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Abstract

Electroconvulsive Therapy (ECT) is an established treatment choice for severe, treatment-resistant 

depression, yet its mechanisms of action remain elusive. Magnetic resonance imaging (MRI) of 

the human brain before and after treatment, has been crucial to aid our comprehension of the ECT 

neurobiological effects. However, to date the majority of MRI studies have been underpowered, 

used heterogeneous patient samples as well as different methodological approaches, altogether 

causing mixed results and poor clinical translation. Hence, an association between MRI markers 

and therapeutic response remains to be established. Recently, the availability of large datasets 

through a global collaboration has provided the statistical power needed to characterize whole-
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brain structural and functional brain changes following ECT. In addition, MRI technological 

developments allow new aspects of brain function and structure to be investigated. Finally, 

more recent studies have also investigated immediate and long-term effects of ECT, which 

may aid in the separation of the therapeutically relevant effects from epiphenomena. The goal 

of the present review is to outline MRI studies (T1, Diffusion-weighted imaging, 1-Hydrogen 

Magnetic Resonance Spectroscopy) of ECT in depression, to advance our understanding of the 

ECT neurobiological effects. Based on the reviewed literature, we suggest a model whereby the 

neurobiological effects can be understood within a framework of disruption, neuroplasticity and 

rewiring of neural circuits. An improved characterization of the neurobiological effects of ECT 

may increase our understanding of ECT´s therapeutic effects, ultimately leading to improved 

patient care.
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Depression; ECT; MRI; Neuroimaging; Antidepressant; Brain; Diffusion-weighted imaging; 
Magnetic Resonance Spectroscopy

Introduction

Major depression is a leading cause of disability worldwide, ranked among the top 10 causes 

of disability-adjusted-life-years in ages 10-49 (1). Although efficient pharmacological and 

psychological treatments have been available for decades, a significant proportion of 

patients do not respond sufficiently to these first-line treatments, and relapse rates are high 

(2). Notably, these patients may benefit from electroconvulsive therapy (ECT), which is 

still regarded as the most effective treatment for severe or treatment-resistant depressive 

episodes (3). The ECT procedure is completed under general anesthesia, when electric 

currents are passed through the brain, intentionally triggering a brief seizure. It is typically 

administered 2-3 times per week, with the average patient requiring a range of 6 to 12 

treatments (4). Despite the well-documented clinical efficacy, ECT’s mechanism of action 

remains poorly understood. Preclinical animal models have contributed substantially to 

our understanding of the neurobiological effects, which includes observations of altered 

monoaminergic transmission, stimulation of neuroendocrine systems, immune system 

activation and augmented neuroplasticity (5, 6). However, the results of these models cannot 

be directly translated to human populations. As such, neuroimaging, especially magnetic 

resonance imaging (MRI), is an important tool to improve our understanding of ECTs 

neurobiological and eventually clinically relevant effects.

Over the past couple of decades, an increasing number of studies have investigated the 

neurobiological effects of ECT through the use of MRI. The earliest studies were mainly 

concerned with ECT causing brain damage (7-9), which could be reflected in signs of 

reactive gliosis or edema. While some accumulation of extracellular tissue fluid may be 

present (10), the majority of studies have failed to support post-ECT gliosis or global 

brain edema (11-13) even after lengthy courses of ECT (14). In contrast to early work, 

more recent MRI studies have focused on ECT’s mechanisms of action. However, many 

of these investigations have considerable limitations related to a selective focus on a few 
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regions of interests (ROIs), underpowered samples, unstructured treatment algorithms, and 

heterogeneity in clinical and sociodemographic characteristics of the included subjects. 

Accordingly, the results of these neuroimaging studies vary considerably, both in terms of 

the distribution and the extent of findings and should be addressed in studies synthesizing 

existing evidence.

Here, we review anatomical and molecular MRI (including T1 weighted imaging, 1-

Hydrogen Magnetic Resonance Spectroscopy (1H-MRS) and Diffusion Weighted Imaging 

(DWI)) studies of ECT in depression. Information regarding the search strategy and the 

included studies can be found in the Supplement. We also discuss emerging areas of study, 

including mega-analyses, machine-learning, innovative MRI techniques and extended data 

sampling, which ultimately may lead to a deeper understanding of ECTs neurobiological 

effects. Based on the reviewed literature, we propose a model which directly incorporates 

the immediate disruptive effects of the electrical stimulation and seizure, which are well 

known aspects of ECT usually not accounted for in contemporary models. The immediate 

disruptive effects are followed by temporary enhanced neuroplasticity, which enables the 

brain to rewire in more optimal patterns over time. We end by outlining several testable 

predictions of this mechanistic model and suggest new imaging studies, which eventually 

may improve our understanding of the ECT's therapeutic actions.

Impaired neuroplasticity in depression

Brain plasticity is a generic term that refers to the brain's ability to change and adapt 

as a result of experience. It is seen at multiple levels, including molecular and cellular 

alterations, synaptic connectivity, and changes in large-scale brain networks. Depression 

has been characterized by a failure or down-regulation of neuroplasticity (15, 16). This 

is based on work in animal models showing reduced dendritic complexity and synaptic 

loss in the prefrontal cortex (PFC) and the hippocampus (17, 18) respectively, as well 

as impaired hippocampal neurogenesis (19). Equivalently, post-mortem investigations in 

depressed subjects have demonstrated reduced number of granule cells in the dentate gyrus, 

a stem-cell containing niche of the hippocampus (20, 21) and reduced neuronal size and 

number of spine synapses in PFC (22). These microanatomical changes may translate into 

volumetric reductions of gross anatomical ROIs measured using MRI. Accordingly, reduced 

hippocampal and PFC volume are two of the most replicated findings in MRI studies of 

depression, especially in patients experiencing an early onset or recurrent episodes (23, 

24). Depression is also associated with changes in the functional and structural connectivity 

of large-scale brain networks (25-27). Interestingly, such network alterations have recently 

been linked to lower synaptic density in a combined synaptic vesicle glycoprotein 2A 

(SV2A) ligand PET and MRI study (28) suggesting a plausible biological underpinning. 

The cellular and neuroimaging findings are presumed to result from decreased levels of 

neurotrophins (16, 29) and altered levels of pro-inflammatory cytokines (30) possibly related 

to stress and hypercortisolemia (16, 31). Although speculative, a lower plastic potential may 

impair cognitive flexibility and the regulatory control of stimulus-driven affective processing 

(32), which may translate into the rigidity and repetitive negative thought patterns commonly 

seen in depression.
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MRI studies of ECT in depression

T1 structural MRI

Recent theoretical conceptualizations suggest that antidepressants, including ECT, may act 

through reversing a neuroplasticity deficit in depression (33, 34). Given that MRI volumetric 

reductions in depression to some extent reflects reduced or impaired neuroplasticity, 

successful treatment may reverse these volumetric deficits. ECT-mediated changes of gray 

matter are derived from T1-weighted images acquired pre-post treatment and estimated 

using either a data driven whole-brain or a ROI approach. The majority of volumetric 

studies have focused on temporal lobe structures, most notably the hippocampus and the 

amygdala. These studies generally observed an increase in hippocampus and/or amygdala 

volume post-treatment (12, 35-59), although a few exceptions exist (8, 9, 60). The findings 

are further corroborated by recent meta- and mega-analyses reporting volume increases up 

to 4-5% (61, 62) for the hippocampus and 5-6 % for the amygdala (63). The volumetric 

expansions are positively associated with number of ECTs (61), and may be mediated, at 

least partly, by the strength of the electrical field (64). The volumetric changes have been 

further delineated to mainly the grey matter subfields of the hippocampus (37, 39, 49, 65-67) 

and the basolateral nuclei of the amygdala (39).

Beyond the hippocampus-amygdala complex, increase of grey matter volume or cortical 

thickness in temporal cortex (36, 39, 41, 44, 50, 53, 68, 69), insula (36, 39, 41, 44, 53, 69, 

70), anterior cingulate cortex (ACC) (36, 38, 41, 50, 55, 68, 70), medial prefrontal cortex 

(41, 53, 68), striatum (36, 39, 45, 46, 71, 72), postcentral gyrus (41, 73), fusiform gyrus 

(68, 70), limbic cerebellum (74) and the supplementary motor cortex (73) have also been 

reported post-treatment. As most studies used a right unilateral electrode placement, findings 

are more frequently reported in the right hemisphere, which aligns with the distribution 

of electric field strength (64). Together, the results of these studies indicate volumetric 

enlargement of several corticolimbic brain regions (Figure 1a); however, until recently, the 

pattern of whole-brain structural alterations following ECT remained unresolved.

Thus, to investigate changes in whole-brain gray matter, the Global ECT-MRI Research 

Collaboration (GEMRIC) performed a multi-site mega-analysis of individual-level subject 

data. With the largest sample size to date (N=328), the authors reported gray matter 

volumetric changes in most cortical and subcortical ROIs, with the exception of the 

cerebellum (75). The volumetric expansion of all subcortical ROIs negatively correlated 

with total ventricle size, indicating that the increase of subcortical gray matter may 

be at the expense of cerebrospinal fluid spaces. The study explains why earlier work 

suggested anatomical specificity of gross volumetric effects, which could be due to their 

limited statistical power to detect the full range of gray matter change. Furthermore, the 

results suggest that morphological alterations in the immediate aftermath of treatment 

are not restricted to specific depression circuits, but instead may represent a mixture of 

therapeutically relevant and non-relevant effects.

In addition to the focus on a selected number of ROIs, most studies have compared baseline 

MRIs with MRIs acquired within 2 weeks after treatment completion. Understanding 

the time-dependency of the MRI effects is important, as this may point toward their 

Ousdal et al. Page 4

Biol Psychiatry. Author manuscript; available in PMC 2023 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurobiological underpinning as well as their clinical relevancy. Based on a limited number 

of studies, volumetric increases could be present already after two ECT sessions (52) with 

further increases after the remainder of the ECT series (52). Moreover, existing evidence 

suggests that the volumetric expansions are transient, with a return to baseline of both the 

hippocampal and the PFC volumes by 3-12 months (35, 45, 53, 65, 66, 76). Notably, no 

study has investigated the full spectrum of anatomical ROIs, thus it remains to be established 

if the return to baseline is global or show regional specificity. In addition, extended data 

sampling from individual subjects will be necessary in order to understand the emergence 

and resolution of the structural effects at a finer scale and at the individual level.

How the changes in gray matter indices relate to clinical response remains debated. Some 

of the earliest studies reported a correlation between baseline hippocampal volume or 

the hippocampal volumetric increase and the reduction in depressive symptoms (38, 52). 

However, the majority of studies have failed to find an association (35, 42, 45, 47, 48, 

50, 51, 59, 61, 64, 75). The lack of association could be related to the notion that 

hippocampus is a heterogenous entity. Thus, clinical response may selectively pertain to 

structural changes in anterior subregions (77) or the dentate gyrus (67, 78). Beyond the 

hippocampal complex, the baseline volume or the volumetric change of several cortical 

(i.e. orbitofrontal (53), inferior frontal gyrus (79)), ACC (38, 40, 50), temporal (50, 68), 

insula (69) and subcortical (amygdala (52), striatum (46, 71)) ROIs have also been linked 

to the clinical efficacy of ECT, yet these varying findings generally await replication in 

larger samples. Alternatively, clinical effect may be driven by the simultaneous change of 

several anatomical regions, which could be tested through the use of machine learning. The 

majority of machine learning studies so far have been modestly successful, using volumetric 

change (80), baseline surface-based morphometry (81, 82), or multimodal fusion (83). With 

refinement of analyses and larger sample sizes, these methods may bring novel insight into 

possible anatomical correlates of clinical response.

Diffusion-weighted imaging

Studies of whole-brain or regional gray matter volume changes upon ECT treatment are 

important, however, they do not inform us regarding the underlying tissue properties. Thus, 

to understand the biological underpinning of the volumetric changes, DWI can be useful. 

DWI measures the restriction of freely moving water molecules in tissue and uses these 

restrictions to infer the organization of the tissue. If modeled with an ellipsoid shape, 

represented by a tensor, metrics like fractional anisotropy (FA), mean (MD), radial (RD) and 

axial (AD) diffusivity can be derived (84-86).

With regards to brain white matter, early work suggested a significant increase in FA of 

the anterior cingulum, forceps minor and left superior longitudinal fasciculus following 

the treatment series (87), in addition to a more general increase in frontal white matter 

FA (88) (Figure 1b). While biological unspecific, the increased FA supported increased 

integrity of white matter tracts in these cortico-limbic regions. However, the findings have 

not been replicated in more recent studies (10, 60, 89), which instead showed increased 

MD in widespread white matter tracts (10, 89) (Figure 1b). At the microstructural level, 

increased MD may represent an increase in the amount of extracellular fluid in white matter 
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or alternatively reduced integrity of the white matter parenchyma itself (84). The clinical 

translation of the DWI findings is presently limited. Early work found treatment-related 

increases in FA and decreases in MD in dorsal fronto-limbic circuits to be associated with 

decreased depression severity (87). However, subsequent whole-brain studies failed to find 

any associations between white matter MD or FA and clinical response (10, 60, 89).

Although mostly used to delineate brain white matter, DWI can also be used to investigate 

gray matter properties. Accordingly, a reduction of average gray matter MD in amygdala 

and hippocampal ROIs is consistently reported (59, 90, 91) post-ECT (Figure 1b). Reduced 

MD has also been observed in anterior hippocampal pathways (92). The reduction is not 

observed after one ECT session (92) or at 4-weeks post-treatment (59). Moreover, it may 

be independent of the concomitant volumetric expansion of these anatomical regions (91). 

Reduced gray matter MD suggests a shift in tissue properties with an increased proportion of 

water molecules in compartments with more restricted diffusion and may signify an increase 

in the number of cells, dendrites or axons in the amygdala and the hippocampus (84). 

Similar to white matter DWI investigations, studies linking amygdala and/or hippocampus 

MD and clinical response have also produced mixed results (59, 90-92).

Magnetic Resonance Spectroscopy

Changes in brain macro- and microstructure are likely to be preceded or followed by 

changes in brain metabolites. In humans, concentrations of metabolites in the brain can 

be measured using 1H- MRS. Measurements are performed within a specific volume, a 

voxel, with the anatomical placement varying between studies (i.e., hippocampal, anterior 

cingulate cortex, prefrontal cortex or occipital cortex). Although results are mixed (55, 

93-101) and many studies do not report on all metabolites within the spectra, a reduction in 

N-acetylaspartate (NAA) was reported in six studies (55, 95, 98-101). The finding is difficult 

to reconcile with a theory that only comprises plasticity enhancing effects (102). A decrease 

in NAA is often paralleled by an increase in Choline in clinical radiology, and increased 

Choline has indeed been reported by some 1H-MRS investigations (93, 94, 101) after ECT. 

Although two studies reported increased NAA in responders only (95, 97), alterations in 

NAA has generally not been associated with clinical response.

The seizure threshold is known to increase during an ECT treatment series (103, 104), which 

supports the hypothesis that ECT mediates antidepressant efficacy through anticonvulsive 

mechanisms (105). Increased GABAergic transmission would provide additional support for 

ECT’s anticonvulsant properties. Early work supported this notion with increased GABA 

concentrations after an ECT series (106). However, more recent work has not found 

significant changes in GABA upon treatment completion (99, 107). In contrast, ECT may 

affect excitatory neurotransmission (55, 95-97, 100, 101, 108), which is suggested by recent 

studies reporting an increase in glutamate or Glx (glutamate + glutamine) post-ECT (96, 97, 

100, 101, 108).

The biological significance of the MRI findings

Several biological processes have been proposed to underlie the MRI structural effects, 

but amongst them, neuroplasticity, including augmented neurogenesis, has received most 

Ousdal et al. Page 6

Biol Psychiatry. Author manuscript; available in PMC 2023 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



attention recently. The neuroplasticity hypothesis is based on work in preclinical animal 

models suggesting a dose-dependent increase of neurogenesis in the dentate gyrus of the 

hippocampus following electroconvulsive stimulation (ECS, the animal model of ECT 

(109)). Importantly, interfering with this neurogenic process blocks the antidepressant effect 

(110) (but see (111)). Although increased neurogenesis may not be exclusive to ECT 

treatment, the neurogenic effect of ECS exceeds that of antidepressant medications and 

the onset is faster, being comparable to the superior and fast onset effects of ECT (112). 

ECT may operate by inducing neurogenesis in humans as well; however, neurogenesis 

is not likely to be the main mediating factor of the T1 gray matter volumetric effects. 

First, the volumetric changes induced by neurogenesis are expected to be microscopic and 

confined to a few anatomical structures (113, 114). Thus, neurogenesis cannot explain the 

global volumetric changes reported in recent MRI studies. Second, discrepant hippocampal 

volumes in animal models of depression are largely explained by differences in neuropil and 

glial cell numbers, while deficits in neuronal number contributes to a lesser extent (115). 

Third, the timing of effects makes neurogenesis as the principal mediator of the volumetric 

changes unlikely. While structural changes may be seen even after two ECT sessions (52), 

the maturation, migration and integration of newborn neurons into functional circuits takes 

place over several months (116).

Beyond neurogenesis, a plethora of other plastic processes have been reported in 

animal models of ECT, including synaptogenesis, dendrogenesis, dendritic arborization, 

gliogenesis, mossy fiber sprouting and angiogenesis (117-119). Notably, these neuroplastic 

processes are closely interconnected through the actions of trophic factors and are not 

restricted to the hippocampal complex. Among the various plastic processes, shifts in 

cumulative length of dendrites and dendritic spine density have recently been associated 

with the gray matter density signal in voxel based morphometry (120) or gray matter volume 

(121). This is arguably in line with studies linking electrical field strength to dendritic 

arborization in animal models (122). Moreover, MRI detectable volumetric changes in 

relation to psychopathology and learning, have both been correlated with the synaptic 

marker GAP43 (123, 124), which is essential for the growth, regeneration and function of 

neurites (i.e., dendrites and axons). These various lines of evidence suggest an effect of ECT 

on neurites, which accords with the DWI studies investigating gray matter properties.

Although commonly interpreted to reflect augmented neuroplasticity, the volumetric 

expansions could also reflect fluid shifts. Indeed, the volumetric changes may be driven 

by changes in blood flow, as the T1 relaxation times for arterial blood and gray matter are 

not clearly distinguishable (125). Accordingly, a recent study using arterial spin labelling 

reported that ROIs with significant volumetric enlargements also exhibited increased blood 

flow post-ECT (126). Alternatively, an increase of fluids in the extracellular space (i.e. 

vasogenic edema) secondary to the hypertensive surge and a possible breach of the blood-

brain barrier (127) could also explain the volumetric expansion. However, this is not 

supported by studies investigating gray matter MD, which instead suggest an increased 

volume fraction of more restricted water pools in subcortical gray matter following 

treatment (59, 90, 91). Although speculative, the findings may reflect neuroplastic changes 

leading to greater occupation and hence restriction of water molecules in the extracellular 

space (84, 85). Taken together, a multitude of plastic processes may contribute to the 
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MRI-like plasticity following ECT, however the type and extent remain undetermined and 

may show regional variability. As such, brain regions exhibiting the greatest volumetric 

alterations may be those subjected to several plastic processes, which makes gross 

volumetric change more readily detectable (128)

Notably, not all MRI findings fit with the neuroplasticity conceptualization, and indeed there 

is evidence to support that ECT also has transient disruptive effects on brain function and 

structure. Early work in animal models reported ECS to cause a reversible loss of long-term 

potentiation (LTP) in the hippocampus (129, 130). LTP is a process by which synaptic 

connections are strengthened, producing a long-lasting increase in signal transmission 

between neurons. Since LTP is likely to be the process by which information is stored 

in the brain, a temporary loss of LTP may be related to some of ECT´s side effects (e.g., 

confusion, amnesia). More importantly, these preclinical and clinical observations support a 

temporary disruption of brain function upon treatment. Likewise, reports of decreased levels 

of NAA (55, 95, 98-101) (and to some extent increased levels of Choline (93, 94, 101)) are 

also difficult to reconcile with a mechanistic model which only entails plasticity enhancing 

effects. A decrease in the NAA peak suggests reduced neuronal integrity following ECT 

(131). Notably, reduced neuronal integrity is likely to affect the connectivity of large-scale 

neuronal networks. Although not included in the present review, several studies have indeed 

reported reduced resting-state functional connectivity following ECT (132-134), which in 

some patients may be paralleled by changes in corresponding structural pathways (10). 

Notably, reduced functional connectivity has been related to cognitive side effects by some 

(134). As such, the brain disruptive effects may underlie both the rapid clinical response 

and the side effects, which is further suggested by studies reporting associations between 

duration of post-ictal confusion and clinical outcome (135) as well as post-ictal confusion 

and ECT-mediated cognitive impairments (136). The temporary disruption may act upon 

neural circuits which promotes the rigid negative bias of attention, memory, interpretations 

and selfrepresentations, and allowing these to rewire in non-depressed states (32). However, 

disruption beyond the neural circuits maintaining depressive symptoms (likely related to 

dose (137)) may add side effects without further symptom reduction.

Conclusion and future directions

The current review focuses on MRI structural and biochemical changes associated with 

ECT. Based on the reviewed literature, we show that ECT causes broad volumetric 

expansions of brain gray matter in the post-treatment phase, which is likely to represent 

a mixture of therapeutic and non-therapeutic ECT-induced effects. Accordingly, attempts to 

link the gray matter volumetric changes to clinical response have produced mixed results. 

Measurements of gray matter diffusivity suggest that the changes are not due to fluid 

shifts, but instead represents plastic changes in the parenchyma itself. However, the exact 

biological underpinning of the volumetric expansions remains to be established. In contrast, 

investigations of the brain´s metabolite spectra, white matter properties and functional 

connectivity suggest that ECT also has disruptive effects. Thus, we propose a mechanistic 

model which includes a temporary disruption followed by augmented neuroplasticity and 

rewiring (Figure 2a-b). Indeed, while neuroplastic effects have been postulated before, we 

here suggest a sequential model which includes the cause and the consequence of the 
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neuroplasticity enhancement. Notably, there are likely to be optimal levels of disruption and 

neuroplasticity, which produces sufficient antidepressant response with minimal side effects, 

and these optimal levels may be related to ECT dose (i.e., electric stimulation and seizure 

characteristics). Thus, ECT dose may have to be individually tailored to obtain remission 

while simultaneously ensuring cognitive safety (Figure 2c-d).

While the theoretical basis and the indirect evidence for our model may at first seem 

compelling, the model needs to be tested more rigorously in future studies. These studies 

should aim to study the brain at a higher resolution, which is made possible by some of 

the latest advances in MRI acquisition, image processing and modelling. Combined with 

animal studies, such methods may delineate the biological processes, one element at the 

time. Alterations in synaptic connections may be assessed by studies of the individual 

functional connectome (138-140), preferably in combination with SV2A ligand PET, which 

(indirectly) measures synaptic densities. We hypothesize that ECT´s disruptive effects lead 

to a loss of individual connectome stability early in the treatment course, possibly reflecting 

changes in inter-neuronal communication at the level of brain synapses (129, 130). These 

effects may be paralleled by regional reductions of SV2a density. Moreover, we propose 

that the disruption and neuroplasticity enhancement should be linked, thus the degree of 

connectome instability early in the treatment course should predict later increases in regional 

synaptic density as measured by SV2a ligand PET. To further investigate neuroplasticity, we 

suggest using the latest advances in DWI which combine multi-shell acquisition with refined 

modelling (e.g. Neurite Orientation Dispersion and Density Imaging – NODDI (141), 

restricted spectrum imaging (RSI) (142) and spherical mean technique multi-compartment 

(SMT mc) (143). These techniques may provide valuable information regarding changes in 

the amount of neuropil following ECT treatment and may show cumulative effects over the 

course of an ECT treatment series. Finally, although the electrical field seems important for 

the gray matter changes (64), the role of the seizure characteristics needs further study (144, 

145).

Notably, existing studies of ECT´s morphometric and biochemical effects have produced 

mixed results, which is likely to reflect clinical and demographic differences between the 

data samples in combination with different data processing and analyses pipelines. The 

variability of results is reinforced by the small sample sizes of most studies. Thus, to 

increase replication, there is a need for prospective collaborative efforts aiming to collect 

harmonized in-depth clinical and demographic information, as well as using a harmonized 

imaging protocol. In addition, attempts to harmonize the way ECT is administered, 

including electric dosage and electrode placement, will also be important in order to 

discover the neurobiological mechanisms related to its therapeutic action.

In summary, although preclinical animal models have been useful in understanding the 

working mechanisms of ECT in depression, human MRI studies are important in order 

to delineate which aspects that can be translated and which aspects that may be unique 

to human populations. Based on the reviewed literature, we propose a model where brain 

disruption, plasticity potentiation and rewiring occur in sequence, and ultimately explain 

immediate, short and long-term effects of ECT. Although evidence for our model is 

indirect, it may be a framework for understanding the neurobiological underpinning of ECTs 
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therapeutic effects and derive new testable hypotheses, which ultimately may bring the field 

forward.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Density of studies reporting ECT-related volume and mean diffusivity (MD) changes.
A) Summary of T1 MRI studies reporting whole-brain or regional volumetric increases 

(blue colour) pre-post ECT. Colour intensity refers to the number of studies reporting 

volumetric increase for the anatomical region. Shaded areas indicate conflicting results. 

Results from different hemispheres were combined. Abbreviations: AMY, amygdala; CNG, 

cingulate cortex; FL, frontal lobe; HIP, hippocampus; PL, parietal lobe; PUT, putamen; TL, 

temporal lobe. B) Summary of diffusion weighted imaging studies reporting changes in MD 

pre-post ECT. Blue colour indicates MD decrease, while red colour indicates MD increase. 

Colour intensity refers to the number of studies reporting MD changes in the anatomical 

region. Results from different hemispheres were combined. Abbreviations: FL WM, anterior 

thalamic radiations, minor forceps and anterior cingulum bundle; HIP WM, hippocampal 

white matter tracts; HYT, hypothalamus; IFOF, inferior fronto-occipital fasciculus; ILF, 

inferior longitudinal fasciculus; PLIC, posterior limb of the internal capsule; UF, uncinate 

fasciculus.
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Figure 2. Disrupt, potentiate and rewire.
This figure illustrates the proposed mechanistic model. The model assumes that the subject 

has the potential to respond to ECT and does not address non-response despite adequate 

dosing. a) Exemplary Electroconvulsive Therapy-Magnetic Resonance Imaging (ECT-MRI) 

study protocol. Number of ECTs depends on the clinical response and judgement of the 

treating ECT practitioner and are usually performed within a period of 2-6 weeks (--->). 

MRI is typically acquired within 1 week before and within 2 weeks after the treatment 

series. b) Proposed model integrating the effects of ECT at ideal dosing. Before treatment 

(left side of x-axis) the brain is in a depressed state; characterized by high symptom load 

and possibly low plastic potential (reduced neurotrophic factors). Each session of ECT 

(electrical stimulation and seizure) constitutes a temporary disruption (gray curve; peaks 

with exponential decay) of brain function (post-ictal confusion etc) with corresponding 

physiological effects (reduced N-acetylaspartate, functional connectivity and white matter 

integrity). The brain´s response to the disruptive effects is a temporary enhancement of 

neuroplasticity (green line) which may lead to an increase in volume of gray matter (green 

line). The disruption and neuroplastic effects in combination lead to rewiring of neural 

circuits underlying depressive symptoms (blue line). During optimal dosing neural circuits 

implicated in cognition are minimally affected (red line). Note that the lines represent 

mean change over time and are not necessarily representative for each ECT session. c) 

Excessive ECT dosing (high electric field strength, very long seizure duration) will result 

in long post-ictal recovery, more widespread disruptive effects (affecting circuits implicated 

in depression and cognition) and possibly more extensive volumetric effects. The clinical 

outcome will be antidepressant response with cognitive impairment. d) Insufficient ECT 
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dosing (low electric field strength, very short seizure duration) will result in short post-ictal 

recovery times, limited disruption and insufficient changes in neuroplasticity. The clinical 

outcome will be minimal antidepressant response and no side effects.
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