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ABSTRACT OF THE DISSERTATION

Problems with Problems in Data Mining

by

Renjie Wu

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2024

Dr. Eamonn Keogh, Chairperson

Although the term “data mining” did not appear until the 1990s, the process

of digging data to discover correlations, patterns and knowledge has a long history. As

the rapid growth of data in size and complexity, data mining has augmented manual data

processing with automated data analysis assisted by intertwined scientific fields, such as

statistics, database systems, and machine learning. However, we unfortunately discovered

that several highly cited papers in the field of data mining have surprising problems with

their proposed algorithm, datasets, or definition.

• Not so fast algorithm. For over two decades, Dynamic Time Warping (DTW) has

been known as the best measure to use for most tasks, in most domains. Because

the classic DTW takes quadratic time, FastDTW purportedly offers a way to quickly

approximate it. The FastDTW algorithm has well over two thousand citations and

has been explicitly used in several hundred research efforts. However, we show that

in any realistic settings, the approximate FastDTW is much slower than the exact

DTW.
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• Not so good datasets. In recent years, there has been an explosion of interest

in time series anomaly detection (TSAD), driven by the success of deep learning in

other domains. Most of these papers test on one or more of popular benchmark

datasets from Yahoo, Numenta, NASA, etc. However, we show that the majority

of the individual exemplars in these datasets suffer from one or more of four flaws.

Because of these four flaws, much of the apparent progress in recent years may be

illusionary.

• Not so clear definition. Early classification of time series (ETSC) generalizes

classic time series classification to ask if we can classify a time series subsequence with

sufficient accuracy and confidence after seeing only some prefix of a target pattern.

The idea is that the earlier classification would allow us to take immediate action when

some practical interventions are possible. However, we show that under reasonable

assumptions, no current ETSC algorithm is likely to work in a real-world setting.

In addition to demonstrating our findings, we either provide potential solutions to

address these problems, e.g., UCR Time Series Anomaly Archive, or offer recommendations

to the community, e.g. specifications for the definition of ETSC.
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Chapter 1

Introduction

Although the term “data mining” did not appear until the 1990s in the community,

the practice of exploring data to discover correlations, patterns and knowledge has a long

history. Early methods, such as Bayes’ theorem, have origins dating back to 1700s. As the

rapid growth of data in both size and complexity over the past two decades, data mining

has augmented manual data processing with automated analysis assisted by intertwined

scientific fields, such as statistics, database systems, and machine learning [1].

However, we unfortunately discovered that algorithm, dataset, or definition pro-

posed in several highly cited papers [2, 3, 4, 5, 6, 7, 8] in the field of data mining may suffer

from surprising problems. As a result, for example, researchers would have been better off

using classic algorithm which would have been much faster. Given the widespread accep-

tance of these works within the community, we raise concerns about the genuine advances

made so far, suggesting that much of the apparent progress in the field of data mining in

recent years may be illusionary.
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1.1 Not So Fast Algorithm

It has long been believed that the Dynamic Time Warping (DTW) distance mea-

sure is the best measure to use for many tasks [9, 10, 11, 12, 13]. Examples of such tasks

include similarity search, clustering, classification, anomaly detection and segmentation.

DTW reports the distance of two time series after optimally aligning them. DTW is com-

puted by finding the minimum cost path in distance matrix D of two time series X and Y ,

where D(i, j) = (X[i]− Y [j])2 +min{D(i− 1, j − 1), D(i, j − 1), D(i− 1, j)}.

Due to the classic DTW algorithm’s quadratic time complexity in relevance to the

length of the time series, various ideas have been proposed to reduce its amortized time

[10], or to quickly approximate it [11]. One widely cited approximate method is FastDTW

[2]. FastDTW asks for a parameter radius (r) and approximates classic (full) DTW by

computing DTW on a downsampled version of the data, then iteratively projecting the

solution discovered onto an upsampled version and refining it.

The FastDTW algorithm has well over two thousand citations and has been ex-

plicitly used in several hundred research efforts. At least five papers use the term FastDTW

in their title [14, 15, 16, 17, 18]. However, in this work, we make a surprising claim. In

any realistic data mining application, the approximate FastDTW is much slower than the

exact DTW. This fact clearly has implications for the community that uses this algorithm:

allowing it to address much larger datasets, get exact results, and do so in less time.
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1.2 Not So Good Datasets

Time series anomaly detection (TSAD) has been a perennially important topic in

data science, with papers dating back to the 1950s [19]. However, in recent years, there has

been an explosion of interest in this topic, much of it driven by the success of deep learning

in other domains and for other time series tasks. Most of these papers test on one or more

of a handful of popular benchmark datasets, created by Yahoo [3], Numenta [4], NASA [5]

or Pei’s Lab (SMD) [6], etc.

In this work, we make a surprising claim. The majority of the individual exemplars

in these datasets suffer from one or more of four flaws. These flaws are triviality, unrealistic

anomaly density, mislabeled ground truth and run-to-failure bias. For example, we say that

a dataset suffers from triviality if can be solved with a single line of code. The implicit of

this “one-liner” observation suggests that the great complexity of deep learning may not

be warranted. More generally, because of these four flaws, we believe that many published

comparisons of anomaly detection algorithms may be unreliable, and more importantly,

much of the apparent progress in recent years may be illusionary.

In addition to demonstrating these claims, with this work, we introduce the UCR

Time Series Anomaly Archive [20]. We believe that this resource will perform a similar

role as the UCR Time Series Classification Archive [13], by providing the community with

a benchmark that allows meaningful comparisons between approaches and a meaningful

gauge of overall progress. However, we do not consider this work to be the final answer

on the subject. We hope this work will inspire the community to take action towards the

creation of a crowdsourced set of benchmark datasets.
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1.3 Not So Clear Definition

Since its introduction two decades ago, there has been increasing interest in the

problem of early classification of time series (ETSC). This problem generalizes classic time

series classification to ask if we can classify a time series subsequence with sufficient accuracy

and confidence after seeing only some prefix of a target pattern. The idea is that the earlier

classification would allow us to take immediate action, in a domain in which some practical

interventions are possible. For example, that intervention might be sounding an alarm or

applying the brakes in an automobile.

In this work, we make a surprising claim. In spite of the fact that there are dozens

of papers [7, 8, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37] on early

classification of time series, it is not clear that any of them could ever work in a real-world

setting. The problem is not with the algorithms per se but with the vague and underspecified

problem description. Essentially all algorithms make implicit and unwarranted assumptions

about the problem that will ensure that they will be plagued by false positives and false

negatives even if their results suggested that they could obtain near-perfect results.

One of our astonishing findings is that we are now two decades and many dozens of

papers into this area, there still seems no real-world publicly available dataset(s) dedicated

to ETSC task. The overreliance on the proxy datasets and synthetic datasets, such as UCR

datasets [13], seems to have led the community astray here. Without real-world publicly

available dataset(s), we doubt whether any genuine progress in ETSC has been be made.

Considering how easy for a student to obtain seismic data recorded on Mars, it is staggering

that every publications on ETSC have to rely on proxy and synthetic datasets.

4



1.4 Reproducibility Statement

We have taken the greatest care to ensure that all experiments in this work are

easily reproducible. To that end, all datasets and code use in this work are archived in

perpetuity at [38], [39], and [40] respectively. In the event that we ever discover an issue

with this work that makes us temper its claims slightly, we will discuss it on correspond-

ing webpage within forty-eight hours. If we ever discover an issue with this work that

significantly affects its claim, we will move to retract the corresponding published papers

[41, 42, 43, 44, 45, 46], but will leave all materials on the website to document our error in

perpetuity.

1.5 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we investigate

FastDTW in four possible settings and show FastDTW is slower in 99% of all use cases,

then explain when and why FastDTW fails to approximate well. Chapter 3 discusses

four flaws existed in popular TSAD benchmark datasets and introduces UCR Time Series

Anomaly Archive as a potential solution that is largely free of these four flaws. Chapter 4

reveals false assumptions inherently made by almost all ETSC algorithms, which will be

overwhelmed by false positives under real-world settings, due to the unclear definition of

ETSC. Finally in Chapter 5, we conclude our findings and summarize the impact we have

made to the community.
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Chapter 2

Not So Fast Algorithm

Many time series data mining problems can be solved with repeated use of an

appropriate distance measure. Examples of such tasks include similarity search, clustering,

classification, anomaly detection, rule discovery, summarization, and segmentation. It has

long been believed that the Dynamic Time Warping (DTW) distance measure is the best

measure to use in many domains, and recent extensive empirical “bake-offs” have confirmed

this [9, 10, 11, 12, 13].

Because the DTW algorithm has time complexity that is quadratic in the length

of the sequences, many ideas have been introduced to reduce its amortized time [10], or to

quickly approximate it [11]. One of the most cited approximate approaches is FastDTW [2].

FastDTW works by creating an approximation of classic (full) DTW by computing DTW

on a downsampled version of the data, then iteratively projecting the solution discovered

onto an upsampled version and refining it.
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At least dozens, but perhaps as many as hundreds of research efforts explicitly

adopt FastDTW in order to gain scalability. The quotes below come from some represen-

tative works:

• “In order to expedite the algorithm, we adopted fastDTW in our work” [47].

• “(to) minimize the computational complexity, we use a method called FastDTW ” [48].

• “To increase the speed of the process, we employed a faster version of DTW, called

FastDTW ” [49].

• “FastDTW provides an efficient approximation to DTW ” [50].

• “We used FastDTW to analyze the recorded accelerometer data for a first implemen-

tation of the gesture recognition” [51].

• “we use the FastDTW algorithm to automatically identify matching segments” [52].

• “the distances between the time series are computed using FastDTW ” [53].

To gauge how commonly used this algorithm is, consider the fact that at least five

papers use the term FastDTW in their title [14, 15, 16, 17, 18].

In this chapter, we make a surprising claim. In any realistic setting, FastDTW is

actually slower than DTW. Every paper that we are aware of that uses FastDTW would

have obtained faster results by using simple DTW. Moreover, these results would have been

exact (by definition), not approximate.

Clearly there are many other papers that made claims that did not pan out with

the passage of time. However, the FastDTW paper is very unusual in which the proposed
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algorithm is commonly used, especially by people outside the data mining community. That

is to say, practitioners in medicine, bioengineering, industry, etc.

Moreover, there are many research efforts whose main goal is to improve FastDTW.

For example, a recent paper summarizes its research contribution with: “In the opinion of

the authors, the disparity between the alignment inefficiency of the FastDTW algorithm

and that of (our algorithm) is especially significant” [54]. This effort also uses FastDTW as

benchmark for accuracy: “While (our algorithm) is slightly less accurate than FastDTW . . . ”

[54]. However, the speed-up reported over FastDTW5 is a factor of about five for time

series of length 150. But as we will show, using off-the-shelf DTW would have dwarfed this

apparent speedup.

The rest of this chapter is organized as follows. In Section 2.1, we briefly review

the necessary background material and notation. Section 2.2 divides the similarity mea-

surement task into four possibilities, which are empirically investigated. In Section 2.3,

we show that even if FastDTW were faster than classic DTW, it is not clear to most peo-

ple when it could fail to give a high-quality approximation. Section 2.4 explains the

assumption made by FastDTW, which leads to its failure in providing good approximation.

In Section 2.5, we present third party observations that confirm our claims are correct.

Section 2.6 summarizes our claims before we offer conclusions in Section 2.7.

2.1 Background and Notation

This review of DTW will be succinct, we encourage the interested reader to consult

[9, 10] and the references therein for more information.
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DTW reports the distance between two time series after optimally aligning them.

DTW is computed by finding the minimum cost path in distance matrix D of two time

series X and Y , where D(i, j) = (X[i]−Y [j])2+min{D(i−1, j−1), D(i, j−1), D(i−1, j)}.

Since at least the 1970s, many practitioners have added constraints to the allowable

warping paths. These constraints are normally denoted as w, which limits the number of

cells (warping window) explored by DTW and the warping path allowed to deviate at most

w cells from the diagonal in computing D. Note that most papers report the warping

constraint as a percentage of the length of time series, a practice we follow here. In this

chapter, we denote DTW with the constraint of w as cDTWw. Two special cases are worth

noting: the case cDTW0 is equivalent to the Euclidean distance, and the case cDTW100 is

equivalent to “unconstrained” or “Full” DTW.

It is important to correct a common misunderstanding here, even though a widely

cited paper corrected it twenty years ago [9]. Many people still believe that the purpose of

using cDTW is to speed up the computation of DTW. However, this is only a happy side

effect of using constraints on the warping path. The real purpose of using cDTW is that

it is almost always more accurate because it prevents pathological warpings (see [9, 12]).

An example of a pathological warping is when, say, a single heartbeat maps onto a dozen

heartbeats. The use of cDTW with a suitable value of w, allows a short heartbeat to align

to a longer heartbeat, but prevents this meaningless one-to-a-dozen alignment.

FastDTW is an approximation to Full DTW. A full exposition of FastDTW can

be found in [2]. Briefly, FastDTW performs three steps recursively with a parameter radius

(r). At each level of recursion, FastDTW downsamples the two time series being compared
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to half their length. Then FastDTW invokes itself to find the warping path of the two

smaller (lower resolution) time series. Finally, a limited DTW is computed at the higher

resolution. The warping window is the neighborhood of the projected warping path from

lower resolution. The size of the neighborhood (i.e. the number of cells away from the

projected warping path) is determined by r. Since FastDTW approximates Full DTW,

r can be seen as the tradeoff between precision and time: to achieve better accuracy of

approximation, a larger r is required; to reduce the running time of the algorithm, a smaller

r is necessary.

It is important to restate that w and r are not the same thing. The former is

the parameter to give different maximum warping constraints, the latter is a parameter to

control the tradeoff between accuracy and speed for FastDTW.

To be clear, we use FastDTWr for FastDTW with the radius of r and cDTWw to

denote cDTW with the warping window width of w.

In this chapter, we use N to refer to the length of the time series being compared,

r for the radius of FastDTW, and w for the user-specified warping constraint, given as a

percentage of N . We use W to refer to the natural amount of warping needed to align two

random examples in a domain, also given as a percentage of N . This value can be difficult

to know exactly, however there are often strong domain hints. For example, when aligning

classical music performances, it is clear that there can be differences in timing between

performances, however Kwon et al. [55] estimated that this is not more than 0.2 seconds.

Thus, for a two-minute music performance this would suggest W = 0.16%.
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2.2 Four Cases in Similarity Measurement

With our notation established, in Table 2.1, we can consider the exhaustive and

exclusive matrix of possible settings in which DTW can be used.

Table 2.1: Four settings in which DTW can be used

N
ge
ts

la
rg
er

→

Case B Case D

Music performance, classical dance performance, <no obvious

seismic data applications>

Case A Case C

Heartbeats, gestures, signatures, golf swings, Residential

gene expressions, gait cycles, star-light-curves, electrical power

sign language words or phrases, bird song demand

W gets larger →

The boundaries between these four cases are somewhat subjective. For our pur-

poses we will say that N transitions from short to long somewhere around 1,000, and that

W transitions from narrow to wide somewhere around W = 20%.

We can now consider the utility of FastDTW for each of these cases.

2.2.1 Case A: Short N and Narrow W

For this case, cDTW is unambiguously faster. Moreover, the original authors echo

this point, writing in 2020 that “If (W ) is known beforehand to be (small), I recommend

cDTW and do not recommend fastDTW.” [56].
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To show how slow FastDTW can be compared to a vanilla iterative implementation

of cDTW, consider Figure 2.1. Here we consider the UWaveGestureLibraryAll dataset

from the UCR archive [13], which has exemplars of length 945, towards the long end of

Case A. We consider all values of w from 0 to 20%.
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Figure 2.1: A comparison of the time needed to compute all pairwise distances of the 896
training examples in UWaveGestureLibraryAll, (which requires (896×895)÷2 = 400,960
comparisons) for r = 0 to 20 for FastDTW (left) and for w = 0 to 20% for cDTW (right).

In this case, we know the best value of W for this dataset, at least in the context

of classification. The UCR archive notes that the error rate of cDTW0 (i.e. Euclidean

distance) is 0.052, that cDTW4 minimizes the error to 0.034, and that cDTW100 (i.e. Full

DTW or unconstrained DTW) has a much higher error rate of 0.108 [13].

It is worth discussing those results. The classification error rate of Full DTW is

much higher than the error rate of constrained DTW. This continues to surprise people,

but it has been known since at least 2004 [9]. It is sometimes referred to as the Ratanama-
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hatana’s observation that “a little warping is a good thing, but too much warping (can be)

a bad thing” [9].

It is important to recall that the two algorithms being compared are both imple-

mented in the same language, running on the same hardware, performing the same task.

It is also important to state that we did not use any optimizations for cDTW. It is

well known that when doing repeated measurements of DTW, say to find an object’s nearest

neighbor or to do nearest neighbor classification, one can avail of both lower bounding

and early abandoning [9, 57]. Moreover, these ideas have be carefully optimized by the

community for DTW. Using these ideas would have shaved at least two further orders of

magnitude off the time for cDTW.

Note that our Figure 2.1 (left) annotations of how well FastDTW approximates

Full DTW are taken from the original paper. We do not make any comment on the quality

of approximation here, other than to say that we assume the original claims are true. Thus

Figure 2.1 shows that for the optimal setting of w for this dataset, cDTW4 is faster than

the coarsest and fastest version of FastDTW. Moreover, even if we insisted on setting a

larger value of w, up to 20, we can still exactly compute cDTW20 as fast as we can compute

a serviceable approximation to Full DTW, by using FastDTW10. Thus, this experiment

provides forceful evidence that at least for Case A, FastDTW is slower than using cDTW.

We believe that at least 99% of all uses of DTW in the literature fall into this

case. One way to see this is to consider the distribution of N and W for the 128 datasets in

the UCR archive [13]. This archive is clearly not a perfect representation of all datasets, all

domains, and all problems. However, it is the largest such collection of labeled time series
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data in the world, and the optimal setting of w (which is our proxy for W ) that maximizes

classification accuracy, was computed by brute-force search [13]. Figure 2.2 summarizes

the data.
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Figure 2.2: (left) The distribution of optimal values for w, for the task of one-nearest
neighbor classification, for 128 datasets. (right) The distribution of the lengths of these
datasets.

These histograms show that majority of time series subsequences considered are

less than 1,000 datapoints, and more importantly, the best value for w is rarely above 10%.

Almost all uses of FastDTW fall into Case A [14, 15, 16, 17, 18, 47, 48, 49, 50, 51, 52, 53],

and in every case the researchers using FastDTW would have been better off using classic

cDTW, which would have been much faster, and exact.

Thus, the vast majority of readers of this work, who are reading this chapter to

decide if they should use cDTW or FastDTW, can stop reading here. Both the current

author, and the original authors of FastDTW [56], are recommending that you use cDTW.

There is no disagreement or ambiguity for this case.
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2.2.2 Case B: Long N and Narrow W

Case B considers the possibility of long time series with a low value forW . We have

already hinted at one such possibility, musical performances, where the task is sometimes

called score following or score alignment. Is cDTW faster here?

Let us perform an experiment. Imagine we align the exactly four-minute long song

“Let It Be” with a live version. For classical music, various papers have suggested values

such as W = 0.16% [55]. Let us be much more liberal and assume that the live version can

be up to two seconds ahead or behind at some point1. Thus, we set w = 0.83%. Music

processing typically uses Chroma Features, which are normally sampled at 100Hz, thus we

have a times series of length 24,000. To obtain a robust estimate we measured the time

required for each algorithm one thousand times reporting the average. We find that:

• cDTW0.83 takes 45.6 milliseconds.

• FastDTW10 takes 238.2 milliseconds.

• FastDTW40 takes 350.9 milliseconds.

Thus, for Case B we find no evidence of the utility of FastDTW.

2.2.3 Case C: Short N and Wide W

Case C considers the case where the N is short (say <1,000 data points), but W

is large. There are no examples in the UCR archive, and a search of the literature does not

suggest examples. However, we have a large collection of datasets, and after a significant

effort, we managed to create a somewhat contrived situation/dataset.

1 With apologies to Sir Paul McCartney, who has superb timing.

15



Imagine that a researcher decides to compare the first hour of electrical power

demand each day in a residence (i.e. from midnight to 1am). Most of the time these would

not be very similar under any measure. However, as shown in Figure 2.3, we occasionally

encounter a pattern that is similar, but only under the assumptions of Case C, where N is

reasonably short (here 450 datapoints) but W is a large fraction of this value. Note that

if we just use one pattern as a query on a sliding window of the entire year-long trace, the

value of W would dramatically decrease, and we would be back in Case A.

N

W

Electrical Power Demand
(one hour) 

Figure 2.3: An example of a case where W is a large faction of N . Two examples of the
electrical power demand from midnight to 1:00 AM, sampled once per eight seconds. This
conserved pattern reflects the program of a dishwasher. The owner may have programmed
it to run after midnight, when the electrical power costs are cheaper in the UK.
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Let us use the electrical power demand to motivate Case C. The natural value of

W here is estimated by looking at the maximum difference in timing between corresponding

pairs of peaks. This happens for the third pair, which differ by 153 datapoints. Given that

time series are of length 450, that gives us an estimate ofW = 34%, which to be conservative,

we will round up to 40%. Thus, in Figure 2.4, we repeat the type of experiment shown in

Figure 2.1, but consider time series of length 450, and w from 0 to 40%.

Since the timing for both algorithms does not depend on the data itself, we use

random walk datasets.
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of the electrical 
demand dataset

Figure 2.4: The experiment shown in Figure 2.1 generalized to consider warping window
width up to 40%. The time is the cumulative time needed for all pairwise comparisons in
a dataset of 1,000 examples (499,500 comparisons).

A recent paper also observed that FastDTW does not achieve expected time op-

timization in Case C. The authors conclude “this is because (our time series) are usually

short, which makes the cost of (FastDTW) exceed the cost of calculating DTW directly”

[58].
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Note that as with Case A, we resisted the temptation to do any of the optimizations

available only to cDTW when doing multiple comparisons. This is a straightforward head-

to-head comparison. Thus, for Case C we find no evidence of the utility of FastDTW.

2.2.4 Case D: Long N and Wide W

Case D is the case emphasized by the original authors of the FastDTW paper as

the best case for their algorithms. However, they did not show any real-world examples of

such datasets, and a (admittedly incomplete) survey of the papers that refence FastDTW

does not show any examples in the literature [14, 15, 16, 17, 18, 47, 48, 49, 50, 51, 52, 53].

We claim that there are no practical applications of such comparisons. There are

simply no problems for which we need to compare time series of this length with a large

value for w. Of course, it is hard to prove a negative, but consider:

• Modern electrocardiograms can record data at rates of up to 25,000Hz [59]. However,

there have been numerous studies that ask, “what is the minimum sampling rate we

need for (some cardiological problem)?” The answer is typically around 250Hz [60].

This means that to compare two heartbeats, we need to compare about 120 to 200

datapoints. Does it ever make sense to compare longer regions of ECGs? No. To

see why, imagine comparing two one-minute long ECGs. Such traces would have

about 100 beats, but it is very unlikely that they would have the exact same number.

While DTW is forgiving of misalignments, it must explain all the data. It is never

meaningful to compare say 98 heartbeats to 103 heartbeats. Thus, we believe that all

uses of DTW for cardiology are in Case A.
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• A recent exhaustive empirical study asked a similar question to the above ECG study

in the context of gesture recognition. It was discovered that “recognition rates for

N = 32, (are) not significantly different than those delivered by higher rates” [61].

This reflects a complex twenty-five gesture, user-independent study. Perhaps there is

some circumstance in which we need a greater N for gestures. Perhaps Asians have

more nuanced gestures than the tested Europeans. However, this study (and many

similar studies) strongly suggest that there is little utility in comparing more than a

few hundred data points for human gestures, gait cycles, sport performances, etc.

• As noted above, the UCR archive has 128 datasets, many culled from real-world

problems. The longest of these is 2,844. However, even for the handful of long time

series, the long length is typically just an artifact of how it was recorded. We can

downsample most of this time series by a factor of eight or more, and get an accuracy

that is statistically significantly the same.

In summary, to the best of our knowledge, there is no evidence that it is ever useful

to compare time series with lengths exceeding (conservatively) 1,000. Of course, absence of

evidence is not evidence of absence. However, it is clear that at a minimum, this is a very

rare case.

Nevertheless, for completeness we do test this case.

We consider a contrived “fall” dataset. Suppose that a researcher was investigating

falls by having actors wearing a motion capture suit fall over in a safe environment. Further

imagine she instructs actors to “Fall over anytime within two seconds of hearing the beep”.

Assume she does not crop and clean the data, but simply measures the distance between

19



two-second snippets, which were recorded at 100Hz. Knowing this, we can assume that in

this domain, W ≈ 100%.

Instead of two seconds, let us generalize to L seconds. As shown in Figure 2.5,

we created a data generator that creates pairs of time series of length L seconds at 100Hz.

One time series has an immediate fall, then the actor is near motionless for the rest of the

time. For the other time series, the actor is near motionless until just before L seconds are

up, then he falls.

It is clear that for cDTW to align the two falls, we must use cDTW100.

Fall, then L mo�onless seconds

L mo�onless seconds, then fall
L = 0 L = 1

Figure 2.5: (left) We model the task of aligning early and late falls in a L-second long
interval. (right) The cDTW alignment for L = 0 and L = 1, are both examples of Case C,
but for large enough values of L, we begin to move to Case D.

Note that we do not test to see if FastDTW40 actually aligns the two falls, we

simply assume it does.

We can now create pairs of time series of increasing values of L and discover at

what point FastDTW40 becomes as fast as cDTW100. Figure 2.6 shows the results.

Thus, we have finally found a circumstance where FastDTW40 is faster than

cDTW100. Note that at this breakeven point FastDTW40 is an approximation to cDTW100,

so cDTW100 is still preferable. However, as L grows well beyond the transition point, each

user needs to consider the tradeoff between the time taken vs. utility of approximation.
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Figure 2.6: As we make L longer and longer, we find that when L = 4 (N = 400),
FastDTW finally becomes faster than unconstrained cDTW (or cDTW100). For each L, the
time is measured by running each algorithm 1,000 times, and reporting the average.

The full answer to that question is beyond the scope of this chapter, and in any case de-

pends upon the domain, the analytic task and the cost of an error. For example, if we

were comparing some data that we were confident was really in Case D, and we worked

out that for the values of N , w and r, FastDTWr would be ten times faster, and there

was little consequence of using an approximation, we might well decide to use FastDTWr.

However, suppose the data in question came from Mars, or from an intrusive, expensive

and time-consuming medical biopsy. In these cases, it would be more difficult to justify an

approximation, even if it gives you a tenfold speedup.

Another issue is the magnitude at which the hypothetical tenfold speedup occurs.

There is a real tangible difference between one day and ten days. However, for most practical

purposes there is simply no difference between 0.01 seconds and 0.1 seconds. The reader
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might imagine that repeated use of comparisons could allow these short amounts of time to

add up to the one/ten days situation: for example, for similarity search or classification.

However, for repeated uses of DTW, there are several ideas that can only be applied to

cDTW, including lower bounding, early abandoning, just-in-time normalization, etc. These

ideas accelerate cDTW by a further two to five orders of magnitude [10, 12]. For example,

for similarity search of a cDTW5 query of length 128, using a 2012 machine, Rakthanmanon

et al. [10] searched a time series of length one trillion in 1.4 days, while using a modern

machine, FastDTW10 would take 5.8 years2. Likewise, to create the UCR archive [13],

Hoang Anh Dau computed cDTW 61,041,100,000,000 times, all on an off-the-shelf desktop,

something that would be simply inconceivable with FastDTW.

2.3 When Does FastDTW Fail to Approximate Well?

In this chapter, we have mostly refrained from measuring the accuracy of the

FastDTW approximation. Partly this is because we have shown that in almost all cases, it

is a moot point. In addition, this question opens a pandora’s box of what the appropriate

measure of quality of approximation is?

Nevertheless, it is instructive to consider one example. We created three time

series, and as shown inTable 2.2, we measured their pairwise distances, using these distance

matrices to create the dendrograms shown in Figure 2.7.

2 Averaged over a million comparisons, we found FastDTW10 takes 0.1845 milliseconds for N = 128, and
1012 × 0.1845 milliseconds = 5.8 years.
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Figure 2.7: A clustering of three time series under Full DTW (a) and under FastDTW20

(b). (c) The Full DTW alignment between A and B (only selected hatch lines are shown
for clarity) shows that they are almost identical if we allow unconstrained warping.
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Table 2.2: The distance matrices for the three time series shown in Figure 2.7 under Full
DTW and FastDTW20

Full DTW FastDTW20

A B C A B C

A 0 0.02 6.822 A 0 31.24 6.822

B 0 6.848 B 0 6.848

C 0 C 0

The two time series A and B clearly require significant warping. However, as

Figure 2.7 (c) shows, given unconstrained freedom to warp, they are almost identical,

differing only by 0.02. However, FastDTW20 finds them to be 31.24 apart. Using the error

metric proposed in the original FastDTW paper [2], this is an error of 156,100%.

In a sense, this example is unfair to FastDTW20. For any distance measure or

approximation or upper/lower bound to a distance measure, if you understand how the

technique works, you can create synthetic examples that will defeat it. This typically says

little or nothing about how likely you are to encounter such adversarial examples in the real

world. However, we show this example to make the following point. There appears to be

no literature that considers under what conditions FastDTW can fail (and therefore, when

to avoid using it). Without such an understanding, practitioners (who are in Case D) may

wish to step back and reexamine the trade-offs they are making.

2.4 Why FastDTW Fails?

The result shown in Figure 2.7 struck some early readers of this chapter as so

extraordinary they assumed it was an error on our part. Thus, for completeness, we show

how we made this example.
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FastDTW assumes that the low dimensionality version of a time series has the same

basic shape as the raw data under Piecewise Aggregate Approximation (PAA). This is a

reasonable assumption, but as with any dimensionality reduction technique, the pigeonhole

principle tells us there must be examples of objects that are poorly represented in lower

dimensionality representation. Suppose that poor approximation for a pair of objects has the

property that DTW warps it in the opposite direction to the original data. As Figure 2.8

shows, our pair of time series have exactly that property.

Feature 1

Feature 2

128 datapoints

Feature 1
(becomes constant due to 
downsampling)

Feature 2
(becomes 
rela�vely large as 
Feature 1 was 
diminished)

Downsampled to 16 datapoints

A

B

Figure 2.8: (left) The two time series shown in Figure 2.7 optimally warped by DTW.
(right) The eight-to-one PAA downsampled version of the time series depresses the impor-
tant features and (relatively) magnifies a tiny feature that warps in the opposite direction
to the original time series. It is this “wrong way” warping that is passed up to a finer
resolution for refinement.

Once the low resolution approximation of FastDTW has committed to warping in

the wrong direction, it cannot recover in the higher resolutions, because the parameter r

excludes reaching the correct warping path.
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2.5 Independent Confirmations of Our Claims on FastDTW

We wrote to several authors that had recently used FastDTW and asked them if

they would be willing to re-run their experiments using cDTW. At the time of going to

press, we received one reply, from the authors of [62]. Below is the reply, edited for brevity

(full text at [63]).

I reran the main experiment from our paper with the newest re-leased version of
the “fastdtw” package for Python (version 0.3.4) as well as with the implemen-
tation you provided me (using radius=30 for both).

- Using FastDTW reproduced the same results we originally published (77.38%
of gestures correctly classified)

- Using your version improved the results of our classifier by about 5% (82.14%
of gestures correctly classified)

I also compared the runtime of the two DTW implementations during the ex-
periment. I ran the whole experiment twice, which amounts to a total of 2 ×
5.851 = 11.702 runs of each DTW implementation for which I compared the run
times.

Result:

- Your implementation was approx. 24x faster than FastDTW on average (mean:
23.7059, std: 3.587)

- In the “slowest” case, your implementation was still approx. 5.8x faster than
FastDTW

I’d conclude that these tests suggest that your implementation is indeed superior
in terms of speed as well as for usage in time-series classification.

Several recent papers [58, 64, 65, 66, 67, 68, 69] also observed that FastDTW does

not achieve expected performance. Thus, we have at least eight confirmations from a third

party that our claims are correct.
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2.6 Summary

We have shown that the vast majority of the researchers that used FastDTW

would have been better off simply using cDTW. They would have found simple cDTW to

be both faster and to produce exact results.

This chapter was not written as part of a game of one-upmanship. It really is the

case that there are lost opportunities here, and the community should be aware of this issue.

Consider the recent paper [62] which notes “We employ the FastDTW method by Salvador

and Chan. . . ”. The paper shows promising results in gesture recognition, but then ends on

the pessimistic question, “how (can) this method can be sped up, desirably up to the point

where it reaches real-time capability”. However, for at least the last decade, it was already

possible to achieve at least ten thousand times faster real-time performance on their task3.

2.7 Conclusion

We have shown that a commonly used tool to accelerate time series data analytics

does not actually achieve speed-up in any realistic setting. We discovered this issue be-cause

Salvador and Chan took enormous efforts to make their code available, to clearly explain

their approach in their paper, and because they were incredibly responsive to the many

questions we asked them. We are extremely appreciative of their assistance.

3 Schneider et al. [62] conclude by bemoaning the inability to do real time gesture monitoring with
FastDTW. They have 36 channels corresponding to different body parts sampled at 30Hz. Let us assume
the longest gesture takes two seconds. Can we monitor thirty-six 60-datapoint queries in real time under
DTW? Twelve years ago, Rakthanmanon et al. [10] showed they could monitor a 128-datapoint query at
about 6 million Hz. To demonstrate this visually, they produced a video [57] that shows they could monitor
a query heartbeat of length 421 at about thirty thousand times faster than real time.
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Chapter 3

Not So Good Datasets

Time series anomaly detection (TSAD) has been a perennially important topic in

data science, with papers dating back to the dawn of computer science [19]. However, in

the last eight years, there has been an explosion of interest in this topic, with at least one

or two papers on the topic appearing each year in virtually every database, data mining

and machine learning conference, including SIGKDD [5, 6], ICDM [70], ICDE [71], VLDB

[72], etc.

A large fraction of this increase in interest seems to be largely driven by researchers

anxious to transfer the considerable success of deep learning in other domains and from other

time series tasks such as classification.

Most of these papers test on one or more of a handful of popular benchmark

datasets, created by Yahoo [3], Numenta [4], NASA [5] or Pei’s Lab (SMD) [6], etc. In

this chapter, we make a surprising claim. The majority of the individual exemplars in

these datasets suffer from one or more of four flaws. These flaws are triviality, unrealistic
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anomaly density, mislabeled ground truth and run-to-failure bias. Because of these four

flaws, we believe that most published comparisons of anomaly detection algorithms may be

unreliable. More importantly, we believe that much of the apparent progress in recent years

may be illusionary.

For example, Qiu et al. [73] introduce a “novel anomaly detector for time-series

KPIs based on supervised deep-learning models with convolution and long short-term mem-

ory (LSTM) neural networks, and a variational auto-encoder (VAE) oversampling model.”

This description sounds like it has many “moving parts”, and indeed, the dozen or so explic-

itly listed parameters include: convolution filter, activation, kernel size, strides, padding,

LSTM input size, dense input size, softmax loss function, window size, learning rate and

batch size. All of this is to demonstrate “accuracy exceeding 0.90 (on a subset of the Yahoo’s

anomaly detection benchmark datasets).” However, as we will show, much of the results

of this complex approach can be duplicated with a single line of code and a few minutes of

effort.

This “one-line-of-code” argument is so unusual that it is worth previewing it before

we formally demonstrate it in Section 3.1.2 below. Almost daily, the popular press vaunts

a new achievement of deep learning. Picking one at random, in a recent paper [74], we

learn that deep learning can be used to classify mosquitos’ species. In particular, the

proposed algorithm had an accuracy of 97.8% when distinguishing Aedes vexans from Culex

triaeniorhynchus. Should we be impressed? Dr. Keogh has significant computational

experience working with mosquitos, and he is impressed.
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Suppose however that someone downloaded the original 1,185 images from the

study and showed that they could classify them with 100% accuracy using a single line of

code4. If that happened, there are two things we can confidently say:

• We would not for one moment imagine that the one line of code had any particular

value as a classifier. We would assume that this was some kind of “trick”. Perhaps

the Aedes images were in JPEG format and the Culex images were in GIF format.

Or perhaps one species was recorded in color, and the other in B/W. Something

interesting is clearly happening, but it is surely not the case that a useful entomological

image classification algorithm takes a single line of code.

• We would have lost some confidence in the original paper’s results. It is still likely

that the paper is genuinely doing something useful. However, we would all be a lot

happier trusting the paper’s contribution if the authors released a statement to the

effect of “we converted all files to JPEG format, and all images to 16-bit B/W, and

reran the experiments getting similarly good results. Moreover, we are confident that

our new publicly released dataset will now not yield to a single line of code algorithm”.

This is a perfect analogy of our one-line-of-code argument. Our ability to produce

“one-liners” for most datasets does not mean that the original papers that tested on these

datasets are not making a contribution. However, at a minimum, it does strongly suggest

that the community needs to regroup, and test on new datasets that would generally stump

trivial one-line solutions.

4 To be clear, we choose this example because it was the first hit for a Google search for “novel deep
learning applications”. We have no reason to doubt the claims of this paper, which we only skimmed.
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Before continuing, it is important to note that our discussion of some issues with

the benchmark datasets should in no way be interpreted as criticism of the original intro-

ducer of these datasets.

These groups have spent tremendous time and effort to make a resource available

to the entire community and should rightly be commended. It is simply the case that the

community must be aware of the severe limitations of these datasets, and the limitations of

any research efforts that rely upon them.

3.1 A Taxonomy of Benchmark Flaws

Before discussing the four major flaws found in many public archives, we will

briefly discuss related work, to put our observations into context.

3.1.1 Related Work

The literature on anomaly detection is vast [75, 76], with a particular increase in

works in just the last five to ten years [3, 4, 5, 70, 73, 77, 78, 79, 80, 81]. We refer the

interested reader to [72] and [76] which offer the reader a detailed review and taxonomy.

Almost all these works test on one or more public datasets created by a handful

of groups, including Yahoo [3], Numenta [4], NASA [5] or SMD [6], etc. Some papers test

on these public datasets in addition to a private dataset. In many cases, the authors do not

even show a plot of any data from the private datasets. Thus, here we can clearly make

no claims about such private datasets, other than to note that the use of private datasets

thwarts the community’s laudable move to reproducibility. In addition, the use of private
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datasets will always be accompanied by the possibility of unconscious cherry-picking that

the reader or the reviewer will never know about.

There is a strong implicit assumption that doing well on one of the public datasets

is a sufficient condition to declare an anomaly detection algorithm useful (and therefore

warrant publication or patenting). Indeed, this assumption is stated explicitly in many

works, for example Huang [82] notes “(The Yahoo) A1Benchmark is undoubtedly a good

time-series dataset for testing the general effectiveness of an anomaly detection method”,

and Gao et al. [83] gush that “Yahoo data set has a good coverage of different varieties

of anomalies in time series, such as seasonality, level change, variance change and their

combinations.” However, we are not aware of any work that has treated this assumption

critically.

In the following four sections, we will introduce four issues with these public

datasets that we believe throws doubt on the assumption that they are suitable for com-

paring algorithms or gauging progress in time series anomaly detection.

3.1.2 Triviality

A large fraction of the problems in the benchmark datasets are so simple to solve

that reporting success in solving them seems pointless or even absurd. Of course, trivial is

not a well-defined word, so, to firm up our claim we will make a practical testable definition:

Definition 1. A time series anomaly detection problem is trivial if it can be solved with

a single line of standard library MATLAB code. We cannot “cheat” by calling a high-level

built-in function such as kmeans or ClassificationKNN or calling custom written functions.

We must limit ourselves to basic vectorized primitive operations, such as mean, max, std,

diff, etc.
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This definition is clearly not perfect. MATLAB allows nested expressions, and

thus we can create a “one-liner” that might be more elegantly written as two or three lines.

Moreover, we can use unexplained “magic numbers” in the code, that we would presumably

have to learn from training data. Finally, the point of anomaly detectors is to produce purely

automatic algorithms to solve a problem. However, the “one-liner” challenge requires some

human creativity (although most of our examples took only a few seconds and did not tax

our ingenuity in the slightest).

Nevertheless, our simple definition gets at the heart of our point. If we can quickly

create a simple expression to separate out anomalies, it strongly suggests that it was not

necessary to use several thousands of lines of code and tune up to a dozen parameters to

do it.

Perhaps the best way to see this is to imagine that we give the same challenge

to create a “one-liner” for differentiating protein-coding and noncoding RNA [80], or we

had the challenge of separating positive vs negative Yelp reviews. Both of these are also

one-dimensional problems on which deep learning appears to have made significant progress

in recent years [80]. However, it seems inconceivable that the bioinformatic or text datasets

considered in the literature could be teased apart with a single line of code, no matter how

contrived. These are intrinsically hard problems, and the communities working on them

are using intrinsically challenging datasets.

To illustrate our point, consider Figure 3.1, which shows an example from the

SMD dataset [6]. The example is a multiple-dimensional dataset, here we consider only

dimension 19.
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diff(M19) > 0.1
M19 < 0.01
movstd(M19,10) > 0.1

0 10,000 20,000 30,000

0

1 M19 (OmniAnomaly/ServerMachineDataset/test/machine‐3‐11.txt, Column 19)

Ground Truth

Figure 3.1: (top to bottom) Dimension 19 from SMD3-11 dataset. A binary vector (red)
showing the ground truth anomaly labels. Three examples of “one-liners” that can solve
this problem.

There are dozens of simple one-liners that solve this problem. In the figure, we

show three representative examples.

Let us take the time to preempt some possible objections to this demonstration:

• All the one-liners have a parameter. True, but recall that most anomaly detection

algorithms, especially ones based on deep learning, have ten or more parameters.

Moreover, the results here are not particularly sensitive to the parameter we set.

• The choice of dimension was cherry-picked. We deliberately chose one of the harder

of the 38 dimensions here. Most of the rest are even easier to solve.

• The choice of problem was cherry-picked. Of the twenty-eight example problems in

this data archive, the majority are this easy to solve with one-liners.

• The fact that you can solve this problem in one line, does not mean that other algo-

rithms that are successful in this dataset are not useful. True, we have acknowledged

that point in multiple places in this chapter and are happy to do so again here.
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The second most cited benchmark is Numenta [4]. The Numenta archive is com-

mendably diverse, however most of the examples, like the one shown in Figure 3.2, readily

yield to a single line of code.

AISD: Numenta art_increase_spike_density

0 1000 2000 3000 4000

Ground Truth

movstd(AISD,5)>10

Figure 3.2: (top to bottom) The Numenta Art Increase Spike Density datasets. A binary
vector (red) showing the ground truth anomaly labels. A “one-liner” (green) that can solve
this problem.

We will not even bother to show any examples from the NASA dataset (the in-

terested reader can view many examples on [39]). In about half the cases, the anomaly

is manifest in many orders of magnitude difference in the value of the time series. Such

examples are well beyond trivial.

Other NASA examples consist of a dynamic time series suddenly becoming exactly

constant (see in Figure 3.9). For those examples, we can flag an anomaly if, say, three

consecutive values are the same, with something such as diff(diff(TS)) == 0.

Having said that, perhaps 10% of the examples in the NASA archive are mildly

challenging, although even those examples do not need to avail of the power of deep learning,

as the yield to decade-old simple ideas [84, 85].

The Yahoo archive [3] is by far the most cited in the literature. It contains a

mixture of real and synthetic datasets. Let us consider the first real dataset, which happens
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to be one of the more challenging examples (at least to the human eye). However, as

Figure 3.3 shows, it readily yields to a one-liner.

0

0.2

0.4

0.6

0.8

0 500 1000 1500

R1: Yahoo A1‐Real1

Ground Truth

R1 > 0.45

1200 1210 1220

Ground Truth

R1 > 0.45

Zoom‐In

Figure 3.3: Yahoo A1-Real1. A binary vector (red) showing the ground truth anomaly
labels. An example of a “one-liner” (blue) that can solve this problem. A zoom-in shows
how precisely the simple one-linear can match the ground truth.

Lest the reader think that we cherry-picked here, let us consider the entire Yahoo

Benchmark [3]. There are 367 time series in the Yahoo Benchmark; most of them can be

solved with a universal one-liner (3.1) or (3.2):

abs(diff(TS)) > u×movmean(abs(diff(TS),k)

+ c ×movstd(abs(diff(TS)),k)

+ b (3.1)

diff(TS) > u×movmean(diff(TS),k)

+ c ×movstd(diff(TS),k)

+ b (3.2)

where TS is the time series, u is either 0 or 1 to determine whether movmean is

used, k is the window size to compute k-points mean values and standard deviations, c is
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the coefficient applied to movstd, and b is the offset to adjust the center of the right-hand

side of (3.1) or (3.2).

The only difference between (3.1) and (3.2) is to use either diff(TS) or abs (diff(TS)).

From (3.1) and (3.2), we can derive the following simplified one-liners:

abs(diff(TS)) > b (3.3)

abs(diff(TS)) > movmean(abs(diff(TS),k)

+ c×movstd(abs(diff(TS)),k)

+ b (3.4)

diff(TS) > b (3.5)

diff(TS) > movmean(diff(TS,k)

+ c×movstd(diff(TS),k)

+ b (3.6)

We did a simple bruteforce search to compute individual k, c and b which solve

anomaly detection problems on all 367 time series. As the results show in Table 3.1, we

are surprised by the triviality of the Yahoo Benchmark: 316 out of 367 (86.1%) can be

easily solved with a one-liner.

Surprisingly, 193 out of 367, that is more than half, time series in Yahoo Benchmark

can be solved with individual magic numbers b in (3.3) or (3.5). Even for those fourteen

time series solvable with (3.6) in A3 dataset, they share a common property of k = 5 and

c = 0, while b varies case by case.

The overall 86.1% number seems competitive with most papers that have examined

this dataset [73, 82, 83] (it is difficult to be more precise than that because of the vagaries

of scoring functions). Moreover, as we will show in Section 3.1.4, because of some labeling

errors, this is probably as close to perfect as can be achieved on this dataset.
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Table 3.1: Bruteforce results on Yahoo Benchmark

Dataset
Solvable # Time Series # Time Series

Percent
with Solved in Dataset

A1

(3.3) 30
67

44.8%

(3.4) 14 20.9%

Subtotal 44 67 65.7%

A2

(3.3) 40
100

40.0%

(3.4) 57 57.0%

Subtotal 97 100 97.0%

A3

(3.5) 84
100

84.0%

(3.6) 14 14.0%

Subtotal 98 100 98.0%

A4

(3.5) 39
100

39.0%

(3.6) 38 38.0%

Subtotal 77 100 77.0%

Total 316 367 86.1%

In [39], we show a gallery of dozens of additional examples from Yahoo [3], Numenta

[4], NASA [5] and Pei’s Lab (SMD) [6] that yield to one line solutions.

3.1.3 Unrealistic Anomaly Density

This issue comes in three flavors:

• For some examples, more than half the test data exemplars consist of a contiguous

region marked as anomalies. For example, NASA datasets D-2, M-1 and M-2. Another

dozen or so have at least 1/3 of their length consist of a contiguous region marked as

anomalies [5].
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• For some examples, there are many regions marked as anomalies. For example, SMD

exemplar machine-2-5 has 21 separate anomalies marked in a short region.

• In some datasets, the annotated anomalies are very close to each other. For example,

consider Figure 3.3, it shows two anomalies sandwiching a single normal datapoint.

There are many issues with such an unrealistic anomaly density. First, it seems to

blur the line between classification and anomaly detection. In most real-world settings, the

prior probability of an anomaly is expected to be only slightly greater than zero. Having

half the data consist of anomalies seems to violate the most fundamental assumption of the

task. Moreover, many algorithms are very sensitive to the priors.

Another issue is that this unrealistic density greatly confuses the task of scoring

and comparing algorithms. Suppose we have a dataset with ten anomalies, one at about

midnight for ten days, reflecting an increasingly weakening pump filling a tank at the start

of a batch process. We could imagine two rival algorithms, each of which managed to detect

a single anomaly. However, one algorithm finds the first anomaly, and the other algorithm

finds the last. These outcomes correspond to very different practical results when deployed.

The former saves ten bad batches being created, the latter only one. We might imagine

rewarding more for earlier detection, and in fact the Numenta team [4] (among others) have

suggested that. However, the resulting scoring function is exceedingly difficult to interpret,

and almost no one uses this [86].

We believe that the ideal number of anomalies in a single testing time series is

exactly one. Moreover, this number should be communicated with the dataset. This makes

the users task a little easier. Instead of trying to predict if there is an anomaly in the dataset,
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the algorithm should just return the most likely location of the anomaly. However, for this

slight simplification which ignore specificity (which can and should be evaluated separately),

we gain the fact that the evaluation is now binary. By testing on multiple datasets, we can

report the aggregate results as simple accuracy, which is intuitively interpretable.

3.1.4 Mislabeled Ground Truth

All of the benchmark datasets appear to have mislabeled data, both false positives

and false negatives. Of course, it seems presumptuous of us to make that claim, as the

original creators of the datasets may have had access to out-of-band data they used to

produce the labels. Nevertheless, we believe that many of the examples we claim are

compelling enough to be unambiguous.

For example, consider the snippet of Yahoo A1-Real32 shown in Figure 3.4. Any

algorithm that points to location B will be penalized as having a false positive, but a true

positive region A, is part of the same constant line. Since literally nothing has changed

from A to B, it is hard to see how this labeling makes sense5.

In Figure 3.5, we see another Yahoo time series A1-Real46. There is a point

anomaly (or “dropout”) marked with C. However, at location 360, there is an almost

identical dropout D that is not labeled as having an anomaly.

5 If the rest of the data had many short constant regions, say of length 12, then you could imagine that a
good algorithm might consider the 13th constant datapoint in a row an anomaly. However, this is the only
constant region in this dataset.
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Figure 3.4: An excerpt from Yahoo A1-Real32. An algorithm that points to A will be
marked as a true positive. An algorithm that points to B will be marked as a false positive.
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Figure 3.5: (top) The Yahoo A1-Real46 dataset with its class labels (red). (bottom)
Overlaying two snippets allows a one-to-one comparison between the region of C and D.
The single point marked C is a true positive, but surprisingly, the point marked D is not.
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A1Benchmark‐Real47
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E

Figure 3.6: An excerpt from Yahoo A1-Real47. Both E and F are marked as anomalies,
but it is hard to see that F is truly an anomaly.
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In Figure 3.6, we see a snippet of Yahoo A1-Real47 with two labeled anomalies.

The one pointed to by E seems like a dropout, but F is a puzzle. Its rounded bottom

visually looks like a dozen other regions in this example.

If we measure F’s mean, min, max, variance, autocorrelation, complexity, Eu-

clidean distance to the nearest neighbor, etc. and compare these numbers to other rounded

bottom regions (Figure 3.6 shows two others, of the about 48), there is simply nothing

remarkable about it.

Beyond these issues, there are other labeling issues in the Yahoo datasets. For

example, two datasets seem to be essentially duplicates (A1-Real13 and A1-Real15). An

additional issue is more subjective, but some of the datasets seem to have unreasonably

precise labels. Consider the labels for A1-Real67 shown in Figure 3.7 (top).
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A1Benchmark‐Real67 (Excerpt): Proposed Label

Figure 3.7: (top) An excerpt from the Yahoo A1-Real67 dataset with its class labels (red).
(bottom) Our proposed label (blue) for this dataset.

By analogy, some modern automobiles have anomaly detection sensors to detect

violent crashes. Imagine a fast-moving car is involved in a crash and goes thumbing end-

over-end down the highway. At some points in the rotation, the car will momentarily have

a normal orientation. However, it would be bizarre to label those regions as “normal”.
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Similarly, in A1-Real67, after about 50 almost identically repeated cycles, at time

1,384, the system has clearly dramatically changed, warranting flagging an anomaly. How-

ever, the subsequent rapid toggling between “anomaly” and “normal” seems unreasonably

precise.

There are several reasons why this matters. Most anomaly detectors effectively

work by computing statistics for each subsequence of some length. However, they may place

their computed label at the beginning, the end or the middle of the subsequence. If care

is not taken, an algorithm may be penalized because it reports a positive just to the left

(or just to the right) of a labeled region. This is always a possible concern, but it becomes

much more of an issue with rapid toggling of states.

One of the most referenced datasets is Numenta’s NYC Taxi dataset, which records

the taxi demand in New York City from 2014/07/01 to 2015/01/31 [4]. According to the

original labels, there are five anomalies, corresponding to the NYC marathon, Thanksgiving,

Christmas, New Year’s Day, and a blizzard.

However, as shown in Figure 3.8, this ground truth labeling seems to have issues.

Grand Jury Decision

Xmas
Daylight Savings

New YearIndependence Day

Thanksgiving

Labor Day

Climate March

Comic Con
BlizzardMLK Day

July 1st (2014) Jan 31st (2015)

New York Taxi Demand

Discord score BLM March
Marathon

Figure 3.8: (top) Numenta’s NYC Taxi dataset. (bottom) The time series discord score of
the dataset [85, 84], with peaks annotated. The red text denotes the ground truth labels.
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One minor issue is the anomaly attributed to the NYC marathon is really caused

by a daylight-saving time adjustment that was made the same day.

However, the main problem with the five labels is that they seem very subjective.

After a careful visual analysis, we believe that there are at least seven more events that

are equally worthy of being labeled anomalies, including Independence Day, Labor Day

and MLK Day. In addition to these USA holidays, we can easily detect the impromptu

protests that followed the grand jury decision not to indict officers involved in the death of

Eric Garner, “Large groups shouted and carried signs through Times Square. . . Protesters

temporarily blocked traffic in the Lincoln Tunnel and on the Brooklyn Bridge” [87], and the

more formal protest march that followed ten days later.

It is difficult to overstate the implications of this finding. At least dozens of papers

have compared multiple algorithms on this dataset [4, 77, 78, 88], especially a recent paper

[88] claiming that “The performance of (our algorithm) is compared with those of related

methods, such as STL, SARIMA, LSTM, LSTM with STL, and ADSaS. The comparison

results show that (our algorithm) outperforms the others in terms of the precision, recall,

and F1-score.” However, it is possible that an algorithm that was reported as performing

very poorly, finding zero true positives and multiple false positives, actually performed very

well, discovering Grand Jury, BLM March, Comic Con, Labor Day and Climate March, etc.

The perfect straight 1.0 on precision, recall and F1 scores claimed in [88], just happens to

agree with significant mislabeling in NYC Taxi dataset, and strongly suggests overfitting.

Finally, let us consider an example from the NASA archive [5]. In Figure 3.9, we

show three snippets from a test set of Mars Science Laboratory: G-1. One of the snippets is
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labeled with the only anomaly acknowledged in this dataset. The anomaly corresponds to a

dynamic behavior, becoming “frozen” for a period of time. However, the two other snippets

also have this strange neighbor, but are not marked as anomalies. As always, it is possible

that the creators of this archive have access to some out-of-band information that justifies

this (none of the metadata or reports that accompany the data discuss this). However, in

this case, it is particularly hard to believe these labels. In any case, suppose we compare

two algorithms on this dataset. Imagine that one finds just the first true anomaly, and the

other finds all three events highlighted in Figure 3.9. Should we really report the former

algorithm as being vastly superior?

0 100 200 300

Mars Science Laboratory: G-1

Snippet
beginning at 
4600

Snippet
beginning at 
5050

Snippet
beginning at 
6700

Labeled Anomaly

Not an
anomaly?

Not an
anomaly?

Figure 3.9: (top to bottom) Three snippets from Mars Science Laboratory: G-1. The
topmost one has the only labeled anomaly in this dataset. However, the bottom two snippets
have essentially identical behaviors as the anomaly, but are not identified as such.
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3.1.5 Run-to-failure Bias

There is an additional issue with at least the Yahoo (and NASA) datasets. As

shown in Figure 3.10, many of the anomalies appear towards the end of the test datasets.
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datasets, normalized as a percentage of the full length.

Figure 3.10: The locations of the Yahoo A1 anomalies (rightmost, if there are more than
one) are clearly not randomly distributed.

It is easy to see why this could be true. Many real-world systems are run-to-failure,

so in many cases, there is no data to the right of the last anomaly. However, it is also easy to

see why this could be a problem, as it drastically affects the default rate. A näıve algorithm

that simply labels the last point as an anomaly has an excellent chance of being correct.

3.1.6 Summary of Benchmark Flaws

We believe that we have demonstrated that the classic time series anomaly detec-

tion archives are irretrievably flawed. For example, if we were told that algorithm A could

achieve an F1 score of 1.0 on one of these datasets [88], should we be impressed? Given what

we know about the amount of mislabeling on these datasets, we should not be impressed,

instead we should have to suspect fraud or (much more plausibly) error.

46



However, suppose instead that we were told that algorithm B could achieve an

F1 score of 0.9 on one of these datasets. Given what we know about the triviality of these

datasets, this seems like something we could match or beat with decades-old algorithms.

Thus, there is simply no level of performance that would suggest the utility of a proposed

algorithm.

Similarly, if we were told that algorithm C was compared to algorithm D on these

datasets, and algorithm C emerged as being an average of 20% better, could we now assume

that algorithm C really is a better algorithm in general? Again, given what we know about

these datasets, even a claimed 20% improvement (larger than the typically claimed margin

of improvement) would not imbue confidence. Recall just Figure 3.8, on that dataset, if

algorithm C scored a perfect score, relative to the claimed labels, we should regard it as a

poor algorithm with low sensitivity.

3.2 Introducing the UCR Anomaly Archive

Having observed the faults of many existing anomaly detection benchmarks, we

have used the lessons learned to create a new benchmark dataset, The UCR Time Series

Anomaly Archive [20]. As we explain below, we have endeavored to make our resource

free of the issues we have noted, with one exception. A small fraction of our datasets may

be solvable with a one-liner. There are two reasons for this. First, we wanted to have

a spectrum of problems ranging from easy to very hard. Second, there are occasionally

real-word anomalies that manifest themselves in a way that is amenable to a one-liner, and

their inclusion will allow researchers to make claims about the generality of their ideas. For
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example, AspenTech, an oil and gas digital historian, encodes missing data as -9999. If

the data is ported to another system and normalized, the exact value of -9999 may change,

but such a rapid decrease in value should rightly trigger an anomaly. Such dropouts are

generally easy to discover with a one-liner.

To prevent the datasets in the archive reflecting our biases and interests too much,

we broadcasted a call for datasets on social media platforms read by data scientists, and we

wrote to hundreds of research groups that had published a paper with “anomaly detection”

in the title in the last five years. Alas, this did not yield a single contribution. Nevertheless,

the datasets span many domains, including medicine, sports, entomology, industry, space

science, robotics, etc.

As we discussed in Section 3.1.3, we believe that the ideal number of anomalies

in a test dataset is one. The reader will be curious as to how we ensured this for our

datasets. Clearly, we do not have space to explain this for each dataset (although the

archive does have detailed provenance and metadata for each dataset [20]). Below we show

two representative examples to explain how we created single anomaly datasets.

3.2.1 Natural Anomalies Confirmed Out-of-Band

Consider Figure 3.11 which shows an example of one of the datasets in our

archive. The first 2,500 datapoints (the ‘2500’ in the file’s name) are designed to be used

as training data, and the anomaly itself is located between datapoints 5,400 and 5,600 (the

‘5400 5600’ in the file’s name) indicate the location of the anomaly.
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Figure 3.11: (top) UCR Anomaly BIDMC1 2500 5400 5600, a dataset from our archive.
(bottom) A zoom-in of the region containing the anomaly. A PVC observed in an ECG
that was recorded in parallel offers out-of-band evidence that this is a true anomaly.

Here the anomaly is a little subtle. How can we be so confident that it is semanti-

cally an anomaly? We can make this assertion because we examined the electrocardiogram

that was recorded in parallel. This was the only region that had an abnormal heartbeat, a

PVC. Note that there is a slight lag in the timing, as an ECG is an electrical signal, and

the pleth signal is mechanical (pressure). However, the scoring functions typically have a

little “play” to avoid the brittleness of requiring spurious precision.

Note that we did not directly create an ECG benchmark here because it is too

simple (although we do have a handful of equally simple examples in the archive). We used

this general technique, of using obvious out-of-band data to annotate subtle data, to create

many of our benchmark datasets.

3.2.2 Synthetic, but Highly Plausible Anomalies

We can also create single anomaly datasets in the following way. We find a dataset

that is free of anomalies, then insert an anomaly into a random location. However, we want
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to do this in a way such that the resulting dataset is completely plausible and natural.

Figure 3.12 shows an example of how we can achieve this.

71000 72000 73000

Weight acceptance
(heel down) Push off

Right foot
(original)

Right foot
(induced anomaly)

0 90,000
-2000
-1000

0
1000

Figure 3.12: (top) UCR Anomaly park3m 60000 72150 72495, a dataset from our archive.
(bottom) This individual had a highly asymmetric gait, so we created an anomaly by swap-
ping in a single left foot cycle in a time series that otherwise records the right foot.

Here we started with a two-dimensional time series, containing the left and right

foot telemetry on a force plate. The data came from an individual with an antalgic gait,

with a near normal right foot cycle (RFC), but a tentative and weak left foot cycle (LFC).

Here we replaced a single, randomly chosen RFC with the corresponding LFC (shifting it

by a half cycle length). The resulting dataset looks comply natural, modeling a normal

gait, where for one cycle the individual felt a sudden spasm in the leg.

This dataset has another source of viability that happens three or four times.

Because the force plate apparatus is of finite length, the gait speed changes as the user

circles around at the end of the device. However, we took pains to ensure that both the

train and test data have examples of this behavior, so it should not be flagged as an anomaly.
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When creating such datasets, we attempted to thread the needle between being

too easy, and too difficult. Here we are confident that this example is not impossibly

cryptic, as nine out of ten volunteers we asked could identify this anomaly after careful

visual inspection.

3.3 Recommendations

We conclude with some recommendations for the community.

3.3.1 Existing Datasets should be Abandoned

The community should abandon the Yahoo [3], Numenta [4], NASA [5] and SMD

[6] benchmark datasets. As we have demonstrated, they are irretrievably flawed, and almost

certainly impossible to fix, now that we are several years past their creation. Moreover, ex-

isting papers that evaluate or compare algorithms primarily or exclusively on these datasets

should be discounted (or, ideally reevaluated on new challenging datasets).

3.3.2 Algorithms should be Explained with Reference to their Invariances

We would argue that the task of time series classification has seen more progress

in recent years. In that community, it is understood that it is often useful to discuss novel

algorithms in terms of the invariances they support [89]. These invariances can include

amplitude scaling, offset, occlusion, noise, linear trend, warping, uniform scaling, etc. [89].

This can be a very useful lens for a practitioner to view both domains and algorithms.

For example, suppose we wish to classify mosquitoes sex using a Single-Sided Amplitude
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Spectrum of their flight sounds (as was done in [90]). With a little introspection about

entomology and signal processing, we can see that we want any algorithm in this domain to

be invariant to the amplitude of the signal. We also want some limited warping invariance to

compensate for the fact that insect’s wingbeat frequency has a dependence of temperature,

but not too much warping, which might warp a sluggish female (about 400 Hz) with a much

faster male (about 500 Hz). This immediately suggests using a nearest neighbor classifier,

with area-under-the-curve constrained DTW (cDTW) as the distance measure. Here, seeing

the problem as choosing the right invariances is a very helpful way to both communicate

the problem and search the literature for the right solution.

In contrast, one thing that is striking about many recent papers in anomaly detec-

tion is that the authors do not clearly communicate under what circumstances the proposed

algorithms should work for practitioners that might want to use them. (The work of [91] is

a notable exception.) For example, would the ideas in [6] work if my data was similar, but

had a wandering baseline that was not relevant to the normal/anomaly distinction?

We suggest that authors could communicate the important invariances with fig-

ures.

Consider Figure 3.13 (top) which shows a one-minute long electrocardiogram that

contains a single anomaly (a premature ventricular contraction). The figure also shows the

anomaly score from two methods, Telemanom [5] and Discord [84, 85].

Here we are only interested in the relative values, so we omitted the Y-axis, in both

cases, the higher values are considered more anomalous. In this example the anomaly is

very obvious, and gratifyingly, both methods peak at the location of the anomaly. Visually,
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we might claim that Discords offer more discrimination (informally, the difference between

the highest value and the mean values).

-1000

-500

0

0 5000 10000 15000

-1000

-500

0

E0509m: Original

E0509m: Added noise

Maximum value

Telemanom

Telemanom

Discord

Discord

Figure 3.13: (top) One minute of an electrocardiogram with an obvious anomaly that is
correctly identified by two very different methods. Telemanom uses the first 3,000 datapoints
from training, using the original authors suggested settings. Discord uses no training data.
(bottom) The same electrocardiogram with noise added confuses one of the algorithms more
that than the other.

In Figure 3.13 (bottom), we show the same time series, after we added a significant

amount of Gaussian noise. The Discord approach now provides less discrimination, but still

peaks in the right place. In contrast, Telemanom now peaks in the wrong location.

This example suggests that one approach might be better than the other if we
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expect to encounter noisy data. We are not suggesting that such visualizations replace the

reporting of metrics such as precision, recall and F1 score, etc. However, for the datasets we

consider in this chapter, those metrics often summarize an algorithm’s predictions at just

two or three locations. In contrast, the plots shown in Figure 3.13 visually summarize the

algorithm’s predictions at 12,000 locations, and give us a much richer intuition as to the

algorithms invariances.

3.3.3 Visualize the Data and Algorithms Output

The point is partly subsumed by the previous point, but worth explicitly stating.

It is very surprising to note that many papers that study time series anomaly

detection plot few (as few as zero) examples of the time series themselves, in spite of the

fact that time series analytics (unlike say protein strings) is inherently a visual domain.

This is more than just a presentation issue; it informs how we should do research.

We suspect that some researchers rarely view the time series, they simply pass objects to

a black box and look at the F1 scores, etc. One reason we believe this is that the four

issues we note in this chapter are readily visually apparent, they do not need any tools to

discover, other than a way to plot the data. For example, the issues with Numenta’s NYC

Taxi dataset discussed in Section 3.1.4 simply “jump out” of the screen if you plot the

data, and the entire data can be comfortably examined on a desktop screen, without even

the need for zoom or pan [4]. Yet to our knowledge, no one has noted these problems before.
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3.3.4 A Possible Issue with Scoring Functions

In this chapter, we have mostly confined our interest to problems with the current

datasets. Others have considered problems with current scoring functions [86]. However, it

would be remiss of us not to note a simple potential issue with scoring functions, especially

when comparing rival algorithms. As we noted above, algorithms can place their computed

anomaly score at the beginning, the end or the middle of the subsequence. Figure 3.13

(top) nicely illustrates this. Both approaches can find the obvious anomaly, but Telemanom

places its peak earlier than Discords6. It is easy to see that unless we are careful to build

some “slop” into what we accept as a correct answer, we run the risk of a systemic bias

against an algorithm that simply formats its output differently to its rival. As before,

visualization of the algorithms, together with visualization of the acceptable answer range

(the red bar in Figure 3.13) would go a long way to boost a reader’s confidence that the

evaluation is fair.

3.4 Conclusion

We have shown that the most commonly used benchmarks for anomaly detection

have flaws that make them unsuitable for evaluating or comparing anomaly detection algo-

rithms. On a more positive note, we have introduced a new set of benchmark datasets that

is largely free of the current benchmark’s flaws [20].

However, we do not regard this chapter as the last word on the matter. Ideally, a

committee or a workshop at a conference should gather many diverse viewpoints on these

6 This should not be confused with the claim that Telemanom discovers the anomaly earlier, which may
or may not be true. This is only a minor claim about formatting of a particular implementation’s output.
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issues, and draft recommendations for the creation of a crowdsourced set of benchmark

datasets. We hope this chapter will go some way to prod the community into action.
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Chapter 4

Not So Clear Definition

Since its introduction two decades ago, there has been increasing interest in the

problem of early classification of time series (ETSC). The problem is expressed differently

by different researchers, but it generally reduced to asking if we can classify a time series

subsequence with sufficient accuracy and confidence after seeing only some prefix of a target

pattern. Using text as an analogy for time series, if someone typed albuquer. . . , we could

be very confident that they planned to type the name of the most populous city in New

Mexico.

The key claim is that classification without waiting for the entire pattern to appear

would allow us to take immediate action in a domain in which some interventions are possi-

ble. For example, that intervention might be pre-tightening the seatbelts in an automobile

that the classifier predicts may be about to crash.

While the idea of ETSC is interesting and socially noble, in this chapter, we make

a somewhat surprising claim. In spite of the fact that there are many research efforts on
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ETSC, it is not clear that any of them could ever work in a real-world setting. The problem

is not with the algorithms per se but with the vague and underspecified problem description.

Most of the issues stem from a mismatch between the data format used to train and test

ETSC models and the data format that must be used in the real world. Most ETSC papers

consider only data in the UCR format, which as shown Figure 4.1, assuming that all

exemplars are of the same length and at least approximately aligned in time [13].

Figure 4.1: Samples of data in the UCR format. Note that exemplars are all of the same
length and carefully aligned. The exemplars are utterances of the words cat and dog, spoken
by a female in Standard American English, represented in MFCC Coefficient 2.

Given data formatted in this way, the ETSC community has produced dozens of

models that can predict the class of an incoming subsequence, after only seeing a fraction

of the data [7, 8, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. This sounds

impressive, but as shown in Figure 4.2, consider what would happen when we test on the

utterance “It was said that Cathy’s dogmatic catechism dogmatized catholic doggery ’.

This sentence will produce six false positives: three in each class. Note that we

cannot brush the problem aside by saying that we can simply recant the classifications after

we see the rest of the longer word. The whole point of ETSC is to take some actions. The

action might be “just” sounding an alarm, but even just false alarm fatigue is known to

have a huge cost [92]. If 99.9% of all alarms are false positives, it seems inconceivable that

the system would be used.
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Figure 4.2: A snippet of the phrase “It was said that Cathy’s dogmatic catechism
dogmatized catholic doggery”. This short sentence will allow any ETSC method to make
confident and early predictions, all of which will later have to be recanted.

It is also important to recall that by the explicit definition of the ETSC problem,

the action must be immediate. If we wait “to make sure”, then in no sense are we doing

early classification – we are just doing classification.

This issue of false positives would be damning even if we had no false negatives.

However, as we will show in Section 4.3, most ETSC methods have a misunderstand-

ing about the normalization of the data that will condemn them to produce many false

negatives.

We call the “cat” vs “catalog” problem the prefix problem. We will later show

two other issues, the inclusion and homophone problems that offer even greater stumbling

blocks to any ETSC models.

The absolute weakest interpretation of our findings is that the ETSC community

has failed to communicate or appreciate the many assumptions that must be true for their

models to be useful in the real world. However, we will argue a stronger interpretation.

The ETSC problem is underspecified to the point of being meaningless, and the entire area

needs to be “rebooted” with greater rigor.
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4.1 Background

4.1.1 How ETSC Algorithms Work

The idea of early classification in time series seems to have originated in an obscure

paper in 2001 [93], however the problem framework that is most commonly understood

appears in a sequence of papers by Xing et al. [7, 8]. These works define the challenge

as finding the best compromise between accuracy of prediction and earliness in the face

of incrementally arriving data. This can be framed in several ways, and different papers

use slightly different terminology. However, Figure 4.3 shows the two most common

interpretations of this idea.
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Figure 4.3: (left) The TEASER model [21] correctly predicts the class of an exemplar
from GunPoint after seeing only 53 data points. (right) Other models predict only when a
user-specified confidence threshold is met.

In Figure 4.3 (left), we used the method in [5], working on the ETSC community’s

favorite dataset, GunPoint [13]. As the data arrives, some models predict the probability

that we are seeing the prefix of any of the classes we have trained on. At some point, an
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internal model decides it has seen enough to trigger a classification. Different papers use

different internal models, and a handful incorporates some awareness of misclassification

costs [29, 36]. In Figure 4.3 (right), we see another common framing of the problem.

Here the ETSC algorithm simply predicts the probability of being in each class, and if

that probability exceeds some user-specified threshold. In this case, the user’s threshold of

80% allowed classification after seeing only 36 datapoints. In a sense, the two models are

equivalent, and the slight distinctions do not concern us here.

4.1.2 Disconnect to the Real World

The motivation for early time series classification is plausible, although to our

knowledge, there has never been an ETSC algorithm deployed in the real world. As we

will see, this seems to be a telling fact. In contrast, while classic time series classification

is perhaps an overstudied problem, it is still easy to point to hundreds of commercial and

scientific applications that actually use it.

One issue seems to be that there is a disconnect between the models and the

claimed uses for them. Consider [37], which motivates ETSC with “in the early diagnosis

of heart disease, abnormal ECG signals may indicate a specific heart disease that needs

immediate treatment. If a classification model that can make early diagnosis as soon as early

of ECG time series is available, the patient with the heart disease can get early treatment.”

As shown in Figure 4.4, the authors of [37] do indeed test on ECGs.

They later also correctly note “If a person has a myocardial infarction, it is usually

observed from the ECG that the ST wave is changed and elevated. . . ”. However, let us step
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Figure 4.4: A screen dump from [37]. The authors test on an ECG dataset from the UCR
archive [13].

back a moment. Yes, it is true that heart disease needs immediate treatment. However,

that is typically understood at the scale of “today” is better than “next month”. Maybe the

authors meant the case of a patient recovering in an ICU with the plan to page a doctor the

moment we see a single myocardial infarction. The full ECG beats in question are about

0.5 seconds long. Suppose, as [37] claims, we could classify the abnormal heartbeats after

seeing only 64% of the data. That means that we could alert the doctor 0.18 seconds earlier.

This is an inconsequent amount, especially for a warning that comes with a 17% chance of

being a false positive [37] (as we will see in Section 4.3, the claim is in any case spurious,

as it makes a normalization assumption that could not be true).

More generally, there does seem to be a disconnect in the literature between the

obvious and true motivation that “earlier is better”, and any practical actionable application

of ETSC. In any case, this discussion may be largely moot because as we will show in the

next two sections, no current ETSC algorithm is likely to work in any real-world settings

due to three types of confounding issues that the community has not noticed.
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4.2 ETSC is Much Harder Than it Appears

In Figure 4.2, we hinted at a problem caused by assuming that data forced into

the UCR format represents a real-world problem. As damning as this single issue is, we will

now demonstrate that it is only one of the three related issues that cast doubt not only on

the solutions proposed for ETSC, but on the very problem definition itself.

4.2.1 The Prefix Issue

The prefix problem is the assumption that the pattern to be early classified is

not a prefix of a longer innocuous pattern.

Imagine that we have two classes which are the MFCC representation of the spoken

words, cat and dog. Again, under the UCR formatting assumption, this would be an ideal

ETSC problem. However, as illustrated in Figure 4.2, we need to consider what will

happen when we deploy in a streaming environment. Suppose we encountered the perfectly

valid sentence “. . . all oxen excel at persistence, strength and doggedness. The use of cattle

for draft work in. . . ” [94]. We would get two early classifications, which must then later be

recanted.

The reader might imagine that while we may produce an early classification for

“ca. . . ”, we can later retract that prediction when we subsequently see “. . . ttle”. But recall

that the whole point of early classification is to give actionable early warning. If it is

supposed to be actionable, do we take that action or not? If we need to wait until we are

sure that there is no retraction before taking the action, then in what sense are we doing

early classification – we are surely just doing classification.
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We believe that the prefix problem may be essentially insurmountable in many

domains. For example, imagine we wanted to early classify the vocalization of {gun, point}.

There are eighty-eight English words beginning with gun, including gunwales, gunnel, gun-

nysack, gunk, etc., and twenty-six words that begin with point, including pointedly, point-

lessness, pointier, pointman, etc.

4.2.2 The Inclusion Issue

The inclusion problem is the assumption that the pattern to be early classified

is not comprised of smaller atomic units that are frequently observed on their own.

For example, suppose we learn a model for early classification of the vocalization

of {lightweight, paperweight}. We can do very well after seeing the first 10% to 20% of

these utterances (which is fortunate, as the final 54% of the signal is identical and offers no

additional information). However, suppose the universe contains sentences such as “In the

morning light, I could see that I got a papercut from the paper that the light was wrapped

in.” This sentence would give us two false positives for each class. Moreover, it is clear that

the sub-pattern could be vastly more common than the full modeled pattern. For words,

this is simply an obvious implication of Zipf’s law.

Returning to our vocalization of {gun, point} example, recall that in English, we

will encounter words like disappointing, ballpoints, appointment, burgundy, begun, etc., and

also proper names like Gunderson, the Pointer sisters, etc.
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4.2.3 The Homphone Issue

The homophone problem is the assumption that two semantically different

events will have different shapes in the time series representation.

Suppose that we learn a model for early classification of the vocalization of {flower,

wither}. Moreover, we are fortunate that in this problem space, we are told that any word

containing the target word is also a true positive, so we should take the same action for

flower, flowerpot, deflowered, and for wither, witheringly, swithering, etc. This means we are

completely free of the prefix and inclusion problems above. However, what are we to make

of the following sentence from Leviticus 2:1 “Whither anyone presents a grain offering as

an offering to the Lord, his offering shall be of fine flour, and. . . ”? This sentence does not

contain either of the target words, but it contains two near-perfect homophones, flower vs.

flour and wither vs. whither, which would give us false positives.

Just because we know that the semantic meaning of the classes in which we are

interested is different, it does not follow that the time series representation we see will also

be different. For example, as shown in Figure 4.6 and Figure 4.9, gun and point are

extracted from video by tracking the center of mass of the right hand. They are sufficiently

different to be distinguished with high accuracy. However, it is possible that completely

different behaviors such as removing-spectacles, looking-at-watch, or lighting-a-cigarette are

perfect “homophones” in the time series space. In fact, given the vast space of human

actions, the very limited one-dimensional view of 150 datapoints virtually assures us this

will be the case.
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In order to show that time series homophones exist, we conducted the following

experiment. We randomly selected two examples from the GunPoint dataset, and for each

of them, we searched for its three nearest neighbors. However, rather than searching within

a human behavior dataset, we searched within three datasets that do not have gestures.

Figure 4.5 shows the results.

EPG 
(insect)

EOG 
(eye)

Smoothed 
Random Walk

Figure 4.5: Two random examples from the GunPoint dataset (colored), clustered with
their nearest neighbors from: (left) One hour of eye movement data; (center) A smoothed
random walk of length 224; (right) Eight hours of insect behavior.

Note that in every case, there is non-gesture data that is much closer to one

member of the target class, than the other example from the target class. We can repeat

this experiment with all datasets from the UCR archive with similar results.

The homophone problem can also show up as part of the inclusion problem. For

example, when searching Google for shapelets, the time series primitive, most of the hits are

true positives, but Google also returns pages with “Unique puzzle piece shape lets it interlock

with. . . ”, “A simple shape lets the beauty of the faux concrete. . . ”, and “Its triangular shape
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lets you reach the corners of the pool. . . ”. So even though the word shapelets does not have

a homophone, it does have pseudo-homophones7. If we simply searched a large text corpus,

we would surely find a lot more of these pseudo-homophones than hits to the obscure data

mining primitive.

Returning to our vocalization of {gun, point} example, recall that in English, we

will encounter words like pointe, pint, Gunn (proper name), etc.

4.2.4 Summary for this Section

We believe that the prefix, inclusion, and homophone problems imply the space of

possible domains where ETSC could be meaningfully applied is vanishingly small. Again,

returning to the problem of the vocalization of {gun, point} for a final time. A single

English sentence such as “Amy Gunn thought it pointless to go on pointe before she had

begun her appointment to get her burgundy ballet shoes cleaned off all the gunk. . . ” would

produce a plethora of false positives. While most of our examples are contrived for ease of

exposition, Figure 4.5 suggests these problems are common in real-valued time series, as

does a more general exploration of the datasets in the UCR archive [13].

It is important to note that while our examples used natural language for simplicity,

we have observed these issues in datasets containing gestures, writing, electrical power

demand, chicken behavior, insect behavior, bird vocalizations, and in almost everywhere we

looked.

There is a data domain that might be free of these issues: electrocardiograms

(ECGs), photoplethysmograms, and similar time series. However, in the next section, we

7 Yes, multiple pseudo-homophones: Our plush ape lets you dress him.
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will show that all ETSC papers that report apparently good results on these datasets are

inadvertently “cheating” by peeking into the future.

4.3 Peeking into the Future

Almost all papers on ETSC suffer from a logical flaw that means that their ac-

curacy would plunge if we attempted to use them on streaming data8. Once again, the

UCR format is the culprit. The UCR datasets are z-normalized. However, when you see

the prefix of an oncoming pattern in a streaming environment, you cannot z-normalize it

until after you have seen all the data, which of course, means that you are not doing early

classification.

Many researchers seem unaware of just how brittle distance measures are to

changes in the mean (and standard deviation) of the exemplars. To show this, let us

revisit GunPoint. As shown in Figure 4.6, we produced a “denormalized” version of the

test data by adding to each instance a random number in the range [-1, 1].

-1
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1

2

0 150

Shifted by 0.206

0 150

Shifted by -0.452

This amount of
shifting is equivalent
to Ann changing from
sneakers to three-inch 
heel shoes

Figure 4.6: Original examples from the GunPoint dataset together with denormalized
versions, which have been slightly shifted in the Y-axis.

8 Paper [21] does not have this flaw. We warned them of this issue before [21] was published.
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It is important to understand how small of a change this is. It is approximately

equivalent to tilting the camera randomly up or down by about 1.9 degrees. Or it is

equivalent to replacing Ann with Jessica, a slighter taller grad student.

It is also important to note what effect this would have on normal nearest neighbor

classification: none. It has long been known that you should z-normalize the data before

computing the Euclidean distance or DTW [95]. In Table 4.1, we compute the accuracy

of six ETSC algorithms on the UCR-normalized data and the denormalized data. We used

the authors’ recommended settings and/or tested many settings and reported only the best

results.

Table 4.1: The accuracy of six early classification algorithms

Algorithm Normalized DeNormalized

(min. support = 0) ECTS [7] 86.7% 68.7%

(min. support = 0) RelaxedECTS [7] 86.7% 68.7%

EDSC-CHE [8] 94.7% 62.7%

EDSC-KDE [8] 95.3% 58.7%

(τ = 0.1) Rel. Class. [25] 90.0% 70.0%

(τ = 0.1) LDG Rel. Class. [25] 91.3% 71.3%

These results show that the algorithms can do apparently very well on GunPoint.

However, when we apply the model to streaming data, if the camera zooms in or out, or

tilts up or down, or one of the actors decides to go barefoot, or the actor stands a little

closer to the camera, etc., the accuracy will plunge.

It is critical not to misunderstand this result. It is not that these algorithms forgot

a step, and we can just add it back in. When the algorithms see a value, they are assuming

that it is z-normalized based on other values that do not yet exist! As we noted above,
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ECGs are a favorite example for ETSC papers [7, 8, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37]. In Figure 4.7, we show a tiny snippet of an ECG (recorded

from two different chest locations) before it was contrived into the UCR data format.

0

ECG1

5 10 15

ECG2

Seconds

Figure 4.7: An ECG recorded from two locations in the chest. ECG1 shows dramatic
but medically meaningless variation in the mean of individual beats. ECG2 shows equally
dramatic but also medically meaningless variation in the standard deviation of individual
beats.

The practical upshot of this problem is that these algorithms working on medical

telemetry will be plagued with false negatives. One might try to get past this issue by

saying, “well, the models will work for domains that don’t need z-normalization”. How-

ever, Rakthanmanon et al. [95] make a forceful case that such domains are very rare or

nonexistent.

4.4 Does Early Classification Ever Make Sense?

In our long search for a dataset that might work under ETSC assumptions, our best

match was a dataset that consists of more than 12.5 billion datapoints of chicken behavior,
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measured using a “backpack” accelerometer, as shown in Figure 4.8 (right). Consider the

time series shown in Figure 4.8 (left). It is an excellent template to detect the behavior

of dustbathing in chickens. Any subsequence that is within 2.3 of z-normalized Euclidean

distance of this template is essentially guaranteed to be dustbathing.

0 40 80 120

Dustbathing Template Dustbathing Template
(truncated)

0 40 70

Figure 4.8: (left) A template for dustbathing and its 500 nearest neighbors. (center)
A truncated version of the template and its 500 nearest neighbors. (right) The data was
obtained from a backpack sensor.

The time series shown in Figure 4.8 (center) is a prefix of the first template, and

any subsequence that is within 1.7 of this template can be classified as dustbathing with

an accuracy that is not statistically significantly different from the accuracy achieved with

the longer template.

One can even make a case for actionability here. Suppose you want to prevent

the chicken from conducting long periods of dustbathing. Perhaps if you early classify a

dustbathing behavior, you could flash a bright light, or play the sound of a chicken’s alarm

cackle, either one of which would startle the chicken out of its intended behavior. Note that

the cost of a false positive is not too high here (although it is not zero, chickens do become

desensitized to frequent alarms).
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Have we found an example that justifies ETSC? Perhaps, but consider:

• A reader might reasonably say that this is not early classification, but rather simply

classification with an awareness of the obvious fact that the sensitivity and specificity

of time series template will (typically non-linearly) change as you add or delete points

to either end.

• We did not need any special algorithms or models to understand that the shorter

template is as effective as the longer template. This took common sense and a few

minutes of low-code exploration of the data.

• No data from this domain was ever placed into the UCR format. At a minimum,

discovering template(s) would need to be done before we could even attempt to put

the data into the UCR format.

Clearly, absence of evidence is not evidence of absence. But it is surprising that it

is so difficult to find a dataset where ETSC would make sense. More telling, to the best of

our knowledge, no one in the community has produced a publicly available dataset where it

can be claimed: ETSC would be useful, and some ETSC models have been shown to work.

Finally, at the risk of appearing cynical, it is easy to see that one could use this

dataset to write a paper that apparently shows utility for ETSC. We could massage more

examples like the longer template in Figure 4.8 (left) into the UCR format and show our

“model” learns to predict dustbathing after seeing only 70% of the data! Such a claim

would look very impressive, but it is only with the context above that we realize that the

claim would be vacuous. Could similar situations explain other apparent ETSC successes?
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With this in mind, let us revisit the GunPoint dataset, which is particularly beloved

by the ETSC community [7, 8, 21, 23, 24, 27, 28, 29, 30, 32, 35, 37]. We have deep

insights into this dataset: in order to create a simple-to-use dataset, a metronome is used

to synchronize the performance of the behaviors (pointing or aiming). The metronome

sounded a “beep” every five seconds, and the two “actors” were given the following brief:

“When you hear the cue, wait about a second, do the behavior for about two seconds, then

return your hand to the side for the remaining time.” As shown in Figure 4.9, this means

that the last one to two seconds of most of the GunPoint exemplars are non-informative

and non-class discriminating sections where the hand was resting by the actors’ side. In

addition, as hinted by the dataset’s name, the difference between the classes is mostly the

actors’ fumbling to remove the gun from the hostler, which happens at the beginning of the

action.
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Figure 4.9: (top) A typical example from GunPoint annotated to show where the dis-
criminating region is. (bottom) The holdout classification error-rate of every prefix of the
GunPoint data from lengths 20 to 150 (the full length of the data).
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The plot shown in Figure 4.9 (bottom) resembles many plots shown in ETSC

papers (actually, it is better than most of them, as we are correctly z-normalizing the

truncated data, see Table 4.1). However, it is important to note that we are not claiming

contribution by this plot, this is just basic data cleaning, not a publishable research model.

Note that a large number of UCR datasets have similar formatting conventions,

some “events” bookended by constant regions that are simply there to make all the data

objects have the same length (CricketX, CBF, Trace, etc.). Thus, it seems possible that

some (possibly a very large) fraction of the apparent success of ETSC may be due to nothing

more than a formatting convention that padded the right side of events with uninformative

data, just to make the objects the same length.

4.5 On the Term Early Classification

The term “Early Classification” is unfortunately overloaded and vague. There are

several tasks that might be named as such, which do not fall under the purview of this

chapter. For example:

• Suppose that a boiler is rated for at most 200 psi. If a sensor detects increasing

pressure readings: 180, 181, 182, . . . , it would make perfect sense to sound an early

warning that the pressure may approach 200 psi. Note that this setting only considers

the value of a time series, not the shape of the time series. The same is true for many

medical domains: if a person’s BMI is measured monthly and begins to creep up to

20, 21, 22, . . . , it might be better for a doctor to suggest an intervention before it

reaches 25. But again, only the value, not the shape matters.
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• Monitoring of batch processes is a slight generalization of the above. At every time

point in a single run (plus or minus some “wiggle room” that can be modeled [96]),

we know what range of values are acceptable. If the reading begins to drift outside

that range, we can sound an alarm. Once again, this problem only considers the value

of a time series, not the shape of the time series.

• Suppose that a chicken engaging in dustbathing more than 40 times a day is required

to be culled by local ordinance (because dustbathing is often caused by the presence

of mites or other pests) [97]. If we detect 10 bouts of dustbathing one day and 25 the

next day, we may want to take some early intervention. Note that this setting only

considers the frequency of (fully observed, not “early” observed) behaviors.

More generally, there may be other problems that have been labeled “early clas-

sification” by someone. We make no claims about such work. Our claims are limited to

the sense of early classification used in [7, 8, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37], where the prefix of the shape of the time series is assumed to contain

information that we can act upon before seeing the remainder of the shape.

4.6 Objections to Our Claims

Given the unusual nature of our claims, we solicited feedback from the community

while drafting this chapter. We did this by writing to every author that published a paper

on ETSC, and by general postings on discussion boards such as r/MachineLearning.

Most of the feedback has been (gratefully) incorporated into the main text. Here,

we respond to a few questions that are worth addressing:
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• Q)Doesn’t the fact that there are commercial predictive text algorithms for handwriting

tell us that the prefix/inclusion/homophone problems can be overcome?

A) These systems are not doing predictive classification based on words, they are

classifying individual letters, and then using classic ASCII predictive text algorithms.

Moreover, as the Google help page notes “Stand-alone symbols that are just a line

(1/l/I) or circle (o/O/0) can be difficult to distinguish” [98], exactly because those

groups of symbols appear as homophones in time series space.

• Q) Your claim “it is not clear any of them could ever work in a real-world setting”

seems too strong.

A) Let us clarify what it means for a model to “work” here. Simply producing plots

like Figure 4.8 is not sufficient. Every event we are trying to detect has a cost. For

concreteness, let us consider petrochemical engineering, and say the target event is

the undesirable foaming of a distillation column. Assume it costs $1,000 to clean out

the apparatus after such an event. Let us further imagine that if we get “early” notice

that this is about to happen, we can warn an engineer to throttle some valve, and

stop the damage. This action must also have some cost, let us say $200. Thus, in

order for an ETSC model to be said to work, it must at least break even, producing

at least one true positive for every five false positives. A handful of ETSC papers do

have costs built into their models [29, 36], but they only test on UCR datasets and

never estimate costs for any real-world applications. The results shown in this chapter

suggest that the vast majority of positives will be false positives. For example, we

applied the model in [21] to the GunPoint problem, with the exemplars inserted in
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between long stretches of random walks, and we see thousands of false positives for

every true positive (see [40]).

• Q) Doesn’t the homophone problem imply that all time series classification is hard,

not just ETSC?

A) Yes, it does to some extent. Even if you ignore the issues of early classification,

and consider only classic time series classification, the UCR datasets seem to have

led to an illusion of progress. However, at least some applications do bypass this

problem. For example, there are many papers on using the time series obtained from

the sensors in a Wii Remote to classify gestures as inputs to the system. Normally,

the user presses a button that indicates “start classifying” and releases it once the

gesture is recognized. This means that the algorithm is not asked to deal with spurious

data that might be thousands of times more frequent than target data. Such uses of

time series classification do largely fit into the UCR format assumptions. Likewise,

objects that come from the spectrogram and (converted from 2D) shape datatypes are

presented as discrete vectors, not part of a stream.

• Q) I don’t see why z-normalization would be imperative in all real problems.

A) We think this question has been addressed in [95] and elsewhere by the commu-

nity. However, in brief: it is meaningful to compare time series based on z-normalized

shape; it is sometimes meaningful to compare time series based on mean value; but

it is almost never meaningful to cluster on both at the same time (which is equiv-

alent to comparing non-normalized time series with shape measures). The reason

is that even small differences in the mean (and/or the standard deviation) com-
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pletely drown out any shape information. In other words, for non-normalized data,

dist(mean(a),mean(b)) ∝ dist(a, b) where dist is the Euclidean distance or DTW,

etc. To summarize, if z-normalization is not important in your domain, it is virtually

certain that the shapes do not matter – only the absolute values do. We make no

claim about such situations other than the obvious empirical observation that such

domains are very rare.

4.7 Conclusion

The time series early classification task as commonly understood may not be a

meaningful problem to solve. All current research efforts that address this problem will

be condemned to being overwhelmed by false positives if actually deployed in a real-world

setting. Of course, false positives are a fact of life for any machine learning problem.

However, the unique claims of immediate actionability mean that these false positives will

have a cost, and the false positives may be many orders of magnitude more common than

true positives. In addition, virtually all the algorithms are making the assumption that the

data they are seeing now is normalized relative to data that only exists in the future. All

those algorithms are condemned to producing mostly false negatives.

We believe that the issue is not with the proposed algorithms per se. The issue

is that the definition of the problem itself is intrinsically underspecified and vague. The

following are our recommendations to bring clarity to the ETSC area:

• An effort should be made to provide a concrete, testable, falsifiable, and useful defini-

tion of early classification of time series. While we have no interest in providing this
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definition (in any case, a consortium of researchers would be better), we believe that

any such definition would, at a minimum, have to consider:

1. The cost of a false positive for the actionable class(es) vs. the cost of a false

negative [29, 36]. Even if the only early action taken is to sound an alarm, false

alarm fatigue is known to have a high cost [92].

2. The probability that the domain of interest contains prefixes, inclusions, and

homophones that resemble the actionable class(es).

3. The prior probability of seeing a member of the actionable class(es).

4. The appropriateness of the normalization assumptions for the domain.

• Anyone proposing an ETSC model needs to carefully explain what the model offers

beyond simply classification with trivial awareness that not all datapoints matter

(recall Figure 4.9).

• It is hard to see how any genuine progress could be made without access to a real-world

publicly available dataset(s) that could benefit from the more concrete definition. The

overreliance on the UCR datasets seems to have led the community astray here. Proxy

datasets and synthetic datasets do have their place in research, especially in fledging

areas. However, we are now two decades and many dozens of papers into this area.

It is hard to overemphasize the last point. If no real-world publicly available

dataset(s) where some form of ETSC is useful can be obtained, this seems tantamount to

saying that there is no problem to solve, and the community should stop publishing on this

topic. It is stunning to think of the ease with which a grad student can obtain seismic data
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recorded on Mars, or the mitochondria DNA of a mammoth that has been extinct for a

million years, yet everyone publishing on ETSC must resort to proxy datasets.
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Chapter 5

Conclusions

We unfortunately discovered that several highly cited papers [2, 3, 4, 5, 6, 7, 8] in

the field of data mining have surprising problems with their proposed algorithm, dataset,

or definition.

The widely used FastDTW algorithm [2] does not actually achieve its proposed

speedup in any realistic settings. The vast majority of the papers using FastDTW would

have been better off using cDTW, which is faster in 99% of all use cases, and more im-

portantly, produces exact results. FastDTW can fail to approximate well, and there are no

guidelines when this would happen. The takeaway is worth noting: we should be little bit

surprised and humbled that such a poor idea has been “taken as gospel” for over 15 years

and in more than 2,500 papers. What other bad ideas are out there?

The frequently tested TSAD benchmark datasets from Yahoo [3], Numenta [4],

NASA [5] or Pei’s Lab (SMD) [6], etc., suffer from one or four flaws: triviality, unrealistic

anomaly density, mislabeled ground truth and run-to-failure bias. These flaws make them
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unsuitable for evaluating or comparing anomaly detection algorithms, thus existing bench-

marks should be abandoned. On the bright side, we introduced UCR Time Series Anomaly

Archive [20] that is largely free of aforementioned four flaws. We wish this work could act

as an inspiration to the community on creating a crowdsourced set of benchmark datasets.

The commonly understood ETSC task may not be a meaningful problem to solve.

Almost all ETSC algorithms [7, 8, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37] made a false assumption that the data they are seeing now is normalized relative to

data that only exists in the future. However, we believe that the issue is not with algorithms

per se, but the unclear definition of the ETSC problem itself. The vague and underspecified

definition of ETSC suffers from three issues: prefix, inclusion, homophone. We recommend

the community to provide a concrete definition with the consideration of the issues we

observed and produce real-world publicly available datasets.

While this work is very recent, there has already been an impact in the community.

We wrote to the author of [62] who had used FastDTW. He agreed to do an

independent test (see Section 2.5). He found that “(cDTW) was approx. 24x faster than

FastDTW on average” and “in the ‘slowest’ case, (cDTW) was still approx. 5.8x faster

than FastDTW ”. He concluded that “these tests suggest that (cDTW) is indeed superior in

terms of speed as well as for usage in time-series classification.”

A team from UC Berkeley had been using FastDTW for many projects [99]. After

they read our work on FastDTW, they wrote “. . .At the time, I chose FastDTW . . .More

recently, I had the opportunity to develop a real-time streaming anomaly detection algorithm

for my present company, . . . results confirm that FastDTW is the slowest among all . . . ”.
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Besides direct replies we received from authors that had recently used FastDTW,

several other papers also observed that FastDTW does not achieve expected optimization

over DTW:

• “this is because (our time series) are usually short, which makes the cost of (FastDTW)

exceed the cost of calculating DTW directly” [58].

• “The difference between the computation times (of FastDTW and DTW) was already

analysed in (Wu and Keogh’s work) and could therefore be verified” [64].

• “In contrast, fast-DTW was actually slower than standard DTW, thereby confirming

the findings of Wu and Keogh” [65].

• “We observe that for this implementation of DTW indeed FastDTW is outperformed

frequently” [66].

• “we confirmed an independent claim that FastDTW can in actuality be slower than

DTW in certain cases” [67].

• “(We) also confirm the claim that cDTW is faster and more accurate than FastDTW,

which is widely misunderstood and misused” [68].

• “We found that the cDTW algorithm has a faster recognition speed than the fastdtw

algorithm in the air writing recognition system” [69].

We sent a preview of our work on TSAD benchmarks to a team from CMU /

Rice / Penn State that was originally very positive about deep learning for time series.

They seems to have completely rebooted. Their recent paper cites our work, and notes

83



“Surprisingly, we observe that some classical algorithms could outperform many recent deep

learning approaches” [100].

At the time of writing, our work on TSAD benchmarks has received 197 citations

in just three years. Recent research has also cast some doubt on the apparent progress in

TSAD. For example,

• [101] shows that “The results for the modified Eclipse dataset . . . are rather surprising,

as the one-liner baseline methods show perfect detection across all metrics”.

• [102] suggests that the popular “SWaT and WADI benchmarks are highly unreliable

and that these datasets are not suited for multivariate time-series AD evaluation”.

• [103] notes that “classical machine learning methods generally outperform deep learn-

ing methods across a range of (time series) anomaly types”.

• [104] concludes that “This event (in SWaT) contributes to the F1 score much more

than other events and explains the relatively high scores of many algorithms”.

• [105] claims that “recently proposed deep (learning) algorithms fail to effectively detect

even these simple anomalies in (multivariate time series) datasets”.

We really appreciate these people who treat our work seriously and take our rec-

ommendations into consideration. Our observations have a more sobering lesson for the

community. Our work may serve as a reminder to the community to exercise more caution

in uncritically accepting published results.

84



Bibliography

[1] David J. Hand. Data mining: Statistics and more? The American Statistician,
52(2):112–118, 1998.

[2] Stan Salvador and Philip Chan. Toward accurate dynamic time warping in linear
time and space. Intelligent Data Analysis, 11(5):561–580, 2007.

[3] Nikolay Laptev, Saeed Amizadeh, and Youssef Billawala. S5 - a labeled anomaly de-
tection dataset, version 1.0 (16M), March 2015. https://webscope.sandbox.yahoo.
com/catalog.php?datatype=s&did=70.

[4] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsupervised real-
time anomaly detection for streaming data. Neurocomputing, 262:134–147, 2017.

[5] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom
Soderstrom. Detecting spacecraft anomalies using LSTMs and nonparametric dy-
namic thresholding. In Proc. 24th ACM SIGKDD Intl. Conf. Knowledge Discovery
and Data Mining, pages 387–395, 2018.

[6] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly
detection for multivariate time series through stochastic recurrent neural network. In
Proc. 25th ACM SIGKDD Intl. Conf. Knowledge Discovery and Data Mining, pages
2828–2837, 2019.

[7] Zhengzheng Xing, Jian Pei, and Philip S. Yu. Early classification on time series.
Knowledge and Information Systems, 31(1):105–127, 2012.

[8] Zhengzheng Xing, Jian Pei, Philip S. Yu, and Ke Wang. Extracting interpretable
features for early classification on time series. In Proc. 2011 SIAM Intl. Conf. Data
Mining, pages 247–258, 2011.

[9] Chotirat Ann Ratanamahatana and Eamonn Keogh. Everything you know about
dynamic time warping is wrong. In Proc. 3rd Intl. Workshop Mining Temporal and
Sequential Data, volume 1, pages 53–63, 2004.

[10] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista,
Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. Searching and

85

https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70


mining trillions of time series subsequences under dynamic time warping. In Proc.
18th ACM SIGKDD Intl. Conf. Knowledge Discovery and Data Mining, pages 262–
270, 2012.

[11] Abdullah Mueen, Nikan Chavoshi, Noor Abu-El-Rub, Hossein Hamooni, Amanda
Minnich, and Jonathan MacCarthy. Speeding up dynamic time warping distance for
sparse time series data. Knowledge and Information Systems, 54(1):237–263, 2018.

[12] Chang Wei Tan, Matthieu Herrmann, Germain Forestier, Geoffrey I. Webb, and
François Petitjean. Efficient search of the best warping window for dynamic time
warping. In Proc. 2018 SIAM Intl. Conf. Data Mining, pages 225–233. Society for
Industrial and Applied Mathematics, 2018.

[13] Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu,
Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping Chen, Bing Hu,
Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, Gustavo Batista, and Hexagon-
ML. The UCR time series classification archive, October 2018. https://www.cs.ucr.
edu/~eamonn/time_series_data_2018/.

[14] Miguel Pfitscher, Daniel Welfer, Evaristo José Do Nascimento, Marco Antonio De
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[21] Patrick Schäfer and Ulf Leser. TEASER: early and accurate time series classification.
Data Mining and Knowledge Discovery, 34(5):1336–1362, 2020.
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[66] Dominik Bünger, Miriam Gondos, Lucile Peroche, and Martin Stoll. An empirical
study of graph-based approaches for semi-supervised time series classification. Fron-
tiers in Applied Mathematics and Statistics, 7, 2022.

[67] David Grethlein, Aleksanteri Sladek, and Santiago Ontañón. Identifying on-road
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