
UC San Diego
UC San Diego Previously Published Works

Title
Customizable wave tailoring nonlinear materials enabled by bilevel inverse design.

Permalink
https://escholarship.org/uc/item/2p9022jw

Journal
Nature Communications, 16(1)

Authors
MacNider, Brianna
Xiu, Haning
Tamur, Caglar
et al.

Publication Date
2025-04-10

DOI
10.1038/s41467-025-58630-8
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2p9022jw
https://escholarship.org/uc/item/2p9022jw#author
https://escholarship.org
http://www.cdlib.org/


Article https://doi.org/10.1038/s41467-025-58630-8

Customizable wave tailoring nonlinear
materials enabled by bilevel inverse design

Brianna MacNider 1,4, Haning Xiu 1,4, Caglar Tamur 2, Kai Qian 1,
Ian Frankel1, Maya Brandy1, Hyunsun Alicia Kim2,3 & Nicholas Boechler 1,3

Passive wave transformation via nonlinearity is ubiquitous in settings from
acoustics to optics and electromagnetics. It is well known that different non-
linearities yield different effects on propagating signals, which raises the
question of “what precise nonlinearity is the best for a given wave tailoring
application?” In this work, considering a one-dimensional spring-mass chain
connected by polynomial springs (a variant of the Fermi-Pasta-Ulam-Tsingou
system), we introduce a bilevel inverse design method which couples the
shape optimization of structures for tailored constitutive responses with
reduced-order nonlinear dynamical inverse design. We apply it to two quali-
tatively distinct problems—minimization of peak transmitted kinetic energy
from impact, and pulse shape transformation—demonstrating our method’s
breadth of applicability. For the impact problem, we obtain two fundamental
insights. First, small differences in nonlinearity can drastically change the
dynamic response of the system, from severely under- to outperforming a
comparative linear system. Second, the oft-used strategy of impact mitigation
via “energy locking” bistability can be significantly outperformed by our
optimal nonlinearity. We validate this case with impact experiments and find
excellent agreement. This study establishes a framework for broader passive
nonlinear mechanical wave tailoring material design, with applications to
computing, signal processing, shock mitigation, and autonomous materials.

The passive transformation of waves via nonlinear material response is
widely used in physical settings ranging from acoustics1 to optics2–4 and
electromagnetics5,6. Applications include areas such as efficient infor-
mation transfer7,8, computing and logic9,10, energy conversion11, imaging12,
encryption13, impact and vibration mitigation14,15, and rapid shape
change16. Within these contexts, in contrast to active control, passivity is
of particular importance for responding fast to stimuli, and nonlinearity
enormously expands signal transformability compared to linear systems
due to the breaking of superposition. Indeed, it is well known that dif-
ferent types of nonlinearity yield vastly and qualitatively different effects
on propagating signals17, which raises the question of “what precise
nonlinearity is the best for a given wave tailoring application?” This

question has largely remained in the regime of simulation and theory, as,
until recently, it has not been possible to freely realize any optimal
nonlinear constitutive law in practice. The field of mechanics has come
furthest towards this goal, by introducing complex, sub-wavelength,
geometric motifs to create “mesostructured” nonlinear materials1, how-
ever the tunability was, until recently, coarse and limited around a
handful of known nonlinear mechanisms. For instance, a few broad
classes of nonlinearity that have seen tailorability for wave manipulation
include contact nonlinearities18, tensegrity structures19, and bistable
beam arrays20, among others1,21.

Recent progress has enabled a, thus far unique-to-mechanics,
capacity to create materials with on-demand quasi-static nonlinear
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properties via shape and structural optimization22–29. This has included
several approaches, including gradient based topologyoptimization in
pursuit of tailoring the entirety of a nonlinear force-displacement
curve22–24 as well as the incorporation of machine learning (ML) algo-
rithms in an attempt to traverse the design space and speed up pre-
dictions of mechanical behavior25,27–30. However, such methods alone
cannot identify material designs for optimal system-level nonlinear
wave tailoring performance. Prior studies of optimal nonlinear
dynamic material behavior have tailored heterogeneity with fixed
nonlinearity31 or dynamic behavior where the characteristic wave-
lengths are on par with or greater than the system size (and thus the
response is not “wave-dominated”) and the tailoring was confined to
broad metrics like “area under the curve”32,33 or “plateau-like”
behavior34. The role of waves is of particular importance, as allowing
for spatiotemporal evolution in nonlinear systems leads to unique
emergent phenomena such as solitons35. The role of precisely engi-
neered nonlinearities is further important for wave propagation in that
seemingly subtle differences in nonlinearity yield qualitatively differ-
ent dynamical behavior. For one example, consider a material with
polynomial nonlinearity and all positive coefficients, resulting in a
“stiffening” nonlinearity: just small changes in the ratio of coefficients
dictate whether or not the system experiences modulational
instability36,37. Connecting the inverse design of nonlinear wave
response to the quasi-static design of nonlinear constitutive response
induced by mesostructure geometry is a significant, and hitherto
unsurmounted challenge. If trying to directly extend quasi-static
geometric design algorithms based on finite element method (FEM)
simulation22–29 the challenge becomes evident, in that one would need
to take the same design variables, copy the geometry over many unit
cells, and simulate the entire system in time at high temporal resolu-
tion (due tononlineargenerationof high frequency content), andwrap
that in an automated design loop—resulting in a task of extreme
computational expense.

In this work, we introduce a method to create customizable wave
tailoring materials via nonlinear bilevel inverse design. Namely, we
optimize for the emergent dynamic response of a mesostructured
material in the form of a one-dimensional (1D) spring-mass chain
connected by polynomial coefficients. To do this, we use a reduced
order, discrete elementmodel (DEM) simulation to identify an optimal

nonlinear constitutive law for the given performance metric, and
couple this to a unit-cell-scale, geometrically-nonlinear, free-form,
shape optimization algorithm which designs a physical system that
achieves the nonlinear constitutive property identified by the DEM
(outlined in Fig. 1). Unlike some prior computational quasi-static
nonlinear mechanical design strategies23,25,26,28, we do not use simpli-
fied or reduced order models for our underlying mesostructure
design, which enables a broader design space and access to highly
precise tailoring of nonlinear responses24. We note that this chain is a
variant of the celebrated Fermi-Pasta-Ulam-Tsingou (FPUT) model38,
whose initial study is widely regarded as responsible for the birth of
experimental mathematics39. The FPUT system has also been shown
equatable to nonlinear continuum models such as the Kortweg-de
Vries (KdV)35 and the nonlinear Schrödinger equation (for the case of
envelope solitons in diatomic systems40), and formed the foundation
for extensions into higher dimensions17. Considering the latter, as part
of our work herein, we illustrate extensions of our optimized unit-cells
to two- and three-dimensional (2- and 3D) analogs (see Supplementary
Information Note 1). In addition to the introduction of this method, we
apply it to two qualitatively distinct problems—minimization of peak
transmitted kinetic energy in response to an impact, and pulse shape
transformation (inversion of an applied boundary displacement signal
at the other end of the chain)—demonstrating the potential breadth of
applicability of our method. We highlight also that in both cases, we
conduct a comparison between the linear and nonlinear response. We
assert that this comparison is particularly important from a funda-
mental perspective, as it isolates the role of nonlinearity from other
linear wave manipulating effects such as dispersion, dissipation, and
heterogeneity.

Focusing on the problem of minimizing peak kinetic energy
transmitted via waves in response to impact, wefirst note that because
impact is inherently a broadband excitation, prior linear mesos-
tructured material (or “metamaterial”) strategies that leverage
bandgaps41 have been shown to have limited efficacy (e.g., requiring
gradient or disordered material strategies that increase bandwidth at
the cost of attenuation42). In favor of this, several nonlinear mesos-
tructured material motifs have been realized and studied in the con-
text of impact, leveraging nonlinearities such as the aforementioned
contact (tensionless and stiffening in compression14), tensegrity

Fig. 1 | Overview of the bilevel design flow. a Discrete element model (DEM)
simulation of the entire system dynamics with boundary configured for the impact
problem. b Identification of the optimal nonlinear constitutive law. c Shape

optimization of amesostructure tomatch the identified nonlinear constitutive law.
d Mechanical and dynamic experimental system characterization. Source data are
provided as a Source Data file.
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(stiffening in tension and tunably softening or stiffening in
compression19), and compressed beams (bistability and snap-through
in compression43), as well as o-rings (tensionless with double-power
law response in compression44) and origami (softening in compression
and stiffening in tension45). Herein, using our method, we obtain the
following two fundamental insights within this area. The first, is that
very small differences in the nonlinear spring response (without qua-
litative difference) can drastically change the response of the system
(changing the nonlinear coefficients by less than 14% results in an over
3000% change in performance) in such dynamical settings, from
severely under- to outperforming a comparative linear system. To our
understanding, this degree of sensitivity was hitherto unknown in the
context of impactmitigation. The second, is that the often used design
strategy of impact mitigation via “energy locking” bistability15,43 can be
greatly outperformed by our identified optimal snap-through non-
linearity (by over a factor of three times). We then choose a second
high performing identified nonlinear constitutive response (which is
more amenable to our experimental capabilities) and demonstrate the
full inverse design of a superior impact mitigation system, from
identification of an ideal nonlinearity, to the design of the unit cell
geometry, and experimental validation of the performance. While we
focus the majority of the manuscript on this impact mitigation pro-
blem, as demonstrated by our application of this method to the
aforementioned two qualitatively different objectives, we believe our
method will have wide future applicability, including to the previously
referenced array of nonlinear acoustic, phononic, and mechanical
wave transformation applications1,7–13.

Results
Reduced order discrete element model
The DEM (Fig. 1a) simulates the dynamical response of a chain with N
unit cells and a unit cell length. We represent the chain as lumped
masses of mass m, interconnected by massless nonlinear springs and
inter-site linear dampers in parallel, emulating the behavior of a vis-
coelastic material. The nonlinear spring consists of an up-to-third-
order polynomial, where the linear stiffness remains fixed at c*1. The
non-dimensional nonlinear spring force is expressed as

f ðΔ xÞ=Δ x + c2ðΔ xÞ2 + c3ðΔ xÞ3, ð1Þ

where Δx = Δx*/a is the dimensionless spring stretch (with Δx* the
spring stretch defined such that elongation is positive), and c2
and c3 are dimensionless nonlinear coefficients of the second and
third order-terms (with cn = c

*
na

n�1=c*1). We choose to describe the
nonlinear springs as up-to-third-order polynomials due to the
flexibility of this representation, namely, the ease with which they
can represent a wide qualitative range of nonlinearities and the ease
which polynomials lend to accurate dynamical simulation (as opposed
to non-differentiable, e.g., piecewise continuous functions). Along
these lines, we found that inclusion of up to fifth order polynomial
terms resulted in minimal performance improvements compared to
the third order representation for our primary case study of peak
transmitted kinetic energy minimization (see Supplementary Informa-
tion Note 2). This results in non-dimensionalized equations of motion
for our chain

€xi � ðxi + 1 � xiÞ+ c2ðxi + 1 � xiÞ2 � c3ðxi + 1 � xiÞ3 + ðxi � xi�1Þ
� c2ðxi � xi�1Þ2 + c3ðxi � xi�1Þ3 + 2ζ ð� _xi+ 1 + 2 _xi � _xi�1Þ=0,

ð2Þ

where ζ is the inter-site damping ratio, xi is the dimensionless
displacement of the ith particle from its rest position, overdots
represent the derivative with respect to nondimensional time, and all
variables andparameters are normalizedby combinations ofa,m, and/
or c*1, as is described in Supplementary Information Note 3. We note
thatwhile themasses are illustrated asm in Fig. 1a, the nondimensional

mass of each particle remains one as in Eq. (2). A fixed boundary is
applied on the right. The simulated dynamical response is acquired
through the numerical integration of Eq. (2) via a Runge-Kutta
algorithm. The non-dimensionalization of all variables and full details
concerning the equations of motion are described in Supplementary
Information Note 3.

Optimization of nonlinear constitutive law based on dynamical
response: minimizing peak kinetic energy transmission as a
case study
In this section, we describe the identification of an optimal nonlinear
constitutive law for the case study of minimizing transmitted peak
kinetic energy in response to an impact. Specifically, as shown in
Fig. 1a, we simulate the impact of a rigid, variable mass and velocity
rigid “impactor” incident on the left end of the chain. The model also
incorporates a contact spring designed to facilitate the smooth con-
tact and controlled release of the impactor during initial impact and
rebound, respectively. We first consider a single impact condition
(M/M0 = 0.05 and V/V0 = 1), whereM0 is half themass of the chain, V0 is
the linear sound speed, and M and V are the dimensional impactor
mass and velocity, respectively. The material is composed of 20 par-
ticles and ζ = 0.01. Our control parameters (i.e., design variables for
optimization) are the nonlinear coefficients of the springs c2 and c3,
which we vary in the aim of minimize the maximum kinetic energy
experienced at the end of the material (KEnon) normalized by that of a
linear system (KElin) which has all of the same properties except
c2 = c3 =0 (weherafter refer to this ratio as the “KE ratio”, where smaller
numbers equate tobetter performanceof the nonlinear system).Given
dimensional particle displacement from its rest position x*i , kinetic
energy of the ith particle is defined as mðdx*

i=dt
*Þ2=2, where t* is

dimensional time, such that the analogous dimensionless kinetic
energy is _xi

2
=2.

Before searching for optimal nonlinear constitutive responses
with our DEM, we set several bounds. First, for simplicity, we set the
tension response to purely linear. In Supplementary Information
Note 4, we show that the inclusion of nonlinearity in tension has little
effect on the identified optima, which is as expected, due to the
compressive nature of the impact event simulated (the identified
optimum has a maximum compressive strain over five times greater
than the maximum tensile strain). Second, we confine the unit cell
strain to 1 in compression, and set c3 > 0 for simplicity. Third, we
restrict our search range for nonlinear coefficients c2 and c3 to ensure
positive strain energy throughout the entire compression range. We
note that keeping the linear stiffness constant, we exclude essential
nonlinearities14. By examining the polynomial’s properties within this
range, we classify the quasi-static response into three distinct zones,
“bistability”, “monotonic increase”, and “local maximum”, as shown in
Fig. 2a. Bistability (magenta area) denotes the existence of both a local
maximum and minimum other than the boundaries (the local mini-
mumdoes not need to fall below zero).Monotonic increase (blue area)
denotes the absence of extrema. Localmaximum (green area) signifies
the presence of a local maximum (no local minimum existed) within
the range of the length of one unit cell. For amonotonic increaseof f(Δ
x), the condition f 0ðΔxÞ≥0 must be satisfied, or the local maximum of
f(Δx) should occur atΔx ≥1. To ensure bistability, both localmaximum
and minimum of f(Δx) are set to be located within Δx ∈ (0, 1). For a
local maximumproperty to be exhibited, wemust have 0 <Δx1 < 1 and
Δx2 > 1, where Δx1 and Δx2 are the roots of f 0ðΔxÞ=0. More details
concerning these zones are given in Supplementary Informa-
tion Note 5.

Using a gradient-based optimization algorithm (seeMethods), the
best performancewithin the described context is found to correspond
to a nondimensional spring force f(Δx) = Δx − 5.88Δx2 + 9.65Δx3,
where Δx is the spring extension and positive f denotes compression.
To visualize the design space, we also sweep the nonlinear coefficients
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directly and plot the KE ratio, as is shown in Fig. 2c. The optimal spring
is plotted in Fig. 2b, and is denoted by the star marker in Fig. 2c,
alongside a nearby underperforming spring (triangle) and a conven-
tional “energy locking” bistable spring15,43 (square). These three cases
result in KE ratios of 0.0398 (best), 1.2257 (bad), and 0.1448 (energy
locking bistable), respectively. Given the underperforming (bad)
spring has a nondimensional spring force of f(Δx) = Δx − 6.6Δx2 + 11Δ
x3, we note the extreme sensitivity for such a dynamic problem.
Change by less than 14% in the nonlinear coefficients (calculated as
max[1 − cn,bad/cn,best]) results in over 3000% improvement (calculated
as KE ratiobad/KE ratiobest) in performance between the optimum and
the underperforming spring (where the “best” and “bad” subscripts
denote their respective cases).

A further important point of note about our identified optimum is
that it is not of the form one would expect based on the conventional
design approach for bistable energy absorption at lower rates43, where
net positive energy is locked into strain energy when snapping from
the undeformed state to its second stable equilibrium (i.e., where for
energy locking, the area under the curve from Δx = 0 to the unstable
equilibrium point is greater than the area under the curve from the
unstable equilibrium to the second stable equilibrium point). In the
case of our optimum, the response exhibits snap-through, but is nei-
ther bistable nor satisfies the more restrictive case of energy locking.
Using this qualitatively different nonlinearity, our optimum outper-
forms the energy locking bistable case by over a factor of three (300%
change via the above metric).

We next seek to understand why our optimum performs better
than the other cases. Spatiotemporal responses of kinetic energy of
the optimal nonlinear, underperforming nonlinear, and linear chain
are shown in Fig. 2d–f, respectively. Most notably, while allmaterials in
Fig. 2d–f see a pulse of energy propagating across the material, the
pulse in the best performing case (Fig. 2d) appears to stop before the

end of the chain. Via the metric of minimizing peak kinetic energy at
the end of the chain, it is clear why this case performs better. We next
make several observations about the spatiotemporal responses. First,
the traveling pulses in the two nonlinear cases (Fig. 2d, e) are more
localized than that of the linear case (Fig. 2f). This is to be expected,
due to the known formation of solitary waves (which localize via a
balance of nonlinear and dispersive effects) in systems with qualita-
tively similar nonlinearities (snap-through)46. Indeed, in ref. 46, they
show that these solitary waves take the form of “boomerons”, where
the wave arrest (and in their case reversal of direction) arises without
any dissipation, and is suggested to be “a consequence of the intri-
guing interaction between the localized phenomenon and the trail of
nonlinear waves”. In the Supplementary Information Note 6 we show
spatial profiles of the pulses in our systems at several times to further
visualize the observed localization phenomena.

However, we suggest that the boomeron-related wave arrest
found in conservative systems is not the only mechanism contributing
to the identified optimum performance. In Fig. 3a, b, we show the 2D
Fourier transforms of the normalized velocity of the optimal nonlinear
(A) and linear (B) systems. In the linear system (Fig. 3b), the energy
distribution can be seen to follow the expected dispersion of a
monoatomic chain (a single “acoustic” branch, followed by stop band
above a cutoff frequency47). In Fig. 3a, due to frequency conversion
induced by the system’s nonlinearity, the energy is spread out to a
much broader frequency range. This spreading has two effects. First, it
converts someof the wave energy into the non-propagating stop band
region, and second, it generates higher frequencies which more
strongly activate energy loss via the inter-site damper (due to its pro-
portionality with velocity). This latter effect can be seen in Fig. 3c,
wherein the total energy of the entire chain decreases more quickly in
the two nonlinear systems (both the best and the bad cases) than the
linear system. This suggests that the ideal use of the underlying

Fig. 2 | Identification of optimal nonlinear constitutive response via DEM
simulation for a single impact condition for the case of peak transmitted
kinetic energyminimization. a Feasible solutions of nonlinear spring coefficients
c2 and c3. The black line represents c2 = �

ffiffiffiffiffiffiffiffi
3c3

p
, the red line indicates

c2 = − (1 + 3c3)/2, the blue line is c2 = − 3c3, and the green line is the zero strain energy
throughout the whole range, c2 = − 3/2 − 3c3/4. b Non-dimensional force-extension
relationship of the best performing nonlinear spring (f(Δx) = Δx + 5.88Δx2 + 9.65Δ
x3) along with an example of a nearby underperforming (bad) nonlinear spring of
f(Δx) =Δx−6.6Δx2 + 11Δx3 (blue) and anenergy lockingbistable springof f(Δx) =Δ
x − 5.26Δx2 + 6.75Δx3 (magenta). These three cases result in KE ratios of 0.0398

(best), 1.2257 (bad), and 0.1448 (energy locking bistable). Circles and triangles
indicate the maximum compressive and tensile strain, respectively. c Ratio of
maximum kinetic energy of the nonlinear spring to the one of a linear spring at the
last particle as a function of nonlinear spring coefficients for the impact condition
ofM/M0 = 0.05 and V/V0 = 1, with ζ = 0.01. The lines from (a) are overlaid, the star
marker denotes the point of best performance, the triangle indicates the nearby
case, and the square represents the bistable case. Normalized kinetic energy of the
(d) best performing nonlinear, (e) underperforming (bad) nonlinear, and f linear
material. Source data are provided as a Source Data file.
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mechanisms for our peak transmitted kinetic energy minimization
metric would thus be to decrease the total energy of the system via
nonlinear-dissipation interplay, while simultaneously arresting the
propagating pulse before the end of the chain via the aforementioned
boomeron mechanism. Such interplay between dissipation, damping,
and wave arrest is consistent with the recent observation in bistable
nonlinear systems15,48.

We next conduct an optimization (via parameter sweep) wherein
we look for optimal nonlinear coefficients for varied impactor mass
and velocities. The optimal KE ratios with respect to M/M0 and V/V0

and corresponding nonlinear spring parameters c2 and c3 can be seen
in Fig. 4. In contrast to Fig. 2, weuse lower damping (ζ =0.005), chosen
to emulate that of the polycarbonate springs used in our experimental
realization. Additional simulation results of KE ratios for increased
damping and greater discreteness (more unit cells) are available in
Supplementary Information Note 7 and indicate the potential for
KE ratio < 10−2 in the latter case. The damping value used in Fig. 4 was
chosen by measuring the low-amplitude resonance of a single con-
nector and nonlinear spring unit (see Supplementary Information
Note 8). Characterizing the damping at low amplitudes allows us to
temporarily discard its interplaywith the nonlinear spring, wherein the
measured damping canbe thought to stem from the intrinsic damping
of the polycarbonate. Simulation cases of the nonlinearmaterial where
self-contact occurs are discarded from consideration of the optimal
performance.

There is a clear boundary where the nonlinear chain does not
outperform the linear, which is correlated with the occurrence of self-
contactwithin the linear chain (dashed black line in Fig. 4). At impactor
velocities and masses below this threshold, the nonlinear materials
exhibit significantly enhanced mitigation effectiveness. As the impac-
tor mass and velocity increase and cross over the dashed black line
(orange to red area near the dashed line in Fig. 4a), the priority shifts to

preventing contact between unit cells, leading to a comparatively
impaired energy-absorbing performance. In future studies, such self
contact could be explored as a form of nonlinearity and a design fea-
ture instead of a constraint.

In the following, we choose a particular optimal solution (pair of
coefficient ratios and impactor conditions), which is denoted by the
black dot in Fig. 4a, for unit cell shape optimization and subsequent
experimental validation. This solution was chosen in favor of that
shown in Fig. 2, because it exhibited lower strains (easier convergence
of the shapeoptimizer FEMkernel and avoidanceof possible plasticity)
and exhibited a relatively smooth local response to variations in
impactor conditions, all of which make it more amenable to experi-
mental implementation. The chosen solution is a nondimensional
nonlinearmechanical responseof the form f(Δx) =Δx−87Δx2 + 1778Δ
x3 in compression, with an impact condition of M/M0 = 0.01 and
V/V0 = 0.22. We note that this identified high-performance solution is
bistable, in contrast to the snap-through case of Fig. 2.

Shape optimization for desired effective nonlinear constitutive
law and mechanical experimental validation
The constitutive responseof a spring element is directly tied toboth its
constituent material and its geometry. Given that the response of the
underlying constituentmaterial is accounted for (e.g., neo-Hookeanor
Saint Venant-Kirchhoff), the geometry can be designed to tailor the
effective constitutive response of the spring (force-displacement
response simulated via the commercial FEM software COMSOL). Sev-
eral example known mechanisms for achieving various broad classes
of nonlinearity are highlighted in Fig. 5a. This is accomplished through
coarse geometry adjustment—that is, only altering the angle, length,
and thickness of the beam. The underlying mechanisms can be intui-
tively thought of as follows: when the thin beam-like spring element
undergoes large deformation, if it deforms into a statewhere it is being

Fig. 4 | Identification of optimal nonlinear coefficients via DEM simulation for
varied impactor conditions for the case of peak transmitted kinetic energy
minimization. a Optimal kinetic energy ratio (KE ratio) as a function of impact
conditions and corresponding nonlinear spring coefficients b c2 and c c3 for a

material of N = 20 and ζ = 0.005. The color bar in (a) is saturated at a KE ratio of
unity. The dashed black line denotes the onset of self contact (Δx < − 1) in the linear
system. The dot in (a) denotes the high performing case used for mesostructure
design. Source data are provided as a Source Data file.

Fig. 3 | Contribution of the interaction of dissipation and nonlinearity to the
minimization of transmitted peak kinetic energy. Fourier transforms (dimen-
sionless frequency vs. wavenumber) of the spatiotemporal normalized velocity of
the optimal nonlinear (a) and linear (b) systems (corresponding to the

spatiotemporal response of Fig. 2d and f, respectively. c Time evolution of total
energy in the system, normalized by initial total energy (impactor kinetic energy)
for three cases mentioned above. Source data are provided as a Source Data file.
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stretched axially, it will stiffen, while if it is deformed to where it is
being loaded transversely, it will soften. If in the latter case it is
deformed such that it undergoes axial compression against the
boundaries, it tends towards negative stiffness (e.g., snap-through or
bistability). While these coarse adjustments are adequate to achieve
broad types of nonlinear behavior, they are inadequate to achieve the
type of precision of nonlinear response needed in dynamical
settings–e.g., the subtle difference between the optimal spring
response (red line) and the underperforming (bad) spring response
(dashed-dotted blue line) shown in Fig. 2.

Therefore, in order to find a spring geometry that gives the spe-
cific desired nonlinear response, a 2D shape optimization approach is
taken, using a level set optimizationmethod (as detailed further in the
Methods and ref. 24). In summary, a third order polynomial is fit to the
calculated force-displacement behavior of the structure, and the
objective of the optimization problem is taken as the ratio of nonlinear
to linear terms (e.g., as shown in Figs. 1c and 5b). The exact formof the
objective function is

min
Ω

Xn
i = 2

ci
c1

T 1

Ti
� 1

� �2

, ð3Þ

where Ω is the design domain (i.e., the range of values that all the
design variables can take), ci and c1 represent the current polynomial
coefficients (nonlinear and linear, respectively), Ti and T1 represent the
target coefficients (nonlinear and linear, respectively), and n repre-
sents the total number of nonlinear polynomial coefficients. By taking
the ratio of the polynomial terms, the nonlinearity of the structure is
decoupled from the linear stiffness, allowing the optimizer more
design freedom, leading to more robust convergence. This is a
potentially subtle, but important point. If an optimizer is to seek a

match to an absolute force-displacement curve, there is the possibility
that, given a chosen constituent material property, the optimizer may
be forced for high absolute forces to increase the volume ratio to a
degree that it does not leave the geometry with enough kinematic
freedom to achieve the desired nonlinearity. Similarly, for very low
absolute forces, the optimizermay be forced to pursue features below
the discretization of the FEM simulation kernel, potentially discon-
necting elements. As such, normalizing linear stiffness during the
search (equivalent to having the constituent modulus as a design
variable), is critical in achieving microstructures matching target
nonlinearities with potentially far initial guesses. This normalized
stiffness can similarly be rescaled in practical implementation via
choice of constituent material or, in 2D, as we use herein, by adjusting
the out-of-plane depth of the structure. In any case, to accelerate and
ease the navigation of the design space, we select an initial condition
for our optimization process, which displays qualitatively similar
behavior to that desired (i.e., a slightly angled beam; see Supplemen-
tary Information Note 8).

The boundary conditions applied are depicted in Fig. 5b (fixed
on top, roller on bottom, applied displacement on bottom 10% of the
right boundary). When realizing our nonlinear chain, we employ
comparatively rigid frames around the designed spring to mimic
fixed boundary conditions (as can be seen in Figs. 1d and 5c) and rigid
connectors between the springs to allow relative movement of the
masses. With the addition of these components, we have a unit cell
length, a, and a nonlinear spring design domain length that encom-
passes only a portion of this larger unit cell. We call this portion of a
the spring length, and denote it by as (and, hereafter, the subscript s
is used to refer to parameters defined on the scale of the spring).
Figure 5e highlights the difference between these two length scales.
Because the DEM-identified polynomial constitutive law is expressed

Fig. 5 | Designing unit cells that leverage geometric nonlinearity to achieve
DEM-identified desired effective constitutive laws, and experimental realiza-
tion of the spring and chain. a Examplemechanismswhich canbe used to achieve
various nonlinearities with geometry alone are shown, including the following
nonlinearities: i) stiffening, ii) softening, iii) soft to stiff, iv) snap-through (but not
bistable), and v) fully bistable. The plot on the right shows the nonlinear responses
of these five examplemechanisms (with the stiff to soft, snap-through, and bistable
curves linearly scaled to be on the same scale as the thicker mechanisms).
b–eOptimized spring design and chain realization for the case of minimizing peak

transmitted kinetic energy aimed to match the nonlinear coefficients identified in
Fig. 4a.bResults of the shapeoptimization, with the initial condition andoptimized
design shown. c The fabricated polycarbonate unit cell, consisting of four opti-
mized springs (as seen in (b)) and a rigid frame. d The quasi-static test of the unit
cell shown in (c), compared against the target the behavior simulated via COMSOL
FEM. eThe full chain of 20unit cells, hung froma frame. The chain is clamped to the
left of the leftmost unit cell, imposing a zerodisplacement boundary condition. The
impact occurs at the right end of the chain. Source data are provided as a Source
Data file.
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as a function of strain, and the strain experienced by the spring
across as is different than that experienced by the entire unit
cell across a for a fixed applied displacement, the targeted
polynomial is therefore scaled accordingly. We take the ratio of
nonlinear terms as R = (ciϵi)/(c1ϵ) and Rs = ðcs, iϵisÞ=ðcs, 1ϵsÞ on the scales
of a and as, respectively, with i representing the order (or power) of
the term and ϵ representing the strain experienced on the corre-
sponding length scale. In order for equivalent degrees of nonlinearity
to be displayed at different scales, we take R = Rs and solve for
updated ci or cs,i terms.

The optimization target (recall, on the unit cell scale, identified
above as f(Δx) = Δx − 87Δx2 + 1778Δx3) can therefore be expressed on
the spring length scale as f ðΔ xsÞ=Δ xs � 41:064Δ x2s + 396:11Δ x3s , by
setting R = Rs and solving for cs,i. The final optimized structure, shown
in Fig. 5b, c, achieved a simulation force-displacement law on the
spring scale of f ðΔ xÞ=Δ xs � 40:712Δ x2

s + 397:535Δ x3
s , and an

experimental one of f ðΔ xÞ=Δ xs � 40:654Δ x2s + 397:274Δ x3s (shown
in Fig. 5d), resulting in an experimental percent difference between
targeted and obtained polynomial ratios of 0.294% for the third order
ratio and 0.998% for the second order ratio.

Experimental validation of peak transmitted kinetic energy
minimization
In our experimental realization of the chains, the springs with length
as = 59 mm were chosen and incorporated into the rigid frame and
connector, resulting in a unit cell length a = 125 mm. A chain of twenty
unit cells (a single unit cell is shown in Fig. 5c) was fabricated and hung
from a frame in order to minimize friction, as shown in Fig. 5e (see
Supplementary Note 9 in the Supplementary Information for a more
detailed description of the chain design). Impact tests were under-
taken with an impactor mass ofM = 40 g and a velocity of V = 1.37 m/s
(based on the realized chain, corresponding to the normalized
impactor conditions denoted by the dot in Fig. 4a). Data was collected
through the use of several cameras positioned along the length of the
chain, allowing digital image processing to be used to track the impact
wave across the length of the system. In addition, a laser Doppler
vibrometer (see Supplementary Information Note 9) was pointed at
the last unit cell in the system, allowing for a second measurement of
the velocity of the last unit cell. Impact tests were repeated several
times. A similar chain of twenty linear unit cells, with similar linear
stiffness and mass (the mass of the linear and nonlinear unit cells are
400.4 g and 398.8 g, respectively) values, was then constructed to act
as a control for comparison against the nonlinear chain (see Supple-
mentary Information Note 8 for more details), and the impact tests
were repeated. It is noted that for the kinetic energy transmission ratio
considered herein, the magnitude of the linear stiffness (even if dif-
ferent between the linear and nonlinear chain) does not matter (see
Supplementary Information Note 10).

Several keymetricswere examined to confirm the performance of
the system, the results of which are summarized in Fig. 6. Foremost
among these results is the velocity (or kinetic energy) which was
transmitted to the end of the chain. Measured spatiotemporal kinetic
energy responses are shown in Fig. 6a–d, in which we can see that the
nonlinear cases dissipate and trap kinetic energy through unit cell
snapping, preventingmuchof it from reaching the right (or protected)
endof the chain (a large portion of the kinetic energy is seen to remain,
reflecting back and forth, in the first 9–11 unit cells in panels A and B).
We note an excellent match between simulation (using the experi-
mentallyfit coefficients taken from the quasi-static force-displacement
curve shown in Fig. 5d) and experiment in these spatiotemporal plots.
Timehistories ofmeasured velocity at thefifth and the last unit cell can
be seen in Fig. 6e, f, highlighting the greatly reduced last particle
velocity in the nonlinear case as compared to the linear case. Figure 6g
shows a comparison of the ratio (of linear to nonlinear cases) of the
maximum kinetic energy seen at each unit cell, in both experiment

(averaged across three trials) and simulation. We note that the ratio
shown in Fig. 6g is the inverse ofKE ratio, for ease of visualization, such
that larger numbers denote better impact protection. We see a larger
discrepancy at the last two particles (Fig. 6g), which we attribute to
non-ideal boundary conditions. We note that damping characteriza-
tion (see Methods section) suggest the damping in both chains is
similar (ζof0.005 for nonlinear and0.003 for linear). Further,we show
in Supplementary Information Note 8, that were the linear chain to
have higher damping, e.g., ζ = 0.006, this would have negligible effect
on the KE ratio. This highlights the value of nonlinear wave manip-
ulation, where superior performance can be seen without heavy reli-
ance upon damping.

A point of particular note, is that although the targeted conditions
show excellent predicted performance, the behavior can be sensitive to
small variations in impactormass and velocity, as seen in the simulation
data of Fig. 6h. The variability of the mass-velocity space is immediately
apparent, with several very small regions of excellent performance (low
KE ratios) surrounded by oscillating regions of lower performance
(relatively higher KE ratios), and even several points of poor perfor-
mance (KE ratio > 1). While the region targeted in this work sought a
region with relatively low drops in performance (relative to other
regions explored via simulation), there still exists varied performance
impact conditions nearby. In order to more quantitatively describe this
sensitivity, in Supplementary Information Note 11, we calculate the
gradient of Fig. 6h, which shows j∂ðlog10ðKE ratioÞÞ=∂Mj can reach near
1 g−1 and j∂ðlog10ðKE ratioÞÞ=∂V j can reach up to 40 s/m. This means
that, for the most sensitive regions of the impact conditions landscape,
a change in 1 g of impactor mass can result in an up to ~ 6.7 × change in
KE ratio, or a 0.01m/s change in impactor velocity can result in an up to
~ 2.5 × change in KE ratio. However, as with the case of the sensitivity to
the nonlinear stiffness parameters, near our chosen optimum, the sen-
sitivity is significantly lower, with ∂ðlog10ðKE ratioÞÞ=∂M =0:16 g−1 and
∂ðlog10ðKE ratioÞÞ=∂V = � 7:8 s/m.

This raises the question of why is this nonlinearity so sensitive to
impactor conditions. Nonlinear systems in general are known to be
sensitive to small changes in system parameters, including initial and
boundary conditions, particularly near points of bifurcation or
instability49 (e.g., the butterfly effect17). In our case, we suggest this
sensitivity is due to two factors: i) The bistability present in the identified
optima studied in experiment, and ii) Our choice of performance figure
of merit. Considering the effects stemming from bistability, in Supple-
mentary Information Note 11 we show that large, cyclical, changes in
performance are seen with with small changes in impactor velocity,
where these changes correlate with the arrest of the initially generated
solitary wave (as seen in Figs. 1b, 2d, e, and 6a, b) moving one unit cell
closer to the boundary opposite the impactor. Further, this solitarywave
takes the formof snapping and unsnapping of each unit cell in sequence
until, generally (as can be seen in Supplementary Information Note 11,
Supplementary Fig. S25), a unit cell remains snapped shut, which cor-
responds to the point of solitary wave arrest. This is consistent with the
idea that with increasing impactor energy, the final unit cell that snaps
shut locks in more and more energy until it reaches a critical point, at
which it suddenly unsnaps, releasing energy back into the system in the
formof kinetic energy. This effect is further amplified, as per our second
suggested factor, because we choose peak kinetic energy at the last
particle in the chain. We suggest that some of the identified sharp
changes in performance are due to the effect seen in Fig. 2d, e, wherein
the “best” case of Fig. 2d shows solitary wave arrest just before reaching
the boundary, whereas the slightly different nonlinearity of the “bad”
case of Fig. 2e allows the solitary wave to interact with the boundary.We
expect similar phenomena occur due to the cyclic advance of solitary
wave’s arrested position with increased impactor velocity. In addition to
these factors, we also expect a contribution from wave interference,
where small bits of reflected energy can push a unit cell above or below
snapping and unsnapping thresholds.
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As pertains particularly to the experimental results, we note that
the impactor velocities obtainedhereinwere not precise (ranging from
1.36–1.41 m/s, see Supplementary Information Note 9), and this, cou-
pled with the aforementioned sensitivity provides an insight into var-
iations in chain performance—namely, that the slight variations in
impactor velocity we see in experiment have the potential to easily
knock the system out of its optimal performance region, into one in
which poorer performance is to be expected. This phenomenon
reveals important characteristics regarding the sensitivity of the sys-
tem, and more generally nonlinear dynamical systems wherein bifur-
cation can cause sharp changes in behavior49.We believe the proximity
of regions of poor performance to regions of good performance (e.g.,
Fig. 6h)motivates a consideration of nearby conditions in future work.
For instance, we expect there are application scenarios in which a
region of reduced sensitivity to changes in stimuli may be desirable at
the expense of slightly lowered performance. Despite the sensitivity of
the system, however, per Fig. 6g the kinetic energy ratio (KElin/KEnon)
remains greater than 1 (superior performance of the nonlinear chain
compared to the linear) for both simulation and experiment once a

critical number of unit cells has passed (unit cell 11 for the simulation,
unit cell 10 in experiment).

Before proceeding onto the second case study, we use this peak
transmitted kinetic energyminimization problem as an opportunity to
remark on the potential multidirectionality of our mulitlevel optimi-
zation process. As ourmethod forms a loop (see Fig. 1), inwhich inputs
from the DEM and shape optimization feed back into one another, we
note that the design process can be followed in either direction. For
example, while one may begin with a desired impact condition, which
is then fed into the DEM simulation followed by the mesostructure
optimization, onemight just as easily beginwith somenonlinearity and
feed this into the DEM simulation to explore what impact conditions it
might perform well (or poorly) for.

Application of method to a second problem: pulse shape
transformation
The bilevel inverse design approach can be applied to different pro-
blems of interest by altering the dynamic objective and finding the
corresponding optimal nonlinearity. As such, to demonstrate the

Fig. 6 | Experimental validation of the optimal nonlinear and linear chains,
compared with simulation. The optimal nonlinear chain corresponds to that
identified in Fig. 4a. a–d Spatiotemporal evolution of kinetic energy in the system
(normalized by the input kinetic energy, or initial total energy). The nonlinear chain
is shown in a (experiment, nonlinear trial 1) and b (simulation), while the linear case
is shown in c (experiment, linear trial 1) and d (simulation). The experimental
spatiotemporal plots include a smoothing of displacement values to assist with
noise induced by differentiating the discrete time camera data. The spatiotemporal
plots for other trials are included in Supplementary Information Note 9. Time
histories of the experimentally measured (solid lines) and simulated (dashed lines)
velocities for the fifth and last unit cell in the nonlinear (e) and linear (f) chains. g A

ratio of maximum kinetic energy (linear/nonlinear) seen at each unit cell for both
experiment and simulation. A value greater than 1 (denoted by the horizontal
dashed black line) indicates superior performance of the nonlinear chain as com-
pared to the linear. The experiment values are the average taken from three
experimental trials. The X marks the average experimental value recorded by the
vibrometer (see Supplementary Information Note 9 for the full data sets), which
collecteddata fromonly the last unit cell.h The simulated sensitivity of the KE ratio
(truncated at 1) to impact conditions, wherein the simulation was run with the
coefficients that were found experimentally from the nonlinear spring in Fig. 5D
(i.e., the physically achieved coefficients). Source data are provided as a Source
Data file.
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potential breadth of applicability of our model, we pursue a second
problem: passive signal transformation, wherein we supply an input
pulse to the material and seek to transform it into a desired shape at
the opposite side. We perturb the system at the left boundary via a
prescribed half-cycle sine wave displacement and seek to flip the sign
of the pulse at the opposite end of thematerial, but maintain the same
period and amplitude as the input, as shown with dashed lines in
Fig. 7a. The optimal nonlinearity, identified using a gradient-based
search algorithm (see Methods), which flips the input pulse as seen in
Fig. 7a, is found to be f(Δx) = Δx − 2.35Δx2 + 4.92Δx3 and shown in
Fig. 7b. The polynomial constitutive law here takes a fully nonlinear
form, both in compression and in tension, as opposed to the previous
examples with a linear tension regime. The importance of this can be
understood in the context that the flip in the sign of displacement
before pulse reflection off the opposite end of the system suggests
tensile behavior. The qualitative difference between the identified
optimal force-displacement curve for the pulse shape transformation
and peak transmitted kinetic energy minimization problems can be
seen, wherein the pulse shape transformation solution exhibits a
relatively slight softening to stiffening behavior in compression and
stiffening in tension.

Taking the DEM-identified nonlinearity as our target, we perform
shape optimization to identify a unit cell shape to achieve this non-
linearity, this time using a neo-Hookean material model (under plane-
strain conditions) to account for the large strains (up to 40%) in both
directions, as seen in Fig. 7b. We note that unit cells undergoing geo-
metric nonlinearity that were optimized using a similar process for
different quasi-static nonlinearities have been previously realized from
silicone confined in rigid plastic frames, and found to be in good
agreementwithpredictions from theneo-Hookeanmodel (see e.g., ref.
24). The resultant optimized geometry is shown in Fig. 7c and the
corresponding force-displacement relations obtained via FEM simu-
lations, and validated with COMSOL, in Fig. 7b. We note that such a
pulse transformation objective is similar to the formation of rarefac-
tion waves in response to a compressive impact, which has previously
been demonstrated in ref. 45, wherein qualitatively analogous
softening-in-compression was used. We suggest that this similar result
is of particular interest for two reasons: i) Our resulting identified
microstructure unit cell geometry is qualitatively different than the
origami solution (e.g., our identified solution is in 2D insteadof 3D, and
not involving creased origami joints), and ii) Our optimizationmethod
found a force-displacement response with somewhat qualitatively
overlapping features (initial softening in compression) from a random
initial guess. We believe the latter point signifies the future potential

for our method to identify previously unknown nonlinear dynamical
mechanisms, such as was demonstrated by the optimum nonlinearity
identified in the first problem, shown in Fig. 2.

Discussion
As suggestedby the physically large size of our experimentally realized
system, we note that this class of geometrically-nonlinear-
microstructure-enabled wave transforming materials demands a par-
ticularly challenging set of manufacturing requirements. This is due to
a particularly large scale separation between the system size and the
smallest features. For instance, the optimized design shown in Fig. 5b
contains very thin hinges at the top and bottom of the central beam,
particularly compared to the size of the unit cell. Given that the wave-
dominated behavior shown herein requires many unit cells, we have a
situation with three distinct separated length scales (smallest feature,
unit cell, system). While this length scale separation is in some sense
shared by other metamaterial and lattice structures50,51, it is amplified
for our case. For instance, at the unit cell level, reduction in this dis-
parity is possible, however it comes at the expense of limiting the
range of nonlinearity achievable (i.e., one often needs long, thin,
deformable structures to achieve large nonlinear response within
elastic regimes). Future incorporation of plasticity, phase transfor-
mation, or contact may address this issue. Further, recent works have
shown the existence of a nonlinear dynamic “size effect” where a cri-
tical, minimal number of unit cells has been shown to yield enhanced
performance48, in addition to the longer system size compared to the
characteristic wavelengths giving more time and space for traveling
pulses to evolve. Indeed, relatively coarse parameter sweeps of the
cubic polynomial coefficients for the peak transmitted kinetic energy
minimization problem for more highly discretized materials (e.g., 100
unit cells, see Supplementary Information Note 7), suggest the
potential for over two orders of magnitude improvement in kinetic
energy transmission via the use of a nonlinear material compared to a
comparative linear material. All of these length scale separation man-
ufacturing challenges would be further exacerbated in 3D, with the
additionof loss of themechanism for tuning the linear stiffness via out-
of-plane structure depth. However, we note that recent advances in 3D
printing have seen large jumps in the system to smallest feature size
ratio versus manufacturing speed52. Self-assembly-based manufactur-
ing is a further tantalizing possibility53.

While we have demonstrated our design method on a relatively
simple (1D, elastic regime, large, few unit cell) system, and extracted
several fundamental insights for our primary case study of peak
transmitted kinetic energy minimization, we suggest this provides a

Fig. 7 | Application of our method to passive signal transformation. a Input
(dashed black) and target output (dashed purple) half-cycle sine waves, and the
output waves obtained from DEM simulations with linear (solid black) and opti-
mized (solid purple) nonlinear springs.b Force-displacement relations for thepulse
shaping (solid purple) shown in (a), in contrast with the previous target of KE
minimization (solid red), from DEM-optimization. KE minimization resulted in a
snap-throughmechanismwhile the pulse shaping displays a softening-to-stiffening

response in compression and stiffening response in tension. Direct polyfit obtained
from the FEM shape optimization (a line of purple stars) and the validation of the
resultant shape via COMSOL FEM (Finite Element Method) simulations (dashed
purple). Circle and triangle markers indicate the maximum displacements in
compression and tension, respectively. c Mesostructure shape identified by the
optimizer to match the DEM-identified nonlinearity. Source data are provided as a
Source Data file.
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basis for future research and technological development. Most
directly, within the primary case study of impact mitigation, a near
term question of future interest would be how such optimal non-
linearities would change for a different metric such as maximum
transmitted force or peak tensile stress anywhere in the material.
Similarly immediate, given the flexibility of a designer nonlinear spring
and the incorporation into a lumped-mass context shown herein, we
suggest this enables the possibility for rapid experimental investiga-
tion of nonlinear dynamical phenomena only seen thus far in simula-
tion and theory. Less directly, one can imagine extending the bilevel
optimization to 3D and tomore complex constituent material models.
The extension to 3D yields particularly non-trivial challenges, due to
the second-order tensorial nature of solid mechanical systems,
includingwith the potential for shear-to-longitudinalmode conversion
in linear54, and not-to-mention-nonlinear55, dynamical regimes. With
regards to optimization of unit cells in 3D for desired quasi-static
nonlinear mechanical response, some initial steps have recently been
made for selectmultiaxial loading states56. Extension of thismethod to
less scale separateddynamical (no lumpedmasses)would enablemore
mass efficient structures, but would likely required either some degree
of homogenization or larger, high-performance computing capability.
The incorporation of irreversibility of the constituent material model,
such as plasticity, would open enhanced energy dissipation mechan-
isms and application to high strain-rate applications57. Similarly, the
incorporation of activity or stimuli-responsivity58 in the constituent
material model would open applications in shape morphing,
mechanical computing, and the capacity for materials that autono-
mously respond and conduct directed work51. The use of shape
memory materials58 offers potential in each of these capacities, via
targeted shape change, potential resetting capability, and enhanced
energy absorption. Incorporation of multiphysics coupling into the
material model may create additional possibilities in fields such as
optomechanics59.

In each of the above cases, in addition to opening new application
possibilities, we believe that this method has the potential to
help answer fundamental questions concerning the interplay of
nonlinearity with these varied mechanisms, and most generally the
spatiotemporal partition of energy in nonlinear dynamical systems38.
Such nonlinear dynamical questions increase in complexity greatly,
when considering the influence of disorder60, including in the form
of designed defect placement or spatially extended heterogeneity.
It also raises fundamental questions, and via this method a possible
new avenue for answering, in the form of design of nonlinear systems
in the context of stimuli sensitivity. For instance, in our case of peak
transmitted kinetic energy minimization, we observed (as common
for many nonlinear systems) large sensitivity of the kinetic energy
transmission metric to small changes in nonlinearity and impact
conditions. This indicates future possibilities where computational
design can incorporate stimuli sensitivity and parameter uncertainty
into the design objective. Further, one can also imagine the potential
to leverage the tools developed in the nonlinear dynamical systems
community. Instead of optimizing for features in the time domain
response of the system, onemay optimize in the context of bifurcation
diagrams61 or phase space49, where in the case of the former, new
modes emerge and disappear with variation of input parameters or
change stability, and in the latter, nonlinear dynamical objects such as
limit cycles and strange attractors are formed. Noting the capacity for
systems such as ours to be described via partial differential equations
and continuum approximations (most directly, such as the KdV
description of the FPUT system35), analysis tools developed for these
limits17 may be incorporated into optimization objectives to improve
the ability for the computer to meaningfully traverse and efficiently
search the design space. Considering all these possibilities together,
results in a rich array of possible future extensions.

Methods
DEM simulations
We numerically integrate nondimensional Supplementary Eq. (S10) in
Supplementary Information Note 3 using a Runge-Kutta algorithm
(ode45 inMATLAB)with impactor velocity V/V0 andmassM/m applied
to the impactor particle. The output and maximum integration time-
step is selected by estimating the highest nondimensional frequency

f max =
1
2π

ffiffiffiffiffiffiffiffi
kmax
M0

q
, where kmax = maxð1, 1 + 2c2 + 3c3Þ, such that the time-

step Δt = 1/(1000fmax). The nondimensional displacement and velocity
tolerances are set to 10−10. The total energy conservation is checked for
an undamped DEM system, and deviation is less than 0.1% over the
entire simulation duration.

Optimization of nonlinear constitutive law
Wesearch for the optimal nonlinear spring coefficients (c2, c3) in Eq. (2)
to minimize a dynamic performance metric, which results in a con-
strained nonlinear optimization problem in the form

min
c2, c3

Jðxðc2, c3ÞÞ subject to W ðc2, c3Þ≥0, ð4Þ

where J is the objective functionwhich depends on theDEM simulation
trajectory x, and W corresponds to the strain energy constraints
explained in the Supplementary Information Note 4. For most of this
text, the objective is chosen as the normalized peak kinetic energy at
the end of the material, J = maxðKEnonÞ=maxðKElinÞ, nevertheless the
methodology can be applied to other passive wave transformation
applications. In the pulse shape transformation example, Fig. 7, the
objective is chosen as the L2-norm of the error between the target and
the output pulse within the half-period of the input wave, i.e.,
J = jjxtgtðtÞ � xðtÞout jj2 where jtj=Tinp=2. The design space is explored
using a gradient-based optimizer, fmincon in MATLAB, where the
gradients are estimated using finite differences and the Karush-Kuhn-
Tucker (KKT) conditions are used to ensure optimality of the solution.

Structural optimization
We include here further details about the shape optimization of the
spring geometry, while noting that a full description of themethod can
be found in our previous work24. A level set method is used to perform
a nonlinear, displacement control, 2D continuum shape optimization.

For the case of minimizing peak transmitted kinetic energy, the
spring is modeled using a 2D plane stress condition, with a Kirchhoff
material model (linear elastic material model, with geometric non-
linearity included), as we have found this material model to be a good
representation of polycarbonate throughout displacement ranges
which do not reach the plasticity threshold of the material. The opti-
mization performed herein was solved with a uniformmesh consisting
of 750 × 750 quadrilateral elements. A symmetry boundary condition
(rollers) is applied along the bottom edge of the optimization domain,
such that only one half of the spring need be simulated. The top edge
of the domain has a fixed boundary condition enforced. A 1D applied
displacement is applied at the bottom right edge of the domain, where
the connector to the adjacent spring would exist in the physical sys-
tem. These conditions, along with the initial condition supplied to the
optimizer, are illustrated in Supplementary Note 8 in the Supplemen-
tary Information.

Prior to manufacture and experimental tests, the force displace-
ment output from the optimization process was further confirmed via
a FEM simulation in COMSOL Multiphysics. Following the verification
process outlined in our previous work24, the optimal level set was
converted to a 2D geometry in COMSOL, and a quasi-static simulation
was performed. This simulation similarly used 2D plane stress, with a
Kirchhoff material model and the same applied boundary conditions
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as the optimization process. The COSMOL simulation, however,
employed a body-fittedmeshconsisting of 20,447 triangular elements.
The results, shown in Fig. 5D, confirm the accuracy of the optimization
simulation.

Asoutlined in Eq. (3), theobjective function for theoptimization is
taken to be the ratio of polynomial coefficients resulting from the
force-displacement curve of the current design. This polynomial is fit
to the force-displacement curve using the equation c = V−1C, in which V
is the Vandermonde matrix, and C is compliance (we note that herein,
we use lowercase c to refer to polynomial coefficients, anduppercaseC
to refer to compliance). Fitting to compliance, rather than force, is
done for ease of sensitivity calculation, as compliance optimization is a
well known optimization problem. Noting that C = FΔx (in which Δx is
displacement), it is a simple matter to transition between force and
compliance. We can then write the sensitivity for the polynomial ratio
objective as a combination of known compliance sensitivity terms and
sensitivity terms related to the fitting of the polynomial.

∂ci
∂Ω

=
Xm
j = 1

∂ci
∂Cj

∂Cj

∂Ω
=
Xm
j = 1

V�1ði, jÞ∂Cj

∂Ω
, ð5Þ

where Ω refers to the level set domain, i refers to the degree of poly-
nomial, j refers to the displacement step, andm is the total number of
displacement points under consideration (see our previous work for
more details24).

We note that, as our polynomial fit represents an element in
equilibrium at rest, the zeroth order termmust be taken to be zero in
order to have a physically consistent and realistic polynomial fit. The
equation c = V−1C may sometimes result in small but nonzero zeroth
order terms, leading to significant differences between the fit coeffi-
cients and the actual system behavior. We therefore force the zeroth
order term to be zero by assuming c0 = 0, which effectively zeros out
the last column of V. Similarly, due to the number of displacement
points being higher than the order of polynomial being fit, higher
order polynomial terms (higher than three, in this case) can be
assumed to be zero, thus effectively zeroing out the corresponding
columns in V. The Vmatrix is therefore frequently non-square (as is the
case for the bistable optimization example shown herein). We there-
fore use the Moore-Penrose inverse (or pseudoinverse)62 to calcu-
late V−1.

Shape optimization for the pulse shape transformationproblem is
carried out with ParaLeSTO63, an open source level set topology opti-
mization code, where FEniCSx64–67 is used as the FEM platform with
SNES solvers from PETSc68. The material experiences especially large
strains, up to 40% in both tension and compression as seen in Fig. 7,
therefore we chose the neo-Hookean hyperelastic material to model
the elastic response. Nonlinear, quasistatic, displacement controlled
FEM simulations are performed under 2D plane strain assumptions by
using a uniform, 100 × 100 quadrilateral mesh. Note that due to the
weaker nonlinearity of this case, compared with the highly nonlinear
bistable spring, a coarser mesh was able to accurately capture the
mechanical response. Compliance sensitivities ∂Cj/∂Ω are computed at
each displacement step j using the discrete adjoint method, which are
then modified by the polynomial fitting terms of Eq. (5) to obtain the
final sensitivity.

Unit cell design and manufacturing
After the nonlinear spring had been designed via optimization, the
design was resized to the experiment scale (wherein the length of
one spring, as, was taken to be 59 mm). The single spring design
was reflected over the symmetry condition, and in order to minimize
the non-longitudinal motion of the masses, a second set of nonlinear
springs was added in parallel to the first. A single unit cell (shown
in Fig. 5c) was fabricated by cutting the shape out of a polycarbonate
sheet via computer-numerical-control (CNC) milling. This milled

shape was then sanded down at the edges to fit smoothly into a
rectangular stainless steel frame, which was commercially manu-
factured via sheet cutting, and secured in-planewith an acrylic backing
bolted into the frame and glued to the milled spring (see Supple-
mentary Note 9 in the Supplementary Information for a visualization).
We note the design of the frame surrounding a spring is particularly
important in properly imposing boundary conditions, and thus
critical in matching simulation predicted force displacement curves.
The choice of a stainless steel frame herein was made in order to
meet these criteria, while still allowing for the milling of the spring to
fit within the manufacturing constraints of the manufacturing
equipment.

A single unit cell was tested quasi-statically to confirm the per-
formance of the spring, as shown in Fig. 5d. Repeated, cyclic quasi-
static loading tests were also performed to confirm that no onset of
plasticity or fatigue occurs during the dynamic experiment (see Sup-
plementary Information Note 8).

Data collection
The motion of each unit cell was captured with the use of cameras
mounted above the chain. The length of the chain necessitated the use
of multiple cameras to capture the motion all unit cells. Each experi-
mental trial therefore has four videos associated with it, shot in slow
motion at 240 fps on four iPhones, with each video overlapping by at
least one unit cell to ensure proper spatial synchronization and the
capture of all motion. For each trial, the cameras and unit cells were
spaced such that camera 1 captured unit cells 1–6, camera 2 captured
unit cells 4–11, camera 3 captured unit cells 9–16, and camera 4 cap-
tured unit cells 14–20. Video processing was performed in MATLAB.
Temporal synchronization between each video was achieved by a
visual signal which caused a fluctuation in intensity of light, which
could then be detected in each video and used to synchronize the
times between the recording devices. Tracking of each particle was
achieved with the use of colored markers on each unit cell. Post pro-
cessing in MATLAB allowed each frame to be separated into discrete
color channels, allowing for the isolation and tracking of red, blue, and
green markers (blue was used for the impactor, green for the back
edge of each unit cell, and an additional redmarker for unit cells which
were covered by overlapping camera fields of view, in order to enable
spatial synchronization of the data from each camera).

Damping characterization
In order to characterize the damping ratio ζ of the manufactured
springs, the power spectrumwas experimentally measured, generated
from a low-amplitude 1 ms duration square pulse excitation applied to
a single spring via electrodynamic shaker. A Lorentzian function was
numerically fit to the response for both the nonlinear and linear spring
cases. The experimental setup for both cases are shown in Supple-
mentary Information Note 8, where the single unit cell was hung hor-
izontally using fishing lines, and the end of the connector, which was
connected to the center of the spring via bolts and nuts, was clamped
to impose a fixed boundary condition (FBC). The pulse excitation was
provided by a function generator (FG, Tektronix AFG3022C), con-
trolled through MATLAB, and applied via an electrodynamic shaker
(The Modal Shop K2007E01) equipped with a stinger, whose tip was
manually set at a small distance (within 1 mm) away from the side
surface of the unit cell. A laser Doppler vibrometer (LDV, Polytec PSV
400) was used to record the dynamical response of the unit cell in
velocities. Data was collected bymeasuring the side surface of the unit
cell (averaged three times for each test), where the LDV and the FG
were synchronized through a common trigger signal for repeatability
of the averaging process. Measured dynamical responses, which were
processed to account for the tilted angle between the LDV scanning
head and the unit cell, are shown in Supplementary Information
Note 8. The normalized power spectrum was obtained by taking the
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square of the Fourier transform (FFT) of time domain data and then
normalizing itsmaximumvalue. The FFTwas taken using the built-in fft
command in MATLAB. The normalized ∣FFT∣2 result was fit to a Lor-
entzian function of the following form

Lð f Þ= A
π

Γ=2

ð f � f 0Þ2 + ðΓ=2Þ2
, ð6Þ

whereA is the amplitudeparameter, f0 is the central frequency, and Γ is
the full width at half maximum in frequency. The fitting process was
done by using the built-in fit command in MATLAB. The Q factor was
found by taking f0/Γ from the numerical fitting, which are approxi-
mately 92 for the nonlinear and 177 for the linear spring unit cell. Based
on theseQ factors, by using the equation ζ = 1/(2Q), we calculated the
damping ratios ζ as 0.005 and 0.003 for nonlinear and linear chains,
respectively, which were used in the numerical simulations.

Data availability
Source data are provided with this paper. Two sets of four videos
(reduced resolution and sped up via downsampling by 8 × to meet file
size limitations) corresponding to the data shown in Fig. 6a, c are
included as part of the Supplementary Information. The same naming
convention is used as in Supplementary Information Table 1, but with
the suffix “_SpedUpLowRes”. All related videos regarding the data in
the main text are uploaded to: Boechler, Nicholas (2024), “Customiz-
able wave tailoring materials enabled by nonlinear bilevel inverse
design 1”, Mendeley Data, V1, https://doi.org/10.17632/2wgwfy2wfg.1.
Videos related to the data in Supplementary Information Note 9 are
uploaded to: Boechler, Nicholas (2024), “Customizable wave tailoring
materials enabled by nonlinear bilevel inverse design 2”, Mendeley
Data, V2, https://doi.org/10.17632/6bg6hr5kyr.2. SOLIDWORKS and
level set files of the optimized spring design shown in Fig. 5 are
uploaded to Boechler, Nicholas (2025), “Customizable wave tailoring
materials enabled by nonlinear bilevel inverse design 3”, Mendeley
Data, V1, https://doi.org/10.17632/fspk9kw98v.1. Source data are pro-
vided with this paper.

Code availability
Sample DEM MATLAB script (DEM_example.m) is uploaded with the
Supplementary Information. Topology optimization codes that gen-
erate the results will be made available upon request. The level set
topology optimization code for the impact mitigation problem was
based on OpenLSTO, which is available at https://m2do.ucsd.edu/
software. The level set topology optimization code for the pulse shape
transformation problem was based on ParaLeSTO, which is available
on GitLab at https://gitlab.com/m2dO1/paralesto.
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