively small
number of images per category in these datasets. Further in-
vestigation may require utilizing or creating larger datasets.

Another prospect for further improvement is to encode co-
occurrence of more than two features. However, besides
possibly requiring even more training data than two-feature
co-occurrence, there may be diminishing returns for such
“higher-order” co-occurrences. This is because relatively
fewer classes will have the underlying visual structure that
will benefit from encoding such co-occurrences.

In this paper, the choice of features for encoding co-
occurrence was based on their frequency. Choosing discrim-
inative (rather than frequent) features for co-occurrence en-
coding may be a more direct approach to maximizing classi-
fication performance. To choose discriminative features, one
approach is to train the SVM several times and remove fea-
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tures with low weights, as in Mutch and Lowe (2008), or to
simply use features with mean response values that differ the
most between different classes.
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